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ABSTRACT

Decentralized training of large models presents two critical verification challenges:
ensuring the training process was executed correctly (process verification) and con-
firming the resulting model genuinely improved (outcome verification). Existing
solutions like zkML are prohibitively expensive, while prior Proof-of-Learning
schemes focus only on the process, failing to guarantee that the final model is
actually better. We introduce a comprehensive and efficient framework that ad-
dresses both challenges through economically-secured probabilistic audits. First,
we propose a protocol where Provers commit to each training step, with a small,
random fraction of steps being audited by verifier committees, and we derive a
tight detection-cost frontier that minimizes verification overhead. Second, we
introduce Proof-of-Improvement (PoI), a novel and lightweight evaluation audit
that statistically certifies milestone-based gains (e.g., perplexity reduction) on a
committed dataset. Empirically, on a QLoRA fine-tuning task, our process audits
reduce verification compute by over 95% compared to full replication, and our PoI
audits certify model improvements with high statistical power at a minimal cost.

1 INTRODUCTION

Decentralized training of large models raises a fundamental question: how can a coordinator (or the
public) verify that training was executed faithfully and in such a way that the resulting model improved
on a committed evaluation? Purely cryptographic approaches (e.g., zk-ML) offer strong guarantees
but remain orders of magnitude too costly at training scale; e.g., even small training rounds exhibit
heavy proof-generation overheads Lavin et al. (2024); Bellachia et al. (2025). Proof-of-Learning
(PoL) replaces circuits with replayed spot-checks over a logged trajectory Jia et al. (2021), and
Proof-of-Sampling (PoSP) couples random verification with penalties Zhang & Wang (2024); Zhao
et al. (2024). However, when applied to decentralized, trustless, LLM-scale training, these approaches
often require redundancy in their verification (in order to avoid adversarial effects from the auditor
side), and hence, either inherit the cost of frequent replays or force delicate incentive/committee
trade-offs that can create high entry barriers.

In this work, we focus on training-time audits that are both economical and ML-relevant. Building
on the observation that auditing a random fraction of steps suffices to achieve a target single-step
detection level, we analyze and instantiate a protocol with (i) binding per-step commitments, (ii)
post-commit randomized audits by small verifier committees, and (iii) explicit incentives. A key
outcome is a simple, actionable detection–cost frontier: the probability of catching a single forged
step, δ(1), scales linearly with the audited fraction, δ(1) = α q, where q captures committee capture
and numerical tolerance; the minimal verification cost for a target δ⋆ then follows in closed form.
A windowed commit→sample→reveal→audit pipeline ensures O(ℓ) liveness with only a constant
per-window overhead, and a tight stake bound enforces incentive compatibility. We also extend
the mechanism to a multi-trainer regime (DiLoCo/Streaming-DiLoCo style, cf. Douillard et al.
(2023; 2025)) where outer-round aggregation is audited and, on failure, sampled inner audits attribute
blame Douillard et al. (2023; 2025). All of these pieces are validated empirically on a QLoRA
fine-tuning workload (cf. Dettmers et al. (2023)), matching the predicted δ(1) = αq law and
delivering considerable compute savings versus fully redundant PoL.
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Beyond verifying how training was executed, we introduce a lightweight evaluation and audit track
that verifies what training achieved. At chosen milestones (e.g., end of a window), the trainer claims
an improvement of at least γ in token log-loss (equivalently, perplexity) over a committed baseline
and evaluation root. The coordinator then (post-commit) samples n evaluation tokens and assigns a
small committee to recompute forward-only log-probs for both models; the claim is accepted if a
pre-declared one-sided test (or sequential test) confirms improvement at confidence 1− αstat. The
resulting detection of false improvement claims factorizes as δPoI = δstat(n) · q (statistical power
times committee factor), and the verification cost is linear in both the committee size and the number
of evaluated tokens, reusing the same economics and incentives as training-step audits.

1.1 RELATIONSHIP TO PRIOR WORK.

Zero-Knowledge Machine Learning (zkML) frameworks Lavin et al. (2024); Bellachia et al. (2025)
target cryptographic correctness but face prohibitive proof costs at training scale. PoL establishes
replay-based verifiability through spot-checks Jia et al. (2021), and PoSP introduces randomized
committees with economic penalties Zhang & Wang (2024); Zhao et al. (2024). Our work com-
plements these lines by: (i) deriving a tight detection–cost frontier with explicit committee-capture
and tolerance factors; (ii) proving pipelined liveness and incentive compatibility under a realistic,
committee-voted audit; (iii) extending to multi-trainer training with attribution; and (iv) adding a
Proof-of-Improvement track that certifies outcome gains on a committed evaluation with statistical
confidence. Unlike robust aggregation methods (e.g., FLTrust Cao et al. (2021)) which filter updates
during training, PoI certifies the final realized improvement, securing the outcome against both lazy
workers and model-poisoning attacks. On the distributed side, our multi-trainer extension is designed
to coexist with low-communication training methods, such as DiLoCo and Streaming-DiLoCo Douil-
lard et al. (2023; 2025), providing the missing verification layer. The interested reader can find a more
thorough literature review in Appendix A, and a discussion of defenses against PoL vulnerabilities
(e.g., Fang et al. (2023)) in Appendix A.4.

1.2 CONTRIBUTIONS.

We present several mechanisms for auditing the veracity and effectiveness of training and fine-tuning
in the context of a decentralized and trustless environment. Specifically, our main contributions are:

• Protocol. A practical commit→sample→reveal→audit protocol with small verifier committees and
binding per-step commitments (inputs, outputs, metadata). This is done on a windowed schedule,
which enables concurrency.

• Detection–cost frontier. We derive theoretical results for the detection probability, and give the
minimal verification cost for any target δ⋆, revealing a simple linear frontier that replaces M full
replays with m≪M audited replays.

• Liveness and incentives. We bound end-to-end wall-time under windowed auditing and give a
tight stake condition that makes honesty strictly dominant; a repeated-interaction variant further
reduces collateral.

• Multi-trainer extension. An outer-round aggregation audit with sampled inner audits on failure
attributes faults to workers, preserving low typical-case cost while enabling slashing at worker
granularity.

• Proof-of-Improvement (PoI). A drop-in evaluation-audit track that certifies milestone improve-
ments (e.g., perplexity decrease by ≥ γ) on a committed evaluation set; δPoI = δstat(n) · q and
verification cost is linear in committee size and audited tokens.

The rest of this work is organized as follows. We present the core methodologies in Section 2. We
devote Section 3 to the analysis (with proofs in Appendix C), and experimentally validate our research
in Section 4. Lastly, we present some closing remarks and limitations in Section 5.

2 METHOD: PROBABILISTIC AUDITS WITH COMMITTEES

In the distributed variant, we run background worker audits every window: a β fraction of workers
are sampled (via public randomness and a VRF) and, within each sampled worker, an α fraction of
steps are replayed by a committee of size m under tolerance τ . If either the aggregation check or the
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PoI check fails, we escalate auditing on the preceding window by increasing (α, β,m) (optionally to
a full audit with β=1) to attribute and slash.

2.1 PROTOCOL PRELIMINARIES

Let P denote the set of protocol participants, consisting of Mp ∈ N+ Provers, {P1, . . . , PMp
}, and

a population of Mv ∈ N+ Verifiers, {V1, . . . , VMv
}. A given Prover P performs ℓ ∈ N+ gradient-

update steps on model parameters θ ∈ Rd. Each step t transforms θt−1 into θt via a (possibly
randomized) update function:

θt = Update
(
θt−1, Dt−1, Lt−1, Ht−1

)
, t = 1, . . . , ℓ, (1)

where Dt−1 represents the data (e.g., indices with Merkle proofs), Lt−1 is the loss function, and
Ht−1 contains auxiliary state such as optimizer state, RNG seeds, and environment identifiers. The
Prover’s per-step compute cost is Cp > 0, while a Verifier incurs a cost of Cv > 0 to replay a single
step.

We assume a trusted smart contract (SC) that manages participant stakes (sp and sv), provides public
randomness (cf. Syta et al. (2017); Choi et al. (2023), for example) , and executes the protocol
logic. All authenticated messages are delivered within a known delay bound ∆. We consider a static
Byzantine adversary A who, prior to execution, may corrupt up to fp of the Prover’s update rounds
and up to fv Verifiers within any given audit subcommittee of size m.

Training is organized into windows of G steps. In each window we use two sampling rates: a worker
rate β ∈ (0, 1] for background selection of workers to audit, and a per-worker step rate α ∈ (0, 1]
for selecting steps within a sampled worker. Committees have size m and vote under a numerical
tolerance τ calibrated on the declared stack Ξ; we denote the resulting committee correctness by
q = q(m, τ). We impose reveal and vote deadlines (∆reveal,∆vote) to ensure liveness. Window
randomness is drawn after all per-step commitments in that window are finalized; worker and
step draws use a VRF seeded by this public randomness. To avoid repeatedly skipping the same
workers/steps over short horizons, we use sampling without replacement within the window (and
over a rolling cycle for workers).

Remark. While our primary analysis considers a static adversary, the post-commitment reveal
structure provides inherent resilience against certain adaptive strategies. Since committees are
selected using public randomness after commitments are locked in, an adversary has a limited
window to corrupt the specific verifiers chosen for an audit adaptively.

We distinguish rational adversaries (profit-seeking, deterred by background audits and slashing)
from malicious adversaries (model-degrading, detected by PoI and handled by escalation). With
background sampling, the per-window detection for a worker forging f steps is

δbg(f) = β
(
1− (1− α q)f

)
. (2)

To ensure each worker is audited at least once every K windows with miss-probability ≤ ε, choose

β ≥ 1− ε1/K . (3)

Setting stake/slashing S$ (or increasing α, β) so that (1 − δbg)G$ − δbgS$ < 0 makes rational
cheating unprofitable.

2.2 CORE PROTOCOL: PROBABILISTIC TRAINING AUDITS

The core mechanism verifies the integrity of the training process.

This algorithm is presented as pseudocode 1 in Appendix B and illustrated in Figure 3 in Appendix
. After freezing the window’s per-step commitments, the contract draws a public seed rW and
uses a VRF (with domain separation) to sample the audited steps at rate α; sampling is without
replacement within the window. Reveals are delivered to committees (not publicly) before the reveal
deadline ∆reveal. Witnesses (parameter shards, optimizer shards, metadata, seeds) for audited steps
are disclosed to the committee over sealed channels; public artifacts remain the per-step commitments
and Merkle proofs. This limits leakage while preserving verifiability.
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1. Commit Phase. For each training step t within a window, the Prover executes the update and
constructs a cryptographic commitment ht that is posted to a public ledger. This commitment acts as
a tamper-proof record of the claimed state transition. To ensure these commitments are both secure
and scalable for large models, we employ a Merkle tree-based approach. Instead of hashing the entire
parameter state, the model parameters θ are partitioned into fixed-size shards, and the Prover commits
to the Merkle root of these shards. The binding commitment for each step is a constant-size hash
constructed from the Merkle roots of the model state before (θt−1) and after (θt) the update, along
with a step witness Wt:

ht = H (MerkleRoot(θt−1)||MerkleRoot(θt)||Wt) . (4)

The witness Wt :=
(
It,Πt, Ot−1, Rt,Λt,Ξ

)
contains all necessary metadata to reproduce the

step, such as batch indices (It), their Merkle proofs (Πt), optimizer state (Ot−1), RNG seeds (Rt),
hyperparameters (Λt), and a hash of the execution environment (Ξ). This structure makes the
commitment binding to the specific state transition, preventing the Prover from changing their story
after the fact (ex-post equivocation).

2. Sample & Reveal Phase. After the Prover has committed to all G steps in a window, the smart
contract uses a source of public randomness to sample a small fraction, α, of the steps to be audited.
Once these steps are chosen, the Prover is required to “open” their commitments by revealing the full
step witness Wt and the specific parameter shards involved in the update, along with their Merkle
proofs. The post-commitment nature of the sampling is crucial; because the Prover does not know
which steps will be audited until after they have committed to all of them, they are incentivized to
perform every step honestly.

3. Audit & Resolve Phase. A random subcommittee of m Verifiers is selected to perform the
audit. For each sampled step, the Verifiers first use the revealed Merkle proofs to confirm that the
provided parameter shards match the committed roots. Only then do they re-execute the training step
using the witness data to produce a recomputed state θ̂t. They vote to accept the step if their result is
sufficiently close to the Prover’s claimed result, i.e., ∥θ̂t − θt∥X ≤ τ , where τ is a small tolerance to
account for benign numerical drift across different hardware and ∥ · ∥X is some appropriate norm. If
a supermajority of the committee rejects any step, the Prover’s stake is slashed; otherwise, honest
Verifiers are rewarded, and the protocol proceeds. Committees decide by supermajority (≥⌈m/2⌉+1)
under the fixed tolerance τ ; replays run in parallel to minimize wall-clock overhead.

2.3 EXTENSION TO MULTI-PROVER DISTRIBUTED TRAINING

Our protocol naturally extends to communication-efficient distributed settings like DiLoCo Douillard
et al. (2023), where multiple workers (Provers) train in parallel with infrequent synchronization. The
process operates in two distinct loops: an inner loop of local training and an outer loop for global
aggregation.

In each outer round r, Nm workers start from a common global model state θr−1. Each worker i then
independently performs k local training steps using its own data:

θ
(i)
r,j = Update

(
θ
(i)
r,j−1, D

(i)
r,j−1, L

(i)
r,j−1, H

(i)
r,j−1

)
, t = 1, . . . , ℓ, (5)

where θ
(i)
r,0 = θr−1. During this phase, each worker acts as a single Prover, creating and posting

commitments (h(i)
r,j) for each of its k local steps, just as described in Section 2.2.

After completing their k local steps, each worker proposes their final local model, θ(i)r,k. The new
global model, θr, is then computed by aggregating these proposals, for example, through simple
averaging: θr = 1

Nm

∑
i θ

(i)
r,k. 1.

Verification proceeds in a two-stage, optimistic fashion to minimize cost:

1In more advanced schemes like DiLoCo, this aggregation can also incorporate momentum (e.g., a Nesterov
step, cf. Lin et al. (2019))

4
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1. Stage 1: Aggregation Audit. First, a verifier committee performs a lightweight check on the
outer loop. It verifies that the final global model θr was correctly computed from the workers’
proposed final models θ(i)r,k. This step is computationally cheap as it only involves re-calculating
the aggregation, not re-playing any training steps.

2. Stage 2: Fault Attribution (Escalation). If and only if the aggregation audit fails, the protocol
escalates. A random subset of workers Q ⊆ {1, . . . , Nm} is challenged to reveal their full k-step
local training histories. The core probabilistic audit from Section 2.2 is then performed on each
challenged worker to find who produced a faulty local model.

This approach is illustrated in Figure 4 in Appendix F and in Algorithm 2 in Appendix B.

Remark (On Background audits vs. escalation) In addition to the optimistic two-stage flow above,
we always run background worker audits at rate β every window (VRF-drawn after commits freeze);
within each sampled worker, an α fraction of steps is replayed by a committee under tolerance τ .
Stage 2b escalation (raising (α, β,m), optionally β=1) is triggered when Stage 1 fails or when PoI
fails at a milestone; it serves to attribute faults and slash.

2.4 EVALUATION AUDIT: PROOF-OF-IMPROVEMENT (POI)

To certify that training achieved a meaningful outcome, we introduce PoI, an audit that verifies
performance gains at milestones.

At the end of a window, a Prover posts a claim (r, γ, αstat):

“At milestone r, the final model θfinal improves token log-loss by at least γ >
0 (reduces perplexity by a factor ≤ e−γ) versus baseline θ0 on the committed
evaluation set, with one-sided confidence 1− αstat.”

This requires a one-time, pre-run commitment to H(θ0) and the evaluation data’s Merkle root, Reval.

The contract samples a subset S̃r ⊆ Deval of size n. A verifier committee of size meval computes
per-token log-loss differences for i ∈ S̃r:

Zi := − log pθfinal(xi)︸ ︷︷ ︸
ℓ1(xi)

−
(
− log pθ0(xi)︸ ︷︷ ︸

ℓ0(xi)

)
,

The claim of improvement is accepted if and only if a pre-declared one-sided statistical test on the
sample mean Z̄ passes. For example, by confirming that the Lower Confidence Bound (LCB) of
the mean improvement meets the claimed threshold: LCB 1−αstat

(
−Z̄

)
≥ γ. This mechanism,

pipelined alongside training audits, provides a low-cost, statistically robust method to verify tangible
model improvements without requiring monotonic per-step loss. If PoI does not certify improvement
at a milestone, we trigger Stage 2b escalation (cf. Algorithm 2, raising (α, β,m); optionally β=1)
for the implicated window(s) to attribute faults and apply slashing.

3 ANALYSIS

We present all our proofs in the Appendix C.

Definition 1 (Soundness). Let εsound ∈ [0, 1]. A protocol is εsound-sound if, against any adversary
corrupting up to fp Prover-rounds and up to fv verifiers per subcommittee, the probability that any
incorrect update is not detected is at most εsound.

Definition 2 (Liveness). A protocol satisfies liveness if, when all participants are honest, all ℓ
training rounds are completed within a total time of T ≤ ℓ Tupd + O(ℓ/G), where Tupd is the
per-step computation time and G is the window size.

Definition 3 (Incentive Compatibility). Let G > 0 be the Prover’s expected gain from a successful
one-step cheat, and let sp > 0 be the at-risk stake. The protocol is incentive-compatible if the
expected utility for cheating is negative, i.e., Ucheat(f) < Uhonest = 0 for any number of fraudulent
steps f ≥ 1.

5
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3.1 SOUNDNESS AND COST OF PROCESS AUDITS

The soundness of our protocol hinges on the probability that a fraudulent step is both sampled for an
audit and correctly flagged by an honest-majority committee.

Across windows, choosing β per Eq. equation 3 (e.g., β≥1− ε1/K ) bounds the probability a worker
evades audit for K consecutive windows by ε. For any single audited step, the probability q that a
forgery is successfully detected is given by:

q = (1− Pmaj-Byz(M,F,m))︸ ︷︷ ︸
Prob. of honest majority

· (1− Pτ -miss)︸ ︷︷ ︸
Prob. correct flag given honest majority

, (6)

Where Pmaj-Byz is the probability of a Byzantine majority in a committee of size m drawn from
a population with F adversaries (given by the hypergeometric distribution), and Pτ -miss is the
probability that numerical tolerance τ masks a genuine error. For deterministic computations, τ = 0
and Pτ -miss = 0. The overall detection probability depends on the number of fraudulent steps f . The
base case for a single forgery is linear in the sampling rate α.
Lemma 1 (Base Law for Single Forgery). For a single forged step (f = 1), the detection probability
is exactly δ(1) = αq.

For multiple forgeries, let X ∼ Hypergeom(ℓ, f, ñ) be the number of fraudulent steps sampled. The
exact detection probability is the expectation over X . Specifically, the probability of detecting at
least one of f forged steps is:

δ(f) = 1− E
[
(1− q)X

]
= 1−

min{f,ñ}∑
k=0

(
f
k

)(
ℓ−f
ñ−k

)(
ℓ
ñ

) (1− q)k. (7)

While exact, this expression can be tightly bounded for practical design, for instance, by δ(f) ≥
1− (1− αq)f , which follows from the negative correlation of sampling without replacement (see
the Appendix for proof).

3.2 BOUNDING THE IMPACT OF UNDETECTED FORGERIES

A key concern is whether an adversary can cause significant damage by forging only a few steps,
which have lower detection probability. The following lemma bounds the impact of undetected
forgeries.
Lemma 2 (Few-Step Influence Bound). Suppose the loss function L is L-smooth and training uses
step size η with optional gradient clipping at norm B. If an adversary perturbs a set F of f steps
with update errors {∆t}t∈F (where ∆t := θadvt − θhonestt is the per-step deviation), then:

∥θadvT − θhonestT ∥ ≤
∑
t∈F

ct∥∆t∥, where ct ≤ (1 + ηL)T−t, (8)

and the loss deviation is bounded by:

|L(θadvT )− L(θhonestT )| ≤ L

2
∥θadvT − θhonestT ∥2. (9)

With gradient clipping, ∥∆t∥ ≤ 2ηB per forged step. Thus, forging f steps causes parameter
deviation O(f · ηB · (1 + ηL)T ), which is bounded for typical ηL≪ 1.

The proof appears in Appendix C. This lemma shows that even if a few forgeries escape detection,
their cumulative impact is bounded. Combined with the detection probability δ(f) ≥ 1− (1− αq)f ,
which grows with f , adversaries face a fundamental trade-off: forging many steps increases both
impact and detection risk, while forging few steps limits achievable damage.

3.3 THE COST-SOUNDNESS FRONTIER.

The total expected computational cost is the sum of the Prover’s training cost and the expected
verification cost.

Costtotal(α,m) = ℓCp + αℓmCv. (10)
By combining Lemma 1 with the cost model, we arrive at the efficient frontier, which defines the
minimum cost to achieve a target soundness level δ∗.

6
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Theorem 1 (Efficient Frontier for Process Audits). For a target single-step detection probability
δ∗ ∈ (0, q], the minimum achievable cost is:

Costmin(δ
∗;m) = ℓCp +

δ∗

q
ℓmCv. (11)

The equation above establishes a linear tradeoff between verification cost and soundness. Targets
where δ∗ > q are infeasible without improving q (e.g., by increasing committee size m).

Improving q by sizing m (and calibrating τ ) reduces the factor δ∗/q and thus verifier cost.

3.4 SOUNDNESS AND COST OF OUTCOME AUDITS (POI)

Recall that the goal here is to provide verifiable claims on improvements, rather than on computational
work. To that end, notice that the detection probability for a false PoI claim is the product of the
statistical power of the test and the committee quality factor:

δPoI = δstat(n) · qeval. (12)

The cost is determined by the number of samples n and the committee size meval:

CostPoI(n,meval) ≈ meval n
(
Ceval(θfinal) + Ceval(θ0)

)
. (13)

This creates a similar linear cost-soundness tradeoff, where the number of samples n plays a role
analogous to the sampling fraction αℓ in process audits. The required sample size n to achieve a
desired statistical power can be determined using standard results. For instance, for i.i.d. sub-Gaussian
log-loss differences, n scales as n ≳ (σ/r)2, where r is the margin of the false claim and σ2 is the
variance. When {Zi} exhibit topical/temporal correlation, we run blocked/paired tests (or block
bootstrap) on VRF-sampled evaluation blocks; δstat(n) is then computed under the effective sample
size of the block design (details in the appendix).

3.5 PIPELINED LIVENESS AND ECONOMIC SECURITY

Finally, we analyze the protocol’s operational guarantees.

Theorem 2 (Pipelined Liveness). With a window size of G, the total execution time for ℓ steps is
bounded by:

Ttotal ≤ ℓ Tupd +
⌈ ℓ

G

⌉
(2∆ +∆aud) + O(1), (14)

where Tupd is the per-step update time, ∆ is the network delay, and ∆aud is the audit finalization
time. The pipelined design ensures audit latency contributes only a constant overhead per window,
not per step.

The previous theorem demonstrates that the presented protocol achieves liveness, loosely speaking,
meaning that the cost of the protocol increases moderately compared to the unverified case.

Theorem 3 (Economic Security via Staking). Honesty is a strictly dominant strategy for a Prover if
their stake sp satisfies:

sp >
1− δ(1)

δ(1)
G =

1− αq

αq
G, (15)

Where G is the gain from a single successful cheat. An analogous bound holds for PoI claims,
replacing δ(1) with δPoI and G with the gain from a false improvement claim, Gclaim.

Corollary (with background sampling; multiple forgeries). For a worker forging f steps in a
window, replace δ(1) by the background detection δbg(f) from Eq. equation 2 and replace G by the
per-window cheating gain G(f) to obtain sp >

1−δbg(f)
δbg(f)

G(f). Equivalently, set deposits/rewards
so that the expected utility (1− δbg)G$ − δbgD < 0, making rational cheating strictly unprofitable.

7
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4 EXPERIMENTS

Our experiments test whether the protocol’s predictions about detection, cost, and liveness hold in
practice, and whether the outcome-audit (PoI) and the distributed (DiLoCo-style) variant behave as
the analysis requires. Unless stated otherwise, we fine-tune a Phi-family Abdin et al. (2024) causal
LM with LoRA/QLoRA Hu et al. (2022); Dettmers et al. (2023) adapters on WIKITEXT-2 Merity
et al. (2016), and run a verifier population M=128 with subcommittee m=7. The theory in Sec. 3
predicts a single-step law δ(1) = α q with q = (1−Pmaj-Byz)(1−Pτ -miss) and a linear cost–soundness
frontier whose intercept and slope are 1/(1+M) and m/(1+M) when C ≃ Cv . We implement the
windowed commit→sample→reveal→audit pipeline and the PoI track exactly as analyzed.

Verifying the linear detection law δ(1) = αq. We begin by testing the fundamental prediction
that single-step detection scales linearly with the audited fraction. We plant a single forged update
at a uniformly random step, draw an independent m-committee for each audited step, and sweep
α ∈ {0.05, . . . , 1.0}. The empirical detection curve is a line through the origin whose slope matches
the exact q from the hypergeometric committee model, confirming δ(1) = αq to within binomial
uncertainty (Fig. 1 (Left)). This is the base case established in the analysis and underpins all
subsequent experiments. We ensure VRF draws occur post-commit and re-sample committees per
step; CIs are Clopper–Pearson binomial intervals.

Impact of numerical tolerance Next we isolate how the numeric tolerance τ—used to absorb
benign cross-hardware drift—affects the committee factor q. We vary τ , estimate the induced Pτ -miss,
and plot q = (1 − Pmaj-Byz)(1 − Pτ -miss) (Fig. 1 (Middle)). As τ crosses a few multiples of the
honest-drift scale, q drops sharply; geometrically, the δ(1) line rotates downward exactly as predicted
by the model. In our deterministic baseline we set τ=0 (hence Pτ -miss=0); for heterogeneous
deployments we calibrate τ to a high percentile of observed honest drift on the declared stack Ξ.
Table 3 provides sizing guidance: for a target q ≥ 0.95 at capture fraction F/M = 0.10, committee
size m = 3 suffices. Calibration follows the p99 honest replay drift under Ξ; cross-hardware
calibration tables and numeric-error models are reported in the Appendix.

Process-audit cost frontier We then examine the verification cost relative to fully redundant PoL.
Measured normalized cost aligns with the linear frontier that replaces M full replays with m≪M
audited replays: intercept 1/(1+M) and slope m/(1+M) when C ≃ Cv . Representative operating
points lie on the predicted line to plotting precision: for targets δ∗ = {0.50, 0.80, 0.95} we achieve
α ≈ {0.501, 0.802, 0.952} at normalized costs {3.49%, 5.12%, 5.94%} of PoL (Table 2). These
values are the ones used later when we compare to wall-clock measurements. Measured network
egress per audited step matches the bytes model (params + optimizer + proofs); LoRA/QLoRA
reduces the updated fraction κ≪1, cutting reveal size and masking network latency in the pipeline
(details in the Appendix).

Outcome verification with Proof-of-Improvement We also verify what training achieved. At a
milestone, the prover claims an improvement ≥ γ in token log-loss versus a committed baseline; the
contract samples n spans and a small evaluation committee runs a one-sided test. On WIKITEXT-2
with a Phi-family LM (LoRA), the full evaluation over 800 spans reports ∆full = 0.4171 nats/token;
sampled audits with n ∈ {50, 100, 200, 400} reject H0 : µ ≤ 0 with very high confidence (Table 4;
e.g., p = 2.76 × 10−14 at n=50). This behavior matches the factorization δPoI = δstat(n) · q and
the linear verification cost in nmeval from the analysis. We draw VRF-sampled blocks from the
committed evaluation root and use paired tests to preserve power under topical correlation; the
observed rejection rates align with the blocked-power predictions in the analysis.

Cost validation on the Phi family (measured vs. theory) To validate the cost model numerically,
we measure prover step time C and verifier replay time Cv on the same Phi-family workload in
deterministic mode (F=0⇒ q=1). The logs show Cmean = 0.2231s (median 0.2148s; p95 0.2278s)
and Cv,mean = 0.2149s (median 0.2134s; p95 0.2243s), confirming the regime C ≃ Cv assumed
by the frontier. Using these times with M=128,m=7, the measured normalized cost tracks the
theoretical line almost perfectly when plotted against α (Fig. 1 (Left)). The same operating points
as in Table 2 are realized by the wall-clock measurements (e.g., δ∗ = 0.80 at α ≈ 0.802 costs
≈ 5.12% of PoL), strengthening external validity of the linear law on real compute. We additionally
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Figure 1: (Left) Single-step detection δ̂(1) with 95% CIs vs. α under committee size m=7 and global
capture F/M=0.10; dashed line shows theoretical δ(1) = αq. (Middle) Committee correctness
q(= (1 − pmaj≥m/2)(1 − Pτ,miss)) as a function of tolerance τ ; increasing τ reduces q via Pτ -miss.
(Right) Normalized verification cost vs. α, confirming the linear frontier. All plots use 11pt axis
labels and 1.5× line weights for legibility.

confirm that wall-clock overhead scales with α as predicted when network transfer is overlapped
(pipeline coefficient χ≈0 in the bytes model); raw timing logs and harness configs are included in
the Appendix.

Prover overhead: commit and reveal costs Table 1 reports the Prover’s per-step overhead,
addressing the cost of Merkle commitments and witness serialization. For LoRA/QLoRA fine-tuning,
the commit overhead is modest because only adapter parameters (κ ≪ 1) are hashed. Reveal
bandwidth per audited step follows Eq. equation 18 in Appendix D; with LoRA adapters and content-
addressed serving, the network term is negligible in compute-bound regimes. Commit overhead
is optimizer-agnostic; serialization depends on whether optimizer moments are included (Adam)
or absent (SGD). Reveal sizes follow the scaling Bstep ≈ κ(1 + ϕ)(P + Lpπ). We remark that
The prototype is intentionally naive and re-hashes all LoRA parameters on CPU each step, so its
wall-clock costs are an upper bound, not representative of an optimized implementation

Regime Commit Overhead Serialize Overhead Reveal Size
(% of step time) (% of step time) (MB per audited step)

LoRA + Adam 8–12% 8–15% ≈ 120
LoRA + SGD 8–12% 1–3% ≈ 40
Full Params + Adam 20–30% 15–25% ≈ 850

Table 1: Prover-side overheads for the three training regimes.

Auditing distributed training (DiLoCo-style) with attribution Finally, we exercise the two-stage
distributed audit: an outer-round aggregation check with sampled inner audits for attribution on
failure. In a toy run with Nm=2 workers, k=3 local steps per outer round, R=2 outer rounds, outer
audit rate αout=1, inner escalation rate βinner=0.5, and tight tolerance τ = 10−6, we inject both a
faulty local step and a faulty aggregation. The outer audit flags a failure and the escalation identifies
a faulty worker (identified any faulty=True), demonstrating end-to-end detection and
attribution under the design analyzed in Sec. 3. Background worker audits were also enabled at rate
β (even when Stage 1 passed); across repeated windows the observed single-step detection matched
δbg(1) = β αq within binomial uncertainty, and escalation correctly attributed the faulty worker.

Across these six experiments, we find consistent agreement between practice and theory. The
single-step law δ(1) = αq holds; tolerance τ depresses q exactly as predicted; process audits obey a
linear cost frontier whose slope/intercept are confirmed by wall-clock timings; PoI delivers statistical
power with verification cost linear in n; and the distributed variant detects aggregation failures and
attributes blame with low typical-case overhead.

9
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δ∗ required α normalized cost (%) comment

0.50 ≈ 0.501 ≈ 3.49 near half detection at ∼3.5% of PoL
0.80 ≈ 0.802 ≈ 5.12 ∼95% savings vs PoL
0.95 ≈ 0.952 ≈ 5.94 ∼94%+ savings

Table 2: Normalized cost vs. detection target δ (with M=128, m=7).

q 0.05 0.10 0.20 0.30 0.40

≥ 99 3 5 11 — —
≥ 95 3 3 7 15 —

Table 3: Minimal odd committee sizes (F/M
ratios abbreviated in header).

n ∆̂(n) std(Z) p-val rej H0 ∆full |diff|

50 0.4650 0.3164 2.7-14 T

0.417

0.048
100 0.5029 0.3779 < -16 T 0.086
200 0.4988 0.3947 < -16 T 0.082
400 0.5027 0.3784 < -16 T 0.086

Table 4: One-sided t-test results (αstat =
0.05).

5 CLOSING REMARKS

In this work we addressed two fundamental challenges in decentralized model training: ensuring the
training was executed correctly (process verification) and confirming the resulting model genuinely
improved (outcome verification). We introduced a comprehensive framework that combines efficient,
economically secured probabilistic audits for training steps with a novel and lightweight evaluation
audit we term Proof-of-Improvement (PoI). Our process audits leverage a commit-sample-reveal
protocol with verifier committees to achieve high security guarantees at a fraction of the cost of
exhaustive replay methods. PoI complements this by enabling provers to make statistically verifiable
claims about performance gains on a committed dataset. Our theoretical analysis established a clear
and actionable linear trade-off between verification cost and security, encapsulated by the single-step
detection law δ(1) = αq and a minimal cost frontier for achieving any target detection level. These
theoretical predictions were validated empirically on a QLoRA fine-tuning task, where our protocol
reduced verification compute by over 95% compared to fully redundant PoL while maintaining strong
detection guarantees.

5.1 LIMITATIONS

Our empirical validation was focused on a fine-tuning workload, and our multi-trainer experiment
was designed to demonstrate the fault-attribution mechanism rather than operate at a large scale.
Extending this evaluation to more complex scenarios like large-scale pre-training is an important next
step.

In addition, our analysis focuses primarily on verification compute savings and does not fully quantify
the overheads incurred by the Prover. The per-step cryptographic commitment, which involves
calculating a Merkle root over the model’s entire state, introduces computational costs that scale
with model size. Furthermore, the ‘Reveal” phase for audited steps requires transmitting the step
witness, which includes the optimizer state. For optimizers like Adam, this state can be substantial,
representing a potential communication bottleneck that merits further investigation, especially in
bandwidth-constrained decentralized environments.

Furthermore, we acknowledge that our security analysis primarily considers a static Byzantine adver-
sary. While the post-commitment reveal structure offers some protection, the protocol’s resilience
against more sophisticated, adaptive adversaries warrants a deeper investigation. Such adversaries,
who might attempt to corrupt verifiers after a committee is selected, are countered by the assumption
of a short finalization window. Future work should formally analyze the assumptions required to
secure this window and explore stronger cryptographic mechanisms to mitigate these adaptive risks.

Finally, our implementation of PoI certifies improvement based on log-loss reduction. We believe
the PoI framework is generalizable, but extending it to accommodate a broader class of evaluation
metrics, particularly complex, non-differentiable, or sequence-level metrics related to safety and
alignment, is a key avenue for future research.
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Appendix
A LITERATURE REVIEW

In what follows, we present a more thorough literature review of the state of the art of verifiable
compute and distributed training in the context of decentralized training of large-scale machine
learning models.

A.1 CRYPTOGRAPHIC PROOFS (ZKML)

One approach to trustless verification is to use cryptographic proofs, notably zero-knowledge succinct
arguments (zk-SNARKs and STARKs Lavin et al. (2024)), to prove that training computations were
carried out correctly. In principle, zk-SNARKs can provide a succinct proof of a large computation
(like an LLM training step) that anyone can quickly verify on-chain, with the proof size and verify
time independent of the model’s size Thaler et al. (2022). This gives cryptographic guarantees of
correctness – a malicious trainer cannot cheat the proof Thaler et al. (2022). In practice, however,
compiling a massive neural network training into a SNARK circuit is extremely expensive, with recent
analyses suggesting an increase of several orders of magnitude in overhead in computation cost and
latency for even just inference tasks in a ZK circuit Chen et al. (2024). A recent framework (VerifBFL
Bellachia et al. (2025)) demonstrated verifiable federated learning by generating zk-SNARK proofs
for each participant’s local training. While the results seem somewhat promising, they are still far
from implementable. Indeed, for a relatively simple convolutional neural network trained on the
MNIST handwritten dataset LeCun (1998), the authors observed that the on-chain verification was
fast (¡0.6 s), but producing a proof for even a tiny training round took on the order of 81 seconds
Bellachia et al. (2025). This overhead is prohibitive for large models or many training iterations.
Fully zk-proving the training of a 70B-parameter LLM is impractical for the foreseeable future,
absent breakthroughs in proof efficiency.

A.2 PROOF-OF-LEARNING (POL)

Introduced by Jia et al. (2021), PoL leverages the fact that training a model (via, e.g., stochastic
gradient descent or ADAM Kingma & Ba (2014)) produces a unique trajectory of model updates that
is hard to forge without doing the work. In a PoL scheme, the prover (trainer) logs a sequence of
intermediate states – e.g., model weights and hyper-parameters after each batch or epoch – along
with metadata like batch indices and random seeds. This sequence is the “certificate” of training. A
verifier can then randomly spot-check some of these intermediate steps: they pick a random subset
of steps and re-compute the training transition (e.g., take the recorded weights at step k, apply the
claimed gradient on the stated batch k, and check if it indeed produces the recorded weights at step
k+ 1) Jia et al. (2021). If all checked steps are consistent, the verifier gains confidence that the entire
sequence (from initial weights to final model) results from legitimate training. By adjusting how
many steps are verified, one can trade off verification cost for assurance level. The security argument
for PoL is that constructing a fake training log is as hard as training the model – essentially, inverting
or short-cutting SGD is difficult. For example, an attacker would have to find gradients that produce
a desired final model without actually computing them, which, in general, is computationally as
expensive as honest training. A main drawback of PoL is its computational cost. Indeed, it is shown
in Jia et al. (2021) that the time complexity of the verification step evolves as

Cost(PoL) = O(E ·Q · ℓ · C|θ|), (16)

where E ∈ N is the number of epochs in the training algorithm, Q ∈ N is the number of verifications
per epoch, ℓ ∈ N is the so-called checkpointing interval (i.e., how often the protocol checkpoints)
and C|θ| ∈ R+ is the computational cost associated with training a model as a function of its weights,
θ ∈ Rd, which is notably large for LLMs. Notice that Equation equation 16 only considers a single
verifier, which can, in turn, lend itself to collusion. In a more general setting, one would employ
a committee of M verifiers but would need to increase the computational cost in equation 16 by a
factor of M , accordingly.
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Furthermore, the computational cost of PoL induces a Verifier’s Dilemma: verifying many steps can
be costly, so if not adequately incentivized, verifiers might be lazy and skip checks, undermining
security.

In order to accommodate for potential discrepancies arising from, e.g., differences in floating point
algebra, Jia et al. (2021) proposes to take proof as valid if the output weights from the provider and
the validator θprover

end , θverifier
end , respectively, are sufficiently close. More precisely, given some measure

of distance d : Rd × Rd → R+ and some tolerance Tol > 0, a proof is taken as valid in their setting
if d(θprover

end , θverifier
end ) < Tol.

Recent extensions of PoL incorporate stronger incentive models. For example, in Zhao et al. (2024),
the authors propose a “capture-the-flag” game where verifiers earn extra rewards by finding any
inconsistency (flags) in the proof, ensuring they check diligently. We intend to explore, improve, and
expand these techniques and extend them to create (i) more computationally efficient methodologies
and (ii) a base protocol with fully distributed training.

Another variant proposed in Zhang & Wang (2024) is the so-called Proof-of-Sampling Protocol
(PoSP). In their model, computations are taken as valid with probability 1− p and otherwise verified
by a committee of M verifiers with probability p. Should a computation be deemed as invalid, the
prover gets penalized an amount that is large enough so that, rationally, their best strategy is always
to submit a valid computation. Put differently, the expected reward from cheating is smaller than the
expected rewards from performing the computation. Intuitively, this approach incurs a cost of the
order of

Cost(PoSP) = O
(
p ·M · E ·Q · ℓ · C|θ|

)
, (17)

which is an improvement over equation 16 provided that pM < 1, i.e., if the verification probability
satisfies p < 1/M . This, in turn, creates a delicate balance. On the one hand, if one cares about fault
tolerance, then M must be relatively high, which means that the proportion of verified computations
is small. This could, in turn, lead to ill behaviors from the provers or arbitrarily large potential
penalties (often expressed as staked amounts), which might result in entry barriers from the protocol.
These high entry barriers also imply that only a few providers and verifiers can join the network,
which might, in turn, lead to centralization. On the other hand, reducing the size of the committee
to its minimum (e.g., M = 2) would yield minimal computational gains while at the same time
exposing the protocol to verifier collusion (intuitively, the smaller the verifying committee is, the
easier it will be to manipulate).

A.3 ROBUST AGGREGATION AND BYZANTINE-RESILIENT TRAINING

A related but distinct line of work addresses Byzantine-resilient distributed learning through robust
aggregation methods. FLTrust Cao et al. (2021) proposes trust bootstrapping where a central server
maintains a small “root” dataset and uses cosine similarity to weight client updates, filtering out
malicious contributions. Other robust aggregators include coordinate-wise median, trimmed mean
Yin et al. (2018), Krum Blanchard et al. (2017), and geometric median approaches.

Distinction from our work. Robust aggregation and PoI address complementary concerns:

• Robust aggregation filters contributions based on similarity to trusted data or other clients. It does
not verify that workers actually performed training (they could submit scaled honest gradients or
random noise that passes similarity checks).

• PoI certifies that the outcome (model improvement on a committed benchmark) was achieved,
regardless of how individual updates were produced. It catches lazy workers who free-ride as well
as adversaries whose attacks degrade evaluation metrics.

These mechanisms are orthogonal: one could deploy robust aggregation for Byzantine resilience at
each round and PoI for end-to-end outcome verification. Our framework’s process audits additionally
verify that declared computations were actually performed, which robust aggregation alone cannot
provide.
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A.4 KNOWN VULNERABILITIES OF PROOF-OF-LEARNING

Fang et al. Fang et al. (2023) demonstrated attacks against the original PoL scheme Jia et al. (2021),
showing that adversaries can forge training trajectories by exploiting the tolerance mechanism and by
finding “shortcut” paths through weight space. Their attacks rely on:

1. Tolerance exploitation: Accumulating small per-step errors within τ that compound over many
steps.

2. Trajectory shortcuts: Finding alternative sequences of updates that reach similar final weights
without honest training.

Our protocol addresses these vulnerabilities through several mechanisms:

• Tight tolerance calibration: We calibrate τ to the p99 of honest replay drift under the declared
stack Ξ, leaving minimal room for adversarial accumulation while preserving reproducibility.

• Outcome verification (PoI): Even if an adversary forges a process-valid trajectory, PoI catches them
if the final model fails to achieve claimed improvement on the committed evaluation set.

• Economic deterrence: The stake/slashing mechanism makes forgery attempts economically irra-
tional even before detection, as expected losses exceed potential gains.

• Commitment binding: Our Merkle-based per-step commitments bind both input and output states,
making trajectory shortcuts detectable if any intermediate state diverges.

The key insight is that PoI provides a “backstop”: attacks that evade process verification must still
produce a model that genuinely improved, which defeats the purpose of cheating.

A.5 DECENTRALIZED DISTRIBUTED TRAINING

Training large language models is often an exceedingly expensive computational task that requires
computation due to their vast parameter sizes and data-intensive workloads. One common way of
alleviating these computational costs is through distributing the computational load. While there is
a vast literature on the topic, see, e.g., Sergeev & Del Balso (2018); Shoeybi et al. (2019); Huang
et al. (2019); Rajbhandari et al. (2020); Lin et al. (2018) we will focus specifically on methods
that allow for distributed training across multiple different machines in different locations. Central
to this are the works of Douillard et al., Douillard et al. (2023; 2025) have proposed Distributed
Low-Communication (DiLoCo) Douillard et al. (2023), a distributed optimization algorithm aimed at
drastically reducing communication frequency in LLM training. Instead of synchronizing gradients
at every minibatch, DiLoCo performs many local updates on each worker (using ADAM Kingma
& Ba (2014) as the local optimizer) before occasionally averaging models across workers, using an
outer loop with, e.g., Nesterov momentum Lin et al. (2019); Douillard et al. (2023). This approach
allows training on “islands” of devices that are only intermittently connected, relaxing the typical
requirement of a high-speed interconnect. DiLoCo achieved model quality on par with conventional
data-parallel training on a standard large-scale dataset while communicating 500× less frequently
among workers Douillard et al. (2023). In practical terms, eight workers communicating only once
every 500 training steps matched the accuracy of fully synchronous training, demonstrating that
vast reductions in communication are possible without sacrificing convergence. Moreover, DiLoCo
was robust to heterogeneous data distributions across workers and resilient to dynamic availability
of resources (workers can drop out or join during training with minimal impact) Douillard et al.
(2023). Building on this idea, Douillard et al. (2025) introduced an enhanced strategy often referred
to as Streaming DiLoCo, aiming to minimize communication overhead and latency penalties further
Douillard et al. (2025). Streaming DiLoCo improves upon the original method by (i) partially
synchronizing parameters, significantly reducing the peak bandwidth required at any given time
Douillard et al. (2025), (ii) increasing efficiency in the implementation, and (iii) quantizing exchanged
model updates to lower precision, cutting down the total volume of data transferred between workers
Douillard et al. (2025). By combining these techniques, the authors were able to show that it
is possible to distribute training of a billion-parameter transformer and reach similar accuracy as
fully synchronous training while reducing required inter-worker bandwidth by about two orders of
magnitude (a 100× reduction) Douillard et al. (2025). These low-communication approaches are
significant because they enable multi-cluster or geographically distributed training of LLMs without
the necessity of dedicated super-computing infrastructure.
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B PROTOCOL SPECIFICATION (FULL DETAILS)

Scope. This appendix provides the complete protocol specification omitted from the main text
for space: (i) single-prover Commit–Sample–Reveal (CSR), (ii) distributed CSR with always-on
background worker audits and conditional escalation, and (iii) operational details on randomness,
sampling, commitments, witnesses, and privacy.

B.1 PUBLIC RANDOMNESS, SAMPLING, AND TIMING

Window seed and timing. For window W , all per-step commitments are frozen before sampling. A
public randomness beacon (or VRF seed from SC) emits a window seed rW after commits freeze.

Sampling. Using rW , we perform two VRF-based draws: (1) workers at background rate β (dis-
tributed case), and (2) per-worker steps at rate α. Draws are publicly verifiable and without replace-
ment within a window; worker draws may also be without replacement over a rolling cycle to ensure
coverage (main Eq. equation 3). Domain separation derives distinct seeds for worker vs. step draws
(e.g., H(rW ∥workers), H(rW ∥steps∥u)).

B.2 COMMITMENTS, WITNESS SCHEMA, AND PRIVACY

Parameter sharding and Merkle roots. Let model parameters be partitioned into fixed-size shards;
let Ct−1 = MerkleRoot(θt−1), Ct = MerkleRoot(θt). A step commitment is the constant-size hash

ht = H
(
Ct−1 ∥Ct ∥Wt

)
,

where the witness Wt = (It,Πt, Ot−1, Rt,Λt,Ξ) includes batch indices and Merkle proofs (It,Πt),
the Merkle root of the optimizer state (or just the relevant shards) Ot−1, RNG seeds Rt, hyperparam-
eters Λt, and the declared stack hash Ξ.

Privacy model. For audited steps, committee-only channels receive the required parameter/optimizer
shards, metadata, seeds, and inclusion proofs. Public artifacts are per-step commitments and Merkle
proofs. This preserves verifiability while limiting leakage. (LoRA/QLoRA reduces updated fraction
κ; stateless optimizers reduce optimizer reveals.)

B.3 SINGLE-PROVER CSR (FULL PSEUDOCODE)

Algorithm 1 CSR (single-prover) per window W with post-commit sampling
Require: Window size G; step audit rate α; committee size m; tolerance
Ensure: Per-window verdict; audit logs

1: function VRF SAMPLE(U, p; seed)
2: return a subset S⊆U drawn by VRF with public seed; sample without replacement
3: end function
4: function VERIFYSTEP(t,Ξ,)
5: Check (param-shards, opt-shards,metadata, seed) against Merkle roots (Ct−1, Ct)
6: Deterministically replay step t on stack Ξ; compute discrepancy and compare to
7: return pass/fail + audit record (hashes, discrepancy)
8: end function
9: Commit: For t = 1..G, post ht binding (Ct−1, Ct,Wt) to the ledger

10: Freeze: Close the window; all ht immutable
11: Draw public seed rW
12: Sample steps: S ← VRF SAMPLE({1..G}, α; rW )
13: for t ∈ S in parallel do
14: Committee of size m requests witness to committee only
15: Members run VERIFYSTEP(t,Ξ, ); vote by supermajority (≥ ⌈m/2⌉+ 1)
16: if vote is fail then
17: Slash; record audit and mark window fail
18: end if
19: end for
20: Finalize window: Publish verdicts; apply slashing/penalties; proceed to next window
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B.4 DISTRIBUTED CSR WITH BACKGROUND AUDITS AND ESCALATION (FULL
PSEUDOCODE)

Algorithm 2 Distributed CSR with Background Worker Sampling and Escalation (per window)
Require: Window size G; per-worker step audit rate α; background worker sampling rate β; com-

mittee size m; tolerance ; escalation (α′, β′,m′) ⪰ (α, β,m)
Ensure: Per-window verdict; slashing decisions; audit logs

1: function VRF SAMPLE(U, p; seed)
2: return a subset S ⊆ U drawn by verifiable randomness (public seed), without replacement
3: end function
4: function VERIFYSTEP(u, t,Ξ,)
5: Check witness schema (param-shards, opt-shards,metadata, seed) vs. Merkle root Cu,t

6: Deterministically replay step t for worker u on Ξ; compare discrepancy to
7: return pass/fail + audit record (hashes, discrepancy)
8: end function
9: Stage 1 (always): Aggregation verification

10: Recompute aggregator output from committed worker updates; verify aggregation commitments
and indices

11: Record AggregationPass/Fail
12: Draw public randomness rW after all worker commits are finalized
13: Stage 2a (always): Background worker audits
14: Wbg ← VRF SAMPLE(workers, β; rW )
15: for worker u ∈Wbg do
16: Su ← VRF SAMPLE(steps of u, α ·G; (rW , u))
17: for step t ∈ Su in parallel do
18: Committee (m) requests witnesses (committee-only)
19: Members run VERIFYSTEP(u, t,Ξ, ); vote; aggregate by supermajority
20: end for
21: if any step vote is fail then
22: Slash u; record attribution ⟨u, Su⟩; mark window fail
23: end if
24: end for
25: Stage 2b (conditional): Escalation on failures
26: if (AggregationFail) OR (PoIFail at milestone) then
27: (α, β,m)← (α′, β′,m′) ▷ β′=1 allowed
28: Draw new randomness r′W
29: Wesc ← VRF SAMPLE(workers, β′; r′W )
30: for worker u ∈Wesc do
31: S′

u ← VRF SAMPLE(steps of u, α′ ·G; (r′W , u))
32: for step t ∈ S′

u in parallel do
33: Committee re-verifies with m′; slash on fail
34: end for
35: end for
36: /* Optionally apply escalation to implicated preceding windows for attribution. */
37: end if
38: Finalize window: Publish verdicts and hash-only logs; apply slashing; proceed to next window

B.5 PROTOCOL TIMELINE

Figure 2 shows the temporal structure of the windowed CSR protocol. Key timing guarantees:

• Post-commit randomness: Window seed rW is drawn after all step commits are finalized, preventing
adaptive step selection.

• Pipelined execution: While window W is audited, the prover may commit steps for window W+1;
latency contributes O(1) per window, not per step.

• Deadlines: Reveals must arrive within ∆reveal; votes within ∆vote. Missed deadlines trigger
penalties.
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t=0 t=G t=2G t=3G t=4G

Prover

Contract

Committee

PoI

Commit h1..hG

rW1

Reveal

Audit+Vote

Commit W2

PoI

□ Prover action

⋄ Public randomness

Pipeline: W2 commits while W1 audits

Figure 2: Protocol timeline showing pipelined execution. Commits for window W2 (green) overlap
with audit of window W1. Public randomness rW is drawn post-commit to prevent adaptive attacks.
PoI milestones run in parallel with training audits.

C PROOFS

Lemma 1 (Base Law for Single Forgery) Let α ∈ (0, 1] be the fraction of audited steps and
q ∈ (0, 1] be the probability that an honest-majority committee correctly identifies a forgery. For a
single forged step (f = 1), the detection probability is δ(1) = αq.

Proof. Let A be the event that the single forged step is sampled for an audit, and let B be the event
that the verifier committee correctly detects the forgery. The sampling is uniform and random,
thus P (A) = α. The conditional probability of detection, given the step is sampled, is defined as
P (B|A) = q. Since the sampling event and the committee’s verification are independent, the total
probability of detection is the joint probability:

δ(1) = P (A ∩B) = P (B|A)P (A) = qα

Remark (committee quality factor). In the analysis we decompose q as
q = 1− Pmaj-Byz(M,F,m)︸ ︷︷ ︸

honest majority

· 1− Pτ -miss︸ ︷︷ ︸
no masking by τ

,

cf. Eq. equation 6. For deterministic replay, τ=0 so Pτ -miss=0.

Consequence (multi-step baseline). For f ≥ 1 forgeries within a window and sampling without
replacement, the per-worker detection obeys

δ(f) ≥ 1− (1− αq)f ,

with equality under independent draws

Theorem 1 (Efficient Frontier for Process Audits) Let ℓ ∈ N+ be the total number of training steps,
with per-step costs Cp for the Prover and Cv for a Verifier. Let m ∈ N+ be the committee size. For a
target single-step detection probability δ∗ ∈ (0, q], the minimum verification cost is given by:

Costmin(δ
∗;m) = ℓCp +

δ∗

q
ℓmCv

Proof. The total expected cost is the sum of the Prover’s computation cost and the expected verifica-
tion cost:

Costtotal(α,m) = ℓCp + E[Verification Cost] = ℓCp + (αℓ)mCv

To achieve a target soundness level δ∗, we require δ(1) = δ∗. By Lemma 1, αq = δ∗, which implies
the necessary sampling fraction is α = δ∗/q. Since α ≤ 1, it must hold that δ∗ ≤ q. Substituting this
expression for α into the cost function yields the minimal cost for the target soundness δ∗:

Costmin(δ
∗;m) = ℓCp +

(
δ∗

q

)
ℓmCv

This establishes a linear trade-off between the verification cost and the soundness guarantee.
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Design note. Targets with δ∗>q are infeasible without improving q (e.g., increasing m or tightening
τ ). Integer constraints enter only through αℓ ∈ N; rounding α up preserves the bound.

Theorem 2 (Pipelined Liveness) Let ℓ ∈ N+ be the total number of steps, processed in windows of
size G ∈ N+. Let Tupd be the per-step computation time, ∆ be the network delay, and ∆aud be the
audit finalization time. The total execution time is bounded by:

Ttotal ≤ ℓTupd +

⌈
ℓ

G

⌉
(2∆ +∆aud) +O(1)

Proof. The total time Ttotal is the sum of the Prover’s sequential computation time and the cumulative
latency from the audit pipeline. The total computation time across all l steps is ℓ · Tupd. The protocol
is processed in Nw = ⌈ℓ/G⌉ windows. The pipelined design ensures that the latency of auditing
window w overlaps with the computation of window w+1. Thus, latency contributes an overhead per
window, not per step. The latency for one window consists of at least two network delays (commit
finalization, reveal) and the audit time ∆aud. The total cumulative latency is Nw(2∆ + ∆aud).
Combining these terms, we obtain the upper bound on the total time.

Operational clarification. In our implementation, the reveal and vote phases have explicit deadlines
(∆reveal,∆vote); missed deadlines are slashable and keep the O(1) per-window contribution. Stage 2a
(background) and Stage 2b (escalation) run within the same pipeline and hence do not add per-step
latency.

Theorem 3 (Economic Security via Staking) Let G > 0 be the Prover’s gain from a single successful
cheat and let sp > 0 be the Prover’s stake. Honesty is a strictly dominant strategy if:

sp >

(
1

αq
− 1

)
G

Proof. Let the utility of honesty be Uhonest = 0. The expected utility of attempting a single cheat,
E[Ucheat], is determined by the two possible outcomes: success (no detection) or failure (detection).
The probability of detection is δ(1) = αq.

E[Ucheat] = P (success) · (Gain) + P (failure) · (Loss)

E[Ucheat] = (1− δ(1)) · G + δ(1) · (−sp)
For honesty to be strictly dominant, we require E[Ucheat] < 0:

(1− δ(1))G − δ(1)sp < 0 =⇒ (1− δ(1))G < δ(1)sp

Solving for the stake sp yields:

sp >
1− δ(1)

δ(1)
G

Substituting δ(1) = αq from Lemma 1 gives the required condition:

sp >
1− αq

αq
G =

(
1

αq
− 1

)
G

This ensures that the expected utility of cheating is negative, making it an economically irrational
strategy.

Corollary 3.1 (background sampling; multiple forgeries). For a worker forging f steps in a
window with background audits at rate β, the per-window detection is

δbg(f) = β
[
1− (1− αq)f

]
(cf. Eq. equation 2).

Let G(f) be the per-window cheating gain. Then honesty is strictly dominant if

sp >
1− δbg(f)

δbg(f)
G(f),

equivalently (1− δbg)G$ − δbgD < 0 in the reward/deposit view.
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Lemma 2 (Few-Step Influence Bound). We prove that adversarial perturbations on a subset of
training steps have bounded cumulative impact.

Proof. Consider the parameter trajectory under honest execution {θhont }Tt=0 and adversarial execution
{θadvt }Tt=0, starting from the same θ0. Let F ⊆ {1, . . . , T} be the set of forged steps with |F| = f .

For t /∈ F (honest steps), both trajectories apply the same update:

θadvt − θhont = θadvt−1 − θhont−1 − η(∇L(θadvt−1)−∇L(θhont−1)).

By L-smoothness, ∥∇L(θadvt−1)−∇L(θhont−1)∥ ≤ L∥θadvt−1 − θhont−1∥, so:

∥θadvt − θhont ∥ ≤ (1 + ηL)∥θadvt−1 − θhont−1∥.

For t ∈ F (forged steps), the adversary introduces deviation ∆t:

∥θadvt − θhont ∥ ≤ (1 + ηL)∥θadvt−1 − θhont−1∥+ ∥∆t∥.

Unrolling the recursion from t = 0 (where the deviation is zero) to t = T :

∥θadvT − θhonT ∥ ≤
∑
t∈F

(1 + ηL)T−t∥∆t∥.

With gradient clipping at norm B, each forged gradient is bounded: ∥∆t∥ ≤ 2ηB (the difference
between the clipped adversarial and honest gradients). The loss deviation follows from L-smoothness:

|L(θadvT )− L(θhonT )| ≤ L∥θadvT − θhonT ∥+ L

2
∥θadvT − θhonT ∥2.

For small deviations (typical regime), the quadratic term dominates.

Remark (Adam and momentum optimizers). For Adam, the analysis extends by noting that
the adaptive learning rate is bounded: with ϵ > 0 and β2 < 1, we have ηeff ≤ η/

√
ϵ. Momentum

introduces exponentially decaying memory, which can amplify deviations by at most a factor of
1/(1− β1). The qualitative bound O(f · ηB · poly(T )) remains.

C.1 POI SAMPLE SIZE GUIDANCE

Table 5 provides guidance for selecting the number of evaluation samples n (or blocks neff) to achieve
target statistical power under different correlation structures.

Correlation structure Effective n Target power ≥ 0.90 Target power ≥ 0.99

i.i.d. tokens n n ≥ 50 n ≥ 100
Block correlation (ρ ≈ 0.3) neff ≈ n/2 n ≥ 100 n ≥ 200
Strong block correlation (ρ ≈ 0.6) neff ≈ n/4 n ≥ 200 n ≥ 400
Sequence-level metrics (BLEU, safety) nseq nseq ≥ 200 nseq ≥ 500

Table 5: Sample size guidance for PoI under different correlation structures. Values assume a
moderate effect size (γ/σ ≈ 0.5) and one-sided t-test at αstat = 0.05. For smaller effect sizes, scale
n by (σ/γ)2.

Effective sample size under block correlation. When evaluation tokens within a block of size b
have correlation ρ, the variance of the block mean is inflated by a factor (1 + (b− 1)ρ) relative to
i.i.d. sampling. The effective sample size for n total tokens in n/b blocks is:

neff =
n

1 + (b− 1)ρ
.

For blocked sampling (recommended), we draw entire blocks via VRF and compute paired differences
at the block level, achieving the effective sample size of n/b independent observations.
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D COST AND BANDWIDTH DETAILS

This appendix formalizes prover/verifier overheads and network reveals in closed form, and derives
deployable reductions that correspond to the summary equations in the main paper.

D.1 NOTATION AND REGIMES

Let P ∈ N+ denote the number of trainable parameters and u > 0 the bytes per parameter (e.g., u=2
for bf16/fp16). Define the parameter byte size

P := uP.

Let φ ≥ 0 denote the optimizer state multiplier (Adam: φ=2 for (m, v); stateless SGD: φ=0). Let
κ ∈ (0, 1] be the effective fraction of parameters updated and therefore revealed by an audited step
(full-parameter training: κ=1; LoRA/QLoRA: κ≪ 1). Fix a shard size S > 0 (bytes) and write

Lp :=

⌈
P

S

⌉
, Lo := φLp,

for the numbers of parameter and optimizer shards, respectively. Let π > 0 denote the mean Merkle
inclusion proof length (bytes) per shard. A training window contains G ∈ N+ steps, with audited
step fraction α ∈ (0, 1] and background worker sampling rate β ∈ (0, 1]. Committees have size
m ∈ N+ and vote under tolerance τ ≥ 0; the committee correctness factor is q = q(m, τ) ∈ (0, 1].
Let Tstep > 0 be the prover wall-time per training step and Cv > 0 the verifier replay time per
audited step (on stack Ξ). The effective uplink bandwidth is BW > 0. A pipeline overlap coefficient
χ ∈ [0, 1] models how much network transfer is hidden by compute (χ = 0 fully hidden; χ = 1 no
overlap). For distribution to committees, define a dissemination factor δdist ∈ [1,m] (δdist=1 for
content-addressed/multicast; δdist=m for naive unicast).

D.2 REVEAL BYTES PER AUDITED STEP

For one audited step, the prover reveals parameter and, if applicable, optimizer shards sufficient for
deterministic replay, together with Merkle inclusion proofs. A precise and implementation-agnostic
approximation is

Bstep ≈ κP︸︷︷︸
parameters

+ κφP︸ ︷︷ ︸
optimizer

+ κ (Lp + Lo)π︸ ︷︷ ︸
proofs

= κ (1 + φ)
(
P + Lp π

)
, (18)

using Lo = φLp. Thus, relative to full-parameter training with Adam (κ=1, φ=2), LoRA/QLoRA
scales bytes proportionally to κ≪ 1, and switching to stateless SGD (φ=0) removes the optimizer
term.

Merkle proof bound. For a b-ary Merkle tree with digest size d bytes and L leaves, a standard path
proof satisfies

π ≤ (b− 1) d
⌈
logb L

⌉
, (19)

up to small framing constants. In our accounting, L is on the order of Lp (parameters) or Lo

(optimizer).

D.3 PER-WINDOW NETWORK TRAFFIC

Let Bstep be given by equation 18. If a sampled worker reveals αG steps in a window, then the
prover’s uplink bytes are

B↑
win = αGδdist Bstep, (20)

where δdist captures distribution mode (1 for content-addressed/multicast; m for naive unicast to a
committee of size m).
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D.4 COMMIT/SERIALIZATION TIME AND INCREMENTAL MERKLE ROOTS

Let Tcommit > 0 be the time per step to hash shards and update Merkle roots, and let Tser > 0 be the
time to serialize witnesses. We report the following normalized fractions,

commit frac :=
median(Tcommit)

Tstep
, serialize frac :=

median(Tser)

Tstep
. (21)

A naive implementation recomputes the full Merkle tree each step; a practical implementation
updates the root in O(logLp) per modified shard via cached internal nodes. Streaming shard hashing
during the optimizer update overlaps a large fraction of Tcommit with backpropagation and reduces
equation 21.

D.5 END-TO-END NORMALIZED OVERHEAD

Normalizing to the prover’s training time, the end-to-end overhead as a function of α satisfies

ρ(α) ≈ αCv

Tstep︸ ︷︷ ︸
verifier replay

+
Tcommit

Tstep︸ ︷︷ ︸
prover commit

+ χα
δdist Bstep

BW Tstep︸ ︷︷ ︸
network

, (22)

which complements the cost–soundness frontier of the analysis: the first term scales linearly in α,
the second is the no-audit baseline, and the third depends on the network regime and dissemination
mode.

D.6 MEASUREMENT PROTOCOL (REPRODUCIBLE)

Fix a stack Ξ and dataset/configuration as in the experiments. Define four measured quantities:

Tcommit, Tser, Bstep, Cv.

Obtain Tcommit and Tser by instrumenting per-step hashing and serialization; report median and
p95 and normalize by Tstep via equation 21. Obtain Bstep by instantiating equation 18 for (i) full-
parameter+Adam and (ii) LoRA/QLoRA with/without optimizer moments, sweeping shard size S
and inserting π from equation 19 (or empirical proofs). Obtain Cv by replaying audited steps on
Ξ. Finally, evaluate ρ(α) from equation 22 for α ∈ {0.005, 0.01, 0.02, 0.05}, χ ∈ {0, 0.5, 1}, and
BW ∈ {100 Mb/s, 1 Gb/s}.

D.7 DEPLOYABLE REDUCTIONS (CLOSED-FORM EFFECTS)

Let B(X)
step denote the step-bytes under intervention X .

Stateless/low-state optimizers. Setting φ→ 0 (SGD or quantized moments) replaces

Bstep = κ(1 + φ)
(
P + Lpπ

)
7−→ B

(SGD)
step = κ

(
P + Lpπ

)
,

a multiplicative reduction by the factor 1
1+φ (i.e., ≈ 1/3 vs Adam with φ = 2).

Checkpoint-based verification. Revealing full optimizer state every k ∈ N+ audited steps yields
the bound

B
(k)
step ≤ κ

(
1 +

φ

k

)(
P + Lpπ

)
,

so the optimizer contribution shrinks by the factor 1+φ/k
1+φ (approaching the stateless limit as k →∞).

Verifier compute rises modestly to replay from the nearest revealed checkpoint.

Content-addressed serving. Replacing naive unicast by content-addressed/multicast changes δdist
in equation 20–equation 22 from m to 1, dividing network egress by ≈ m and lowering the network
term of ρ(α) accordingly.

Streaming Merkle roots. Incremental, pipelined hashing reduces Tcommit and hence the second
term in equation 22, without changing Bstep.
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Lossless/fixed-point encodings. If witnesses are encoded with lossless compression or fixed-point
formats that preserve the commitment (hashing over the encoded bytes), then for some η ∈ (0, 1)
one has

B
(enc)
step = η Bstep,

which linearly reduces the network term of equation 22.

D.8 LORA/QLORA RULE-OF-THUMB

Let κLoRA ≪ 1 denote the adapter-to-model parameter ratio. With Adam on adapters,

Bstep ∝ κLoRA (1 + φ)P (dominant param+moment bytes),

while with stateless SGD on adapters,

Bstep ∝ κLoRA P.

Hence reveal bytes and commit overhead both drop by a factor ≈ 1/κLoRA relative to full-parameter
training and by an additional factor ≈ 1/(1 + φ) when moments are removed.

D.9 SANITY BOUNDS AND REGIMES

Under full-parameter training with Adam (κ=1, φ=2) and a binary Merkle tree (b=2) with digest
size d,

Bstep ≲ 3P + 3Lp π, π ≤ d
⌈
log2 Lp

⌉
,

so Bstep is at most a small constant multiple of the model size and scales sublinearly with Lp via
equation 19. In compute-bound regimes where

χα
δdist Bstep

BW
≪ Tstep,

the network term of equation 22 is negligible—consistent with our microbenchmarks.
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E COMMITTEE SIZING AND TOLERANCE CALIBRATION

This appendix provides exact and asymptotic formulas for the committee correctness factor

q(m, τ) =
(
1− Pmaj-Byz(M,F,m)

)
·
(
1− Pτ -miss(τ,Ξ)

)
,

together with closed-form sizing rules for m at a given capture level F/M and calibration of the
numerical tolerance τ under a declared execution stack Ξ.

E.1 COMMITTEE CAPTURE MODEL AND EXACT MAJORITY RISK

Let M ∈ N+ be the total verifier population and F ∈ {0, . . . ,M} the number of Byzantine verifiers
(capture). When a committee of size m ∈ {1, . . . ,M} is drawn uniformly without replacement, the
number of Byzantine verifiers in the committee,

X ∼ Hypergeom(M,F,m), P[X = x] =

(
F
x

)(
M−F
m−x

)(
M
m

) , x = 0, . . . ,m.

Write smaj := ⌈m/2⌉ for the majority threshold and ssup := ⌈m/2⌉+ 1 for the strict supermajority
threshold used by the voting rule. The probability that a committee is (at least) Byzantine-majority is

Pmaj-Byz(M,F,m) = P[X ≥ smaj] =

m∑
x=smaj

(
F
x

)(
M−F
m−x

)(
M
m

) . (23)

Accordingly, the honest-majority factor is 1− Pmaj-Byz(M,F,m), which appears multiplicatively in
q(m, τ).

Binomial approximation and KL tail. When m ≪ M , sampling without replacement is well
approximated by X ′ ∼ Binomial(m, ρ) with ρ := F/M . Using a Chernoff–Cramér bound,

P[X ′ ≥ smaj] ≤ exp
(
− mD

(
1
2

∥∥ ρ)), D(p∥q) := p ln
p

q
+ (1− p) ln

1− p

1− q
. (24)

Thus a sufficient condition for Pmaj-Byz ≤ ε is

m ≥ ln(1/ε)

D
(
1
2 ∥ ρ

) (odd m rounded up), (25)

with a finite-population correction improving equation 25 by the factor (M −m)/(M − 1) when m
is not negligible relative to M .

E.2 TOLERANCE CALIBRATION AND NUMERIC-MISS PROBABILITY

For a given audited step, let θ̂t be the recomputed state under honest replay on stack Ξ, and consider
a norm ∥ · ∥X used by the committee. Define the honest drift random variable

Ehon :=
∥∥θ̂t − θt

∥∥
X

under honest execution across replicas of Ξ.

Fix a target false-positive rate η ∈ (0, 1) for honest steps. The tolerance τ is chosen as the (1 −
η)-quantile of the honest drift,

τ := F−1
Ehon

(1− η) =⇒ P
[
Ehon ≤ τ

]
≥ 1− η. (26)

Let Eadv denote the discrepancy under a forged update (after deterministic replay of the forged step).
The probability that numeric tolerance masks a true error is

Pτ -miss(τ,Ξ) := P
[
Eadv ≤ τ

]
. (27)

When the adversary induces a deviation of magnitude at least δmin in the chosen norm, and Ehon is
stochastically dominated by a sub-Gaussian proxy with variance proxy σ2, a simple bound follows
from Gaussian tails:

Pτ -miss(τ,Ξ) ≤ Φ
(τ − δmin

σ

) τ=F−1
Ehon

(1−η)

≲ Φ
(
Φ−1(1− η)− δmin

σ

)
, (28)

where Φ is the standard normal CDF. In practice we estimate FEhon
empirically on Ξ and validate

Pτ -miss via fault-injection sweeps.
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E.3 PUTTING IT TOGETHER: HITTING A TARGET q⋆

For a target correctness q⋆ ∈ (0, 1), one may choose (m, τ) by solving(
1− Pmaj-Byz(M,F,m)

)
·
(
1− Pτ -miss(τ,Ξ)

)
≥ q⋆. (29)

A constructive sizing is:

(i) pick εmaj, ετ > 0 with (1− εmaj)(1− ετ ) ≥ q⋆; (ii) choose m by equation 23 or equation 25 so that Pmaj-Byz ≤ εmaj; (iii) choose τ by equation 26 so that Pτ -miss ≤ ετ .

When τ=0 (deterministic replay), Pτ -miss=0 and equation 29 reduces to the majority condition.

E.4 MINIMAL ODD COMMITTEE SIZES (EXACT HYPERGEOMETRIC)

Table 6 reports the minimal odd m achieving 1 − Pmaj-Byz(M,F,m) ≥ qtarget for representative
capture fractions ρ = F/M (computed from equation 23 in the limit M → ∞ with fixed ρ, i.e.,
binomial tails; values agree with the finite-M hypergeometric for M ≫ m).

qtarget ρ = 0.05 0.10 0.20 0.30 0.40

≥ 0.99 3 5 11 — —
≥ 0.95 3 3 7 15 —

Table 6: Minimal odd m such that P[honest majority] ≥ qtarget for selected capture fractions
ρ = F/M . Dashes indicate infeasibility under majority voting at that qtarget.
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F PROTOCOL DIAGRAMS

F.1 SINGLE-PROVER POL

Setup Phase

Protocol Loop (Window w)

Stake Collateralsp, sv

Commit DatasetMerkle Root Rdata

Execute G steps & post hashes ht Select αG steps, choose verifiers (m)

Show (θt−1, θt,Wt) for audited stepsRecompute updates; submit votes

MajorityAccept?

Slash sp Window approved

Next Window(w + 1)

NO YES

Detect: δ(1) = αq

Committee size: m

Threshold: ⌈m/2⌉

Figure 3: Proof of Learning Protocol: Single prover
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F.2 DISTRIBUTED POL
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(e.g., Nesterov)

Replicas Training for H inner steps (t = 1).

Not challenged

Not challenged
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Randomly
Sele

cte
d
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p

Figure 4: Verifiable DiLoCo. Figure adapted from Douillard et al. (2023)

G STATEMENT ON THE USE OF AI

In preparing this manuscript, we utilized large language models as a productivity tool. Their assistance
was helpful for improving the clarity and tone of the writing, for grammatical and consistency checks,
during initial research ideation, and for debugging segments of the experimental code. The final
content and all intellectual contributions are the authors’ own.
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