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Abstract

EEG recordings contain rich information about neural activity and are used in1

the diagnosis and monitoring of multiple neuropathologies, including epilepsy2

and psychosis, but are subject to artifacts and noise. While EEG analysis can3

benefit from automating artifact removal through independent component analysis4

and automatic labeling of independent components (ICs), differences in recording5

equipment and context (the presence of noise from electrical wiring and other6

devices) may impact the performance of IC classifiers. Here we investigate how7

these differences can be minimized by appropriate spectral normalization through8

filtering using Convolutional Monge Mapping Normalization (CMMN), which was9

previously shown to improve deep neural network approaches for sleep staging. We10

propose a novel extension of the CMMN method with two alternative approaches11

to computing the source reference spectrum the target signals are mapped to:12

(1) channel-averaged and l1-normalized barycenter, and (2) a subject-to-subject13

mapping that finds the source subject with the closest spectrum to the target subject.14

Notably, our extension yields space-time separable filters that can be used to map15

between datasets with different numbers of EEG channels. We apply these filters16

in an IC classification task, and show significant improvement in recognizing brain17

versus non-brain ICs.18

In the context of EEG, differences in set-up (electrodes, amplifiers, analog and digital filters, power19

line noise) can create stark changes in the spectral content of recordings, which can deteriorate20

the performance of models, especially when trained on limited data. A solution to this problem21

is the Convolutional Monge Mapping Normalization (CMMN) approach, a method for spectral22

normalization based on optimal transport [8]. The CMMN method optimizes a unique linear filter23

for each subject and channel. After filtering, the spectra for each channel across all subjects are24

aligned to a common spectrum, which is the barycenter of the training subjects’ spectra for that25

channel. Originally, CMMN was applied to sleep staging with deep neural networks. In this work, we26

extend it to the case of automatically labeling independent components, such as the popular ICLabel27

classifier [16], which can support automatic EEG artifact removal and denoising. In comparison to the28

ICLabel classifier, which uses a neural network model with scalp map and spectral features (including29

the autocorrelation sequence), and was trained on an extensive dataset [17], we consider custom30

classifiers trained on a much smaller dataset collected in the US [15] using only time-series features31

extracted from each independent component [13]—that is, without any spatial information. We then32

test on an another independent dataset [9], collected in Europe. These two datasets were used in a33

prior work on IC classification [6], and are now both available on OpenNeuro [14, 10]. Because these34

datasets have expert-labeled ICs, we avoid filtering each channel with a different filter, which would35

change each IC differently; instead, we find a single CMMN filter for each subject that is applied36

to all channels. This channel-averaged CMMN filter is based on matching the channel-averaged37

spectrum of each test subject to either the barycenter of the channel-averaged spectra from the training38

set or the nearest spectrum in the training set in terms of the optimal transport distance. With a39
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shared single temporal filter across channels, the filtering can be applied before or after the spatial40

filtering achieved by ICA’s demixing matrix. Crucially, the use of the channel-averaging enables41

the application of CMMN to target domains with a differing number of channels. Here, the source42

(train) and target (test) datasets have 134–235 channels and 64 channels, respectively. This extension43

of the CMMN methodology achieves domain adaptation between two datasets with the pre-trained44

classifiers such that their performance (the subject averaged F1 score for the brain class is 0.91)45

exceeds the performance of the ICLabel (0.88).46

1 Methodology47

The CMMN methodology enables domain adaptation between different neural signals [8] by mapping48

the spectra of the target subjects to the barycenter of the source subjects via a linear filter that achieves49

the optimal transport with respect to an ℓ2-metric, assuming the signals are zero-mean stationary50

Gaussian discrete-time processes (see Appendix A for more details). We extend this methodology51

in two key ways: we propose to use channel-averaged PSDs yielding a single filter per subject and52

a subject-to-subject mapping scheme. A key benefit of using a single filter per subject is that it53

enables adapting between EEG datasets with a variable number of channels. We also propose to54

use ℓ1-normalization of spectra for invariance to signal scale, which may occur due to impedance55

differences due to electrodes or scalp contact or differences in the electronic systems (amplifiers and56

filtering) or digital filtering.57

We assume access to data (multichannel EEG) from I subjects in the source domain and one or more58

target subjects. We apply CMMN to transform the target EEGs to the source domain and apply59

classifiers trained on the source domain to the transformed target data. Let xc[n] denote the c-th60

channel of the target signal, c ∈ {1, . . . , CT}. The CMMN transformation is a linear filtering of61

xc[n], with output yc[n] = (h ∗ xc)[n], c ∈ {1, . . . , CT}, where h[n] is the normalizing CMMN62

filter, and yc[n] is the transformed signal that will have a source-like spectrum (the channel-averaged63

PSDs will match). The estimation of the normalizing CMMN filter is a three-step process that uses a64

reference spectrum (computed in the second step) that is either a Barycenter from the source or the65

normalized PSD of a source subject via the subject-to-subject (Subj-to-subj) assignment: 1) power66

spectral density calculation, 2a) barycenter calculation, 2b) minimization of the Hellinger distance67

between target signals and source signals for the Subj-to-subj mapping scheme, and 3) calculation68

of the normalizing filters.69

Step 1 PSD calculation. As in [8], we use the Welch periodogram method [19], which takes70

averages of the squared FFT from possibly overlapping windows, to calculate PSDs for each subject,71

as implemented by the SciPy library [18]. For real-valued signals, the spectra will be conjugate72

symmetric for positive and negative frequencies. In this case, p ∈ RP
≥0 denotes the PSD for P73

non-negative frequencies (for zero-mean signals the DC component should be zero but is retained).74

For K equal-sized windows of length M , {xk}Kk=1 = X ⊂ RM with windowing function w, the75

power spectral density estimate is p = 1
|X |

∑
x∈X |RFFT(w⊙x)|⊙2 ∈ RP

≥0, where RFFT denotes76

the FFT operation for real-valued signals and returns the density estimate only for non-negative77

frequencies, P = nfft/2 + 1 is the number of non-negative frequencies, and N = nfft is the78

length of the windows after zero-padding, assumed to be even. For a subject with C channels, the79

matrix of PSDs is P = [p1, . . . ,pC ]
⊤ ∈ RC×P . Unlike the original CMMN, which used different80

filters for each channel, we propose to compute a channel-averaged PSD as p̄ = 1
Ci

∑C
c=1 pc.181

Step 2a Barycenter calculation. We compute a barycenter for the source subjects only, this serves82

as the template for mapping the target subjects. For I source subjects with channel-averaged PSDs83

p̄S
1, . . . , p̄

S
I , the barycenter, p̄S, and the ℓ1-normalized barycenter, p̃S, are defined as84

p̄S =
1

I

I∑
i=1

p̄S
i , p̃S =

1

I

I∑
i=1

p̄S
i

∥p̄S
i ∥1

=
1

I

I∑
i=1

p̃S
i , p̃S

i =
p̄S
i

∥p̄S
i ∥1

, (1)

The l1 normalization ensures that each subject contributes equally to the average. As the units of PSD85

are squared, outliers without normalization can influence the average.86

1One possible concern is whether channel-averaging is a sufficient characterization of multi-channel EEG
given the spectral differences in signals across the scalp. Of course, if the location of the electrodes on the
scalp is vastly different such that the spectral content is not comparable, then channel-averaged PSD may not be
meaningful, but for EEG montages with whole scalp this should not be an issue.
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Step 2b: Subject-to-Subject Mapping. As an alternative to the barycenter scheme, we map a87

target subject to the closest source subject through the Hellinger distance between their respective88

channel-averaged PSDs. For a target subject with an ℓ1-normalized PSD p̃T, we find the index89

i∗ of the source subject that minimizes the Hellinger distance. The channel-averaged PSD of the90

best-matched source is then p̄S
∗ = p̄S

i∗ , where91

i∗ = argmin
i∈{1,...,I}

∥∥∥∥√p̃S
i −

√
p̃T

∥∥∥∥
2

, (2)

and p̃T = p̄T

∥p̄T∥1
is a distribution on the probability simplex ∆P = {p̃ ∈ RP

≥0 :
∑P−1

n=0 p̃[n] = 1}.92

Step 3 Normalizing filter. We define a real-valued, zero-phase linear filter with impulse response h[n]93

and frequency response H . This filter solves the optimal transport problem for both the barycenter94

and subject-to-subject formulations, and its frequency response is given by the square root of the95

ratio of the channel-averaged PSDs [5]:96

h = IRFFTM (H), H = p̄T⊙− 1
2 ⊙ p̄S⊙ 1

2 , H[n] =

√
p̄S[n]√
p̄T[n]

, n ∈ {0, . . . , P − 1}, (3)

where IRFFTM is the inverse FFT for real-valued signals that operates on the non-negative fre-97

quencies. As discussed in Appendix A, by equalizing the channel-average PSD, this filter solves98

the optimal transport problem between zero-mean Gaussian distributions with circulant covariance99

matrices that commute and are diagonalized by the discrete-time Fourier transform. For this filter,100

the source PSD p̄S can be either the barycenter of the source dataset p̄S as in (1), the ℓ1-normalized101

barycenter p̃S as in (1), or the closest matching source signal p̄S
∗ as in (2).102

1.1 Application of CMMN to pre-trained IC classifiers103

While the proposed methodology is general and could be applied to normalize any target dataset for104

classifiers pre-trained (without CMMN) on a source dataset, we focus on classifiers for automatically105

labeling independent components of EEG into brain and other classes [20, 6, 16]. In particular, we106

build on recent work [13], applying the CMMN approach to random forest classifiers pre-trained107

on two different sets of features: (1) the PSD 2 and autocorrelation sequence of the independent108

components, as in the MNE-ICALabel implementation [11], a Python port of ICLabel [16], or (2) the109

bag-of-waves (BoWav) feature [13], which is built on the occurrence of a dictionary of waveforms110

learned through a shift invariant k-means algorithm [12].111

2 Experiments and Results112

We use two datasets for this domain adaptation study, the Imagined Emotion (Emotion for short)113

dataset from [14] as the source dataset and the Cue dataset from [9] as the target dataset. Both114

datasets include manually labeled independent components (ICs). The Emotion dataset has data115

from 32 subjects (13 male and 19 female, with an age mean and standard deviation of 25.5 ± 5116

years). The EEG data has 180-232 channels and sampled at 256 Hz with durations ranging from 54117

to 136 minutes. The dataset includes 935 expert-labeled ICs in three categories: brain (570), muscle118

(306), and eye (59). We used 27 subjects for training and 7 for testing. The training set contains119

5,786 total ICs. The Cue dataset has data from 12 subjects (10 male, 2 female, with an age range of120

21 to 25 years), using 64 channels during data collection. This dataset’s recordings were 56 to 66121

minutes long and were collected at 500 Hz, which we down-sampled to 256 Hz before performing122

domain adaptation. Expert annotations are available for 389 ICs: brain (261), muscle (102), eye (22),123

and heart (4). This dataset serves as the target for cross-dataset evaluation, testing generalization of124

the classifiers trained on the Emotion training data. Note that in comparison to the experiments in125

the original CMMN paper [8], our data contains different numbers of channels (134–235 vs. 64).126

Therefore, the use of channel-averaged PSDs for CMMN is essential. For further details on both127

datasets, please refer to [14, 9].128

2In contrast to the original ICLabel implementation, we use a min-max normalization of the log-scale PSD
instead of dividing by its max-absolute value because it is more robust to the scale of the EEG signals and
provided a better classification performance.
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We trained multi-class classifiers using each feature set (BoWav or PSD+Autocorrelation) on the129

subset of 27 subjects from Emotion dataset, with hyperparameters selected by leave-one-subject-out130

(LOO) cross-validation. The classifier is trained on segments of length ltrain (a hyperparameter), and131

validated (using the F1 score on the brain class) on segments of length lval ∈ {5, 50} minutes, with132

ltrain ≤ lval. Given the best LOO hyperparameters, a new model is trained on the entire training set of133

27 subjects. Here we report test results on segments of length equal to the validation segment length,134

from a disjoint test set of 7 source Emotion subjects and all the target subjects in the Cue dataset. We135

benchmark our method against ICLabel [16]. As a model trained on an extensive dataset of expert-136

and crowd-labeled ICs, ICLabel serves as a strong baseline that can be applied to both the source and137

target datasets without our proposed CMMN.138

Table 1: F1 score of brain-labeled independent components for different test segment lengths and
CMMN schemes. Best performance for each segment length is bolded, and best scheme is underlined.
The last column contains the p-value for a one-sided Wilcoxon rank-sign test between no filtering
and CMMN filtered (subject-to-subject for BoWav, and normalized barycenter for PSD/Autocorr.).

Classifier Len. No filtering Barycenter ℓ1-norm. Bary. Subj-to-subj p-value
BoWav 5 0.88 ± 0.05 0.88±0.04 0.87 ± 0.05 0.90 ± 0.08 0.0593
PSD/Autocorr. 5 0.77 ± 0.09 0.78±0.12 0.84 ± 0.07 0.79 ± 0.17 0.0046
ICLabel 5 0.88 ± 0.06 N/A N/A N/A N/A
BoWav 50 0.89 ± 0.09 0.90± 0.08 0.88 ± 0.07 0.91 ± 0.08 0.0412
PSD/Autocorr. 50 0.83 ± 0.09 0.86±0.09 0.86 ± 0.08 0.85 ± 0.17 0.1696
ICLabel 50 0.89 ± 0.05 N/A N/A N/A N/A

As seen in Table 1, our results show that, when compared to no filtering, using the appropriate139

CMMN scheme improves the performance of Emotion-trained classifiers on the Cue dataset. The140

subject-to-subject mapping scheme improves all of the classifier’s performance. For both segment141

lengths, the subject-to-subject mapping scheme improves the BoWav performance above the ICLabel142

benchmark. For classifiers that use the PSD/Autocorr features, the subject-to-subject mapping scheme143

improves the brain class F1-score from 0.77 to 0.79 at 5 minutes and from 0.83 to 0.85 at 50 minutes.144

With the ℓ1-normalized barycenter, the PSD/Autocorr classifiers’ F1-score improved from 0.77 to145

0.84 at 5 minutes, and from 0.83 to 0.86 at 50 minutes. We use a Wilcoxon rank sign test (n = 12,146

one-sided alternative) to test whether the filtering (subject-to-subject for BoWav, and normalized147

barycenter for PSD/Autocorrelation) has a significant improvement in F1 score for the brain-labeled148

ICs, and find significant improvements at a level of 0.05 for two of the four cases shown in the table.149

We can compare these domain adaptation results with the performance on held-out subjects of the150

source Emotion dataset shown in the Appendix (Table 2). PSD/Autocorr has the best performance at151

both time lengths, which is in contrast to the worst performance when applied to the new domain; this152

indicates that PSD/Autocorr overfits to the domain. This highlights the need for domain adaptation. It153

is notable that both classifiers outperform ICLabel given the 50-minute segment on Emotion, BoWav154

matches the performance of ICLabel on Cue without filtering, but only after subject-to-subject155

CMMN does the BoWav outperform IClabel in Cue.156

3 Conclusion157

In this work we made key extensions to the recently introduced CMMN methodology [8] to enable158

domain adaptation of BoWav classifiers [12, 13, 1] between EEG datasets for independent component159

classification for artifact removal. We introduce filters defined by channel-averaged PSDs along with160

a subject-to-subject mapping scheme, and show that our CMMN method results in improvements161

when classifying brain versus non-brain independent components, achieving domain adaptation162

between two different datasets with significant differences. With the domain adaptation the BoWav163

classifiers exceeds the performance of the popular ICLabel [16] classifier. Our method advances164

the work on EEG artifact-removal across distinct datasets, an area that is crucial for increasing the165

clinical utility of EEG recordings.166
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A Background on Convolutional Monge Mapping Normalization227

The Wasserstein-2 distance between Gaussian distributions has a closed form [4, 7] known as228

the Bures-Wasserstein distance or Fréchet distance, expressed in terms of the means mS,mT and229

covariance matrices ΣS,ΣT, as230

W2(N (mS,ΣS),N (mT,ΣT)) (4)

=

√
∥mS−mT∥22+ tr(ΣS+ΣT−(ΣS 1

2ΣTΣS 1
2 )

1
2 ),

where the second term in the square root is the squared Bures distance. Under the stationarity as-231

sumption, a discrete-time zero-mean Gaussian process is completely described by its auto-covariance232

matrix, which is a symmetric and Toeplitz matrix formed from the auto-correlation sequence233

r[k] = E[x[n]x[n + k]]. Assuming a sufficiently long truncation of r[τ ] that yields a N × N234

circulant matrix that is positive-semidefinite, then the discrete Fourier transform (DFT) matrix F235

diagonalizes it, FΣFH = diag(λ), where FH denotes the Hermitian transpose of F . The resulting236

spectrum λ = diag(FΣFH) corresponds to an statistical estimate of the power spectral density237

(PSD). The squared Wasserstein-2 distance between two discrete-time, zero-mean stationary Gaussian238

random processes with auto-covariance ΣS and ΣT, which are circulant, simplifies to239

W2(N (0,ΣS),N (0,ΣT)) = ∥λS⊙ 1
2 − λT⊙ 1

2 ∥2 =

√√√√N−1∑
n=0

(√
λS[n]−

√
λT[n]

)2

. (5)

The Bures-Wasserstein barycenter, which is the Gaussian special case of the Wasserstein-2 barycen-240

ter [2, 3], is the covariance matrix ΣS (in the set of positive semidefinite matrices SN ) that minimizes241

the sum of squared Wasserstein-2 distances to a set of zero-mean Gaussian distributions described by242

covariance matrices {ΣS
i }Ii=1:243

ΣS = argmin
Σ∈SN

I∑
i=1

1

I
W 2

2 (N (0,Σ),N (0,ΣS
i ), (6)

Assuming all covariance matrices are circulant and positive semidefinite, it is straightforward to show244

that ΣS = FHdiag(λ̄S)F , where λ̄S = ( 1I
∑

i λ
S⊙ 1

2
i )⊙2.245

Consider a stationary target signal x[n] with PSD λT = E[|Fx|⊙2] that is convolved with the filter246

impulse response h[n] (frequency response H), yielding the signal y[n] = (h ∗ x)[n]. Then under247

the stationarity assumption, the PSD of y[n] is248

λy = E[|Fy|⊙2] = E[|(Fx)⊙H|⊙2] = E[|Fx|⊙2 ⊙ |H|⊙2] = |H|⊙2 ⊙ λT, (7)

where H is the discrete Fourier transform of the filter. Assuming x[n] is also zero-mean and249

a Gaussian process x ∼ N (0,ΣT), then y[n] has a circulant auto-covariance matrix Σy =250
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Fdiag(|H|⊙2 ⊙ λT)FH . The Wasserstein-2 distance between a source process (possibly the251

barycenter) and the filtered target process is then252

W2(N (0,ΣS),N (0,Σy)) = ∥λS⊙ 1
2 − |H| ⊙ λT⊙ 1

2 ∥22. (8)

Clearly, the distance is zero for any filter h[n] such that |H| = λS⊙ 1
2 ⊙ λT⊙− 1

2 ∈ RN
≥0, i.e.,253

where the magnitude of the frequency response is the square-root of the power spectral densities254

|H[n]| =
√

λS[n]
λT[n] , n ∈ {0, . . . , N − 1}.255

The ℓ1-normalized PSD is a probability mass function (PMF)—non-negative and sums to 1. Let256

λ̃S = λS

∥λS∥1
, this corresponds to the circulant matrix ρS = ΣS

tr(ΣS) , and likewise for the target. Then,257

the Wasserstein-2 distance between two discrete-time zero-mean variance-normalized stationary258

Gaussian random processes is259

W2(N (0,ρS),N (0,ρT)) = ∥λ̃S⊙ 1
2 − λ̃T⊙ 1

2 ∥2 =
√
2dHe(λ̃

S, λ̃T), (9)

where dHe denotes the Hellinger distance, which is applicable since the ℓ1-normalized PSDs reside260

on the probability simplex ∆N = {λ̃ ∈ RN
≥0 :

∑N−1
n=0 λ̃[n] = 1}. The use of Hellinger distance261

compared to Bures-Wasserstein distance means that signals are compared in terms of their spectral262

shape, without regard to their variance.263

B Additional Results264

We show that the normalizing filters learned display intuitive mapping behaviors. The Emotion265

dataset [14] was collected in the US, and displays a characteristic 60 Hz line noise as seen in Fig. 1.266

The Cue dataset [9] was collected in Europe, and displays a characteristic 50 Hz line noise as seen in267

Fig. 3; this is an artifact of the two regions’ different electrical regimes. When mapping from the268

Europe dataset to the US dataset, we can see in Fig. 4 that the filters learned to minimize the 50 Hz269

spike and introduce a spike at 60 Hz.270
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Figure 1: Channel-averaged power spectral densities for each subject in the Emotion (source) dataset.
Notice that some subjects are outliers in terms of overall amplitude.
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Figure 2: This is the ℓ1-normalized barycenter computed from the source Emotion dataset. In the
Barycenter mapping scheme, all target signals are filtered such that their robust channel-average
PSD matches this. Notice the large spike at 60 Hz.

Table 2: F1 score of brain-labeled independent components of classifiers within domain on held-out
subjects.

Classifier 5 minutes 50 minutes
BoWav 0.86±0.10 0.93±0.05
PSD/Autocorr. 0.93±0.05 0.96±0.05
ICLabel 0.88±0.05 0.89±0.07
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Figure 3: Here we show the PSD for different subjects in the target Cue dataset. Notice the spike at
50 hz.
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Figure 4: Here we see the frequency response of filters learned for mapping the Cue dataset to the
Emotion dataset using the Barycenter mapping scheme with a normalized barycenter. Notice that the
noise at 50 Hz is reduced and the noise at 60 Hz is relatively amplified. Overall, the filter attenuates
since the normalized barycenter has lower magnitudes.
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Figure 5: Similarly to Fig. 4, we see the filters learned for mapping the Cue dataset to the Emotion
dataset, but here they are learned using the Subj-to-subj mapping scheme. Even though the mapping
scheme is different, the line noises are visibly still being ‘swapped’.
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