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ABSTRACT

Decentralized training of large models presents two critical verification chal-
lenges: ensuring the training process was executed correctly (process verification)
and confirming the resulting model genuinely improved (outcome verification).
Existing solutions like zkML are prohibitively expensive, while prior Proof-of-
Learning schemes focus only on the process, failing to guarantee that the final
model is actually better. We introduce a comprehensive and efficient framework
that addresses both challenges through economically-secured probabilistic audits.
First, we propose a protocol where Provers commit to each training step, with a
small, random fraction of steps being audited by verifier committees, and we de-
rive a tight detection-cost frontier that minimizes verification overhead. Second,
we introduce Proof-of-Improvement (PoI), a novel and lightweight evaluation au-
dit that statistically certifies milestone-based gains (e.g., perplexity reduction) on a
committed dataset. Empirically, on a QLoRA fine-tuning task, our process audits
reduce verification compute by over 95% compared to full replication, and our PoI
audits certify model improvements with high statistical power at a minimal cost.

1 INTRODUCTION

Decentralized training of large models raises a fundamental question: how can a coordinator (or the
public) verify that training was executed faithfully and in such a way that the resulting model im-
proved on a committed evaluation? Purely cryptographic approaches (e.g., zk-ML) offer strong
guarantees but remain orders of magnitude too costly at training scale; e.g., even small train-
ing rounds exhibit heavy proof-generation overheads Lavin et al. (2024); Bellachia et al. (2025).
Proof-of-Learning (PoL) replaces circuits with replayed spot-checks over a logged trajectory Jia
et al. (2021), and Proof-of-Sampling (PoSP) couples random verification with penalties Zhang &
Wang (2024); Zhao et al. (2024). However, when applied to decentralized, trustless, LLM-scale
training, these approaches often require redundancy in their verification (in order to avoid adver-
sarial effects from the auditor side), and hence, either inherit the cost of frequent replays or force
delicate incentive/committee trade-offs that can create high entry barriers.

In this work, we focus on training-time audits that are both economical and ML-relevant. Building
on the observation that auditing a random fraction of steps suffices to achieve a target single-step
detection level, we analyze and instantiate a protocol with (i) binding per-step commitments, (ii)
post-commit randomized audits by small verifier committees, and (iii) explicit incentives. A key
outcome is a simple, actionable detection–cost frontier: the probability of catching a single forged
step, δ(1), scales linearly with the audited fraction, δ(1) = α q, where q captures committee cap-
ture and numerical tolerance; the minimal verification cost for a target δ⋆ then follows in closed
form. A windowed commit→sample→reveal→audit pipeline ensures O(ℓ) liveness with only a
constant per-window overhead, and a tight stake bound enforces incentive compatibility. We also
extend the mechanism to a multi-trainer regime (DiLoCo/Streaming-DiLoCo style, cf. Douillard
et al. (2023; 2025)) where outer-round aggregation is audited and, on failure, sampled inner audits
attribute blame Douillard et al. (2023; 2025). All of these pieces are validated empirically on a
QLoRA fine-tuning workload (cf. Dettmers et al. (2023)), matching the predicted δ(1) = αq law
and delivering considerable compute savings versus fully redundant PoL.
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Beyond verifying how training was executed, we introduce a lightweight evaluation and audit track
that verifies what training achieved. At chosen milestones (e.g., end of a window), the trainer claims
an improvement of at least γ in token log-loss (equivalently, perplexity) over a committed baseline
and evaluation root. The coordinator then (post-commit) samples n evaluation tokens and assigns
a small committee to recompute forward-only log-probs for both models; the claim is accepted
if a pre-declared one-sided test (or sequential test) confirms improvement at confidence 1 − αstat.
The resulting detection of false improvement claims factorizes as δPoI = δstat(n) ·q (statistical power
times committee factor), and the verification cost is linear in both the committee size and the number
of evaluated tokens, reusing the same economics and incentives as training-step audits.

1.1 RELATIONSHIP TO PRIOR WORK.

Zero-Knowledge Machine Learning (zkML) frameworks Lavin et al. (2024); Bellachia et al. (2025)
target cryptographic correctness but face prohibitive proof costs at training scale. PoL establishes
replay-based verifiability through spot-checks Jia et al. (2021), and PoSP introduces randomized
committees with economic penalties Zhang & Wang (2024); Zhao et al. (2024). Our work com-
plements these lines by: (i) deriving a tight detection–cost frontier with explicit committee-capture
and tolerance factors; (ii) proving pipelined liveness and incentive compatibility under a realistic,
committee-voted audit; (iii) extending to multi-trainer training with attribution; and (iv) adding a
Proof-of-Improvement track that certifies outcome gains on a committed evaluation with statistical
confidence. To our knowledge, milestone-level PoI—integrated with probabilistic audits and com-
mittee economics—has not been formalized within verifiable training protocols. On the distributed
side, our multi-trainer extension is designed to coexist with low-communication training methods,
such as DiLoCo and Streaming-DiLoCo Douillard et al. (2023; 2025), providing the missing verifi-
cation layer. The interested reader can find a more thorough literature review in Appendix A.

1.2 CONTRIBUTIONS.

Our presented methodology implements several mechanisms for auditing the veracity and effective-
ness of training and fine-tuning in the context of a decentralized and trustless environment. We state
our main contributions below:

• Protocol. A practical commit→sample→reveal→audit protocol with small verifier com-
mittees and binding per-step commitments (inputs, outputs, metadata). This is done on a
windowed schedule, which enables concurrency.

• Detection–cost frontier. We derive theoretical results for the detection probability, and
give the minimal verification cost for any target δ⋆, revealing a simple linear frontier that
replaces M full replays with m ≪ M audited replays.

• Liveness and incentives. We bound end-to-end wall-time under windowed auditing and
give a tight stake condition that makes honesty strictly dominant; a repeated-interaction
variant further reduces collateral.

• Multi-trainer extension. An outer-round aggregation audit with sampled inner audits on
failure attributes faults to workers, preserving low typical-case cost while enabling slashing
at worker granularity.

• Proof-of-Improvement (PoI). A drop-in evaluation-audit track that certifies milestone
improvements (e.g., perplexity decrease by ≥ γ) on a committed evaluation set; δPoI =
δstat(n) · q and verification cost is linear in committee size and audited tokens.

• Empirical validation and guidance. On QLoRA fine-tuning, we match the predicted
δ(1) = αq law, achieve 94–98% compute savings versus fully redundant PoL at practical
detection levels, and provide exact heat-map thresholds to pick m for target q.

The rest of this work is organized as follows. We present the core methodologies in Section 2.
We devote Section 3 to the analysis (with proofs in Appendix C), and experimentally validate our
research in Section 4. Lastly, we present some closing remarks and limitations in Section 5.
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2 METHOD: PROBABILISTIC AUDITS WITH COMMITTEES

We introduce a protocol for verifiable decentralized training that ensures both the correctness of the
training process and the improvement of the model’s performance. The framework is composed of
three primary components: (i) a core protocol for auditing individual training steps in a single-prover
setting, (ii) an extension of it to multi-prover distributed training, and (iii) a novel mechanism for
verifying outcome improvement, which we term Proof-of-Improvement (PoI).

2.1 PROTOCOL PRELIMINARIES

Let P denote the set of protocol participants, consisting of Mp ∈ N+ Provers, {P1, . . . , PMp}, and
a population of Mv ∈ N+ Verifiers, {V1, . . . , VMv}. A given Prover P performs ℓ ∈ N+ gradient-
update steps on model parameters θ ∈ Rd. Each step t transforms θt−1 into θt via a (possibly
randomized) update function:

θt = Update
(
θt−1, Dt−1, Lt−1, Ht−1

)
, t = 1, . . . , ℓ, (1)

where Dt−1 represents the data (e.g., indices with Merkle proofs), Lt−1 is the loss function, and
Ht−1 contains auxiliary state such as optimizer state, RNG seeds, and environment identifiers. The
Prover’s per-step compute cost is Cp > 0, while a Verifier incurs a cost of Cv > 0 to replay a single
step.

We assume a trusted smart contract (SC) that manages participant stakes (sp and sv), provides public
randomness (cf. Syta et al. (2017); Choi et al. (2023), for example) , and executes the protocol logic.
All authenticated messages are delivered within a known delay bound ∆. We consider a static
Byzantine adversary A who, prior to execution, may corrupt up to fp of the Prover’s update rounds
and up to fv Verifiers within any given audit subcommittee of size m.

Remark. While our primary analysis considers a static adversary, the post-commitment reveal
structure provides inherent resilience against certain adaptive strategies. Since committees are se-
lected using public randomness after commitments are locked in, an adversary has a limited window
to corrupt the specific verifiers chosen for an audit adaptively.

2.2 CORE PROTOCOL: PROBABILISTIC TRAINING AUDITS

The core mechanism verifies the integrity of the training process. To ensure unpredictability while
maintaining high throughput, the protocol operates in windows of G steps using a post-commitment,
pipelined audit structure, are illustrated in Figure 1 (Left) and detailed in Algorithm 1 (in Appendix
B).

1. Commit Phase. For each training step t within a window, the Prover executes the update and
constructs a cryptographic commitment ht that is posted to a public ledger. This commitment acts as
a tamper-proof record of the claimed state transition. To ensure these commitments are both secure
and scalable for large models, we employ a Merkle tree-based approach. Instead of hashing the
entire parameter state, the model parameters θ are partitioned into fixed-size shards, and the Prover
commits to the Merkle root of these shards. The binding commitment for each step is a constant-size
hash constructed from the Merkle roots of the model state before (θt−1) and after (θt) the update,
along with a step witness Wt:

ht = H (MerkleRoot(θt−1)||MerkleRoot(θt)||Wt) . (2)

The witness Wt :=
(
It,Πt, Ot−1, Rt,Λt,Ξ

)
contains all necessary metadata to reproduce the step,

such as batch indices (It), their Merkle proofs (Πt), optimizer state (Ot−1), RNG seeds (Rt), hyper-
parameters (Λt), and a hash of the execution environment (Ξ). This structure makes the commitment
binding to the specific state transition, preventing the Prover from changing their story after the fact
(ex-post equivocation).

2. Sample & Reveal Phase. After the Prover has committed to all G steps in a window, the smart
contract uses a source of public randomness to sample a small fraction, α, of the steps to be audited.
Once these steps are chosen, the Prover is required to “open” their commitments by revealing the full
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Figure 1: (Left). Proof of learning protocol. (Right). Verifiable DiLoCo. Figure adapted from
Douillard et al. (2023)

step witness Wt and the specific parameter shards involved in the update, along with their Merkle
proofs. The post-commitment nature of the sampling is crucial; because the Prover does not know
which steps will be audited until after they have committed to all of them, they are incentivized to
perform every step honestly.

3. Audit & Resolve Phase. A random subcommittee of m Verifiers is selected to perform the
audit. For each sampled step, the Verifiers first use the revealed Merkle proofs to confirm that the
provided parameter shards match the committed roots. Only then do they re-execute the training step
using the witness data to produce a recomputed state θ̂t. They vote to accept the step if their result
is sufficiently close to the Prover’s claimed result, i.e., ∥θ̂t − θt∥X ≤ τ , where τ is a small tolerance
to account for benign numerical drift across different hardware and ∥ · ∥X is some appropriate norm.
If a supermajority of the committee rejects any step, the Prover’s stake is slashed; otherwise, honest
Verifiers are rewarded, and the protocol proceeds.

2.3 EXTENSION TO MULTI-PROVER DISTRIBUTED TRAINING

Our protocol naturally extends to communication-efficient distributed settings like DiLoCo Douil-
lard et al. (2023), where multiple workers (Provers) train in parallel with infrequent synchronization.
The process operates in two distinct loops: an inner loop of local training and an outer loop for global
aggregation. Our verification is hierarchical, designed to be efficient in the common case where all
workers are honest.

In each outer round r, Nm workers start from a common global model state θr−1. Each worker i
then independently performs k local training steps using its own data:

θ
(i)
r,j = Update

(
θ
(i)
r,j−1, D

(i)
r,j−1, L

(i)
r,j−1, H

(i)
r,j−1

)
, t = 1, . . . , ℓ, (3)

where θ
(i)
r,0 = θr−1. During this phase, each worker acts as a single Prover, creating and posting

commitments (h(i)
r,j) for each of its k local steps, just as described in Section 2.2.

After completing their k local steps, each worker proposes their final local model, θ(i)r,k. The new
global model, θr, is then computed by aggregating these proposals, for example, through simple
averaging: θr = 1

Nm

∑
i θ

(i)
r,k. In more advanced schemes like DiLoCo, this aggregation can also

incorporate momentum (e.g., a Nesterov step, cf. Lin et al. (2019)).

Verification proceeds in a two-stage, optimistic fashion to minimize cost:

4
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1. Stage 1: Aggregation Audit. First, a verifier committee performs a lightweight check on
the outer loop. It verifies that the final global model θr was correctly computed from the
workers’ proposed final models θ(i)r,k. This step is computationally cheap as it only involves
re-calculating the aggregation, not re-playing any training steps.

2. Stage 2: Fault Attribution (Escalation). If and only if the aggregation audit fails, the
protocol escalates. A random subset of workers Q ⊆ {1, . . . , Nm} is challenged to reveal
their full k-step local training histories. The core probabilistic audit from Section 2.2 is
then performed on each challenged worker to find who produced a faulty local model.

This approach is illustrated in Figure 1 (right).

2.4 EVALUATION AUDIT: PROOF-OF-IMPROVEMENT (POI)

To certify that training achieved a meaningful outcome, we introduce PoI, an audit that verifies
performance gains at milestones.

At the end of a window, a Prover posts a claim (r, γ, αstat):

“At milestone r, the final model θfinal improves token log-loss by at least γ >
0 (reduces perplexity by a factor ≤ e−γ) versus baseline θ0 on the committed
evaluation set, with one-sided confidence 1− αstat.”

This requires a one-time, pre-run commitment to H(θ0) and the evaluation data’s Merkle root, Reval.

The contract samples a subset S̃r ⊆ Deval of size n. A verifier committee of size meval computes
per-token log-loss differences for i ∈ S̃r:

Zi := − log pθfinal(xi)︸ ︷︷ ︸
ℓ1(xi)

−
(
− log pθ0(xi)︸ ︷︷ ︸

ℓ0(xi)

)
,

The claim of improvement is accepted if and only if a pre-declared one-sided statistical test on the
sample mean Z̄ passes. For example, by confirming that the Lower Confidence Bound (LCB) of the
mean improvement meets the claimed threshold:

LCB 1−αstat

(
−Z̄

)
≥ γ.

This mechanism, pipelined alongside training audits, provides a low-cost, statistically robust method
to verify tangible model improvements without requiring monotonic per-step loss.

3 ANALYSIS

We now provide a formal analysis of the protocol introduced in the preceding section. We begin by
defining our security and operational goals. Then we prove that our protocol achieves these goals
by deriving tight bounds on detection probability, cost, liveness, and incentive compatibility. We
present all our proofs in the Appendix C.

We design our protocol to satisfy three fundamental properties:

Definition 1 (Soundness). Let εsound ∈ [0, 1]. A protocol is εsound-sound if, against any adversary
corrupting up to fp Prover-rounds and up to fv verifiers per subcommittee, the probability that any
incorrect update is not detected is at most εsound.

Definition 2 (Liveness). A protocol satisfies liveness if, when all participants are honest, all ℓ
training rounds are completed within a total time of T ≤ ℓ Tupd + O(ℓ/G), where Tupd is the
per-step computation time and G is the window size.

Definition 3 (Incentive Compatibility). Let G > 0 be the Prover’s expected gain from a successful
one-step cheat, and let sp > 0 be the at-risk stake. The protocol is incentive-compatible if the
expected utility for cheating is negative, i.e., Ucheat(f) < Uhonest = 0 for any number of fraudulent
steps f ≥ 1.

5
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3.1 SOUNDNESS AND COST OF PROCESS AUDITS

The soundness of our protocol hinges on the probability that a fraudulent step is both sampled for
an audit and correctly flagged by an honest-majority committee.

For any single audited step, the probability q that a forgery is successfully detected is given by:
q = (1− Pmaj-Byz(M,F,m))︸ ︷︷ ︸

Prob. of honest majority

· (1− Pτ -miss)︸ ︷︷ ︸
Prob. correct flag given honest majority

, (4)

Where Pmaj-Byz is the probability of a Byzantine majority in a committee of size m drawn from a
population with F adversaries (given by the hypergeometric distribution), and Pτ -miss is the proba-
bility that numerical tolerance τ masks a genuine error. For deterministic computations, τ = 0 and
Pτ -miss = 0.

The overall detection probability depends on the number of fraudulent steps f . The base case for a
single forgery is linear in the sampling rate α.
Lemma 1 (Base Law for Single Forgery). For a single forged step (f = 1), the detection probability
is exactly δ(1) = αq.

For multiple forgeries, let X ∼ Hypergeom(ℓ, f, ñ) be the number of fraudulent steps sampled.
The exact detection probability is the expectation over X . Specifically, the probability of detecting
at least one of f forged steps is:

δ(f) = 1− E
[
(1− q)X

]
= 1−

min{f,ñ}∑
k=0

(
f
k

)(
ℓ−f
ñ−k

)(
ℓ
ñ

) (1− q)k. (5)

While exact, this expression can be tightly bounded for practical design, for instance, by δ(f) ≥
1 − (1 − alphaq)f , which follows from the negative correlation of sampling without replacement
(see the Appendix for proof).

3.2 THE COST-SOUNDNESS FRONTIER.

The total expected computational cost is the sum of the Prover’s training cost and the expected
verification cost.

Costtotal(α,m) = ℓCp + αℓmCv. (6)
By combining Lemma 1 with the cost model, we arrive at the efficient frontier, which defines the
minimum cost to achieve a target soundness level δ∗.
Theorem 1 (Efficient Frontier for Process Audits). For a target single-step detection probability
δ∗ ∈ (0, q], the minimum achievable cost is:

Costmin(δ
∗;m) = ℓCp +

δ∗

q
ℓmCv. (7)

The equation above establishes a linear tradeoff between verification cost and soundness. Targets
where δ∗ > q are infeasible without improving q (e.g., by increasing committee size m).

3.3 SOUNDNESS AND COST OF OUTCOME AUDITS (POI)

We now present an analogous analysis for PoI. Recall that the goal here is to provide verifiable
claims on improvements, rather than on computational work. To that end, notice that the detection
probability for a false PoI claim is the product of the statistical power of the test and the committee
quality factor:

δPoI = δstat(n) · qeval. (8)
The cost is determined by the number of samples n and the committee size meval:

CostPoI(n,meval) ≈ meval n
(
Ceval(θfinal) + Ceval(θ0)

)
. (9)

This creates a similar linear cost-soundness tradeoff, where the number of samples n plays a role
analogous to the sampling fraction αℓ in process audits. The required sample size n to achieve
a desired statistical power can be determined using standard results. For instance, for i.i.d. sub-
Gaussian log-loss differences, n scales as n ≳ (σ/r)2, where r is the margin of the false claim and
σ2 is the variance.
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3.4 PIPELINED LIVENESS AND ECONOMIC SECURITY

Finally, we analyze the protocol’s operational guarantees.

Theorem 2 (Pipelined Liveness). With a window size of G, the total execution time for ℓ steps is
bounded by:

Ttotal ≤ ℓ Tupd +
⌈ ℓ

G

⌉
(2∆ +∆aud) + O(1), (10)

where Tupd is the per-step update time, ∆ is the network delay, and ∆aud is the audit finalization
time. The pipelined design ensures audit latency contributes only a constant overhead per window,
not per step.

The previous theorem demonstrates that the presented protocol achieves liveness, loosely speaking,
meaning that the cost of the protocol increases moderately compared to the unverified case.

Theorem 3 (Economic Security via Staking). Honesty is a strictly dominant strategy for a Prover
if their stake sp satisfies:

sp >
1− δ(1)

δ(1)
G =

1− αq

αq
G, (11)

Where G is the gain from a single successful cheat. An analogous bound holds for PoI claims,
replacing δ(1) with δPoI and G with the gain from a false improvement claim, Gclaim.

4 EXPERIMENTS

Our experiments test whether the protocol’s predictions about detection, cost, and liveness hold in
practice, and whether the outcome-audit (PoI) and the distributed (DiLoCo-style) variant behave as
the analysis requires. Unless stated otherwise, we fine-tune a Phi-family Abdin et al. (2024) causal
LM with LoRA/QLoRA Hu et al. (2022); Dettmers et al. (2023) adapters on WIKITEXT-2 Merity
et al. (2016), and run a verifier population M=128 with subcommittee m=7. The theory in Sec. 3
predicts a single-step law δ(1) = α q with q = (1−Pmaj-Byz)(1−Pτ -miss) and a linear cost–soundness
frontier whose intercept and slope are 1/(1+M) and m/(1+M) when C ≃ Cv . We implement the
windowed commit→sample→reveal→audit pipeline and the PoI track exactly as analyzed.

Verifying the linear detection law δ(1) = αq. We begin by testing the fundamental prediction
that single-step detection scales linearly with the audited fraction. We plant a single forged up-
date at a uniformly random step, draw an independent m-committee for each audited step, and
sweep α ∈ {0.05, . . . , 1.0}. The empirical detection curve is a line through the origin whose slope
matches the exact q from the hypergeometric committee model, confirming δ(1) = αq to within
binomial uncertainty (Fig. 2 (Left)). This is the base case established in the analysis and underpins
all subsequent experiments.

Impact of numerical tolerance Next we isolate how the numeric tolerance τ—used to absorb be-
nign cross-hardware drift—affects the committee factor q. We vary τ , estimate the induced Pτ -miss,
and plot q = (1 − Pmaj-Byz)(1 − Pτ -miss) (Fig. 2 (Middle)). As τ crosses a few multiples of the
honest-drift scale, q drops sharply; geometrically, the δ(1) line rotates downward exactly as pre-
dicted by the model. In our deterministic baseline we set τ=0 (hence Pτ -miss=0); for heterogeneous
deployments we calibrate τ to a high percentile of observed honest drift on the declared stack Ξ.

Process-audit cost frontier We then examine the verification cost relative to fully redundant
PoL. Measured normalized cost aligns with the linear frontier that replaces M full replays with
m ≪ M audited replays: intercept 1/(1+M) and slope m/(1+M) when C ≃ Cv . Representa-
tive operating points lie on the predicted line to plotting precision: for targets δ={0.50,0.80,0.95} we
achieve α ≈ {0.501, 0.802, 0.952} at normalized costs {3.49%, 5.12%, 5.94%} of PoL (Table 1).
These values are the ones used later when we compare to wall-clock measurements.

Outcome verification with Proof-of-Improvement We also verify what training achieved. At a
milestone, the prover claims an improvement ≥ γ in token log-loss versus a committed baseline; the
contract samples n spans and a small evaluation committee runs a one-sided test. On WIKITEXT-2

7
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Figure 2: (Left). Single-step detection δ̂(1) with 95% CIs vs. α under committee size m=7 and
global capture F/M=0.10. Dashed line: δtheo(1) = α q with q computed exactly from the com-
mittee model. (Middle). q as a function of tolerance τ under a numeric-error model; increasing τ
reduces q via Pτ -miss. (Right) Normalized cost

δ required α normalized cost (%) comment

0.50 ≈ 0.501 ≈ 3.49 near half detection at ∼3.5% of PoL
0.80 ≈ 0.802 ≈ 5.12 ∼95% savings vs PoL
0.95 ≈ 0.952 ≈ 5.94 ∼94%+ savings

Table 1: Normalized cost vs. detection target δ (with M=128, m=7).

with a Phi-family LM (LoRA), the full evaluation over 800 spans reports ∆full = 0.4171 nats/token;
sampled audits with n ∈ {50, 100, 200, 400} reject H0 : µ ≤ 0 with very high confidence (e.g.,
p = 2.76×10−14 at n=50). This behavior matches the factorization δPoI = δstat(n) ·q and the linear
verification cost in nmeval from the analysis.

Cost validation on the Phi family (measured vs. theory) To validate the cost model numerically,
we measure prover step time C and verifier replay time Cv on the same Phi-family workload in
deterministic mode (F=0 ⇒ q=1). The logs show Cmean = 0.2231s (median 0.2148s; p95 0.2278s)
and Cv,mean = 0.2149s (median 0.2134s; p95 0.2243s), confirming the regime C ≃ Cv assumed
by the frontier. Using these times with M=128,m=7, the measured normalized cost tracks the
theoretical line almost perfectly when plotted against α (Fig. 2 (Left)). The same operating points
as in Table 1 are realized by the wall-clock measurements (e.g., δ=0.80 at α ≈ 0.802 costs ≈ 5.12%
of PoL), strengthening external validity of the linear law on real compute.

Auditing distributed training (DiLoCo-style) with attribution Finally, we exercise the
two-stage distributed audit: an outer-round aggregation check with sampled inner audits for at-
tribution on failure. In a toy run with Nm=2 workers, k=3 local steps per outer round, R=2 outer
rounds, outer audit rate αout=1, inner escalation rate βinner=0.5, and tight tolerance τ = 10−6, we
inject both a faulty local step and a faulty aggregation. The outer audit flags a failure and the esca-
lation identifies a faulty worker (identified any faulty=True), demonstrating end-to-end
detection and attribution under the design analyzed in Sec. 3.

Across these six experiments, we find consistent agreement between practice and theory. The
single-step law δ(1) = αq holds; tolerance τ depresses q exactly as predicted; process audits obey
a linear cost frontier whose slope/intercept are confirmed by wall-clock timings; PoI delivers statis-
tical power with verification cost linear in n; and the distributed variant detects aggregation failures
and attributes blame with low typical-case overhead.

5 CLOSING REMARKS

In this work, we addressed two fundamental challenges in decentralized model training: ensuring the
training was executed correctly (process verification) and confirming the resulting model genuinely
improved (outcome verification). We introduced a comprehensive framework that combines effi-
cient, economically secured probabilistic audits for training steps with a novel and lightweight eval-
uation audit we term Proof-of-Improvement (PoI). Our process audits leverage a commit-sample-

8
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target q F/M=0.05 0.10 0.20 0.30 0.40

≥ 0.99 3 5 11 — —
≥ 0.95 3 3 7 15 —

Table 2: Minimal odd committee sizes achieving target q for selected global capture F/M . Entries
are exact (hypergeometric).

n ∆̂(n) std(Z) p-value reject H0 ∆full |∆̂ − ∆full|

50 0.4650 0.3164 2.76×10−14 true

0.4171

0.0479
100 0.5029 0.3779 < 10−16 true 0.0858
200 0.4988 0.3947 < 10−16 true 0.0817
400 0.5027 0.3784 < 10−16 true 0.0856

Table 3: One-sided t-test at αstat = 0.05, γ = 0.

reveal protocol with verifier committees to achieve high security guarantees at a fraction of the cost
of exhaustive replay methods. PoI complements this by enabling provers to make statistically verifi-
able claims about performance gains on a committed dataset, directly tying the verification process
to tangible model quality. Our theoretical analysis established a clear and actionable linear trade-off
between verification cost and security, encapsulated by the single-step detection law δ(1) = αq and
a minimal cost frontier for achieving any target detection level. These theoretical predictions were
validated empirically on a QLoRA fine-tuning task, where our protocol reduced verification com-
pute by over 95% compared to fully redundant PoL while maintaining strong detection guarantees.
Together, these contributions offer a practical and deployable path toward verifiable decentralized
training that covers both the correctness of the updates and the improvement of the final model,
staying within realistic cost budgets for modern LLM workflows.

5.1 LIMITATIONS

While our results are promising, we acknowledge certain limitations that open avenues for future
research. Our empirical validation was focused on a fine-tuning workload, and our multi-trainer
experiment was designed to demonstrate the fault-attribution mechanism rather than operate at a
large scale. Extending this evaluation to more complex scenarios like large-scale pre-training is an
important next step.

In addition, our analysis focuses primarily on verification compute savings and does not fully quan-
tify the overheads incurred by the Prover. The per-step cryptographic commitment, which involves
calculating a Merkle root over the model’s entire state, introduces computational costs that scale
with model size. Furthermore, the ”Reveal” phase for audited steps requires transmitting the step
witness, which includes the optimizer state. For optimizers like Adam, this state can be substantial,
representing a potential communication bottleneck that merits further investigation, especially in
bandwidth-constrained decentralized environments.

Furthermore, we acknowledge that our security analysis primarily considers a static Byzantine ad-
versary. While the post-commitment reveal structure offers some protection, the protocol’s resilience
against more sophisticated, adaptive adversaries warrants a deeper investigation. Such adversaries,
who might attempt to corrupt verifiers after a committee is selected, are countered by the assumption
of a short finalization window. Future work should formally analyze the network and smart contract
timing assumptions required to secure this window and explore stronger cryptographic mechanisms
to mitigate these adaptive risks.

Finally, our implementation of PoI certifies improvement based on log-loss reduction. We believe
the PoI framework is generalizable, but extending it to accommodate a broader class of evaluation
metrics, particularly complex, non-differentiable, or sequence-level metrics related to safety and
alignment, is a key avenue for future research.

9
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Appendix
A LITERATURE REVIEW

In what follows, we present a more thorough literature review of the state of the art of verifiable
compute and distributed training in the context of decentralized training of large-scale machine
learning models.

A.1 CRYPTOGRAPHIC PROOFS (ZKML)

One approach to trustless verification is to use cryptographic proofs, notably zero-knowledge suc-
cinct arguments (zk-SNARKs and STARKs Lavin et al. (2024)), to prove that training computations
were carried out correctly. In principle, zk-SNARKs can provide a succinct proof of a large compu-
tation (like an LLM training step) that anyone can quickly verify on-chain, with the proof size and
verify time independent of the model’s size Thaler et al. (2022). This gives cryptographic guarantees
of correctness – a malicious trainer cannot cheat the proof Thaler et al. (2022). In practice, however,
compiling a massive neural network training into a SNARK circuit is extremely expensive, with re-
cent analyses suggesting an increase of several orders of magnitude in overhead in computation cost
and latency for even just inference tasks in a ZK circuit Chen et al. (2024). A recent framework (Ver-
ifBFL Bellachia et al. (2025)) demonstrated verifiable federated learning by generating zk-SNARK
proofs for each participant’s local training. While the results seem somewhat promising, they are
still far from implementable. Indeed, for a relatively simple convolutional neural network trained on
the MNIST handwritten dataset LeCun (1998), the authors observed that the on-chain verification
was fast (¡0.6 s), but producing a proof for even a tiny training round took on the order of 81 seconds
Bellachia et al. (2025). This overhead is prohibitive for large models or many training iterations.
Fully zk-proving the training of a 70B-parameter LLM is impractical for the foreseeable future,
absent breakthroughs in proof efficiency.

A.2 PROOF-OF-LEARNING (POL)

Introduced by Jia et al. (2021), PoL leverages the fact that training a model (via, e.g., stochastic
gradient descent or ADAM Kingma & Ba (2014)) produces a unique trajectory of model updates
that is hard to forge without doing the work. In a PoL scheme, the prover (trainer) logs a sequence
of intermediate states – e.g., model weights and hyper-parameters after each batch or epoch – along
with metadata like batch indices and random seeds. This sequence is the “certificate” of training. A
verifier can then randomly spot-check some of these intermediate steps: they pick a random subset
of steps and re-compute the training transition (e.g., take the recorded weights at step k, apply
the claimed gradient on the stated batch k, and check if it indeed produces the recorded weights
at step k + 1) Jia et al. (2021). If all checked steps are consistent, the verifier gains confidence
that the entire sequence (from initial weights to final model) results from legitimate training. By
adjusting how many steps are verified, one can trade off verification cost for assurance level. The
security argument for PoL is that constructing a fake training log is as hard as training the model –
essentially, inverting or short-cutting SGD is difficult. For example, an attacker would have to find
gradients that produce a desired final model without actually computing them, which, in general, is
computationally as expensive as honest training. A main drawback of PoL is its computational cost.
Indeed, it is shown in Jia et al. (2021) that the time complexity of the verification step evolves as

Cost(PoL) = O(E ·Q · ℓ · C|θ|), (12)

where E ∈ N is the number of epochs in the training algorithm, Q ∈ N is the number of verifications
per epoch, ℓ ∈ N is the so-called checkpointing interval (i.e., how often the protocol checkpoints)
and C|θ| ∈ R+ is the computational cost associated with training a model as a function of its weights,
θ ∈ Rd, which is notably large for LLMs. Notice that Equation equation 12 only considers a single
verifier, which can, in turn, lend itself to collusion. In a more general setting, one would employ
a committee of M verifiers but would need to increase the computational cost in equation 12 by a
factor of M , accordingly.
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Furthermore, the computational cost of PoL induces a Verifier’s Dilemma: verifying many steps can
be costly, so if not adequately incentivized, verifiers might be lazy and skip checks, undermining
security.

In order to accommodate for potential discrepancies arising from, e.g., differences in floating point
algebra, Jia et al. (2021) proposes to take proof as valid if the output weights from the provider and
the validator θprover

end , θverifier
end , respectively, are sufficiently close. More precisely, given some measure

of distance d : Rd ×Rd → R+ and some tolerance Tol > 0, a proof is taken as valid in their setting
if d(θprover

end , θverifier
end ) < Tol.

Recent extensions of PoL incorporate stronger incentive models. For example, in Zhao et al. (2024),
the authors propose a “capture-the-flag” game where verifiers earn extra rewards by finding any
inconsistency (flags) in the proof, ensuring they check diligently. We intend to explore, improve, and
expand these techniques and extend them to create (i) more computationally efficient methodologies
and (ii) a base protocol with fully distributed training.

Another variant proposed in Zhang & Wang (2024) is the so-called Proof-of-Sampling Protocol
(PoSP). In their model, computations are taken as valid with probability 1−p and otherwise verified
by a committee of M verifiers with probability p. Should a computation be deemed as invalid, the
prover gets penalized an amount that is large enough so that, rationally, their best strategy is always
to submit a valid computation. Put differently, the expected reward from cheating is smaller than
the expected rewards from performing the computation. Intuitively, this approach incurs a cost of
the order of

Cost(PoSP) = O
(
p ·M · E ·Q · ℓ · C|θ|

)
, (13)

which is an improvement over equation 12 provided that pM < 1, i.e., if the verification probability
satisfies p < 1/M . This, in turn, creates a delicate balance. On the one hand, if one cares about fault
tolerance, then M must be relatively high, which means that the proportion of verified computations
is small. This could, in turn, lead to ill behaviors from the provers or arbitrarily large potential
penalties (often expressed as staked amounts), which might result in entry barriers from the protocol.
These high entry barriers also imply that only a few providers and verifiers can join the network,
which might, in turn, lead to centralization. On the other hand, reducing the size of the committee
to its minimum (e.g., M = 2) would yield minimal computational gains while at the same time
exposing the protocol to verifier collusion (intuitively, the smaller the verifying committee is, the
easier it will be to manipulate).

A.3 DECENTRALIZED DISTRIBUTED TRAINING

Training large language models is often an exceedingly expensive computational task that requires
computation due to their vast parameter sizes and data-intensive workloads. One common way of
alleviating these computational costs is through distributing the computational load. While there is
a vast literature on the topic, see, e.g., Sergeev & Del Balso (2018); Shoeybi et al. (2019); Huang
et al. (2019); Rajbhandari et al. (2020); Lin et al. (2018) we will focus specifically on methods that
allow for distributed training across multiple different machines in different locations. Central to
this are the works of Douillard et al., Douillard et al. (2023; 2025) have proposed Distributed Low-
Communication (DiLoCo) Douillard et al. (2023), a distributed optimization algorithm aimed at
drastically reducing communication frequency in LLM training. Instead of synchronizing gradients
at every minibatch, DiLoCo performs many local updates on each worker (using ADAM Kingma
& Ba (2014) as the local optimizer) before occasionally averaging models across workers, using an
outer loop with, e.g., Nesterov momentum Lin et al. (2019); Douillard et al. (2023). This approach
allows training on “islands” of devices that are only intermittently connected, relaxing the typical
requirement of a high-speed interconnect. DiLoCo achieved model quality on par with conventional
data-parallel training on a standard large-scale dataset while communicating 500× less frequently
among workers Douillard et al. (2023). In practical terms, eight workers communicating only once
every 500 training steps matched the accuracy of fully synchronous training, demonstrating that
vast reductions in communication are possible without sacrificing convergence. Moreover, DiLoCo
was robust to heterogeneous data distributions across workers and resilient to dynamic availability
of resources (workers can drop out or join during training with minimal impact) Douillard et al.
(2023). Building on this idea, Douillard et al. (2025) introduced an enhanced strategy often re-
ferred to as Streaming DiLoCo, aiming to minimize communication overhead and latency penalties
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further Douillard et al. (2025). Streaming DiLoCo improves upon the original method by (i) par-
tially synchronizing parameters, significantly reducing the peak bandwidth required at any given
time Douillard et al. (2025), (ii) increasing efficiency in the implementation, and (iii) quantizing ex-
changed model updates to lower precision, cutting down the total volume of data transferred between
workers Douillard et al. (2025). By combining these techniques, the authors were able to show that
it is possible to distribute training of a billion-parameter transformer and reach similar accuracy as
fully synchronous training while reducing required inter-worker bandwidth by about two orders of
magnitude (a 100× reduction) Douillard et al. (2025). These low-communication approaches are
significant because they enable multi-cluster or geographically distributed training of LLMs without
the necessity of dedicated super-computing infrastructure.

B ALGORITHM

Algorithm 1 The Probabilistic Audit Protocol (for one window w)
1: Input: Window size G, sampling fraction α, committee size m.
2: 1. Commit Phase (Prover)
3: for t = wG+ 1 to (w + 1)G do
4: Execute θt = Update(θt−1,Wt) and post commitment ht to the ledger.
5: end for
6: 2. Sample Phase (Smart Contract)
7: After finalization of window commitments, derive public randomness rw (e.g., via VRF).
8: Sample a set of audited steps Ñw ⊂ {wG+1, . . . , (w+1)G} of size |Ñw| = ⌈αG⌉ uniformly

without replacement.
9: 3. Reveal Phase (Prover)

10: for each audited t ∈ Ñw do
11: Reveal the tuple (Wt), the specific parameter shards of θt−1 and θt, involved in the update,

and their corresponding Merkle proofs against the committed roots.
12: end for
13: 4. Audit & Vote Phase (Verifier Subcommittee)
14: for each t ∈ Ñw do
15: Using rw, select a random subcommittee of m Verifiers.
16: Each member of the subcommittee first uses the provided Merkle proofs to verify that the

revealed parameter shards correctly reconstruct the committed Merkle roots for θt−1, θt. Only
then they proceed to recompute θ̂t = Update(θt−1,Dt−1,Ht−1) and votes accept iff ∥θ̂t −
θt∥X ≤ τ .

17: end for
18: 5. Resolve Phase (Smart Contract)
19: if for any t ∈ Ñw, the number of accept votes is less than ⌈m/2⌉ then
20: Slash the Prover’s stake sp and halt the protocol.
21: else
22: Reward Verifiers who voted with the majority and proceed to the next window.
23: end if

C PROOFS

Lemma 1 (Base Law for Single Forgery) Let α ∈ (0, 1] be the fraction of audited steps and
q ∈ (0, 1] be the probability that an honest-majority committee correctly identifies a forgery. For a
single forged step (f = 1), the detection probability is δ(1) = αq.

Proof. Let A be the event that the single forged step is sampled for an audit, and let B be the
event that the verifier committee correctly detects the forgery. The sampling is uniform and random,
thus P (A) = α. The conditional probability of detection, given the step is sampled, is defined as
P (B|A) = q. Since the sampling event and the committee’s verification are independent, the total
probability of detection is the joint probability:

δ(1) = P (A ∩B) = P (B|A)P (A) = qα

14
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Theorem 1 (Efficient Frontier for Process Audits) Let ℓ ∈ N+ be the total number of training
steps, with per-step costs Cp for the Prover and Cv for a Verifier. Let m ∈ N+ be the committee
size. For a target single-step detection probability δ∗ ∈ (0, q], the minimum verification cost is given
by:

Costmin(δ
∗;m) = ℓCp +

δ∗

q
ℓmCv

Proof. The total expected cost is the sum of the Prover’s computation cost and the expected verifi-
cation cost:

Costtotal(α,m) = ℓCp + E[Verification Cost] = ℓCp + (αℓ)mCv

To achieve a target soundness level δ∗, we require δ(1) = δ∗. By Lemma 1, αq = δ∗, which implies
the necessary sampling fraction is α = δ∗/q. Since α ≤ 1, it must hold that δ∗ ≤ q. Substituting
this expression for α into the cost function yields the minimal cost for the target soundness δ∗:

Costmin(δ
∗;m) = ℓCp +

(
δ∗

q

)
ℓmCv

This establishes a linear trade-off between the verification cost and the soundness guarantee.

Theorem 2 (Pipelined Liveness) Let ℓ ∈ N+ be the total number of steps, processed in windows
of size G ∈ N+. Let Tupd be the per-step computation time, ∆ be the network delay, and ∆aud be
the audit finalization time. The total execution time is bounded by:

Ttotal ≤ ℓTupd +

⌈
ℓ

G

⌉
(2∆ +∆aud) +O(1)

Proof. The total time Ttotal is the sum of the Prover’s sequential computation time and the cumulative
latency from the audit pipeline. The total computation time across all l steps is ℓ ·Tupd. The protocol
is processed in Nw = ⌈ℓ/G⌉ windows. The pipelined design ensures that the latency of auditing
window w overlaps with the computation of window w + 1. Thus, latency contributes an overhead
per window, not per step. The latency for one window consists of at least two network delays
(commit finalization, reveal) and the audit time ∆aud. The total cumulative latency is Nw(2∆ +
∆aud). Combining these terms, we obtain the upper bound on the total time.

Theorem 3 (Economic Security via Staking) Let G > 0 be the Prover’s gain from a single suc-
cessful cheat and let sp > 0 be the Prover’s stake. Honesty is a strictly dominant strategy if:

sp >

(
1

αq
− 1

)
G

Proof. Let the utility of honesty be Uhonest = 0. The expected utility of attempting a single cheat,
E[Ucheat], is determined by the two possible outcomes: success (no detection) or failure (detection).
The probability of detection is δ(1) = αq.

E[Ucheat] = P (success) · (Gain) + P (failure) · (Loss)
E[Ucheat] = (1− δ(1)) · G + δ(1) · (−sp)

For honesty to be strictly dominant, we require E[Ucheat] < 0:
(1− δ(1))G − δ(1)sp < 0 =⇒ (1− δ(1))G < δ(1)sp

Solving for the stake sp yields:

sp >
1− δ(1)

δ(1)
G

Substituting δ(1) = αq from Lemma 1 gives the required condition:

sp >
1− αq

αq
G =

(
1

αq
− 1

)
G

This ensures that the expected utility of cheating is negative, making it an economically irrational
strategy.
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D STATEMENT ON THE USE OF AI

In preparing this manuscript, we utilized large language models as a productivity tool. Their assis-
tance was helpful for improving the clarity and tone of the writing, for grammatical and consistency
checks, during initial research ideation, and for debugging segments of the experimental code. The
final content and all intellectual contributions are the authors’ own.
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