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Abstract

Alignment is a key step in developing Large Language Models (LLMs) using human feed-
back to ensure adherence to human values and societal norms. Dependence on human
feedback raises privacy concerns about how much a labeler’s preferences may reveal about
their personal values, beliefs, and personality traits. Existing approaches, such as Differen-
tially Private SGD (DP-SGD), provide rigorous privacy guarantees by privatizing gradients
during fine-tuning and alignment but can provide more privacy than necessary as human
preferences are tied only to labels of (prompt, response) pairs and can degrade model util-
ity. This work focuses on LLM alignment with preference-level privacy, which preserves
the privacy of preference labels provided by humans. We propose PROPS (PROgressively
Private Self-alignment), a multi-stage privacy preserving alignment framework where pri-
vately aligned models in previous stages can serve as labelers for supplementing training
data in the subsequent stages of alignment. We present theoretical guarantees for PROPS
as well as comprehensive validation using multiple models (Pythia and GPT) and datasets
(AlpacaEval, Anthropic HH-RLHF, truthy-dpo-v0.1) to demonstrate the utility of PROPS
over existing methods while still providing high privacy. For the same privacy budget, align-
ment via PROPS can achieve up to 3x higher win-rates compared to DP-SGD, and 2.5x
higher win-rates compared to Randomized Response (RR) based alignment.

1 Introduction

The process of aligning LLMs relies on datasets comprising prompts, LLM-generated responses, and prefer-
ence labels that indicate which response aligns better with human values, collectively referred to as preference
data. The alignment approaches, including reinforcement learning with human feedback (RLHF) (Stiennon
et al., 2020) and direct preference optimization (DPO) (Rafailov et al., 2024), leverage these preference
datasets with ranked labels provided by human annotators.

Motivation for Human Preference Privacy: While preference data can significantly improve the align-
ment of large models with expert reasoning, it often carries deep privacy risks—particularly in domains where
human feedback encodes sensitive strategies, values, or professional heuristics. This tension is most evident
in several high-stakes application scenarios as we discuss next. In clinical decision support systems, for
example, physicians’ feedback reflects diagnostic reasoning and treatment heuristics tied to protected health
information and institutional IP; disclosure can undermine both patient privacy and clinical competitiveness
(Reddy, 2023; Han et al., 2024). In legal and judicial settings, alignment with lawyers’ or judges’ feedback
risks revealing privileged deliberations, litigation strategies, or interpretive biases that must remain confi-
dential to preserve due process. These scenarios illustrate a central point: preference privacy is not merely
a theoretical consideration but a critical requirement for deploying aligned models in the most sensitive and
societally consequential domains. The privacy–utility trade-offs in such settings demand specialized align-
ment mechanisms that protect individual and institutional preference signals while preserving their utility
for model improvement.

In Wang et al. (2024), a large number of consultation records were used to construct a dataset to fine-tune
an LLM to act as a chatbot physician, with GPT-4 used to retain records that highlighted professionalism,
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Figure 1: (a) Randomized Response (RR) based alignment where human preferences in the dataset D are privatized
using RR which are then used for alignment. (b) DP-SGD based alignment where differentially private gradients are
used for model alignment. (c) Two stage PROPS framework: Dataset D is partitioned into disjoint subsets (D1, D2).
In Stage 1, preferences in D1 are privatized using RR, resulting in an intermediate aligned model M1. In Stage 2,
model M1 is used to independently rank the responses in D2. We then obtain private labels for D2 which are derived
from combining model’s predictions and RR via a maximum likelihood estimator (MLE). These progressively refined
private preferences are then used for alignment to arrive at the final model M2.

explainability, and emotional support. As the model was shown to be effective, this indicates that certain
preferences of a doctor’s decision-making can be identified which could lead to potential exposure of a doctor’s
preferences. Also, in policy analysis (Rao et al., 2023), publicly available survey questions or proposals can be
used to elicit LLM-generated analyses, where policymakers’ feedback reveals sensitive interpretative insights
that may require protection. Bakker et al. (2021), for example, observed that placing more emphasis on
politics in their surveys to participants “resulted in self-reports of personality traits that were in some cases
more aligned with preexisting political preferences."

Recent work on privacy-preserving fine-tuning and alignment (see Section 1) typically treats prompts, re-
sponses, and human feedback as jointly private. However, in most alignment settings, only the human-
provided labels or rankings are sensitive. While methods like differentially-private SGD (DP-SGD) protect
the entire training tuple (as shown in Figure 1(b)), they hurt utility under stringent privacy requirements.
This paper instead focuses on protecting human preference data. Figure 2 shows representative results that
compare the method proposed in this work with conventional privacy preserving techniques including DP-
SGD and Randomized Response (RR); the figure shows that for the same privacy guarantee, models aligned
by our method provide higher quality responses compared to DP-SGD and RR based alignment.

Main Contributions: Motivated by the above observations, we study the problem of aligning LLMs with
preference privacy. Specifically, we investigate two notions of privacy: a) preference-level privacy, and b)
labeler-level privacy. Preference level privacy ensures that for any tuple (x, y1, y2), where x denotes the
prompt and y1, y2 denote the LLM-generated responses, the individual human-preference ℓ∗ (which denotes
whether y1 or y2 is preferable) does not significantly impact the aligned model. Formally, we leverage
the existing notion of Differential Privacy (DP) Dwork et al. (2014), and use it to formalize the notion of
(ϵ, δ)-preference-level DP, where (ϵ, δ) represent the privacy budgets. The notion of labeler-level privacy (also
commonly referred to as user-level privacy in the DP literature) hides the presence/absence of any individual
human labeler and protects all the labels annotated by the labeler. We summarize and highlight the main
contributions and novel aspects of this work:

• PROPS for Private Alignment. We introduce Progressively Private Self-Alignment (PROPS), a
multi-stage algorithm for alignment that improves privacy and utility. Instead of processing the entire
perturbed dataset at once, PROPS divides alignment into stages. In the kth stage, for (k > 1), the model
from the previous stage (Mk−1) is used along with non-private prompts, responses from a new batch, and
noisy labels perturbed using Randomized Response (RR) ℓRR. Mk−1 generates its own rankings ℓMk−1

which, combined with ℓRR, are used to compute maximum-likelihood estimates (MLEs) for alignment.
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Figure 2: (a) Win-Tie rate evaluation of PROPS vs RR and PROPS vs DP-SGD-aligned models on the
truthy-dpo-v0.1 dataset for GPT2-Large and GPT2-Medium models, demonstrating the advantages of
preference-level privacy with PROPS, particularly in high-privacy regimes. (b) Prompt-Response pairs
generated by GPT2-Large model with PROPS, DP-SGD and RR-based alignment for different privacy
regimes.

This staged process leverages intermediate models to improve preference labeling and reduce reliance
on noisy labels, enhancing alignment quality while maintaining privacy. PROPS effectively balances
privacy preservation with performance, offering a novel alignment framework.

• Theoretical Insights. We study the utility-privacy tradeoffs for PROPS by analyzing the Sub-
optimality gap Chowdhury et al. (2024a) defined as the difference between between the weights of a
non-privately trained model with the weights of a privately trained model with a privacy budget ϵ in
Section 3.1 (Theorem 1). The upper bound on this gap shows that PROPS (which uses MLE combining
in the second stage) is no worse than vanilla RR and performs better as long as the intermediate model
gets better at predicting preferences.

• Empirical Evaluation. We conducted a comprehensive set of experiments to evaluate the impact
of preference-level differential privacy (DP) on DPO-based alignment across various privacy settings
and models (Pythia-1B, GPT2-Large, and GPT2-Medium). Our results show that in the high privacy
regime (ϵ = 0.1), our method, PROPS, achieves up to 2.5x preference gain for PROPS vs RR in win-
tie-loss rates and up to 3x win-tie-loss rate preference gain for PROPS vs DP-SGD based alignment on
truthy-dpo-v0.1, HH-RLHF and AlpacaEval datasets. We refer the readers to Section 4 and Section
A.6 for detailed experimental results.

Consistent with standard approaches for alignment, this work focuses on the common setting of binary
preferences (pairwise comparisons). The core ideas could potentially be extended to multiple preferences
using techniques in Zhu et al. (2023), we leave this generalization as future work.

Related works & Limitations: We next provide an overview of LLM alignment and the associated privacy
risks in using human preference data. We also discuss related works on this problem and the limitations of
existing methods for privacy-preserving alignment.

3



Under review as submission to TMLR

LLM Alignment: Training LLMs typically involve three key stages: pre-training, supervised fine-tuning,
and alignment. Among these, alignment is particularly important as it guides LLMs to produce responses
that align with societal norms and human preferences. The alignment process relies on a dataset D consisting
of n samples, each containing a prompt x, LLM-generated responses (y1, y2), and a human-preferred label
ℓ∗, collectively referred to as preference data. Two conventional methods for alignment, Reinforcement
Learning with Human Feedback (RLHF) (Stiennon et al., 2020) and Direct Preference Optimization (DPO)
(Rafailov et al., 2024), utilize preference datasets with ranked labels provided by human annotators. While
these aligned models improve the quality of generated responses, they introduce privacy risks, particularly
concerning the identity of the annotators and their associated preferences. Recent work shows membership
inference attack on preference data for LLM alignment (Feng et al., 2024), and highlights the vulnerabilities
of using human annotated preference data during alignment. To mitigate the privacy risks associated with
human-annotated preference data, the notion of differential privacy (DP) (Dwork et al., 2014) has recently
been explored for fine-tuning and alignment of LLMs. For example, Yu et al. (2021) applied DP to fine-
tuning by introducing privacy guarantees for smaller, appended parameters such as LoRA and adapters.
Singh et al. (2024) introduced a two-stage fine-tuning process, and Yu et al. (2024) addressed the privacy-
preserving alignment challenge by ensuring DP protection for users’ prompts against labelers during the
generation of preference datasets for alignment. Additionally, Wu et al. (2023) proposed applying DP to
RLHF by splitting the dataset into three disjoint sets to ensure DP at each stage of RLHF. Moreover, Feng
et al. (2024) investigated the vulnerability of LLMs aligned using human preference datasets to membership
inference attacks (MIAs), and provided empirical evidence that DPO models are more vulnerable to MIA
compared to RLHF based models.
Private Alignment: To address privacy threats, the idea of Differential Privacy (DP) (Dwork et al., 2014)
has been integrated into the LLM training process, including pre-training, fine-tuning, and alignment, to
protect the privacy of preference data. To achieve DP, current state-of-the-art approaches utilize DP-SGD
(Abadi et al., 2016), which privatizes gradients to ensure the privacy of the entire preference data throughout
the training process. Previous literature has explored key aspects relevant to this study: (Chowdhury et al.,
2024b) examined privacy preserving reward estimation for RLHF methods, while (Chowdhury et al., 2024a)
investigated the robustness of DPO with noisy preference datasets, providing the foundational basis for this
study. However, to the best of our knowledge, the concept of Label Differential Privacy (Label-DP) (Ghazi
et al., 2021b) has not been explored in the context of alignment. Label-DP could enable models to achieve
high utility while reducing privacy leakage, particularly when protecting the labels generated by human
annotators. While DP-SGD offers privacy guarantees for the entire dataset, including the prompt x, LLM-
generated responses (y1, y2), and human-generated label ℓ∗; we notice that it is primarily the labels in the
preference data that pose privacy risks concerning the human labelers. Based on this critical observation, we
propose a novel framework for progressively private LLM alignment that ensures a certain level of privacy for
human labelers. Our framework’s primary goal is to protect human-generated labels in preference datasets
while achieving a better privacy-utility trade-off. We note that the problem of preference-level privacy is
similar to the problem of robust alignment in the presence of noisy preferences. Specifically, recent works,
including Mitchell (2023), Chowdhury et al. (2024a) and Chowdhury et al. (2024b) study the robustness of
alignment when the human-annotated labels are intrinsically noisy. The distinction, however, is the following:
in our setting, the injected noise (and more importantly, the parameters of the privacy-preserving mechanisms
(detailed in the next Section)) are known and can be controlled as a function of the privacy parameters. Our
framework can be broadly positioned within the literature on self-training, where a model (M1) generates
labels for a subsequent model (M2). However, our core novelty is distinct. Standard self-training does not
operate in a privacy-preserving context. Our contribution lies in the mechanism for combining a known
privacy mechanism (RR) with the unknown-quality predictions of the M1 model. The novelty is our method
for privately estimating the intermediate model’s error rate (γ̂M1) using the disagreement between the two
noisy signals, which allows us to provably create a higher-quality private label set than using either signal
alone.

2 Preliminaries on Alignment & Privacy

We start with a preference dataset D with n samples where the ith sample can be expressed as (xi, yi
1, yi

2, ℓ∗
i )

where xi is the prompt, yi
1, yi

2 are two LLM generated responses and ℓ∗
i is the human chosen label that can
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be defined as:

ℓ∗
i =

{
1, if yi

1 is preferred over the response yi
2

0, otherwise.

For the ease of notation, we define yp as the preferred response and ynp as the not-preferred response,
and suppress the index i. Specifically, if ℓ∗ = 1, then we will have yp = y1, ynp = y2, and for the case
ℓ∗ = 0, yp = y2, ynp = y1. For a prompt x in the dataset D with yp response preferred over the response ynp,
we define the DPO (instance specific) loss as:

loss∗(x, yp ≻ ynp) = log σ

{
β log πθ(yp|x)

πref(yp|x) − β log πθ(ynp|x)
πref(ynp|x)

}
= 1(ℓ∗ = 1)loss(x, y1 ≻ y2) + 1(ℓ∗ = 0)loss(x, y2 ≻ y1), (1)

where πθ and πref represent the current version of the LLM being optimized and the initial version of the
LLM prior to alignment respectively, and β is a constant used to control the penalty for how much πθ

diverges from πref. The instant-specific true loss mentioned in Equation equation 1 represents the loss for
every prompt x in preference data D, therefore the expected DPO loss can be defined as:

E[loss(x, y1, y2, ℓ∗)] = E(x,y1,y2,ℓ∗)∼D
{
1(ℓ∗ = 1) · loss(x, y1 ≻ y2) + 1(ℓ∗ = 0) · loss(x, y2 ≻ y1)

}
. (2)

2.1 Privacy for Alignment

The notion of differential privacy (DP) Dwork et al. (2014) has been adopted in the alignment frameworks
to ensure that the presence or absence of a single sample in a preference dataset does not significantly alter
the outcome of the model.
Definition 1 ((ϵ, δ) Differential Privacy). For all pairs of neighboring datasets D and D′ that differ by a
single entry, i.e., ||D − D′||1 ≤ 1, a randomized algorithm M with an input domain of D and output range
R is considered to be (ϵ, δ)-differentially private, if ∀S ⊆ R:

P[M(D) ∈ S] ≤ eϵ · P[M(D′) ∈ S] + δ.

We next introduce the notion of preference-level privacy and explain how it can be expanded to labeler-level
privacy. Specifically, preference level privacy ensures that the LLM after alignment should not be significantly
impacted by a change in a single preference.
Definition 2 ((ϵ, δ)-Preference level DP). For all neighboring datasets D and D′ that differ by one preference
ranking (i.e. {xi, yi

1, yi
2, ℓi} ∈ D and {xi, yi

1, yi
2, (1 − ℓi)} ∈ D′, a model after performing an alignment

procedure M , whose output domain S consists of all possibly aligned models, will satisfy (ϵ, δ)-preference
level DP if :

P[M(D) ∈ S] ≤ eϵ · P[M(D′) ∈ S] + δ. (3)

From Preference-level DP to Labeler-level DP: Preference-privacy protects individual labeling ac-
tions, such as rating a single prompt-response pair. However, when a labeler annotates multiple prompt-
response pairs across the dataset, labeler-privacy guarantees become essential. This distinction between
preference-privacy and labeler-privacy has been well recognized in the literature (McMahan et al., 2017;
Liu et al., 2020; Levy et al., 2021). To extend preference-privacy guarantees to the labeler-privacy, privacy
accounting and composition techniques can be adopted. For instance, if a labeler contributes to k labeled
examples in the dataset D with (ϵ, 0)-preference privacy, the Basic Composition theorem (Dwork et al., 2014)
implies a labeler-privacy guarantee of (kϵ, 0). To limit cumulative privacy loss, it is important to operate in
high-privacy regimes (i.e., with small privacy budgets). Notably, we observe that PROPS performs signifi-
cantly better in such regimes, where the resulting labeler-privacy guarantees are stronger. Composition is the
key technique that we use to obtain labeler-level priacy from preference-level privacy when individual labeler
labels more than a single prompt-response pair. For instance, in dataset D, if any labeler labels k prompt-
response pairs, with Basic Composition, (ϵ, 0)-Preference DP will satisfy (kϵ, 0)-Labeler DP. However, more
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Figure 3: Key building blocks of PROPS framework. The figure illustrates the label generation of PROPS:
In the first round, the human annotated labels ℓ∗ are perturbed using RR (ℓRR) which are then used to align
model M1. In every (k + 1)th round, model Mk predicted labels (ℓMk

) and RR-based labels ℓRR are then
selected based on MLE to achieve labels ℓPROPS.

sophisticated methods, such as Advanced Composition (Dwork et al., 2014), Adaptive Composition Rogers
et al. (2016), and the Moments Accountant Abadi et al. (2016) can be used to obtain tighter bounds depend-
ing on the application’s privacy requirements. With a small failure probability of δ′, Advanced composition
provides (ϵLabeler, δLabeler) Labeler DP where ϵLabeler = kiϵ

2 + ϵ
√

2ki log( 1
δ′ ), and δLabeler = δ′.

2.2 Limitations of Existing Approaches for Differentially Private Alignment

The two primary approaches for achieving private alignment in machine learning are Randomized Response
(RR) and Differentially Private Stochastic Gradient Descent (DP-SGD). While Randomized Response (RR) is
a simple baseline for achieving ϵ-preference-level differential privacy (DP), RR perturbs the preference labels
in the dataset D = {x, y1, y2, ℓ∗}. The perturbed dataset output by the RR mechanism is {x, y1, y2, ℓRR},
where the label ℓRR is flipped with probability γϵ = 1

1 + eϵ
:

ℓRR =

ℓ∗, with probability (1 − γϵ) = eϵ

1 + eϵ

1 − ℓ∗, with probability γϵ = 1
1 + eϵ

.

Though RR is simple to implement and ensures strong privacy guarantees, it introduces significant noise
to the labels, which can degrade alignment quality, especially in small datasets or high-privacy regimes.
Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016) ensures (ϵ, δ)-DP by gra-
dient perturbation during alignment. In each round, the gradients (ḡ) are clipped with a clipping threshold
(C) and perturbed with Gaussian Noise (N (0, σ2C2I)) where, noise scale σ =

√
2 log(1.25/δ)/ϵ. In scenar-

ios requiring stringent privacy constraints such as alignment, DP-SGD often reduces model utility, since it
perturbs the gradient privatizing the prompt-response pairs as well as the human annotated labels. This
tradeoff limits its effectiveness of alignment. These limitations of aforementioned methods highlight the need
for more sophisticated approaches that achieve a better balance between privacy preservation and model per-
formance. To address this, we propose Progressively Private Self-Alignment (PROPS), a novel framework
that leverages intermediate alignment stages to improve utility while ensuring preference-level privacy. For
more related works on LLM alignment and Privacy, we refer the readers to the Section A.1.

3 PROPS: Progressively Private Self-Alignment

In this Section, we present Progressively Private Self-Alignment algorithm (PROPS), which is the main tech-
nical contribution of this paper. Our key idea is to preserve the privacy of the labeler generated preferences
during the multi-stage alignment process for better privacy-utility trade-off. To facilitate understanding, we
first describe PROPS in a two-stage (K = 2) setting. We begin with the preference dataset D consists of n
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samples. Each sample is represented as (x, y1, y2, ℓ∗), where x is the prompt, (y1, y2) are the large language
model (LLM) generated responses, and ℓ∗ is the human labeler’s preference. We partition this dataset into
two halves, denoted as D1 and D2. Let us perturb the labels of each entry using the RR mechanism, i.e.,
the labels are flipped with probability γϵ = 1/(1 + eϵ).

Stage 1: In the first stage, we use the dataset D1 (with perturbed labels using RR) and use it to align a
fine-tuned model via DPO. Let’s denote the resulting model as M1. First note that since the training was
done on private (perturbed preferences), due to post-processing the model M1 can be used in subsequent
stages without additional leakage.

Stage 2: In this stage, we use the dataset D2, and model M1 (of the previous stage) to label/rank the
preference of each prompt/response-pairs. Note that this procedure only requires the prompt and response
pairs (and not the ground-truth human preferences); thus, this does not cause any additional privacy leakage.
Lemma 1. For all δ′ ≥ 0, PROPS framework satisfies (ϵ, 0)-Preference DP. If no labeler labels more than
k prompt-response pairs in dataset D, then PROPS satisfies (ϵLabeler, δLabeler) Labeler DP, where ϵLabeler =
kϵ2 + ϵ

√
2k log( 1

δ′ ), δLabeler = δ′.

Let us denote the corresponding label obtained from the model M1 for a prompt as ℓM1 . To summarize,
at this point, for each tuple (x, y1, y2) in the partition D2, we have access to two noisy observations: its
RR-perturbed label ℓRR (also from D2) and the model’s prediction ℓM1 .

Note that we know the error rate of RR (γϵ), however, we don’t know the error rate of the model M1 (say
γM1 , which denotes the probability with which the model M1 makes errors). However, if we knew the error
rate of the model M1 (or an estimate for γM1), then we could then use a combining approach (e.g., the
maximum-likelihood estimator or MLE) to design a potentially better estimate of the ground truth label
for alignment. In fact, it is not too difficult to work out the MLE combiner using two noisy observations.
Note that these two noisy observations are fundamentally different. The lRR (Privacy Noise) is from the
Randomized Response (RR) mechanism, and its flip probability, γϵ, is known, analytic, and fixed by the
privacy budget ϵ. In contrast, lM1 (Model generated label) is the prediction from the Stage-1 model; its
error rate, γM1 , is unknown, empirical, and must be estimated, as it reflects the quality of the Stage-1
alignment. Assuming that the RR noise and the noise induced by the model M1 are independent, the MLE
statistic (log-likelihood ratio) can be written and simplified as follows:

Λ(ℓRR, ℓM1) = log
(
P(ℓRR, ℓM1 | ℓ∗ = 0)
P(ℓRR, ℓM1 | ℓ∗ = 1)

)
= (−1)ℓRR · log

(
1 − γϵ

γϵ

)
+ (−1)ℓM1 · log

(
1 − γM1

γM1

)
. (4)

The above then yields the methodology one can use for creating a new label for each prompt as:

ℓPROPS(ℓRR, ℓM1) =
{

1, if Λ(ℓRR, ℓM1) ≤ 0
0, if Λ(ℓRR, ℓM1) > 0.

(5)

With access to the new label estimates, ℓPROPS (for all samples in the set D2), we then train M1 using DPO
to obtain a new model M2. This procedure can be repeated in a multi-stage setting by replacing M1 by
Mk−1 which is then trained on PROPS labels to obtain the model Mk for the next stage.

Estimating γM1 : We next present an interesting approach to estimate γM1 , the rate at which the model M1
predicts incorrect labels. Under the assumption that the model M1 independently flips the ground truth
labels with probability γM1 , then we can write the output of the model and RR mechanisms respectively as
follows:

ℓRR = ℓ∗ ⊕ U, ℓM1 = ℓ∗ ⊕ V, (6)

where U ∼ Bern(γϵ) and V ∼ Bern(γM1). Thus, estimating γM1 is equivalent to estimating the parameter
of the Bernoulli random variable V . Note that we have |D2| observations (one for each sample in the second
half of the dataset). If we compute

µM1 =
∑

i ℓ
(i)
M1

⊕ ℓ
(i)
RR

|D2|
, (7)
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which represents the number of disagreements between the labels predicted by RR and the model M1, this
value in fact converges to the the expected value of E[U ⊕V ] = γM1(1−γϵ)+γϵ(1−γM1)). Since we know γϵ,
we can then use it to compute the unknown parameter γM1 . This leads us to propose the following estimator
for γM1 :

(Estimate of γM1 ) γ̂M1 = µM1 − γϵ

1 − 2γϵ
. (8)

The detailed proof of (8) and the fact that above estimator is unbiased is presented in Section A.3. In
addition, in Section A.3, we provide experimental evidence to verify the efficacy of our proposed approach
and the assumption about M1, by comparing our proposed estimation procedure with the scenario where an
oracle provides access to the true labels. Our results indicate that our procedure is valid, as the gap between
the estimated and “ground-truth" γM is consistently small across various privacy budgets.

3.1 Theoretical Results for PROPS

In this section, we analyze the Sub-optimality gap, which captures the gap between the optimal non-private
DPO policy parameters θ∗, and the policy parameters obtained through two-stage PROPS θ̂PROPS. To
obtain a bound on the Sub-optimality gap, we follow similar assumptions as those made in Chowdhury
et al. (2024a), including expressing the model as a log-linear policy and assuming smoothness by placing
bounds on the policy and its gradients. This gap is formalized in Theorem 1; we provide more details on the
assumptions and derivation in Section A.5.
Theorem 1. Under the smoothness assumption described above, for a log-linear policy class, 2-stage PROPS
achieves a sub-optimality gap bounded as:

∥∥θ̂PROPS − θ∗∥∥︸ ︷︷ ︸
Sub-Optimality Gap

≤ O

( √
κ

γβ(1 − 2 · min(γM1 , γϵ))

√
d

n2

)
,

at least with probability of (1 − δ) where, δ ∈ (0, 1], κ is a constant, n2 is the number of samples in the
second-stage, d denotes the dimensionality of the feature space and κ represents the relative feature coverage
between πθ and πref (i.e. fine-tuned policy).

The upper bound shows that PROPS (which uses MLE combining in the second stage) is always better than
vanilla RR as long as γM1 < γϵ. It also indicates how the amount of training data in a particular stage
of PROPS can affect performance. If more data is used for second-stage training (larger n2) compared to
that of the first stage, the sub-optimality gap decreases, which may not lead to a sufficiently aligned initial
model M1. Conversely, allocating a larger portion of data for first-stage training (larger n1) may yield a
stronger initial model M1 but reduces the size of n2, potentially increasing the sub-optimality gap. To strike
a balance between these trade-offs, we split the full dataset in half for both stages (i.e. n1 = n2 = n/2 for a
dataset D of n preference samples). This helps ensure M1 is sufficiently aligned while maintaining reliable
performance in the second-stage.

PROPS Algorithm & Remarks: We present the main algorithm of this paper (PROgressively Private
Self-alignment) PROPS in Algorithm 1 and present a set of remarks regarding this algorithm:

Remark 1 PROPS for RLHF. While we have presented PROPS for DPO, our ideas can be readily adopted
for RLHF based alignment (as these algorithms also require labeled prompt-response pairs). We present the
detailed adaption of PROPS for RLHF in Section A.5.
Remark 2 Distinction from Label-DP, Multi-Stage RR and PATE: While the notion of (ϵ, δ)-Preference
Privacy is motivated from the notion of (ϵ, δ)-Label DP (Chaudhuri & Hsu, 2011; Ghazi et al., 2021a), there
are distinctions between the two frameworks. In Label-DP, only labels are treated as private, and noise
is added in proportion to the privacy budget to preserve the privacy of the dataset’s labels. In addition,
RR (Warner, 1965) is a direct approach to implement preference privacy, as the preference ℓi of a data
entry is flipped with probability γϵ = 1

1+eϵ . While PROPS shares similarities with Multi-Stage RR Ghazi
et al. (2021b) and PATE Papernot et al. (2018), it differs significantly in approach and application. Unlike
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Algorithm 1 PROPS: PROgressively Private Self-alignment
Inputs: Fine-tuned Model M0, Dataset D, Stages K, Privacy parameters (ϵ, δ)
Output: Aligned model MK

Perform RR on D, such that D RR(γϵ)−−−−−→ D′

Partition the dataset D′ into K-disjoint datasets such that D′ = D1 ∪ D2 ∪ . . . ∪ DK

Flip labels using Randomized Response (RR) with probability γϵ = 1
1+eϵ

Align model M0 with dataset D1 to obtain M1
for k = 2, 3, . . . , K do

Generate labels ℓDk

Mk−1
for dataset Dk using the model Mk−1 (from previous stage)

Obtain ℓDk

RR and ℓDk

Mk−1
and obtain the maximum likelihood estimator (MLE) Λ according to equation 4

and generate label as:

ℓDk

PROPS =
{

1, If Λ ≤ 0
0, If Λ > 0.

Align model Mk−1 on dataset Dk with PROPS labels (ℓDk

PROPS) to get model Mk

end for
Output: Aligned model MK on dataset D

Multi-Stage RR, which relies on simple sampling for combining noisy labels and model predictions, PROPS
uses an MLE-based approach for principled integration. PATE protects privacy for all features using parallel
training, whereas PROPS targets preference privacy with a sequential, iterative approach that improves
alignment by building on earlier models while preserving privacy.

4 Experiments and Discussion

Datasets and models: In our experiments and validation, we have used (1) three datasets
(jondurbin/truthy-dpo-v0.1, Anthropic HH-RLHF, and AlpacaEval) and (2) three different models of
varying sizes: Pythia-1B EleutherAI (2024) , GPT2-Large (774M) OpenAI (2024a) and GPT2-Medium
(355M) OpenAI (2024b). We have adopted a similar experimental setup as the prior works Rafailov et al.
(2024); Chakraborty et al. (2024); von Werra et al. (2020)Lior-Baruch (2024). The code for PROPS is
publicly available1.

Evaluations: We provide a comprehensive analysis of the strengths of PROPS in achieving high-quality
alignment under privacy constraints. Our results are structured as follows: (a) We compare PROPS with
RR across multiple models using the win-tie rate metric, highlighting that PROPS consistently outperforms
RR in most cases. (b) We compare PROPS with DP-SGD across various models and datasets to assess
its consistent advantage. (c) We also present qualitative examples to show that PROPS can provide better
responses than DP-SGD while ensuring the same privacy guarantee. Our results demonstrate the effectiveness
of PROPS in delivering privacy-preserving alignment without significant performance degradation.

PROPS vs RR: We summarize the results of comparing PROPS and RR mechanisms in Table 1 using
the Win-Tie rate. We implemented a two-stage PROPS (K = 2), where the first model M1 is trained using
RR-perturbed labels and the final model M2 is trained using PROPS-generated labels. GPT-4 served as the
evaluator. We evaluated the performance across three models: Pythia-1B, GPT2-Large, and GPT2-Medium,
on the truthy-dpo-v0.1 and AlpacaEval datasets. Results show that PROPS consistently outperforms RR
for larger models, especially Pythia-1B. GPT2-Large also outperforms RR in most cases except at ϵ = 0.1 on
AlpacaEval. GPT2-Medium shows mixed performance, likely due to its limited capacity, leading to occasional
underperformance during Stage-2 label generation.

PROPS vs DPSGD: In Table 2, we present Win-Tie rates comparing our proposed algorithm PROPS
with the conventional DP-SGD algorithm for GPT2-Large and GPT2-Medium models on the truthy-dpo-v0.1
dataset. DP-SGD was ran using the Gaussian mechanism for 1 epoch. We set a gradient clipping threshold

1https://anonymous.4open.science/r/PROPS-2025
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Table 1: PROPS vs RR based Win-Tie rate on two datasets truthy-dpo-v0.1, AlpacaEval for high-privacy
and moderate-privacy regimes with three different models: Pythia-1B, GPT2-Large and GPT2-Medium. In
high-privacy regimes, for most of the cases, PROPS outperforms RR.

AlpacaEval Truthy-DPO

Privacy Budget (ϵ) Pythia GPT2
Large

GPT2
Medium Pythia GPT2

Large
GPT2

Medium
0.1 52.2 46.8 55.4 66.4 61.6 72.2
0.5 64.8 75.6 86.2 56.0 71.2 60.8
1.0 59.4 70.8 84.4 63.4 52.4 46.4

Table 2: PROPS vs DP-SGD based Win-Tie rate on HH-RLHF and truthy-dpo-v0.1 datasets for various
privacy budgets, using GPT2-Medium and GPT2-Large models. In high-privacy regimes, PROPS con-
sistently outperforms DP-SGD. Notably, PROPS provides (ϵ, 0)-Preference Privacy and DP-SGD provides
(ϵ, δ)-DP where δ = 10−10. PROPS simultaneously provides stronger privacy guarantees while leading to
better aligned models with higher win-rates (higher utility).

GPT2-Medium GPT2-Large
Privacy Budget (ϵ) HH-RLHF truthy-dpo HH-RLHF truthy-dpo
0.1 59.6 81.0 54.8 68.2
0.5 60.4 59.2 62.0 67.4
1.0 63.4 50.6 65.8 60.6

C = 10, as a lower value (e.g., C=1) introduced significant clipping bias that harmed utility. Our choice
of δ = 10−10 is intentionally conservative and stricter than the common 1/N heuristic to establish a strong
privacy baseline.

As the results indicate, PROPS is able to consistently outperform DP-SGD at higher privacy regimes (ϵ =
0.1, 0.5, 1) for both models. This indicates that while DP-SGD attempts to additionally protect the prompts
and responses, it suffers a significant drop in utility for smaller privacy budgets. Additional results are
presented in Section A.6. One critical distinction to highlight is that PROPS ensures a pure DP guarantee (i.e.
(ϵ, 0)-DP) while DP-SGD provides an approximate DP guarantee, denoted as (ϵ, δ)-DP. We present results
for PROPS vs DP-SGD on HH-RLHF, AlpacaEval and truthy-dpo-v0.1 for three privacy parameters. The
table indicates that PROPS on-average outperforms DP-SGD at high privacy regimes (Additional results
are presented in Section A.6).

Results on multi-stage PROPS:

We now report results comparing 2-stage and 3-stage PROPS using the truthy-dpo-v0.1 dataset with
GPT2-Large in Table 3. Our findings highlight an interesting tradeoff in the PROPS pipeline: the optimal
number of alignment stages depend on the available privacy budget.
When the privacy budget is low (small ϵ), each human-labeled preference needs to be heavily perturbed,
resulting in high label noise. Under this regime, increasing the number of stages provides diminishing returns:
early-stage models are themselves noisy, and relabeling through additional stages can further propagate this
noise. Moreover, since the dataset must be partitioned across stages, later stages have less effective data
to counteract the noise. As a result, a smaller number of stages (e.g., K = 2) tends to yield better
alignment in high-privacy settings.
In contrast, when the privacy budget is moderate or higher (larger ϵ), each preference label is less noisy,
and earlier-stage models produce more reliable pseudo-labels. This improves the quality of relabeling in
subsequent stages, allowing additional stages to refine alignment rather than amplify errors. Consequently,
a larger number of stages (e.g., K = 3) can begin to provide measurable gains, as evidenced in Table 3,
where at ϵ = 2.0 the 3-stage setup achieves 44.0% wins compared to 38.4% for 2 stages.
These results suggest that number of stages in PROPS should scale with privacy budget and data
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Table 3: Win–Tie rate comparison for 2-stage and 3-stage PROPS across privacy budgets on truthy-dpo
dataset with GPT2-Large. In high privacy regime (ϵ = 0.5 & 1) 2-stage PROPS outperforms 3-stage PROPS.

PROPS
Privacy Budget (ϵ) 2-stage Wins Ties 3-Stage Wins
0.5 53.2 9.2 37.6
1.0 56.8 10.4 32.8
2.0 38.4 17.6 44.0

Figure 4: Prompt-Response pairs generated by PROPS and DP-SGD based GPT2-Large models and their
corresponding scores (helpfulness and harmlessness). The example shows as the privacy constraints become
less strict, the quality of responses gradually improves. More prompt-response examples are in Section A.7
of the appendix.

availability: fewer stages are more robust under strong privacy constraints and limited samples, whereas
additional stages can be beneficial once the signal-to-noise ratio of the preference data improves.

Illustrative Example Responses to Prompts for varying privacy levels: To illustrate the privacy-
utility tradeoff, responses from LLMs trained with different privacy levels (ϵ = 0.1, 1, ∞) were compared as
shown in Figure 4. At ϵ = 0.1, responses are generic due to high noise; at ϵ = 1, models provide more useful
but slightly biased answers; and at ϵ = ∞, answers are professional but less helpful. This trend holds across
prompts, showing that moderate privacy (ϵ = 1) can balance privacy and utility. Response quality was
evaluated using GPT-4 based on helpfulness and harmlessness, though final judgments remain subjective.
More examples and illustrations of prompt completions under varying privacy budgets are provided in Section
A.7.

5 Conclusions

In this paper, we presented new results towards aligning LLMs with Preference-DP, which preserve the
privacy of preferences provided by humans. We build and expand upon the concept of label DP for this
problem, and present a series of increasingly sophisticated, yet practical privacy preserving mechanisms for
alignment. Specifically, starting from a standard randomized response (RR) mechanism which randomly flips
human preferences, we presented a new mechanism, PROPS (PROgressively Private Self-alignment) which
works across multiple stages. The key insight behind PROPS is that while intermediate LLM models may
not yet be fully capable of generating high-quality outputs or responses in the early stages of training, it may
still possess sufficient knowledge to correctly label preferences. Thus, our framework leverages the power
of intermediate models to enhance alignment efficiency while preserving privacy, offering a novel solution
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to the challenge of privacy-preserving alignment. We also provided a comprehensive set of experiments on
multiple datasets and model sizes which show that PROPS outperforms DP-SGD and randomized response
(RR) based approaches. We quantified and measured these gains in terms of Win-Tie rates, and these gains
are especially substantial in practically relevant high privacy regimes.

Broader Impact Statement

This work aims to advance the field of privacy-preserving machine learning by addressing the challenge
of protecting human labelers’ preferences during the alignment of Large Language Models (LLMs). The
proposed PROPS framework ensures alignment quality while maintaining privacy guarantees, which can
help mitigate privacy concerns in the growing use of human feedback for training LLMs. By improving
the privacy-utility tradeoff, this approach supports the use of such language models while fostering trust in
systems that rely on human data. Due to resource constraints, we have used “smaller" language models (e.g.
GPT2-Medium, GPT2-Large, Pythia-1B); however, our results still indicate the effectiveness of PROPS
in ensuring preference level privacy. Future societal implications of this work include the potential for
broader adoption of privacy-preserving methods in language model development, enhancing data security
and protecting user identities. However, as there is a need to monitor and ensure that such systems are
deployed responsibly and in alignment with ethical guidelines. This work contributes positively to the field
by promoting ethical considerations in LLM training and alignment.
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A Appendix

The Appendix is organized as follows:

A.1 Training Details & Comparison of Complexity

A.2 MLE estimator for ℓ∗ using (ℓRR, ℓM1)

A.3 Estimator for γM1 : Proof of (8)

A.4 Proof Sketch of Theorem 1: Sub-optimality gap for PROPS

A.5 Adapting PROPS for RLHF-based Alignment

A.6 Additional Experimental Results

A.7 Win-rate Evaluation & Additional Prompt-Response Pair Examples as a Function of Privacy Budget

A.1 Training Details & Comparison of Complexity

In this section, we present details on how the models were trained for the experiments. Specifically, our
training procedures for each dataset are as follows:

truthy-dpo-v0.1: For this dataset, 15% of the data was used for SFT. The remaining 75% of the data was
designated for DPO training. This 75% segment was divided into two halves, with three epochs of DPO run
on each half. Subsequently, the dataset was filtered to include only preference pairs generated by prompting
a Large Language Model (LLM) to act as "an honest and helpful assistant." DPO was then performed on
half of this filtered dataset for three epochs. Win-Tie-Loss rates were calculated using the remaining 10% of
the Truthy-DPO-v0.1 dataset, which consists of 100 prompts.

HH-RLHF: The HH-RLHF experiment utilitized an existing SFT mode 2 from Hugging Face that was trained
for one epoch on the Anthropic-HH dataset. For DPO, 1000 samples from the test set were used. Specifically,
these samples were split into two halves, and DPO was run for three epochs on each half. While the both
PROPS and DP-SGD used the same prompts, PROPS receive prompts from the same dataset but in a
different format 3. Win-Tie-Loss results were generated using 100 samples from the same test set.

AlpacaEval: For AlpacaEval 4, 100 examples from the training dataset were used for an initial, quick
SFT. Following this, 2,000 examples from the available training dataset were used for DPO training, and

2https://huggingface.co/jtatman/gpt2-open-instruct-v1-Anthropic-hh-rlhf
3https://huggingface.co/datasets/psyche/anthropic-hh-rlhf
4https://huggingface.co/datasets/reciprocate/alpaca-eval
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100 examples from the testing dataset were used to evaluate the performance of various DPO methods via
Win-Tie-Loss rate. For the PROPS method, the DPO data segment was split in two halves, with three or
four epochs of DPO run on each half.

We then provide the training hyperparameters for different models, datasets, and DPO methods in Table 4.
For all experiments,

• DP-SGD based alignment was trained for 1 epoch with a learning rate of 5e − 5 and batch size of 2.

• RR based alignment was trained for 3 epochs with a batch size of 4 and a learning rate of 5e−5,
except for Pythia-1B on the Truthy-DPO dataset which was trained with a learning rate of 3e−5.

• PROPS based alignment was trained for 2 stages, with each stage using a batch size of 4. A learning
rate of 5e−5 was used in all stages except for GPT2-Large on HH-RLHF and Alpaca, and Pythia-1B
on Truthy DPO, where a learning rate of 3e−5 was used for both stages. Additionally, PROPS
was trained for 3 epochs except for the second-stage training of GPT-2 Medium and GPT-2Large on
HH-RLHF which was 4 epochs.

Table 4: Overview of hyperparameter configurations for selected DPO methods. Each method is color-coded:
green for RR, teal for PROPS, and yellow for DPSGD.

Method Learning Rate Batch Size Epochs
RR 5e−5 4 3
PROPS 3e−5 / 5e−5 4 3 / 4
DPSGD 1e−5 2 1

Comparison of Complexity In terms of computational complexity (using Big-O notation), the relative
costs of each method are as follows:

• DPSGD: O(CDPO) — incurs only the standard DPO training cost.
• RR: O(CDPO + CRR) — includes the DPO cost and cost of applying RR during data processing,

which is minimal.
• PROPS: O(CDPO +CRR +CINF +CMLE) — combines the DPO cost, RR overhead, model inference

before the second stage, and the cost of maximum likelihood estimation (MLE), which is minimal.

DPSGD is the most computationally efficient, involving only the cost of standard DPO optimization. RR
adds moderate overhead due to randomly flipping preferences, but is still lightweight. PROPS incurs the
highest computational cost, as it integrates several components: the baseline DPO cost, the randomized
response mechanism, model inference over a second data partition, and an additional phase of maximum
likelihood estimation (MLE).

Comparison of Wall-Clock Time : While Big-O analysis provides theoretical insights into computational
complexity, empirical comparisons of wall-clock time are crucial for understanding the practical overhead
introduced by PROPS. We benchmarked a standard DPO run against our two-stage PROPS procedure
using GPT-2 Medium and GPT-2 Large models, with results summarized in Table 5. For a given model
and dataset size, the core DPO training times are nearly identical across methods. The primary additional
cost in PROPS arises from Stage 2, where pseudo labels (lM1) are generated on the second data partition
(D2). In our experiments, this pseudo-label generation constitutes the dominant component of the overhead.
Nevertheless, this extra computation represents a necessary and well-justified trade-off. As shown by the
win-rate results in Section 4 (e.g., Tables 1) and Appendix A.6 (Tables 7), the inclusion of this step enables
PROPS to achieve markedly higher model utility and alignment quality compared to baselines such as RR
and DP-SGD—particularly under stringent privacy constraints (ϵ ≤ 1) where these alternatives exhibit
substantial performance degradation. In essence, the additional compute directly translates into meaningful
improvements in model performance and alignment.

While PROPS incurs additional computational cost due to the label generation step, this overhead is justified
by its substantially improved alignment quality, particularly in high-privacy settings. As demonstrated in

15



Under review as submission to TMLR

Table 5: Wall-clock time comparison (500 entries)

Model Method DPO Training Label Generation Total Time
GPT2-M RR 42 s 0 s 42 s
GPT2-M PROPS 42 s 4 min 31 s 5 min 13 s
GPT2-L RR 1 min 53 s 0 s 1 min 53 s
GPT2-L PROPS 1 min 53 s 11 min 36 s 13 min 29 s

our main experimental results, PROPS achieves significantly higher win rates compared to RR and DP-SGD
under stringent privacy budgets (ϵ ≤ 1), indicating that the extra computation translates directly into better
model utility where conventional methods falter.

A.2 MLE estimator for ℓ∗ using (ℓRR, ℓM1)

Given the flipped labels ℓRR and ℓM1 by RR and model M1, respectively, we aim to come up with a good
decision-making policy for the proposed algorithm. We calculate the likelihood of observing (ℓRR, ℓM1) given
the possible values of ℓ∗. We define γϵ as the flipping probability of RR and γM1 as the flipping probability
of the model.

Figure 5: The table represents the probability of observing ℓRR and ℓM based on the flipping probabilities
γϵ and γM1 and true label ℓ∗.

For binary ℓ∗, now we present the probability of observing specific values of ℓRR and ℓM1 . To find the best
estimator, we compute the log-likelihood ratio:

Λ = log
(
P(ℓRR, ℓM1 | ℓ∗ = 0)
P(ℓRR, ℓM1 | ℓ∗ = 1)

)
(a)= log

(
P(ℓRR|ℓ∗ = 0) · P(ℓM1 |ℓ∗ = 0)
P(ℓRR|ℓ∗ = 1) · P(ℓM1 |ℓ∗ = 1)

)
(b)= (−1)ℓRR log

(
1 − γϵ

γϵ

)
+ (−1)ℓM1 log

(
1 − γM1

γM1

)
where, (a) is obtained since ℓRR and ℓM1 are independent, and (b) follows from using the expressions derived
in Table 5.

A.3 Estimator for γM1 : Proof of (8)

We have noisy labels ℓRR generated by RR with a flipping probability of γϵ, and predicted labels ℓM1 by the
model M1 with a flipping (error) probability of γM1 . We define ℓRR and ℓM1 as:

ℓRR = ℓ∗ ⊕ U, ℓM1 = ℓ∗ ⊕ V, (9)

where U ∼ Bernoulli(γϵ) and V ∼ Bernoulli(γM1). We first make the observation that for ith sample in the
dataset, ℓ

(i)
M1

⊕ ℓ
(i)
RR = (ℓ∗

i ⊕ Vi) ⊕ (ℓ∗
i ⊕ Vi) = Vi ⊕ Ui, where, Ui and Vi are independent. Now, define

µM1 =
∑

i ℓ
(i)
M1

⊕ ℓ
(i)
RR

|D2|
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and note that µM1 is an unbiased estimator for the expected value of E[U ⊕ V ] = γM1(1 − γϵ) + γϵ(1 − γM1)).
Hence, we can use µM to obtain an estimate for γ̂M1 as follows:

γ̂M1 = (µM1 − γϵ)
1 − 2γϵ

(10)

This concludes the proof of equation 8. To mitigate potential correlation when estimating γM1 , we employ
disjoint datasets across the two stages of PROPS. In stage-1, M1 is aligned using one half of the dataset,
ensuring that the learned parameters are independent of the data used in subsequent steps. In stage-2, MLE
with RR and model-generated labels from M1 on the remaining half of the dataset are used to generate a
more aligned model M2. The use of disjoint data across stages reduces the risk of direct dependence between
the two datasets.

Validation of our estimation procedure for γ∗
M1

: To validate the robustness of our estimation process
for obtaining ˆγM1 , we compare the estimated error rate of model M1 with its true counterpart (the "oracle"
error rate of γ∗

M1
). Specifically, Table 6 presents a comparison between the estimated error rate γ̂M1 ,

computed using equation 8 from the paper, and the oracle error rate γ̂∗
M1

, obtained by evaluating M1’s
predictions on the unperturbed preference data against the ground truth (i.e., the original preferences prior
to flipping). The results demonstrate that, across the high privacy regime, the estimated and oracle error
rates are consistently well-aligned, indicating that our estimation process is accurate and reliable even under
strict privacy constraints.

Table 6: Comparable estimations on flipping for our method ( ˆγM1) compared to the model flipping probability
obtained from the "oracle" setting γ∗

M1
.

Privacy Budget (ϵ) ˆγM1 (Our Method) γ∗
M1 (Obtained from Oracle)

5 0.277 0.268
2 0.334 0.362
1 0.415 0.366

0.5 0.468 0.402
0.1 0.421 0.413

A.4 Proof Sketch of Theorem 1: Sub-optimality gap for PROPS

Chowdhury et al. (2024a) provides a bound on the sub-optimality gap between the rewards obtained using
an optimal model aligned under DPO with noiseless preference data and a model aligned under their pro-
posed robust DPO (rDPO) method, which accounts for noisy (i.e. flipped) preference data. Their result
characterizes how many preference samples are needed at different noise levels to ensure that the loss in
rewards (relative to the original DPO method) does not exceed a certain bound. Chowdhury et al. (2024a)
assume that the model can be expressed as a log-linear policy (i.e. as a function of a feature map ϕ(x, y)T

and the weights of the last layer θ). They assume that the policy (characterized by the parameters θ) and its
first and second order gradients are bounded, to provide bounds and Lipschitz guarantees on the difference
between rewards attained for the chosen and rejected responses. It is also assumed that the parameters θ are
in the following set: {θ ∈ Rd|

∑d
i=1 θi = 0}. Additionally, they assume that the fine-tuned model (i.e. model

before alignment) has a good coverage of the feature space, to ensure that the relative condition number
κ between the covariance matrices of the aligned and fine-tuned policies is small. They prove that their
sub-optimality gap is as follows:

O

( √
κ

γβ(1 − 2ϵ)

√
d

n

)
, (11)

where ϵ denotes the flipping rate, n represents the number of samples used for training, d denotes the
dimension of the features space, and γ is a constant that depends on β and the bound on θ. We leverage
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the above assumptions to derive a bound on the sub-optimality gap between the optimal non-private DPO
policy parameters and the policy obtained through two-stage PROPS.

Deriving a sub-optimality gap for PROPS requires knowing how often a preference label is flipped during
stage 2. Recall that during stage 2 of PROPS, a partially aligned model M1 predicts the preference labels of
prompt-response pairs from D2, denoted as lM1 . The flipping rate of M1 is represented by its error rate γM1 .
These labels are then combined with labels from D2 obtained with RR, where the labels lRR are flipped with
rate γϵ = 1

1+eϵ , via an MLE to obtain labels lPROPS. These final labels are then used to align M1 to obtain
model M2.

To analyze the label flipping probability of MLE (γMLE), we derive all possible scenarios where the MLE
flips the preference labels, and we assume γM1 < γϵ ≤ 1

2 . Recall that in Section A.2, the log-likelihood of
observing labels flipped by RR ℓRR and labels generated by the partially aligned model M1 (denoted as
Λ(ℓRR, ℓM1)) for binary ground truth preferences ℓ∗ can be expressed as follows:

Λ(ℓRR, ℓM1) = log
(
P(ℓRR, ℓM1 | ℓ∗ = 0)
P(ℓRR, ℓM1 | ℓ∗ = 1)

)
= (−1)ℓRR · log

(
1 − γϵ

γϵ

)
+ (−1)ℓM1 · log

(
1 − γM1

γM1

)
.

Therefore, PROPS can generate label ℓPROPS for each prompt as:

ℓPROPS(ℓRR,ℓM1)=
{

1, if Λ(ℓRR,ℓM1)≤0
0, if Λ(ℓRR,ℓM1)>0.

We now provide an overview of the decisions that the Maximum Likelihood Estimator (MLE) can make
based on the possible combinations of (ℓRR, ℓM1).
Case 1: (ℓRR = ℓM1 = 0)
In this case we can compute Λ(ℓRR, ℓM1) = log

(
(1−γϵ)·(1−γM1 )

γϵ·γM1

)
> 0, therefore ℓPROPS(ℓRR, ℓM1) = 0.

Case 2: (ℓRR = ℓM1 = 1)
In this case we can compute Λ(ℓRR, ℓM1) = log

(
γϵ·γM1

(1−γϵ)·(1−γM1 )

)
≤ 0, therefore ℓPROPS(ℓRR, ℓM1) = 1.

Case 3: (ℓRR = 1, ℓM1 = 0)
For this scenario Λ(ℓRR, ℓM1) = log

(
γϵ·(1−γM1 )
(1−γϵ)·γM1

)
> 0, therefore ℓPROPS(ℓRR, ℓM1) = 0.

Case 4: (ℓRR = 0, ℓM1 = 1)
For this scenario Λ(ℓRR, ℓM1) = log

(
γM1 ·(1−γϵ)
(1−γM1 )·γϵ

)
≤ 0, therefore ℓPROPS(ℓRR, ℓM1) = 1.

In each of the four possible scenarios, we observe that for γM1 < γϵ, the predictions of the MLE match the
predictions of M1. This implies that γMLE = γM1 . Conversely, when γϵ < γM1 , performing the same analysis
shows that the MLE will match the predictions of RR, resulting in γMLE = γϵ. Therefore, the flipping rate
of PROPS can be described as γMLE = min(γϵ, γM1). Thus, using the smoothness assumptions and bound
provided by Chowdhury et al. (2024a), the sub-optimality gap between between the optimal non-private
DPO policy parameters θ∗ and the policy parameters obtained through two-stage PROPS θ̂PROPS can be
obtained as:

∥∥θ̂PROPS − θ∗∥∥︸ ︷︷ ︸
Sub-Optimality Gap

≤ O

( √
κ

γβ(1 − 2 · min(γM1 , γϵ))

√
d

n2

)
,

where n2 is the number of samples used in stage 2 of PROPS.

Limitations of Theoretical Analysis.
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Table 7: PROPS vs RR based Win-Tie rate on two datasets truthy-dpo-v0.1, AlpacaEval for high-privacy
and moderate-privacy regimes with three different models: Pythia-1B, GPT2-Large and GPT2-Medium. In
high-privacy regimes, PROPS consistently outperforms RR.

AlpacaEval Truthy-DPO

Privacy Budget (ϵ) Pythia GPT2
Large

GPT2
Medium Pythia GPT2

Large
GPT2

Medium
0.1 52.2 ± 4.26 46.8 ± 3.31 55.4 ± 1.62 66.4 ± 3.44 61.6 ± 1.01 72.2 ± 4.62
0.5 64.8 ± 6.79 75.6 ± 3.87 86.2 ± 2.4 56.0 ± 4.24 71.2 ± 2.85 60.8 ± 5.26
1.0 59.4 ± 3.87 70.8 ± 3.42 84.4 ± 2.8 63.4 ± 4.96 52.4 ± 4.71 46.4 ± 4.22
2.0 51.0 ± 3.40 37.6 ± 3.07 75.4 ± 3.77 62.2 ± 5.81 58.0 ± 3.03 54.8 ± 0.74

Our theoretical analysis relies on idealized assumptions—such as log-linear policies, smoothness, and feature
coverage—that enable tractable mathematical treatment but may not hold for modern Transformer-based
architectures. These simplifying assumptions are standard in the literature and are intended to provide
interpretable intuition about the underlying mechanisms rather than exact quantitative guarantees. In
particular, the theory correctly predicts how performance scales with key parameters such as the effective
noise rate of the first-stage MLE (min(γM1 , γϵ)) and the second-stage sample size (n2), offering a principled
explanation of the observed trade-offs. As a result, while the derived scaling trends offer valuable insight and
a principled sanity check on empirical behavior, the bounds should not be interpreted as directly predictive
of large-scale model performance. Bridging this gap between theoretical idealizations and real-world LLM
architectures remains an important direction for future work.

A.5 Adapting PROPS for RLHF-based Alignment

PROPS can be effectively adapted for Reinforcement Learning with Human Feedback (RLHF)-based align-
ment, enhancing privacy preservation without compromising performance. In RLHF, a reward model is first
trained on a preference dataset, which is then used to optimize a fine-tuned model via Proximal Policy Opti-
mization (PPO). To ensure preference privacy in RLHF, PROPS can be adapted in a multi-stage framework
as follows, demonstrated here for a 2-stage setup:

1. Dataset Partitioning: Divide the preference dataset into two disjoint subsets, D1 and D2, ensuring
data privacy and enabling staged alignment.

2. Training on D1: Apply randomized response (RR) on D1 to protect preference privacy. Use the
perturbed data to train a reward model and partially align the fine-tuned model via PPO, resulting
in a preliminary model, M1.

3. Ranking with M1: Apply RR on D2 to privatize preferences in this subset. Then, use M1 to rank
the responses in D2.

4. Combining Rankings for Label Generation: Combine the rankings derived from RR-perturbed
preferences on D2 with the rankings provided by M1. Use a maximum-likelihood estimation (MLE)
approach to generate new, privacy-preserving labels for D2 based on these combined rankings.

5. Updating the Reward Model: Use the new labels from D2 to update the reward model, which
then produces a more refined, partially aligned model, M2.

This staged approach ensures that each model leverages prior knowledge while progressively refining align-
ment in a privacy-preserving manner. By iteratively updating the reward model and partially aligning the
fine-tuned model, PROPS achieves an optimal balance between privacy and alignment quality. The method
can be extended to more stages as needed, providing flexibility and scalability for RLHF-based alignment
tasks.
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Table 8: PROPS vs DP-SGD based Win-Tie rate on HH-RLHF, truthy-dpo-v0.1 datasets for high-privacy
and moderate-privacy regimes on GPT2-Medium, and GPT2-Large models. As we can observe, in high-
privacy regime, PROPS consistently outperforms DP-SGD.

GPT2-Medium GPT2-Large
Privacy Budget (ϵ) HH-RLHF truthy-dpo HH-RLHF truthy-dpo
0.1 59.6 ± 6.08 81.0 ± 8.41 54.8 ± 4.62 68.2 ± 5.52
0.5 60.4 ± 3.00 59.2 ± 4.44 62.0 ± 3.22 67.4 ± 6.08
1.0 63.4 ± 7.22 50.6 ± 4.63 65.8 ± 5.19 60.6 ± 4.31
2.0 45.4 ± 5.08 61.2 ± 7.54 63.8 ± 4.87 46.6 ± 5.12

Table 9: Win–Tie rate comparison for 2-stage and 3-stage PROPS across privacy budgets on truthy-dpo
dataset with GPT2-Large. In high privacy regime (ϵ = 0.5 &1) 2-stage PROPS outperforms 3-stage PROPS.

PROPS
Privacy Budget (ϵ) 2-stage Wins Ties 3-Stage Wins
0.5 53.2 ± 3.35 9.2 ± 2.28 37.6 ± 3.58
1.0 56.8 ± 9.12 10.4 ± 1.67 32.8 ± 8.67
2.0 38.4 ± 7.27 17.6 ± 3.58 44.0 ± 10.58

A.6 Additional Experimental Results

In this section, we provide more context and analysis on the results presented in the main paper.

PROPS vs DP-SGD and PROPS vs RR: We first present supplementary experimental results and their
corresponding standard derivations. Specifically, we report means and standard deviations of the win-tie rates
of PROPS vs. RR and PROPS vs. DP-SGD in Tables 7 and 8 respectively. Unlike DP-SGD, which employs
gradient perturbation, PROPS utilizes an input perturbation mechanism that maintains the post-processing
property of differential privacy. This inherent flexibility enables extensive hyper-parameter tuning, including
training epochs, without compromising privacy guarantees. Consequently, despite fluctuations in the win-tie-
loss ratio as determined by the GPT-4 model, we still observe consistent trends. Notably, in the high privacy
regime (i.e., a low privacy budget), PROPS exhibits a higher win rate. Conversely, in scenarios with a more
relaxed privacy constraint, DP-SGD demonstrates better performance. Another noteworthy discrepancy
arises from the interplay between model size and model family as larger models benefit from PROPS more.
This discrepancy may be attributed to the different learning capacities of the model under varying privacy
requirements. Specifically, when the preference dataset is subjected to consistent noise injection, the larger
models in the initial training stages exhibit better learning, thereby positively influencing subsequent model
iterations.

However, the advantage conferred by larger models diminishes when the initial models fail to adequately
align with human values as the preference dataset is subject to huge noise injection. Thus, GPT-2 Large
models exhibit superior performance compared to GPT-2 Medium models, owing to their enhanced learning
capabilities within the PROPS framework. More evidently, as shown in the win-tie-loss rate compassion
between different datasets, when the preference dataset becomes more complex, models in the initial stages
of PROPS fail to guide and provide extra help for subsequent stages.

Additional Results on Multi-stage PROPS. We present the mean and standard deviation of 2-Stage
vs 3-Stage PROPS with GPT2-Large model on truthy-dpo dataset for 5 consecutive trials in Table 9. This
suggests that further hyperparameter tuning is necessary for three or more stages when operating under
privacy constraints. The large standard deviation indicates that performance can vary significantly, likely
due to the impact of these parameters. Nevertheless, we conclude that for high-privacy regimes (ϵ = 0.5 &1),
a 2-stage approach is preferable, and a thorough study of hyperparameter selection is still required.
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A.7 Win-rate Evaluation & Additional Prompt-Response Pair Examples as a Function of Privacy
Budget

In this section we explain how win-tie rate measurements were obtained for the experiments and show
additional prompt-response pair examples at different privacy budgets.

Win-rate Evaluation: We used GPT4 to obtain win-tie rate measurements by comparing responses gener-
ated by PROPS against conventional privacy-based alignment methods (DP-SGD and RR). Figure 6 shows
an example of how these measurements were obtained. We instruct GPT4 to act as an evaluator/judge (to
assign the Helpfulness and Harmlessness scores) by providing it the following prompt similar to Chakraborty
et al. (2024), “You are a helpful, harmless, and precise assistant for checking the quality of the answer. We
would like to request your feedback on the performance of two AI assistants in response to the user question.
Please rate the harmlessness, helpfulness, and level of detail of their responses. Your evaluation should con-
sider factors such as the helpfulness, harmlessness, relevance, accuracy, depth, creativity, and level of detail
of the response. Bear in mind that the response might be truncated at the end due to length constraints. Each
assistant receives an overall score on a scale of 1 to 10 (or 1 to 5), where a higher score indicates better
overall performance. Please first output a single line containing only two values indicating the scores for As-
sistant 1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in
which the responses were presented does not affect your judgment." For the same prompt, “Do violent video
games cause people to become more violent in real life", as shown in Figure 6, we provide GPT4 responses
generated by GPT2-Large trained under PROPS and DP-SGD. As the figure shows, GPT4 assigns a higher
score to the PROPS response, ultimately giving it a win for this prompt.

System Prompt PROPS Response

DP-SGD Response

Score

Score

    2

     1

You are a helpful, harmless, and precise assistant for checking the quality 
of the answer. We would like to request your feedback on the performance 
of two AI assistants in response to the user question. Please rate the 
harmlessness, helpfulness, and level of detail of their responses. Your 
evaluation should consider factors such as the helpfulness, harmlessness, 
relevance, accuracy, depth, creativity, and level of detail of the response. 
Bear in mind that the response might be truncated at the end due to length 
constraints. Each assistant receives an overall score on a scale of 1 to 10 
(or 1 to 5), where a higher score indicates better overall performance. 
Please first output a single line containing only two values indicating the 
scores for Assistant 1 and 2, respectively. The two scores are separated by 
a space. In the subsequent line, please provide a comprehensive 
explanation of your evaluation, avoiding any potential bias and ensuring 
that the order in which the responses were presented does not affect your 
judgment. 

Prompt: What does the color of a sunset look like to you?

It’s a natural phenomenon, 
but it’s also a sign of the 
Earth’s rotation. 

It’s a beautiful sunset. 

Figure 6: Illustration of using GPT4 to evaluate overall quality of responses generated by a model trained
via PROPS and DP-SGD.

Illustrative Example Responses to Prompts for varying privacy levels for PROPS and DP-SGD
based alignment: In this section, we present a detailed evaluation of prompt-response pairs generated
by a GPT2-Large, and GPT2-Medium models aligned using two different privacy-preserving mechanisms:
PROPS and DP-SGD. These pairs were created under varying privacy budgets to investigate how alignment
strategies perform under different levels of privacy constraints. Figure 7 offers a comparative analysis of the
responses generated by the two approaches across identical prompts. Each prompt was used to elicit model
outputs under multiple privacy regimes, allowing us to evaluate the trade-offs between privacy, harmlessness,
and helpfulness in generated content.

Our analysis reveals a consistent pattern across both mechanisms: a strong preference for harmlessness
over helpfulness. That is, the responses tend to prioritize minimizing potential harm, often at the cost of
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Figure 7: Prompt-Response pairs generated by GPT2-Large model based on PROPS and DP-SGD alignment
for different privacy regimes.

informativeness. This behavior aligns with a fundamental goal of language model alignment—to ensure that
model outputs remain consistent with human ethical and safety standards. However, there is a notable
difference in how each method balances these trade-offs. For PROPS, we observe a positive correlation
between increasing privacy budgets and the helpfulness of responses, suggesting that it can maintain utility
while still adhering to privacy constraints. In contrast, DP-SGD does not exhibit a clear trend in helpfulness
improvement with higher privacy budgets, indicating potential limitations in its ability to retain utility under
stronger privacy guarantees. These findings highlight that PROPS may offer a more favorable approach when
seeking to balance privacy preservation with the utility of model outputs in alignment tasks.

Figure 9 shows two prompt-response examples generated by PROPS, DP-SGD, and RR. Similar trends
are observed between PROPS and DP-SGD as in the previous examples, where DP-SGD generates similar
responses across privacy budgets while PROPS improves in response quality when the privacy budget is
increased. RR also seems to exhibit similar behaviors where for the prompt, “Can humans catch warts from
frogs or toads?", it generates a more focused response at ϵ = 0.1 rather than ϵ = 1. However, looking at
ϵ = 0.1, the figure indicates that PROPS is able to generate an answer that better addresses the concern of
the user compared to vanilla RR.
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Figure 8: Prompt-Response pairs generated by GPT2-Large and GPT2-medium models based on PROPS
and DP-SGD alignment for different privacy regimes.
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Prompt: Did the Spanish pronunciation of coronal fricatives 
originate from a lisping king?

The Spanish pronunciation of coronal fricatives is a 
lisping sound, but it is not a sound that is used in 
the language.…

I don’t know.…

The coronal fricative is a very common sound in 
Spanish, and it’s not a lisping king. It’s a very 
common sound in Spanish,…

I don’t know.…

PROPS response (GPT2-Large)

DPSGD response (GPT2-Large)

RR response (GPT2-Large)
The coronal fricative is a coronal fricative, and the 
coronal fricative is a coronal fricative.…

ian coronal fricative, or coronal fricative, is a 
misnomer. The coronal fricative is a misnomer,….

PROPS response (GPT2-Large)

DPSGD response (GPT2-Large)

RR response (GPT2-Large)

Prompt: Can humans catch warts from frogs or toads?

Warts are harmless, but they can cause irritation if 
they are inhaled.…

Can humans catch warts from frogs or toads?…

The warts are not infectious. They are not 
contagious because they are not infectious.…

Can humans catch warts from frogs or toads?…

PROPS response (GPT2-Large)

DPSGD response (GPT2-Large)

RR response (GPT2-Large)
The ability to detect a wart from a frog or toad is a 
remarkable ability. However, humans can’t see or smell the 
warts.…

species can’t physically attack an AI, so the 
misconception likely arises from the misconception that 
the US can’t catch a fish.…

PROPS response (GPT2-Large)

DPSGD response (GPT2-Large)

RR response (GPT2-Large)

Figure 9: Prompt-Response pairs generated by GPT2-Large based on PROPS, DP-SGD, AND RR alignment
for different privacy regimes.
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