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Abstract
Persistent homology, a technique from computational topology, has recently
shown strong empirical performance in the context of graph classification. Being
able to capture long range graph properties via higher-order topological features,
such as cycles of arbitrary length, in combination with multi-scale topological
descriptors, has improved predictive performance for data sets with prominent
topological structures, such as molecules. At the same time, the theoretical
properties of persistent homology have not been formally assessed in this context.
This paper intends to bridge the gap between computational topology and graph
machine learning by providing a brief introduction to persistent homology in the
context of graphs, as well as a theoretical discussion and empirical analysis of its
expressivity for graph learning tasks.

1 Introduction
Graph learning is a highly-active research domain in machine learning, fuelled in large parts by
the geometric deep learning [17, 18] paradigm as well as the resurgence of new neural network
architectures for handling graph data. Methods from computational topology, by contrast, have not
yet been applied in this domain at large scales. Even though a large amount of prior work employs
topological features to solve graph learning tasks [22, 25, 44, 45, 46, 48, 78, 97, 99, 102, 103], a
formal investigation relating expressivity in graph learning and topological machine learning is still
lacking.1 We believe that this is largely a deficit in communication between the communities. This
paper provides an introduction to topological methods for graph learning, while also showing new
theoretical and empirical results about the expressivity of topological graph learning methods. Here,
we understand expressivity as a general concept to signify which graph properties can be captured by
a method. This includes being aware of certain substructures in graphs [27], for instance, but also
being able to distinguish large classes of non-isomorphic graphs [16, 51, 83]. While graph neural
networks have demonstrated substantial gains in this area, our paper focuses on topology-based
algorithms, aiming to provide a better understanding of their theoretical and empirical properties.

Contributions. Our main theoretical contribution is a full characterisation of the expressivity of
persistent homology in terms of the Weisfeiler–Leman hierarchy [66, 96]. We prove that persistent
homology is at least as expressive as a corresponding Weisfeiler–Leman test for graph isomorphism.
Moreover, we show that there exist graphs that cannot be distinguished using k-FWL, the folklore
Weisfeiler–Leman algorithm [65], for a specific dimension k but that can be distinguished by persistent
homology (with or without access to k-cliques in the graph). Along the way, we also prove new
properties of filtrations, i.e. descriptor functions that are commonly employed to obtain topological
representations of graphs, hinting at their ability to capture information about graph substructures.
We complement our theoretical expressivity discussions by an experimental suite that highlights
the capabilities of different filtrations for (i) distinguishing certain types of graphs, (ii) predicting
characteristic graph properties, and (iii) serving as a baseline for classification tasks.2

1A notable exception is recent work by Immonen et al. [50], which analyses the expressivity of topological
methods for graph classification tasks.

2Our code is available at https://github.com/aidos-lab/PH_expressivity.
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(a) Example graph (b) f−1((−∞, 0]) (c) f−1((−∞, 1]) (d) f−1((−∞, 2]) (e) f−1((−∞, 3])

FIGURE 1: An example graph and three different steps of a degree-based filtration. The respective caption
indicates the pre-image of the corresponding filtration function.

Guide for readers. Section 2 briefly summarises the main concepts in graph learning. Section 2
and Section 2, may be skipped by readers that are already well versed in computational topology.
Section 3 outlines advantageous properties of filtrations in the context of graph learning, while
Section 4 discusses the expressivity of persistent homology with respect to the Weisfeiler–Leman
hierarchy of graph isomorphism tests. Section 5 concludes the paper with an experimental suite that
highlights the performance of topological methods in a variety of graph-learning tasks.

2 Background & Notation
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FIGURE 2: Persistence diagrams of the
filtration depicted in Fig. 1. Points can have
different multiplicities; we show essential
features, i.e. topological features that persist
over the full filtration using an ∞ symbol.

We deal with undirected graphs in this paper. An undir-
ected graph G is a pair G = (V,E) of finite sets of n ver-
tices and m edges, with E ⊆ {{u, v} | u, v ∈ V, u ̸= v}.
We will also refer to an edge using tuple notation, with
the understanding that (u, v) and (v, u) refer to the same
edge. Furthermore, we denote the set of all such graphs
by G. Two graphs G = (V,E) and G′ = (V ′, E′) are
isomorphic , denoted by G ≃ G′, if there is a biject-
ive function φ : V → V ′ that preserves adjacency, i.e.
(u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E′. Since φ
is bijective, it has an inverse function, which we will de-
note by φ−1. The problem of figuring out whether two
graphs are isomorphic or not is referred to as the graph
isomorphism problem. Presently, there is no known al-

gorithm that solves this problem in polynomial time—efficient algorithms exist only for special
families of graphs [30, 52]. Hence, all subsequently-discussed graph isomorphism tests are perforce
limited with respect to their expressivity, i.e. there exist classes of non-isomorphic graphs that they
cannot distinguish. In the context of graph isomorphism tests, we will often require the definition
of a multiset, which is a set whose elements are included with multiplicities. We will denote such a
multiset by {{}}.
In this paper, we use the term graph expressivity to denote two different concepts: first, the ability of
a method to distinguish non-isomorphic graphs, and second, the ability of a method to capture certain
graph properties.
Definition 1 (Expressivity as distinguishing non-isomorphic graphs). Let f1 : G → Y1 and f2 : G →
Y2 be two functions such that for two isomorphic graphs G,G′ we have that f1(G) = f1(G

′) and
f2(G) = f2(G

′). We say that f1 is at least as expressive as f2 if for any pair of non-isomorphic
graphs G,G′ we have that f2(G) ̸= f2(G

′) implies f1(G) ̸= f1(G
′).

Definition 2 (Expressivity as detecting graph properties). Let f1, f2, t : G → Re be functions for
some e . We say that f1 is at least as expressive as f2 according to property t if for any graph G we
have that f2(G) = t implies f1(G) = t.

In both cases, if f1 is at least as expressive as f2 and f2 is at least as expressive as f1, we say that f1
and f2 are equally expressive. A more complete characterization of expressivity can be found in Li
and Leskovec [58, Definition 5.5].

Topological Features of Graphs. The simplest kind of topological features to prescribe to graphs
are connected components and cycles. Formally, we refer to the number of connected components
and the number of (independent) cycles in a graph as the first two Betti numbers of a graph, denoted
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as β0 and β1, respectively. While the expressive power of these two numbers is limited, it can be
improved by evaluating them alongside a filtration, i.e. a sequence of nested subgraphs of the form
∅ ⊆ G0 ⊆ G1 . . . ⊆ Gk−1 ⊆ Gk = G. Filtrations typically arise from scalar-valued functions of
the form f : G → R, which assign vertices and edges a value. Concretely, a filtration sequence
of indices requires sorting the values of the image of the filtration function f , with subgraphs Ga

being assigned the pre-images of intervals (−∞, a] under f , i.e. Ga = f−1((−∞, a]). Filtrations
are usually obtained from more general maps F : G → RG, G 7→ fG, which assign to each graph a
filtration function. In this case, we say that F is equivariant if, given any two graphs G,G′ and any
graph isomorphism φ : G→ G′, we have that fG = fG′ ◦ φ. Changes in the Betti numbers can be
tracked over the course of the filtration. This leads to persistent Betti numbers, which are typically
summarised in a persistence diagram, i.e. a topological descriptor, consisting of tuples (ai, aj) ∈ R2,
with ai referring to the value at which a topological feature was created, and aj referring to the value
at which a topological feature was destroyed (for instance, because two connected components are
being merged). The absolute difference in function values |aj − ai| is called the persistence of a
topological feature; it indicates the prominence or relevance of said feature. Fig. 1 depicts an example
filtration for a simple graph, where we use the degree of each vertex to filter the graph. The more
complex structure of persistence diagrams (in comparison to the simple Betti numbers) already hints
at their capabilities in providing expressive graph descriptors.

Topological Features of Simplicial Complexes. Filtrations and persistence diagrams generalise to
higher dimensions as well, with the understanding that the connectivity of higher-order structures
of a graph—cliques—is being modelled. The resulting framework is referred to as persistent
homology. There are different constructions for obtaining simplicial complexes from graphs; we
will subsequently use clique complexes (in which a k-clique is represented by a (k − 1)-simplex)
because it is (i) straightforward to implement, and (ii) cliques are known to be characteristic graph
structures [16]. Persistent homology is typically calculated using matrix reduction algorithms, whose
optimisation is still an ongoing topic of research [10]. We refer readers to Otter et al. [73] for a
comprehensive introduction of computational strategies. Readers are invited to read Appendix C for
a more detailed exposition of concepts in computational topology.

3 Properties of Filtrations
As in the graph case, it is common to obtain simplicial complex filtrations from a general map
F : K ∈ K 7→ fK ∈ RK where K is the set of all finite simplicial complexes. In the scenarios
where we construct simplicial complexes from graphs, we can promote F to a function F : G ∈
G 7→ (KG, fKG

) ∈ K ×RK that assigns to each graph a simplicial complex with vertex set equal
to the set of vertices of the graph and a filtration function for this simplicial complex. We say that
F is equivariant if for each isomorphism φ : G→ G′ we have that φ induces a simplicial complex
isomorphism between KG and KG′ and fKG

= fKG′ ◦ φ. If KG = G for all G ∈ G, then we recover
the previous definition of equivariance for the graph case. A crucial result of the previous maps F is
that, if they are equivariant, then the persistence diagrams of the filtrations they induce are invariant
under graph isomorphism.
Proposition 1. For F equivariant and G ≃ G′, the persistence diagrams of fKG

and fKG′ coincide.

Proposition 1 shows that it is impossible to ‘adversarially’ pick an equivariant filtration generator
function F that leads to a dissimilarity between two non-isomorphic graphs. Dropping this condition
incurs a substantial loss of expressive power. The proposition thus guarantees that persistent homology
is compatible with equivariant function learning, pointing towards the utility of hybrid models that
leverage different types of structural properties of graphs. To finish this discussion of general
properties, we remark that the calculation of persistent homology carries information about the
diameter (the length of the longest shortest path) and girth (the length of the shortest cycle) of a
graph.
Proposition 2. Given any filtration f of a graph G with a single connected component such that the
values of f of the endpoints of edges are strictly lower than the values of their corresponding edges,
Algorithm 1, used to compute β0, yields an upper bound of diam(G).
Proposition 3. Given any filtration f of a graph G, Algorithm 1 yields an upper bound of the girth
of G.

While the theoretical upper bounds are not tight, our empirical analysis in Section 5.3 shows that
persistent homology and its algorithms captures more than ‘just’ topological information about a
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graph. Our work thus corroborates recent results in the setting of point clouds, where persistence
diagrams permit inferring additional properties about the input data [19, 60, 88].

4 The Weisfeiler–Leman Hierarchy
Having discussed the properties of specific filtrations, we now analyse the expressivity of persistent
homology in the context of the Weisfeiler–Leman hierarchy of graph isomorphism tests. To this end,
we categorise our filtrations (and their corresponding generators) into two distinct classes:

1. Filtrations operating on clique complexes derived from graphs
2. Filtrations that consider all possible cliques of the vertex set up to a specified maximum dimension.

In the first class, we incorporate only those cliques present in the original graph, constrained to a
predetermined maximum dimension. Conversely, in the second class, we include all feasible cliques
up to a specified dimension, irrespective of their presence in the original graph structure.

1-WL, also known as colour refinement, constitutes a simple method for addressing the graph
isomorphism problem. It is the backbone of graph expressivity research; readers are referred to
Morris et al. [65] for a comprehensive survey of 1-WL and its higher-order variants. It is already
a known result that any 1-WL colouring can be reproduced by creating a special filtration [48,
Theorem 4]; we restate this result as Theorem 3 in the appendix. For a longer discussion on the
1-WL test, we refer readers to Appendix D. Since 1-WL is also unable to distinguish between
graphs with different triangle counts or graphs with cycle information, it was generalised to include
information about labelling tuples of k nodes (as opposed to only labelling a single node), leading
to a hierarchy of algorithms. The variant we shall subsequently describe is also known as the
folklore Weisfeiler–Leman algorithm [65]. It can be shown that there are non-isomorphic graphs that
cannot be distinguished by k-FWL, but that can be distinguished by (k + 1)-FWL.3 A well-known
family of such non-isomorphic, non-distinguishable graphs are commonly known as CFI graphs [20].
Following Morris et al. [65], k-FWL is based on the idea of assigning colours to subgraphs as
opposed to assigning colours to vertices. To achieve this, k-FWL operates on k-tuples of vertices;
for iteration i = 0, two tuples v = (v1, . . . , vk) and w = (w1, . . . , wk) are assigned the same colour
if the map vj 7→ wj induces a graph isomorphism between the subgraphs induced by v and w,
respectively. For subsequent iterations with i > 0, we relabel the tuples similar to 1-WL, i.e.

C
(k)
i (v) := RELABEL

((
C

(k)
i−1(v),

{{
C

(k)
i (ϕ1(v, u)), . . . , C

(k)
i (ϕk(v, u)) | u ∈ N (v)

}}))
, (1)

where ϕj(v, u) := (v1, . . . , vj−1, u, vj+1, . . . , vk) refers to the function that replaces the jth element
of the k-tuple v with u. This induces a neighbourhood relation between tuples and just as in the case
of 1-WL, we run the algorithm until the assigned colours of tuples stabilise for one graph. Similarly,
if the colour sequences of two graphs differ, the graphs are non-isomorphic. As a generalisation of
previous work [48], we can show that any k-FWL colouring can be reproduced with one equivariant
filtration of type 2, thus proving that persistent homology is at least as expressive as k-FWL. We
achieve this by showing that zero-dimensional persistence diagrams can recover any isomorphism-
invariant real-valued function f : G → R on the space of finite graphs by setting, for a given graph G,
a constant filtration with value equal to the function value in G, i.e. f(G).
Theorem 1. For k ≥ 2, there exists an equivariant filtration generator F of type 2 such that its
zero-dimensional persistence diagrams are at least as expressive as k-FWL.

Both Theorem 1 and Theorem 3 may not be completely satisfactory because they only show the
existence of such a filtration, but make no claims about the theoretical expressivity of filtrations of
type 1 filtrations. Hence, it is particularly interesting to understand the expressivity of the Vietoris–
Rips filtration [1], which is a popular choice in the context of persistent homology. Given a graph
G = (V,E) equipped with the shortest-path distance dG, the Vietoris–Rips filtration generator
yields the pair (K, fV), where K is the set of all non-empty subsets σ of V such that diam(σ) ̸=∞
and fV is the Vietoris–Rips filtration function given by fV(σ) = maxu,v∈σ dG(u, v). Notice that
the Vietoris–Rips filtration generator is equivariant. This is because graph isomorphisms preserve

3There are also other variants, for instance the oblivious Weisfeiler–Leman algorithm. It slightly differs in the
way tuples are being relabelled, but a paper by Grohe [41] shows that the variant is essentially as powerful as
k-FWL (with a minor shift in indices). The reader is referred to Morris et al. [65] and the references therein for
an extended discussion of these aspects.
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distances between vertices, making the induced simplicial morphisms preserve diameters and filtration
values, and inducing an isomorphic simplicial complex morphism.

Vietoris–Rips persistent homology cannot be directly compared to the WL hierarchy, as no method is
at least as expressive as the other. For example, Vietoris–Rips persistence diagrams of dimension
zero can capture the number of connected components of graphs, while the 1-WL hierarchy cannot
always capture them. See Theorem 4 for a proof of this fact. By contrast, the 1-WL test can
capture the difference between a path graph and a cycle graph both of length 3, while Vietoris–Rips
persistent homology cannot. The fact that both methods are not comparable in terms of expressivity
suggests that persistent homology methods based on Vietoris–Rips filtrations and WL/message
passing methods are complimentary, since many standard graph neural networks are exactly as
expressive as 1-WL [66, Theorem 2]. Regarding filtrations of type 1, we do not expect cliques and
high-dimensional persistent homology to be crucial in distinguishing pairs of non-isomorphic graphs.
On the one hand, equivariant graph filtration generators of type 1 are already at least as expressive
as 1-WL, thus they can distinguish almost all non-isomorphic graph pairs [53, Theorem 3.3]. On
the other hand, to prove that persistent homology for filtrations of type 1 is at least as expressive as
k-FWL for k ≥ 2, we would need to distinguish non-isomorphic CFI pairs for all k ≥ 2. However,
by definition of CFI graphs, they do not contain cliques of size three or greater, see Lemma 4,
meaning that most of the expressive power of these filtrations can only arise from the values in the
original graph structure and low-dimensional persistent homology. We would ideally want to extend
Theorem 1 to state that persistent homology is strictly more expressive than k-FWL, although this is
not as straightforward as for the case k = 1. Currently, we can provide one such counterexample,
described in Table 1, consisting of the 4 × 4 rook’s graph and the Shrikhande graph. With an
appropriate filtration, persistent homology can distinguish these two graphs without requiring more
than vertices and edges, whereas 2-FWL is unable to distinguish them. We leave a general result for
future work.

5 Experiments
The previous sections discussed the theoretical properties of filtrations. Here, we analyse their empir-
ical performance as a complement to the theoretical discussion to demonstrate the high expressivity
of persistent homology in graph tasks. We first analyse the expressivity of five different well-known
filtrations by letting them distinguish non-isomorphic graphs. This is followed by experiments on
graph property prediction. Please refer to Appendices G and H for additional expressivity and
graph-classification experiments.

Experimental setup. We use different data sets containing strongly-regular graphs [64], minimal
Cayley graphs, as well as benchmark data sets for graph-learning tasks [95, BREC]. In the following,
we will use five different filtrations for each graph:

1. A degree filtration (denoted by D), i.e. v 7→ deg(v). The degree filtration is the most basic
non-trivial filtration of a graph, showing nevertheless surprising empirical performance in graph
classification tasks [45, 71, 80].

2. A filtration based on the eigenvalues of the undirected graph Laplacian (denoted by L), i.e.
v 7→ λv, where λv indicates the eigenvalue of the undirected graph Laplacian corresponding to
vertex v. The graph Laplacian is known to capture characteristic properties of a graph; in the
context of persistent homology it is often used in the form of a heat kernel signature [22].

3. A filtration based on the Ollivier–Ricci curvature [72] (denoted by O) in the graph, setting v 7→ −1
and (u, v) 7→ κ(u, v), with κ denoting the Ollivier–Ricci curvature

κ(u, v) := 1−W1(µ
α
u , µ

α
v ), (2)

where W1 denotes the first Wasserstein distance,4 and µα
u , µ

α
v denote probability measures based

on a lazy random walk in the graph, i.e. µα
u(u) := α, indicating the probability of staying at the

same vertex, µα
u(v) := (1 − α)1/deg(u) for a neighbour v of u, and µα

u(·) := 0 otherwise. The
probability measures in Eq. (2), i.e. µα

u , may be adjusted; recent work investigates the utility of
this perspective [32, 87]. We set α = 0 for our subsequent experiments, thus obtaining a non-lazy
random walk, and leave the investigation of the impact of other values for future work.

4This metric is also known as the Earth Mover’s Distance [55]. The Wasserstein distance is a fundamental
concept in optimal transport; the monograph by Villani [92] contains a comprehensive introduction to this topic.
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TABLE 1: Success rate (↑) for distinguishing pairs of strongly-regular graphs when using different filtrations at
varying expansion levels of the graph (denoted by k). 2-FWL cannot distinguish between any of these pairs.

Data

k = 1 k = 2 k = 3

Filtration

D O F L V D O F L V D O F L V

16622 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
251256 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.90 0.90 0.90 0.90
261034 0.00 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.76 0.20 0.93 0.93 0.93 0.98 0.93
281264 0.00 0.83 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
291467 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.77 0.77 0.77 0.77
351668 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.95 0.95 0.95 0.99 0.95
351899 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.81 0.81 0.81 0.81
361446 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.83 0.02 0.92 0.92 0.92 0.99 0.92
401224 0.00 0.00 0.00 0.00 0.00 0.93 0.93 0.93 0.99 0.93 0.94 0.94 0.94 0.99 0.94

4. A filtration based on the augmented Forman–Ricci curvature [82] (denoted by F), where we again
set v 7→ −1 and (u, v) 7→ F(u, v), with F(u, v) := 4− deg(u)− deg(v) + 3 |N (u) ∩N (v)|.

5. A Vietoris–Rips filtration (denoted by V) over the metric space defined by the shortest-path
distance between its nodes [1].

We exclude colouring filtrations, as used in Theorem 1, from our analysis due to their practical infeas-
ibility. For each input graph G, this approach would require generating k! filtrations and constructing
simplicial complexes containing all cliques up to dimension k. After picking a filtration (except
for the Vietoris–Rips one), we expand the graph by filling in all (k + 1)-cliques, with filtration
value for a clique σ given recursively by the maximum filtration value of its proper subcliques, i.e.
σ 7→ maxτ⊊σ f(τ), and calculating persistent homology up to dimension k. Hence, for k = 1,
we leave the graph ‘as-is,’ making use of connected components and cycles only.5 Our persistent
homology calculations result in a set of persistence diagrams for each graph, which we compare
in a pairwise manner using the bottleneck distance described by Eq. (11). We consider two graphs
to be different whenever the distance between their persistence diagrams is > 1× 10−8, i.e. above
machine precision. This setup has the advantage that no additional classifier is required ; when
dealing with data sets of pairs of non-isomorphic graphs, we may thus simple count the number of
non-zero distance pairs, showing the utility of persistent homology as a powerful baseline for graph
expressivity analysis. We omit comparisons between persistent homology and isolated filtration
values, as persistent homology is at least as expressive as filtration values alone. This is a consequence
of the pairing lemma, which ensures all filtration values, with multiplicities, are distributed as births
or deaths in persistence diagrams up to the dimension of the simplicial complex. Hence, the filtration
values can always be reconstructed from the persistence diagrams.

5.1 Strongly-Regular Graphs and Minimal Cayley Graphs

We start our investigation by analysing strongly-regular graphs, which are are known to be extremely
challenging to distinguish. 2-FWL, for instance, cannot distinguish any of these graphs [65, Sec-
tion 3.3]. Table 1 summarises the performance of our selected filtrations. We first observe that for
k = 1, i.e. for the original graph without any cliques, few pairs of graphs can be distinguished by
the five filtrations. Notably, a curvature-based filtration is sufficient to distinguish the two graphs
in the 16622 data set, colloquially known as the 4 × 4 rook’s graph and the Shrikhande graph.
Distinguishing between these two graphs is usually said to require knowledge about cliques [13], but
it turns out that a suitable filtration is sufficient. However, the empirical expressivity of curvature-
based filtrations appears limited for k = 1, improving only for higher-order clique complexes. The
Laplacian filtration, by contrast, exhibits strong empirical performance for k = 2 on almost half of the
data sets, increasing to near-perfect performance for k = 3 in almost all data sets. Vietoris–Rips and
degree filtrations obtain the exact same success rates for every k and data set, exhibiting the lowest

5Notice the shift in dimension: a k-simplex has k+1 vertices, meaning that persistent homology in dimension k
contains information about (k + 1)-cliques.
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TABLE 2: Success rate (↑) for distinguishing pairs of minimal Cayley graphs when using five different filtrations
at varying expansion levels of the graph (denoted by k). Values for 1-WL are shown as a baseline.

Data

k = 1 k = 2

Filtration

1-WL D O F L V D O F L V

cay12 0.67 0.67 0.71 0.95 0.86 0.00 0.95 0.95 0.95 1.00 0.95
cay16 0.83 0.83 0.42 0.83 0.58 0.00 0.83 0.92 0.83 1.00 0.94
cay20 0.61 0.61 0.46 0.61 0.79 0.00 0.61 0.79 0.61 1.00 0.89
cay24 0.65 0.65 0.82 0.86 0.98 0.00 0.83 0.93 0.86 1.00 0.93
cay32 0.76 0.76 0.81 0.76 0.90 0.00 0.76 0.94 0.76 1.00 0.90
cay36 0.69 0.69 0.87 0.84 0.99 0.00 0.84 0.95 0.84 1.00 0.94
cay60 0.69 0.69 0.90 0.78 1.00 0.00 0.77 0.95 0.78 1.00 0.97
cay63 0.49 0.49 0.89 0.73 0.88 0.00 0.73 0.93 0.73 1.00 0.96

TABLE 3: Success rate (↑) for distinguishing pairs of instances of the BREC data set when using different
filtrations at varying expansion levels of the graph (denoted k). Due to combinatorial constraints, we did not
calculate the Vietoris–Rips filtration for k = 4. Legend and number of graphs per category: B (Basic, 60),
R (Regular, 100), E (Extension, 100), C (CFI, 100), 4, 20 (4-Vertex Condition), D (Distance-Regular, 20) graphs,
respectively and A (average over full data set, 400 graphs).

k = 1 k = 2 k = 3 k = 4

Data
Filtration

D O F L V D O F L V D O F L V D O F L

B 0.03 0.93 0.87 1.00 0.00 0.78 1.00 0.98 1.00 0.52 0.83 1.00 0.98 1.00 0.58 0.83 1.00 0.98 1.00
R 0.00 0.42 0.32 0.00 0.00 0.39 0.54 0.50 0.48 0.39 0.85 0.93 0.91 0.93 0.85 0.89 0.97 0.95 0.97
E 0.07 0.76 0.44 0.94 0.00 0.26 0.92 0.59 1.00 0.11 0.29 0.92 0.59 1.00 0.16 0.29 0.92 0.59 1.00
C 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.03 0.06
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.05

A 0.03 0.44 0.33 0.40 0.01 0.29 0.52 0.43 0.54 0.21 0.47 0.67 0.58 0.70 0.40 0.48 0.68 0.59 0.71

success rates for k = 1 and k = 2, and the same ones to the curvature filtrations for k = 3. It is clear
that knowledge about higher-order cliques helps in driving performance here. Notice that in contrast
to other algorithms [13], no additional embedding of the graphs is required; we are comparing ‘raw’
persistence diagrams directly.

As an additional class of complex graphs, we analyse minimal Cayley graphs, i.e. Cayley graphs
that encode a group with a minimal generating set. Minimal Cayley graphs are still a topic of active
research in graph theory, with several conjectures yet to be proven [5, 6]. Specifically, isomorphisms
of Cayley graphs have been extensively studied [3, 56, 57, 67] and can be associated to isomorphisms
of subsets of groups and interesting questions about their structure; see [56, Section 3]. We follow
the same experimental setup as described above but also show the performance of 1-WL, calculated
via a subtree Weisfeiler–Leman graph kernel [85]. Table 2 shows the results. We observe that the
Laplacian filtration is trivially able to distinguish between all these graphs for k = 2 and has a
strong performance for k = 1; this is not surprising since spectra of the graphs are known to be
characteristic [61]. The performance of the curvature filtrations also points towards the utility of this
formulation in practice. We also observe that Vietoris–Rips filtrations are the ones that most benefit
from the availability of higher-order information, with a significant improvement in performance,
going from a 0% success rate for k = 1 to > 90% for k = 2.

5.2 BREC Data Set

BREC [95] is a novel graph expressivity data set focused on providing a robust, challenging bench-
mark for graph isomorphism detection, containing particularly difficult graph classes. The data set
consists of 400 graphs, divided into 6 different categories, Table 3 provides an overview of them
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TABLE 4: Accuracy (↑) when predicting the properties of graphs in the ogbg-molhiv molecular graph data
set [49] using different filtrations at varying expansion levels of the graph (denoted by k). Column R contains
the average probability of successfully predicting a property at random over all possible values of the property in
the data, with the probability of choosing a label being proportional to the number of graphs with that label.

Data

k = 1 k = 2

Filtration

R D O F L V D O F L V

Diameter 0.02 0.09 0.11 0.05 0.08 0.07 0.10 0.08 0.06 0.09 -
Girth 0.04 0.00 0.11 0.34 0.46 0.48 0.14 0.21 0.33 0.45 -
Radius 0.03 0.16 0.21 0.06 0.15 0.14 0.20 0.18 0.10 0.17 -

and shows our experimentally-observed success rates. We observe that the Vietoris–Rips filtration
is the worst performing filtration for all tested k values, followed by the degree filtration. The
most informative curvature-based filtration is the Ollivier–Ricci one, which obtained higher or equal
success rates than the Forman–Ricci curvature filtration in all the subsets of data, with strictly higher
average success rates for all k values. The most effective filtration overall is the Laplacian filtration
for k = 4, surpassing almost all the algorithms, including both graph neural networks and classical
methods, described in Wang and Zhang [95, Table 2]. The only exception was the N2 algorithm [75]
that obtained a success rate of 74.5%, compared to the 71% obtained by the Laplacian filtration for
k = 4. Given the fact that N2 requires knowledge of the isomorphism class of all 2-hop-induced
subgraphs of a graph, the computational complexity makes it infeasible to apply for many graph
sizes in practices [75, Section 4.3], whereas the Laplacian filtration remains computable. Overall,
these results experiments underscore the high expressivity of persistent homology, making it a strong
baseline for graph-learning tasks. Please refer to Appendix G.2 for additional results.

5.3 Predicting Graph Properties

As our final expressivity experiments, we assess the capability of persistent homology to predict
graph properties. Here, we focus on the diameter, the radius, and the girth.

Predicting the diameter of random graphs. We predict the diameter of Erdős–Rényi and Watts–
Strogatz graphs. For the Erdős–Rényi graphs, we generate N = 100 graphs with n = 100 vertices and
p = 0.1. This edge probability corresponds to the critical connectivity regime, for which closed-form
solutions of the diameter distribution are not readily available [42]. We assess the utility of persistent
homology by specifying a regression task;6 to this end, we vectorise the persistence diagrams for
each filtration using Betti curves [71, 80], a simple curve-based topological representation. While this
representation is technically a function, we represent it as a histogram of 10 bins and train a ridge
regression classifier via leave-one-out cross-validation to predict the diameter of each graph. We
deliberately focus only on zero-dimensional and one-dimensional persistent homology, i.e. we leave
k = 1. Using the mean absolute error (MAE) for evaluation, we find that Ollivier–Ricci curvature
performs best (0.057), followed by the Laplacian spectrum (0.061), and the degree filtration (0.065).
We observe similar patterns when calculating N = 100 Watts–Strogatz graphs of type (100, 5, 0.1),
i.e. we keep the same number of vertices and the same edge rewiring probability p, but connect
each node with its 5 nearest neighbours in a ring neighbourhood. Using the same classifier, we
again find that Ollivier–Ricci curvature achieves the lowest MAE (0.851), followed by the degree
filtration (0.865), and the Laplacian spectrum (1.072).

Predicting graph properties of the ogbg-molhiv [49] data set. We predict the maximum radius
and diameter among the radii and diameters of the connected components of each graph as well as
their girth. See Fig. S.3 for a visualisation of the distribution of these properties across all graphs in the
data set. We use a random forest regression model and persistence images [2] as its input, computed
from the persistence diagrams of the graphs calculated as in the previous sections. The model is
trained on the usual train and test splits of the data set, with the final prediction obtained by rounding

6Following Hartmann and Mézard [42], we take the diameter of an Erdős–Rényi graph, which might consist of
different connected components, to be the largest diameter of all connected components of the graph.
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to the nearest integer.7 Overall, this is a challenging task, with 24, 15, and 5 labels having more
than 100 examples for the diameter, radius and girth, respectively. Thus, the average probabilities of
guessing the correct label by random choice is 0.02, 0.03, and 0.04. However, we find that persistent
homology, with a suitable filtration, can predict the maximum radius, the maximum diameter, and
the girth of the graphs on unseen examples (i.e. on the test data set) in approximately 11%, 20%,
and 48% of the cases, respectively, exhibiting substantially-improved results over a random baseline.
For predicting radii and diameters, we find that the Ollivier–Ricci curvature outperforms the other
filtrations for k = 1 but gets worse for k = 2, where the degree filtration performs the best. It is
surprising that the Vietoris–Rips filtration is not able to predict the radii of the graphs in this data set
accurately (≈ 14% accuracy), being the only filtration that works with explicit distances. However,
this filtration proves most effective for predicting the girth, having an accuracy of almost 50% as
compared to the 4% of the baseline. These results complement prior work on predicting properties of
point clouds [19, 88], showing that topology-based graph-learning approaches carry a large degree
of additional information about graphs .

6 Discussion
We discussed various aspects of the computation and provided evidence of the advantageous properties
of persistent homology in the context of graph learning. Our primary theoretical insight is that
persistent homology is at least as expressive as a corresponding 1-WL or k-FWL test, in some
cases surpassing their discriminative power. Experiments underscore these theoretical expressivity
properties, while also demonstrating that persistent homology is able to capture additional properties
of a graph. In light of the performance differences among the different filtration functions in our
experiments, we suggest that future work should focus on elucidating properties of classes of such
functions, aiming to strike a balance between expressivity and efficiency. Another limitation involves
the calculation per se, which requires costly clique-finding operations and is thus not scalable to large,
dense graphs. If node features are present, alternative geometrical-topological approaches could
potentially be used [62, 63, 68, 81, 90], necessitating additional research.

In the future, we would like to formally prove which classes of filtrations make k-dimensional
persistent homology strictly more expressive than k-FWL (if any). Follow-up research could also
focus on identifying other properties (next to the diameter and girth) that can be captured by persistent
homology in graph learning. Such research has both theoretical and empirical components; a first
step would be a formalisation of which substructures are captured by models [16, 27, 87]. Moreover,
the success of the Laplacian filtration at the experimental tasks may hint at new filtrations based
on spectral graph theory that provide a trade-off between utility and computational efficiency. We
find that this research direction is overlooked by the computational topology research community,
with most of the expressivity/stability results focusing on describing the stability of distance-based
filtrations under perturbations [23, 24], and few works focusing on graphs [9]. Based on our
experiments, we thus envision that persistent homology will constitute a strong baseline for graph-
learning applications. As previous work shows, even topology-inspired approaches, making use of
concepts such as filtrations, can approximate the performance of highly-parametrised models at a
fraction of the computational cost [71]. All insights obtained using such topological methods hint at
the overall utility of graph-structural information for graph learning tasks, but it is not clear whether
current graph benchmark data actually exhibit such structures [74]. We thus hope that persistent
homology and related techniques will also find more applications in hybrid models, which are able
to incorporate geometrical–topological information about graphs. This is an emerging research
topic of crucial relevance since there are now numerous graph data sets that combine geometrical
information (node coordinates) with topological information [51].

Our theoretical analysis of the properties of persistent homology for graph learning tasks show the
potential and benefits of a topology-based perspective. We are confident that additional computational
topology concepts will enrich and augment machine learning models, leading to new insights about
their theoretical and empirical capabilities. This paper is but a first attempt at elucidating the
theoretical utility of computational topology in a graph learning context; advancing the field will
require many more insights.

7We predict a girth of ∞ in case the output value is larger than the number of nodes in the graph.
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A Extended literature review
Topological Data Analysis has been used in a variety of applications in machine learning, such as in
the development of topological input features, the analysis of learning algorithms, or the development
of new, topology-aware models; see [43] for a general introduction of TDA in machine learning
and [7] for a more specific review of TDA in neural networks.

In the context of graph learning, the use of topological data analysis, and particularly persistent
homology has contributed many new insights and tools. In the context of architectures, persistent
homology has been used as pooling layers [26, 100], readout layers [101], and regular layers [48, 91,
99]. In the context of expressivity and graph neural network property analysis, [48] also proved that
persistent homology is at least as expressive as 1-WL and [50] extended this result and our results for
persistent homology for vertex- and edge-based filtrations.

B Counting Connected Components
Since the main text deals with higher-order topological features, and such features afford a substan-
tially less intuitive grasp, we want to briefly comment on how to obtain β0, the number of connected
components. As with many problems in computer science, this procedure turns out to be simple if
we pick our data structures correctly. Here, we need a union–find data structure, also known as a
disjoint set forest. This data structure is built on the vertices of a graph and affords two operations,
viz. union (or merge) and find. The merge operation assigns two vertices to the same connected
component, while the find operation returns the current connected component of a vertex. Building
such a data structure is reasonably easy in programming languages like Python, which offer associ-
ative arrays. Algorithm 1 shows one particular pseudo-code implementation of a simple union–find
data structure. The pseudo-code assumes that all operations are changing objects ‘in place.’ Notice
that the find operation is implemented implicitly via a lookup in the merge function. A proper
object-oriented implementation of a union–find data structure should have these two operations in its
public interface.

ALGORITHM 1 Using associative arrays to find connected components

1: function get_connected_components(V,E)
2: UF← {}
3: for v ∈ V do
4: UF[v]← v
5: end for
6: for e = (v, w) ∈ E do
7: merge(UF, v, w)
8: end for
9: return {v | UF[v] = v}
10: end function

11: function merge(UF, v, w)
12: if UF[v] ̸= UF[w] then
13: UF[v]← w
14: end if
15: end function

C A Primer in Computational Topology
With the understanding that our readers have different backgrounds, the following section provides a
primer of the most relevant concepts in computational topology.

C.1 Simplicial Homology

The Betti numbers of a graph are actually a special instance of a more generic concept, known as
simplicial homology. We will see that under this framework, the Betti numbers are the ranks of
the zeroth and first homology group, respectively. Simplicial homology is not required in order to
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a

b

c
The triangle is a simple simplicial complex, consisting of one 2-simplex,
three 1-simplices and three 0-simplices, respectively. The boundary of the
2-simplex is non-zero: we have ∂2{a, b, c} = {b, c} + {a, c} + {a, b}.
The set of edges, on the other hand, does not have a boundary, i.e.
∂1 ({b, c}+ {a, c}+ {a, b}) = {c} + {b} + {c} + {a} + {b} + {a} = 0,
because the simplices cancel each other out.

FIGURE S.1: Calculating the boundaries of a 2-simplex and the boundary of a simplicial chain consisting of
1-simplices. Notice that the boundary of a boundary is always zero. This is a fundamental property of persistent
homology. The figure is slightly adapted from Rieck [77].

understand most of the results of this paper, but an appreciation for some of the concepts will be
helpful in understanding connections to other concepts. We try to provide a self-contained introduction
to the most relevant concepts and refer to the textbook by Munkres [69] for a more in-depth exposition
of these concepts. We start by introducing the central object of algebraic topology—the simplicial
complex.8

Definition 3 (Simplicial complex). A simplicial complex K is a system of sets that is closed under
the subset operation. Thus, for any σ ∈ K and τ ⊆ σ, we have τ ∈ K. An element σ ∈ K with
|σ| = k + 1 is also referred to as a k-simplex. We also express this by writing dimσ = k. Moreover,
if k is maximal among all the simplices of K, we say that the K is a k-dimensional simplicial complex.

Note that there is an unfortunate shift in dimensions: a k-simplex has indeed k + 1 elements. This
convention makes sense when we relate it to the concept of dimension. A 0-simplex, i.e. a point or a
vertex, should be assigned a dimension of 0. The reader should thus mentally equate the dimension
of a simplex with its dimension. The text will aim to quell any confusion about such shifts. The
quintessential example of a simplicial complex is a graph G = (V,E). Setting K := V ∪E, we obtain
a 1-dimensional simplicial complex. We may calculate additional types of simplicial complexes from
a graph, for instance by expanding each (k + 1)-clique into a k-simplex [47, 79].

The simplicial complex on its own is only a set system; to perform calculations with this type of
data structure, we need to imbue it with additional operations. One of the most common operations
involves defining homomorphisms between the subsets of a simplicial complex K.
Definition 4 (Chain group of a simplicial complex). Given a simplicial complex K, the vector space
generated over Z2 coefficients whose elements are the k-simplices of K is called the kth chain group,
denoted by Ck(K). The elements of a chain group are also referred to as simplicial chains.

Elements of the chain group are thus sums of simplices of a compatible dimension. For instance,
we may write the sum of all edges of a graph to obtain a valid simplicial chain. Operating over Z2

coefficients means that σ + σ = 0, the empty chain, for all σ ∈ K.9 Simplicial chains permit us to
define homomorphisms between chain groups, which will ultimately permit us to treat topological
questions with tools of linear algebra.
Definition 5 (Boundary homomorphism). Given σ = (v0, . . . , vk) ∈ K, we define the kth boundary
homomorphism ∂k : Ck(K)→ Ck−1(K) as

∂k(σ) :=

k∑
i=0

(v0, . . . , vi−1, vi+1, . . . , vk), (3)

i.e. a sum of simplices with the ith entry—vertex—of the simplex missing, respectively.

It is sufficient to define ∂k on individual simplices; since it is a homomorphism, it extends to arbitrary
simplicial chains. Fig. S.1 shows an example of this calculation. The boundary operator already

8Technically, we will be working with abstract simplicial complexes. A definition of a simplicial complex in
terms of convex subsets is also possible, but this necessitates understanding certain nuances that are irrelevant
to this paper.

9Readers familiar with algebraic topology will recognise Z2 as a deliberate choice of coefficient field for the
subsequent calculations. Other choices are possible, but the computational topology community predominantly
usesZ2 coefficients in practice, with very few exceptions [40]. However, all the proofs and concepts introduced
in this paper apply, mutatis mutandis, for other coefficient sets as well.
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assigns some algebraic structure to K, but it turns out that we can use it to assign a set of groups to
the simplicial complex.
Definition 6 (Homology group). We define the kth homology group of a simplicial complex K as

Hk(K) := ker ∂k/ im ∂k+1, (4)

i.e. a quotient group that we obtain from the two subgroups ker ∂k and im ∂k+1 of Ck.

The kth homology group of a simplicial complex contains its k-dimensional topological features in
the form of equivalence classes of simplicial chains, also known as homology classes. This rather
abstract definition is best understood by an additional simplification step that involves calculating the
rank of a homology group.
Definition 7 (Betti number). The rank of the kth homology group Hk(K) is known as the kth Betti
number, denoted by βk.

Despite the rank being a rather coarse summary, Betti numbers turn out to be of immense utility in com-
paring different simplicial complexes. We may even reproduce the equation for the cyclomatic number,
β1 = m+ β0 − n, by noting that the Euler characteristic χ(K) :=

∑
i(−1)i |{σ | dimσ = i}| can

also be expressed as a sum of alternating Betti numbers, i.e. χ(K) :=
∑

i(−1)iβi. For a proof of this
surprising fact, see e.g. Munkres [69, p. 124]. Using this equivalence, we see that we can calculate β1

by reshuffling some of the terms, thus also explaining why the equation exhibits alternating signs.

At this point, we have introduced a large amount of algebraic machinery. Changing our focus back to
graphs, we may reap some advantageous properties by noting that homology groups are somewhat
preserved under graph isomorphism.10

Lemma 1. Let G,G′ be two isomorphic graphs. Then the homology groups of G and G′ are
isomorphic, i.e. Hk(G) ≃ Hk(G

′) for all k ≥ 0.

Lemma 1 is a direct consequence of the functoriality of homology. Functoriality of homology implies
that, given any map f : G → G′, there is an induced map Hk(f) : Hp(G) → Hp(G

′) between
homology groups for all p ≥ 0, and that, given two maps f : G → G′ and g : G′ → G′′, we have
Hk(g ◦ f) = Hk(g) ◦Hk(f). In particular, the identity map id : G→ G induces the identity map on
the homology groups of G, making that an isomorphism between G and G′ induces an isomorphism
between their homology groups. Thus, the proof of the lemma is straightforward.

Proof. Let k ≥ 0 and let φ : G → G′ be an isomorphism between G and G′. By functoriality of
homology, Hk(φ) is an isomorphism between Hk(G) and Hk(G

′). ■

As a direct corollary, the Betti numbers of G and G′ do not change, and in fact, a similar property
holds for isomorphic simplicial complexes.
Corollary 1. The Betti numbers of isomorphic graphs are equal, i.e. βp(G) = βp(G

′) for all p.

This may be seen as a hint about the popularity of simplicial homology in algebraic topology: the
framework leads directly to characteristic descriptions that remain invariant under (graph) isomorph-
ism.

C.2 Persistent Homology

Because of their conceptual simplicity—their calculation in low dimensions only involves knowledge
about the connected components of a graph—Betti numbers are somewhat limited in their expressivity.
Taking any graph G = (V,E), even the addition of a single edge to G will change its Betti numbers,
either by merging two connected components (thus decreasing β0) or by creating an additional
cycle (thus increasing β1). This is a direct consequence of the definition of Euler’s formula, which
effectively states that the insertion of a new edge e = (u, v) with u, v ∈ V either causes β1 to
increase by 1 because m changes, or remain the same in case the number of connected components β0

changes. However, a single edge may only merge two connected components into one, so β0 may
also at most decrease by 1. This indicates that Betti numbers are too coarse to be practically useful in
large-scale graph analysis. It is possible to turn Betti numbers into a multi-scale descriptor of a graph.

10The reader well-versed in algebraic topology may be aware of this property directly, but we find it useful to
mention this fact briefly.
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This requires certain modifications to the previously-introduced concepts. Similar to Appendix C.1,
we will formulate everything in terms of simplicial complexes, again pointing out that this results in a
more general description.
Definition 8 (Filtration). Given a simplicial complex K, we call a sequence of simplicial complexes
filtration if it affords a nesting property of the form

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K. (5)

Since each element of this sequence is a valid simplicial complex, we can also think of this construction
as ‘growing’ K by adding simplices one after the other.

Filtrations arise naturally when building simplicial complexes from point cloud data, but even in
the context of graphs, we can imagine filtrations as filtering a graph based on some type of data, or
function, assigned to its vertices. For instance, we may build a filtration of a graph based on the
degree of its vertices, defining Ki to be the subgraph consisting of all vertices satisfying the degree
condition, plus all edges whose endpoints satisfy it, i.e.

Ki := {v ∈ V | deg(v) ≤ i} ∪ {{u, v} ∈ E | deg(u) ≤ i ∧ deg(v) ≤ i}. (6)

Notice that we could also express the second condition more compactly by assigning to each
1-simplex (each edge) the maximum of the weight of its vertices. This construction is sometimes
also referred to as a lower-star filtration since it extends a node-level function to higher-order
simplices [35]. Not all filtrations have to be defined on the vertex level; as long as each edge in
the filtration is preceded by its vertices, we can also build valid filtrations from functions that are
primarily defined on edges.11

Setting aside further discussions about how to obtain filtrations for now, filtrations are compatible with
the simplicial homology framework introduced above. The boundary operators ∂(·), together with
the inclusion homomorphism between consecutive simplicial complexes, induce a homomorphism
between corresponding homology groups of any filtration of m simplicial complexes. Given i ≤ j,
we write ιi,j : Hk(Ki)→ Hk(Kj) to denote this homomorphism. This construction yields a sequence
of homology groups

0 = Hk(K0)
ι0,1k−−→ Hk(K1)

ι1,2k−−→ . . .
ιm−2,m−1
k−−−−−−→ Hk(Km−1)

ιm−1,m
k−−−−−→ Hk(Km) = Hk(K) (7)

for every dimension k. We then define the kth persistent homology group as

Hi,j
d := ker ∂k(Ki)/(im ∂k+1(Kj) ∩ ker ∂k(Ki)), (8)

containing all topological features—homology classes—created in Ki that still exist in Kj . Following
the definition of the ordinary Betti number, we then define the kth persistent Betti number to be the
rank of this group, leading to βi,j

k := rankHi,j
k . It should be noted that this type of construction

makes use of numerous deep mathematical concepts; for the sake of an expository article, we heavily
summarise and compress everything to the most pertinent results.

The appeal of persistent homology can be seen when we start to make use of the features it captures.
If we assume that our filtration is associated with a set of values a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am, such
as the function values on the vertices, we can calculate persistence diagrams, i.e. simple topological
feature descriptors.
Definition 9 (Persistence diagram). The k-dimensional persistence diagram of a filtration is the
multiset of points in R2 that, for each pair i, j with i ≤ j, stores the tuple (ai, aj) with multiplicity

µ
(k)
i,j :=

(
βi,j−1
k − βi,j

k

)
−

(
βi−1,j−1
k − βi−1,j

k

)
. (9)

We will also assign a multiplicity to essential topological features of the simplicial complex, setting

µ
(k)
i,∞ := βi,m

k − βi−1,m
k , (10)

which denotes all features that are still present in the last simplicial complex of the filtration, i.e. in
Km = K. The persistence diagram thus contain all the information carried by Betti numbers.

11In Section 5, we will make use of a filtration defined on edge-based curvature values.
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Persistence diagrams summarise the topological activity of a filtration. Given a persistence diagramD,
for any tuple (ai, aj), the quantity |aj − ai| is called the persistence of the respective topological
feature. Persistence indicates whether a feature, created in some simplicial complex during the
filtration, is prominent or not. This notion was originally introduced by Edelsbrunner et al. [37] to
analyse the relevance of topological features of a distance function; the terminology is supposed to
indicate the prominence of a topological feature. Features with a high persistence are commonly
taken to be relevant, whereas features with a low persistence used to be considered as noise; this
assumption is changing as, depending on the filtration, low persistence may also just imply ‘low
reliability.’ [12]

Persistence diagrams can be endowed with different metrics and kernels [54, 76], and it is known that
the space of persistence diagrams is an Alexandrov space with curvature bounded from below [89].
The most common metric to compare two persistence diagrams is the bottleneck distance, defined as

dB(D,D′) := inf
η : D→D′

sup
x∈D
∥x− η(x)∥∞, (11)

where η ranges over all bijections between the two persistence diagrams. Eq. (11) is solved using
optimal transport; different cardinalities are handled by permitting points in one diagram to be
transported to their corresponding projection on the diagonal. Another metric is the Wasserstein
distance [93, Theorem 7.3], in which the sup calculation is replaced by a weighted sum over all
distances between points in a diagram.

Stability properties of filtrations are a crucial aspect of research in computational topology [86].
Given two filtrations f, g of the same simplicial complex, a seminal result by Cohen-Steiner et al.
[28] proves the following bound:

Theorem 2 (Bottleneck stability). Let f, g refer to filtrations of a simplicial complex K, and let Df

and Dg denote their respective persistence diagrams. The bottleneck distance distance is upper-
bounded by dB(Df ,Dg) ≤ ∥f − g∥∞, where ∥ · ∥∞ refers to the supremum norm.

An extension of this theorem, with dB being replaced by the Wasserstein distance, shows that
persistence diagrams are also stable in the Lipschitz sense [29]. These stability properties are
remarkable because they link a topological quantity with a geometrical one, thus underscoring how
persistent homology itself incorporates both geometrical and topological aspects of input data.

C.3 Computational complexity of persistent homology

In this section, we briefly discuss the computational complexity of computing persistence diagrams.
For a more detailed discussion, we refer the reader to [73].

Recall that persistence diagrams are obtained by first constructing a filtration of a simplicial complex.
Then, persistence diagrams are computed from the homology groups of the simplicial complexes
and the induced maps from inclusion between them. Therefore, the computational complexity of
computing persistence diagrams is the sum of the complexity of building the filtration, and the
complexity of the algorithm constructing the persistence diagrams.

Depending on the filtration type, the former complexity can greatly vary. For instance, the complexity
of building a filtration based on the degree of vertices is quadratic in the number of vertices using the
adjacency matrix if we do not add simplices of higher dimension than edges. On the other hand, the
complexity of building a Vietoris–Rips filtration is high in general, having O(nk+1) simplices up
to dimension k for a set of n vertices, leading to research on more efficient filtrations similar to the
original Vietoris–Rips one [84]. For the filtration of Theorem 1, computing the filtration is equivalent
to compute the k-WL colouring of the graph, which can be done in O(nk+1 log n) where n is the
number of vertices [59, Section 1].

For the latter, several algorithms exist depending on the filtration type and the homology coefficients
used. A notable example is Ripser [8], which computes persistence diagrams for Vietoris–Rips
filtrations in an efficient way. Using the standard algorithm, the worst case complexity is cubic in
the number of simplices m, being this a sharp bound. For dimension zero, alternatives based on
the connection between the single linkage clustering algorithm and zero-dimensional persistence
diagrams [38, Claim 5.1] allows computation in O(n2).
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D 1-WL and Persistent Homology

Formally, 1-WL proceeds by iteratively calculating a node colouring function C
(1)
i : V → N. The

output of this function depends on the neighbours of a given node. For a vertex v at iteration i > 0,
we have

C
(1)
i (v) := RELABEL

((
C

(1)
i−1(v),

{{
C

(1)
i (u) | u ∈ N (v)

}}))
, (12)

where RELABEL refers to an injective function that maps the tuple of colours to a unique colour, i.e.
a unique number and N (v) refers to the neighbors of v, i.e. its adjacent vertices. The algorithm
is initialised by either using existing labels or the degree of vertices.12 After a finite number of
steps, the colour assignments generated using Eq. (12) stabilise. If two graphs give rise to different
colour sequences, the graphs are guaranteed to be non-isomorphic. The 1-WL test is computationally
easy and constitutes an upper bound for the expressivity of many graph neural network (GNN)
architectures [66, 96]. In other words, if 1-WL cannot distinguish two non-isomorphic graphs, GNNs
will also not be able to distinguish them. As stated in Section 4, it is already a known result that any
1-WL colouring can be reproduced by creating a special filtration.The implication is that persistent
homology is at least as expressive as 1-WL because there is a filtration that distinguishes all the graphs
1-WL can distinguish. In fact, Theorem 4 demonstrates that the 1-WL algorithm fails to detect even
the most fundamental topological property of graphs: the number of connected components. This
limitation stands in contrast to the capabilities of (persistent) homology, which can readily capture
such basic topological features. Appendix F shows examples of graphs that can be distinguished
based on their topological features but not by the 1-WL algorithm. These examples demonstrate that
a topological perspective is strictly more expressive than 1-WL.

E Theorems & Proofs
For the convenience of the reader, we restate all results again before providing their proof.

When working with filtrations in the subsequent proofs, it would be ideal to have filtrations that
satisfy injectivity on the level of vertices, i.e. f(v) ̸= f(v′) if v ̸= v′. Such injective filtrations have
the advantage of permitting gradient-based optimisation schemes [45]. The following lemma, first
proved in Horn et al. [48], demonstrates that injectivity is not a strict requirement, though, as it is
always possible to find an injective filtration function that is arbitrarily close (in the Hausdorff sense)
to a non-injective filtration function.
Lemma 2. For all ϵ > 0 and a filtration function f defined on the vertices, i.e. f : V → Rd, there is
an injective function f̃ : V → Rd such that ∥f − f̃∥∞ < ϵ.

Proof. Let V = {v1, . . . , vn} be the vertices of a graph and im f = {u1, . . . , um} be their images
under f . Since f is not injective, we have m < n. We resolve non-injective vertex pairs iteratively.
For u ∈ im f , let V ′ := {v ∈ V | f(v) = u}. If V ′ only contains a single element, we do not have to
do anything. Otherwise, for each v′ ∈ V ′, pick a new value from Bϵ(u) \ im f , where Br(x) ⊂ Rd

refers to the open ball of radius r around a point x (for d = 1, this becomes an open interval in R,
but the same reasoning applies in higher dimensions). Since we only ever remove a finite number of
points, such a new value always exists, and we can modify im f accordingly. The number of vertex
pairs for which f is non-injective decreases by at least one in every iteration, hence after a finite
number of iterations, we have modified f to obtain f̃ , an injective approximation to f . By always
picking new values from balls of radius ϵ, we ensure that ∥f − f̃∥∞ < ϵ, as required. ■

Proposition 1. For F equivariant and G ≃ G′, the persistence diagrams of fKG
and fKG′ coincide.

The proof of Proposition 1 is a direct consequence of the following lemma.
Lemma 3. LetK be any field. If F is equivariant and G ≃ G′, then the persistence modules over K
obtained by applying the homology functor Hk to the chain complexes generated by the sublevel set
filtrations fKG

and fKG′ are isomorphic for any k ≥ 0.

Proof. Let φ : G→ G′ be an isomorphism between G and G′, and let a ∈ R. We claim that φ induces
a simplicial isomorphism between KG(a) = f−1

KG
((−∞, a]) and KG′(a) = f−1

KG′ ((−∞, a]). First,

12Note that Eq. (12) does not recognise an ordering of labels. Initialising 1-WL with a constant value thus leads
to the same colouring—up to renaming—after the first iteration.
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note that σ ∈ KG(a) implies φ(σ) ∈ KG′(a). Then, the restriction φa of the map φ : KG → KG′

to KG(a) is a well-defined simplicial complex morphism between KG(a) and KG′(a). In particular,
φa is an isomorphism. The injectivity of φa stems from the fact that φ is an isomorphism between
simplicial complexes. The surjectivity of φa comes from the fact that fKG

(φ−1(τ)) = fKG′ (τ) for
all τ ∈ KG′(a), and thus if τ ∈ KG′(a), then φ−1(τ) ∈ KG(a) and φa(φ

−1(τ)) = τ . Having prove
that ϕa is an isomorphism, let C•(KG(a)) and C•(KG′(a)) be the chain complexes induced by the
simplicial complexes KG(a) and KG′(a), respectively. The previous function φa induces a chain map
C•(φa) between C•(KG(a)) and C•(KG′(a)) defined as the linear map Ck(φa) sending an element
σ ∈ Ck(KG(a)) to φa(σ) for k ≥ 0. The proof that C•(φa) is a chain map can be found in Nanda
[70, Proposition 4.5]. Concretely, Ck(φa) is an isomorphism because φa is a simplicial complex
isomorphism that generates a one-to-one correspondence between the k-simplices of KG(a) and
KG′(a). As C•(φa) is a chain isomorphism, C•(φa) induces isomorphisms between the homology
groups Hk(C•(KG(a))) and Hk(C•(KG′(a))) for all k ≥ 0. Moreover, these isomorphisms C•(φa)
constitute isomorphisms between the persistence modules given by (Hk(C•(KG(a))))a∈R and
(Hk(C•(KG′(a))))a∈R for all k ≥ 0. To prove it, we only need to show that the diagram

Hk(C•(KG(ai))) Hk(C•(KG(aj)))

Hk(C•(KG′(ai))) Hk(C•(KG′(aj)))

i

Ck(φai
) Ck(φaj

)

i

(13)

commutes for ai ≤ aj . This is a consequence of the definition of the isomorphisms C•(φa).
Note that Ck(φai

) and Ck(φaj
) are the same map for the elements of Ck(KG(ai)) for all k ≥ 0

and ai ≤ aj due to the fact that φai = φaj for KG(ai) for ai ≤ aj by definition. Thus, given
[c] ∈ Hk(C•(KG(ai))), we have (Ck(φaj

) ◦ i)([c]) = [φai
(c)] = (i ◦Ck(φai

))([c]) for all ai ≤ aj
and k ≥ 0, as we wanted to prove. ■

Theorem 1. For k ≥ 2, there exists an equivariant filtration generator F of type 2 such that its
zero-dimensional persistence diagrams are at least as expressive as k-FWL.

Proof. The main idea involves harnessing the colours of k-tuples. Denote by F(G) = (KG, fKG
)

the output of our filtration generation. For a given graph G, we set KG to be the simplicial complex
of dimension zero with 0-simplices given by the vertices of G. Let CG be the multiset of colours
assigned to the graph G by the k-FWL algorithm. Without loss of generality, we assume that the
k-FWL algorithm assigns colours that are always greater or equal than one.

Now, given a finite multiset S of colours, this is, a finite multiset of elements in N ∩ [2,+∞), we
define the representation of S as the concatenation

R(S) = c1 ∥
|S|n

i=2

0 ∥ r9(ci),

where S =
{{
c1, . . . , c|S|

}}
is the multiset of colours ordered in non-decreasing order, and r9(ci)

is the representation of the number ci in bijective base-9 numeration. The map from the set of
multisets of colours to the set of natural numbers given by R is injective because the representation of
individual natural numbers in bijective base-9 is injective and because the digit zero does not appear
in the base-9 representation of the numbers, allowing for the separation of the different colours, and
for the recovery of the original multiset.

Set now fKG
to be the constant filtration function that assigns to each simplex the value R(CG). Thus,

the filtration generator F is equivariant because the k-FWL algorithm outputs the same multiset of
colours for isomorphic graphs G ≃ G′, and then the representation of the multiset of colours is the
same for both graphs and yield the same constant filtration function.

Finally, take two non-isomorphic graphs G and G′. By definition of F , the simplicial complexes
KG and KG′ contain only vertices, yielding non-empty persistence diagrams only in dimension
zero. Particularly, the zero-dimensional persistence diagrams of G and G′ are multisets containing
as many non-diagonal points as the number of vertices in the graphs of the form (R(CG),+∞)
and (R(CG′),+∞), respectively. Since the graphs are non-isomorphic, the multisets and their
representations are different and thus the persistence diagrams are different. ■
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Theorem 3. Given 1-WL colourings of two graphs G and G′ that are different, there exists a filtration
of G and G′ such that their persistence diagrams in dimension 0 are also different.

Proof. Since the colourings are different, there is an iteration h of 1-WL such that the label sequences
of G and G′ are different. We thus have at least one colour—equivalently, one label—whose count
is different. Let L(h) := {l1, l2, . . . } be an enumeration of the finitely many hashed labels at
iteration h. We can build a filtration function f by assigning a vertex v with label li to its index, i.e.
f(v) := i, and setting f(v, w) := max {f(v), f(w)} for an edge (v, w). The resulting 0-dimensional
persistence diagrams for G and G′, denoted by D0 and D′

0, respectively, now contain tuples of the
form (i, j). Moreover, each vertex is guaranteed to give rise to exactly one such pair since each vertex
creates a connected component in 0-dimensional persistent homology. Letting µ(i,j)(D0) refer to the
multiplicity of a tuple in D0, we know that, since the label count is different, there is at least one
tuple (k, l) with µ(k,l)(D0) ̸= µ(k,l)(D′

0). Hence, D0 ̸= D′
0. ■

Prior to stating Corollary 2 concerning CFI graphs, we must first provide a precise definition of
these structures. These definitions can also be found in Cai et al. [21, Section 6]. CFI graphs
are constructed from a family of graphs {Xk}k≥2. For each k ≥ 2, we construct a pair of non-
isomorphic CFI graphs (Gk, Hk) such that Gk and Hk cannot be distinguished by the (k − 1)-FWL
algorithm but can be distinguished by the k-FWL algorithm. Concretely, Xk is defined as the
graph (Vk, Ek) where (i) Vk = Ak ∪ Bk ∪ Mk such that Ak = {ai}ki=1, Bk = {bi}ki=1, and
Mk = {mS : S ⊆ {1, . . . , k}, |S| is even}, and (ii) Ek = {(mS , ai) : i ∈ S} ∪ {(mS , bi) : i ̸∈ S}.
Given any finite and connected graph G with at least degree two for all vertices, we can use the
graphs Xk to build new graphs X(G) and X̃(G) that allows us to construct the CFI graphs. X(G) is
built as follows. For each vertex v of G, we replace v by a copy of Xdeg v, called X(v). Then, for
each edge {u, v} of G, we associate to each of its endpoints u and v one of the pairs {ai, bi} from
X(u) and X(v), denoting the pairs as {a({u, v}, u), b({u, v}, u)} and {a({u, v}, v), b({u, v}, v)},
respectively. Finally, for each of edges {u, v} of G, we add the edges {a({u, v}, u), a({u, v}, v)}
and {b({u, v}, u), b({u, v}, v)} to G, discarding the original edge. The graph X̃(G) is constructed
in the same way as X(G), but we arbitrarily choose one edge {u, v} of G and, instead of adding the
previous two edges, we add the edges {a({u, v}, u), b({u, v}, v)} and {a({u, v}, v), b({u, v}, u)}.
Finally, Gk and Hk are given by Gk = X(Tk) and Hk = X̃(Tk) where Tk is a degree-three graph
with separator size k. In the original construction, these graphs are also coloured, but we will not
need this information for the proof of Corollary 2.
Lemma 4. For any finite and connected graph G, X(G) and X̃(G) have no cycles of length 3, and
thus, no cliques of size 3 or more.

Proof. Let γ be a cycle of X(G) of length three. First, note that there are no cycles of length 3 in the
graphs Xk for any k ≥ 1. This is because all edges go from Mk to a subset Ak or Bk. This implies
that, in order to have a cycle, one needs at least 4 edges, passing twice by the set Mk. Therefore,
the cycle γ must contain at least one edge e connecting two subgraphs X(u) and X(v) for u and v
original vertices of G. The endpoints of this edge must be connected by design to two disjoint sets of
type Mk of the subgraphs X(u) and X(v), respectively. However, if the cycle γ is of length three,
this means that the two endpoints of e are connected to the same element, implying that both sets Mk

are not disjoint and arriving at a contradiction. The proof for X̃(G) is analogous. ■

Corollary 2. For any k ≥ 2, the CFI graphs Gk and Hk have no cycles of length 3, and thus, no
cliques of size 3 or more.

Proof. This is a direct consequence of Lemma 4. ■

Theorem 4. Let n = ab with integers a, b ≥ 3. Then, the 1-WL test cannot distinguish between a
cycles of length b, b cycles of length a, and a single cycle of length n.

Proof. In all three cases, each graph consists of n vertices, with each vertex having a degree of two.
Initially, all vertices across the three graphs are assigned the same colour c. During the first iteration,
each node receives as input the tuple (c, {{c, c}}). Consequently, after this iteration, all vertices in
the three graphs obtain the same colour assignment. Since all vertices have the same colour at the end
of the first iteration, the algorithm terminates. This occurs because the partition of nodes generated
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FIGURE S.2: The image shows three graphs composed of three disjoint cycles of length four, four disjoint cycles
of length three, and a single cycle of length twelve. For 1-WL, all vertices are initially assigned the same colour,
in this case blue. During the first iteration, the RELABEL function for each vertex receives the tuple (•, {{•, •}}).
Consequently, all vertices in the three graphs receive the same new colour, keeping intact the initial partitions,
finishing the algorithm. Thus, the final multiset of colours is the same for all three cases (twelve blue colours),
making 1-WL unable to distinguish between these three graphs.

by the colours after the first iteration is identical to the partition from the initial assignment. As a
result, the 1-WL test fails to distinguish between the three cases. ■

An example for a = 3, b = 4 is provided in Fig. S.2. We end this section with two results concerning
other graph properties that are being captured by persistent homology.
Proposition 2. Given any filtration f of a graph G with a single connected component such that the
values of f of the endpoints of edges are strictly lower than the values of their corresponding edges,
Algorithm 1, used to compute β0, yields an upper bound of diam(G).

Proof. We can provide a procedure to obtain an upper bound d of diam(G) alongside the calculation
of D0. To this end, we set d = 0. While calculating D0 with Algorithm 1, we check for each edge
whether it is a destroyer, or a regular edge. If the edge is a destroyer, we increase d by one; otherwise,
we do nothing. This procedure works because diam(G) is upper bounded by the diameter of the
minimum spanning tree of G. Our estimate d counts the number of edges in such a tree. We thus
have diam(G) ≤ d. The bound is tight for some graphs, such as line graphs. ■

Proposition 3. Given any filtration f of a graph G, Algorithm 1 yields an upper bound of the girth
of G.

Proof. Similar to Proposition 2, we can use the calculation of D0, the persistence diagram in
dimension 0, of the filtration function to obtain an upper bound of the girth of the graph. We
calculate D0 with Algorithm 1, checking once again for each edge whether it is a creator or destroyer.
If the edge is a creator, we stop and set our upper bound of the girth g to be the number of vertices in
the connected component that contains the endpoints of the edge. Since the addition of the respective
edge is guaranteed to create a cycle—the edge is a creator—the cycle has to make use of at most
as many vertices as the number of vertices in the connected component to which it belongs. Our
estimate g thus constitutes an upper bound of the girth of the graph. ■

Propositions 2 and 3 indicate that persistent homology captures more than ‘just’ topological inform-
ation about a graph. We substantiate these theorems with empirical results concerning different
filtrations and other graph properties in Section 5.3, thus showing how a topological perspective
complements and enriches graph-learning tasks.

F Topology and the Weisfeiler–Leman Hierarchy
In the following, we want to briefly extend the argumentation of the expressivity of persistent
homology with respect to the Weisfeiler–Leman hierarchy. Since 1-WL is oblivious to certain
topological structures such as cycles [4], the existence of graphs with different Betti number counts
proves that persistent homology is strictly more expressive than 1-WL. For example, consider a graph
consisting of the union of two triangles, i.e. . This graph has β0 = β1 = 2 since it consists of two
connected components and two cycles. If we change the connectivity slightly to obtain a hexagon, i.e.

, we obtain a graph with β0 = β1 = 1. 1-WL is not able to distinguish between these graphs, but
persistent homology can, since the Betti numbers of the graph are still encoded in the persistence
diagram as essential features. Note that Theorem 3 does not apply to arbitrary filtrations since the
theorem requires knowing the correct labels assigned by 1-WL. Finding filtration functions that
are able to split graphs in a manner that is provably equivalent to 1-WL remains an open research
question.
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TABLE S.1: Success rate (↑) of distinguishing pairs of connected cubic graphs when using five different
filtrations at varying expansion levels of the graph (denoted by k). Due to the regularity of each graph, k = 3 is
omitted since the clique complex of the graph is exactly the same as for k = 2. These graphs can be distinguished
by 2-FWL but not by 1-WL.

Data

k = 1 k = 2

Filtration

D O F L V D O F L V

cub06 0.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
cub08 0.00 0.90 0.70 0.00 0.00 0.90 0.90 0.90 1.00 0.90
cub10 0.00 0.98 0.66 0.00 0.00 0.81 0.99 0.88 1.00 0.85
cub12 0.00 0.99 0.64 0.00 0.00 0.80 1.00 0.87 1.00 0.87
cub14 0.00 0.99 0.62 0.00 0.00 0.79 1.00 0.86 1.00 0.89

G Additional Expressivity Experiments
This section contains additional expressivity experiments that had to be excluded from the main paper
for reasons of space.

G.1 Additional Results for Connected Cubic Graphs

We start our supplementary experiments by distinguishing connected cubic graphs, i.e. 3-regular
graphs. These graphs cannot be distinguished by 1-WL, but they can be distinguished by 2-FWL [14,
65]. As such, they provide a good example of how different filtrations harness different types
of graph information. Table S.1 shows the results. We first observe that the degree filtration is
incapable of distinguishing graphs for k = 1. This is a direct consequence of the regularity—since the
function is constant on the graph, persistent homology cannot capture any variability. This changes,
however, when higher-order structures—triangles—are included for k = 2. We also observe that
the Laplacian-based filtration for k = 2 exhibits strong empirical performance; in the absence of
additional information, the spectral properties captured by the Laplacian help in distinguishing graphs.
The Ollivier–Ricci curvature filtration is performing similarly well also for the same dimension, while
it outperforms the Laplacian filtration for k = 1. In contrast to the Laplacian-based filtration, it does
not require the calculation of eigenvalues, which may be prohibitive for larger graphs.13 Finally, we
see that the Forman–Ricci curvature filtration, a purely combinatorial quantity depending only on
local counts, is consistently outperformed by the Ollivier–Ricci curvature for k = 1. However, for
k = 1, the Forman–Ricci filtration outperforms the Laplacian filtration. Finally, the Vietoris–Rips
filtration is incapable of distinguishing the graphs for k = 1, and performs similarly to the Forman–
Ricci curvature for k = 2, suggesting that filtrations based on distances are not capable of capturing
the graph structure in an optimal way.

G.2 Additional Results for the BREC Data Set

Table S.2 shows BREC data set results, itemised by the value of k, while Table S.3 provides a
summary and performance comparison of the persistent homology results with other baselines.

G.3 Additional Figures for Graph-Property Prediction Tasks

Fig. S.3 shows the distributions of graph properties that we predict in the main paper in Section 5.3.

H Additional Graph Classification Experiments
To assess the capacity of persistent homology in graph learning tasks, we have designed a set of
graph classification experiments that use the filtrations introduced in Section 5 to extract persistence
diagrams from graph classification data set to perform inference on them. Two fundamental differ-
ences between our approach and the one used in [45] are that, we do not learn an optimal filtration
13Ollivier–Ricci curvature requires solving optimal transport problems, for which highly efficient approximative

solvers are available [33].
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TABLE S.2: Success rate (↑) for distinguishing pairs of instances of the BREC data set when using five different
filtrations at varying expansion levels of the graph (denoted by k). Due to combinatorial constraints, we did
not calculate the Vietoris–Rips filtration for k = 4. Legend and number of graphs per category: B (Basic, 60),
R (Regular, 100), E (Extension, 100), C (CFI, 100), 4, 20 (4-Vertex Condition), D (Distance-Regular, 20) graphs,
respectively and A (average over full data set, 400).

k = 1

Data
Filtration

D O F L V

Basic (60) 0.03 0.93 0.87 1.00 0.00
Regular (100) 0.00 0.42 0.32 0.00 0.00
Extension (100) 0.07 0.76 0.44 0.94 0.00
CFI (100) 0.03 0.03 0.03 0.06 0.03
4-VC (20) 0.00 0.00 0.00 0.00 0.00
DR (20) 0.00 0.00 0.00 0.05 0.00
Average (400) 0.03 0.44 0.33 0.40 0.01

k = 2

Data
Filtration

D O F L V

Basic (60) 0.78 1.00 0.98 1.00 0.52
Regular (100) 0.39 0.54 0.50 0.48 0.39
Extension (100) 0.26 0.92 0.59 1.00 0.11
CFI (100) 0.03 0.03 0.03 0.06 0.03
4-VC (20) 0.00 0.00 0.00 0.00 0.00
DR (20) 0.00 0.00 0.00 0.05 0.00
Average (400) 0.29 0.52 0.43 0.54 0.21

k = 3

Data
Filtration

D O F L V

Basic (60) 0.83 1.00 0.98 1.00 0.58
Regular (100) 0.85 0.93 0.91 0.93 0.85
Extension (100) 0.29 0.92 0.59 1.00 0.16
CFI (100) 0.03 0.03 0.03 0.06 0.03
4-VC (20) 1.00 1.00 1.00 1.00 1.00
DR (20) 0.00 0.00 0.00 0.05 0.05
Average (400) 0.47 0.67 0.58 0.70 0.40

k = 4

Data
Filtration

D O F L V

Basic (60) 0.83 1.00 0.98 1.00 —
Regular (100) 0.89 0.97 0.95 0.97 —
Extension (100) 0.29 0.92 0.59 1.00 —
CFI (100) 0.03 0.03 0.03 0.06 —
4-VC (20) 1.00 1.00 1.00 1.00 —
DR (20) 0.00 0.00 0.00 0.05 —
Average (400) 0.48 0.68 0.59 0.71 —
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TABLE S.3: Success rate (↑) for distinguishing pairs of instances of the BREC data set when using four different
filtrations for k = 4. Vietoris–Rips filtration not computed for k = 4 due to computational constraints. The
data sets Regular, 4-Vertex Condition, and Distance Regular, from Table 3 are merged into the All
regular data set. Green indicates the best performing algorithm, while orange indicates the second best.

Data SOTA Filtration (k = 4)

3-WL N2 D O F L

Basic (60) 1.000 1.000 0.83 1.000 0.983 1.000
All regular (140) 0.36 0.986 0.78 0.84 0.82 0.843
Extension (100) 1.000 1.000 0.29 0.920 0.59 1.000
CFI (100) 0.600 0.00 0.03 0.03 0.03 0.060

Average (400) 0.68 0.745 0.48 0.68 0.59 0.710
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FIGURE S.3: Distribution of maximum radii, maximum diameters, and girths in the ogbg-molhiv molecular
graph data set [49]. The values are concentrated on the lower end of the spectrum, with medians of 6, 11, and 5
and maximums of 47, 93, and 36, respectively. The maximum value for the girth is computed without taking
into account infinite values.

and also we do not use deep learning models to perform the classification, as we are interested
into the capacity of persistent homology to perform classification, and not in its combination with
neural networks. For this endeavour, we train a Random Forest classifier on the persistent images [2]
computed from the persistence diagrams extracted from the input graphs using the previous filtrations
up to dimension k = 2. We test our approach in the MUTAG [34], IMDB-Binary [98], PROTEINS [15],
NC1 [94], and ogbg-molhiv [49] data set. Except for ogb-molhiv, we perform a Stratified 3-Fold
experiment and provide the average and standard deviation of the multiple runs. For ogbg-molhiv,
we perform only one experiment instance with the official train and test splits. The results are shown
in Table S.4. We observe that, although we discard the data set features when using persistent
homology, we are able to achieve suitably good results on some of the data sets, such as MUTAG
and IMDB-Binary [39], even surpassing state-of-the-art results reported in Hofer et al. [45] and
O’Bray et al. [71] for IMDB-Binary, MUTAG, and NCI1. For the ogbg-molhiv, however, we obtain
consistent ROC-AUC values of 0.5, which is the same as random guessing. Our hypothesis is that
molecular graphs rely on the annotated data set features to perform well, and the isolated topological
information is not enough to perform the classification. The success of the experiments suggests
that persistent homology is capable of capturing essential structural information about the graphs to
classify and thus, suggests that persistent homology can be expressive in practice. We leave a more
structured and comprehensive benchmark for persistent homology-like methods for graph-learning
tasks to future work.

I Additional results on alpha complexes
As the last set of experiments, we repeat the experiments from Section 5 except for the the property
prediction tasks on random graphs, but using an alpha complex filtration. Alpha complex filtrations [36,

28



On the Expressivity of Persistent Homology in Graph Learning

TABLE S.4: Graph classification average accuracy (↑) and standard deviation in test for the experiments with
data set IMDB-Binary (I), PROTEINS (P), MUTAG (M), and NCI1 (N), and ROC-AUC (↑) for the ogbg-molhiv
(O) test data set. The results are averaged over three runs using a stratified 3-means for all data set except for
ogbg-molhiv, where only one run is performed. The best results are highlighted in bold. Experiments with
the Vietoris–Rips filtration for the PROTEINS and molhiv are not reported for k = 2 due to out-of-resources
errors during execution. S1 and S2 refer to accuracy of the most effective methods reported in [71] and [45],
respectively. The abbreviation DS stands for data set.

k = 1

DS SOTA Filtration

S1 S2 D O F L V

P 0.75 ± 0.05 0.74 ± 0.03 0.70 ± 0.01 0.74 ± 0.01 0.72 ± 0.02 0.72 ± 0.02 0.70 ± 0.00
I 0.74 ± 0.04 0.75 ± 0.05 0.75 ± 0.02 0.71 ± 0.01 0.69 ± 0.03 0.65 ± 0.01 0.68 ± 0.03
M 0.87 ± 0.08 - 0.86 ± 0.01 0.87 ± 0.04 0.90 ± 0.04 0.79 ± 0.06 0.87 ± 0.01
N - 0.71 ± 0.02 0.68 ± 0.00 0.73 ± 0.00 0.69 ± 0.01 0.67 ± 0.00 0.66 ± 0.01
O - - 0.50 0.50 0.50 0.50 0.50

k = 2

DS SOTA Filtration

S1 S2 D O F L V

P 0.75 ± 0.05 0.74 ± 0.03 0.70 ± 0.02 0.73 ± 0.02 0.70 ± 0.01 0.68 ± 0.01 -
I 0.74 ± 0.04 0.75 ± 0.05 0.73 ± 0.03 0.71 ± 0.02 0.72 ± 0.03 0.68 ± 0.03 0.66 ± 0.02
M 0.87 ± 0.08 - 0.86 ± 0.01 0.89 ± 0.04 0.89 ± 0.03 0.81 ± 0.04 0.87 ± 0.03
N - 0.71 ± 0.02 0.68 ± 0.00 0.74 ± 0.01 0.70 ± 0.00 0.68 ± 0.00 0.69 ± 0.01
O - - 0.50 0.50 0.50 0.50 -

Section III.4] are geometric filtrations, meaning that they are computed from point clouds in the
Euclidean space, in our case, coming from embeddings of graph vertices. Concretely, we embed
the vertices of our graphs in R3 using Laplacian eigenmaps [11]. Note that the embedding map
is an arbitrary choice, and we leave the exploration of other embeddings for future work, making
the use of alpha complexes in this context a proof of concept. Tables S.5 to S.10 contain the
BREC, classification, connected cubic, minimal Cayley, strongly-regular, and property prediction
experiments, respectively, using the alpha complex filtration.

For BREC, we observe that the alpha complex filtration obtains almost perfect success rate in
distinguishing the non-isomorphic graphs, failing only on the CFI category, where the alpha complex
filtration still shows an strong success rate, outperforming the other filtrations and non-topological
methods by a large margin. For the other isomorphism datasets (connected cubic, minimal Cayley,
strongly-regular), alpha complexes obtain perfect accuracy in all cases.

For the classification tasks, though, we observe that the alpha complex filtration performs worse than
the best filtrations at each task worse than the other state-of-the-art methods. Due to the good results
in the graph isomorphism tasks, we hypothesize that the alpha complex is highly expressive (and
sensitive) and that the Random Forest with the persistence images overfits the data without further
regularization.

Finally, for the property prediction experiments, we observe that the alpha complex filtration, as in
the classification tasks, performs worse than the other filtrations except for the girth prediction, where
it obtains better results than curvature-based and degree filtrations.

Overall, our preliminary results suggest that the alpha complex filtration is highly expressive and
capable of capturing the graph structure, but it is also sensitive to noise and overfitting, at least for
Laplacian eigenmaps embeddings.

J Implementation and Hardware details
Our implementation is based on Python 3. We plan on releasing the code under a BSD-3-Clause
license. For review purposes, the code has been attached to the supplementary materials. Please
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TABLE S.5: Success rate (↑) for distinguishing pairs of instances of the BREC data set when using the alpha
complex filtration described at Appendix I and persistence diagrams up to varying dimensions (denoted by k).
Legend and number of graphs per category: B (Basic, 60), R (Regular, 100), E (Extension, 100), C (CFI, 100), 4,
20 (4-Vertex Condition), D (Distance-Regular, 20) graphs, respectively and A (average over full data set, 400).
For the results using the other filtrations, see Table S.2.

Data k = 1 k = 2 k = 3

Basic (60) 1.00 1.00 1.00
Regular (100) 1.00 1.00 1.00
Extension (100) 1.00 1.00 1.00
CFI (100) 0.63 0.80 0.87
4-Vertex_Condition (20) 1.00 1.00 1.00
Distance_Regular (20) 1.00 1.00 1.00
Average (400) 0.91 0.95 0.97

TABLE S.6: Graph classification average accuracy (↑) and standard deviation in test for the experiments with
data set IMDB-Binary (I), PROTEINS (P), MUTAG (M), and NCI1 (N), and ROC-AUC (↑) for the ogbg-molhiv
(O) test data set when using the alpha complex filtration described at Appendix I and persistence diagrams up to
varying dimensions (denoted by k). The results are averaged over three runs using a stratified 3-means for all
data set except for ogbg-molhiv, where only one run is performed. The best results are highlighted in bold. For
the results using the other filtrations, see Table S.4.

Data set k = 1 k = 2

P 0.66 ± 0.02 0.66 ± 0.01
I 0.59 ± 0.04 0.57 ± 0.04
M 0.79 ± 0.03 0.79 ± 0.03
N 0.62 ± 0.01 0.60 ± 0.02
O 0.48 ± 0.00 0.50 ± 0.00

TABLE S.7: Success rate (↑) of distinguishing pairs of connected cubic graphs when using the alpha complex
filtration described at Appendix I and persistence diagrams up to varying dimensions (denoted by k). These
graphs can be distinguished by 2-FWL but not by 1-WL. For the results using the other filtrations, see Table S.1.

Data k = 1 k = 2

cub06 1.00 1.00
cub08 1.00 1.00
cub10 1.00 1.00
cub12 1.00 1.00
cub14 1.00 1.00

TABLE S.8: Success rate (↑) for distinguishing pairs of minimal Cayley graphs when using the alpha complex
filtration described at Appendix I and persistence diagrams up to varying dimensions (denoted by k). For the
results using the other filtrations, see Table 2.

Data k = 1 k = 2

cay12 1.00 1.00
cay16 1.00 1.00
cay20 1.00 1.00
cay24 1.00 1.00
cay32 1.00 1.00
cay36 1.00 1.00
cay60 1.00 1.00
cay63 1.00 1.00
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TABLE S.9: Success rate (↑) for distinguishing pairs of strongly-regular graphs when using the alpha complex
filtration described at Appendix I and persistence diagrams up to varying dimensions (denoted by k). 2-FWL
cannot distinguish between any of these pairs. For the results using the other filtrations, see Table 1.

Data k = 1 k = 2 k = 3

16622 1.00 1.00 1.00
251256 1.00 1.00 1.00
261034 1.00 1.00 1.00
281264 1.00 1.00 1.00
291467 1.00 1.00 1.00
351668 1.00 1.00 1.00
351899 1.00 1.00 1.00
361446 1.00 1.00 1.00
401224 1.00 1.00 1.00

TABLE S.10: Accuracy (↑) when predicting the properties of graphs in the ogbg-molhiv molecular graph
data set [49] using the alpha complex filtration described at Appendix I and persistence diagrams up to varying
dimensions (denoted by k). For the results using the other filtrations, see Table 4.

Data k = 1 k = 2

Diameter 0.00 0.01
Girth 0.41 0.40
Radius 0.00 0.01

use pip install -r requirements.txt on the root folder of the code to set up the environment.
The experiments were executed on a server with an AMD EPYC 7452 (128) @ 2.350GHz CPU,
503GiB of RAM memory, no GPU acceleration, and Ubuntu 22.04.4 LTS with the 6.5.0-28-generic
Linux kernel. Each experiment was executed on a single process. Not completed experiments in the
main text were due to process termination by the operating system with the previous constraints.

• To perform the BREC experiments, use the script BREC_experiments.py.
• To perform the classification experiments, use the script classification_tasks.py.
• To perform the three non-BREC expressivity experiments (cubic, regular, and Cayley graphs), use

the script simple_isomorphism_experiments.py.
• To perform the graph properties prediction experiments, use the code
property_prediction_experiments.py.

• To perform the graph properties prediction experiments for the Watts–Strogatz and Erdős–Rényi
random graphs, use the code predict_diameter_random_graphs.py.

The easiest way to perform the experiments in all the cases is using the flag -a, that executes all
the experiments without the need of specifying specific parameters about the datasets and filtrations.
Once the experiments are performed, the tables from the paper can be generated using the flag -t on
the same scripts.

K Licenses
We do not redistribute any existing data sets, but briefly mention their licenses here. Expressivity
experiments on known graphs make use of an existing database [31], which does not directly specify
any licensing requirements but asks for a citation. The BREC data set and the ogbg-molhiv data
set are distributed under a MIT license. All other graph-classification data sets, i.e. IMDB-Binary,
PROTEINS, MUTAG, and NCI1, do not specify a license. They are distributed as part of the ‘TUDatasets’
repository, and can be accessed via https://chrsmrrs.github.io/datasets/. We make our
code available under a 3-Clause BSD License.
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