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Abstract

The success of deep learning is driven by the counter-intuitive ability of over-parameterized
deep neural networks (DNNs) to generalize, even when they have sufficiently many parameters
to perfectly fit the training data. In practice, test error often continues to decrease with
increasing over-parameterization, a phenomenon referred to as double descent. This allows
deep learning engineers to instantiate large models without having to worry about over-
fitting. Despite its benefits, however, prior work has shown that over-parameterization
can exacerbate bias against minority subgroups. Several fairness-constrained DNN training
methods have been proposed to address this concern. Here, we critically examine MinDiff, a
fairness-constrained training procedure implemented within TensorFlow’s Responsible Al
Toolkit, that aims to achieve Equality of Opportunity. We show that although MinDiff
improves fairness for under-parameterized models, it is likely to be ineffective in the over-
parameterized regime. This is because an overfit model with zero training loss is trivially
group-wise fair on training data, creating an “illusion of fairness,” thus turning off the MinDiff
optimization (this will apply to any disparity-based measures which care about errors or
accuracy. It won’t apply to demographic parity). We find that within specified fairness
constraints, under-parameterized MinDiff models can even have lower error compared to
their over-parameterized counterparts (despite baseline over-parameterized models having
lower error compared to their under-parameterized counterparts). We further show that
MinDiff optimization is very sensitive to choice of batch size in the under-parameterized
regime. Thus, fair model training using MinDiff requires time-consuming hyper-parameter
searches. Finally, we suggest using previously proposed regularization techniques, viz. L2,
early stopping and flooding in conjunction with MinDiff to train fair over-parameterized
models. In our results, over-parameterized models trained using MinDiff+regularization with
standard batch sizes are fairer than their under-parameterized counterparts, suggesting that
at the very least, regularizers should be integrated into fair deep learning flows.

1 Introduction

Over the past few years, machine learning (ML) solutions have found wide applicability in wide range
of domains. However, recent work has shown that ML methods can exhibit unintended biases towards
specific population groups, for instance in applications like hiring (Schumann et al., 2020), credit verification
(Khandani et al.| [2010)), facial recognition (Buolamwini & Gebrul [2018} |Grother et al.| [2010; Ngan & Grother,
2015), recidivism prediction (Chouldechoval 2017) and recommendation systems (Biega et al., [2018; [Singh &
Joachims| |2018)), resulting in negative societal consequences. To address this concern, there is an growing
and influential body of work on mitigating algorithmic unfairness of ML models. These solutions are
being integrated within widely used ML frameworks and are beginning to find practical deployment (AI}
Akihiko Fukuchi) 2020)). As ML fairness methods make the transition from theory to practice, their ability to
achieve stated goals in real-world deployments merits closer examination.

Methods to train fair models can be broadly categorized based on the stage at which they are deployed:
pre-training, in-training, or post-training. Of these, only in-training methods substantively modify the
model training process. This paper examines the performance of MinDiff (Prost et al., |2019)), the principal
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in-training method integrated within TensorFlow’s Responsible Al Framework . We are particularly
interested in MinDiff for training fair deep learning models because, given TensorFlow’s widespread adoption,
there is good reason to believe that it will be picked as the default choice by practitioners working within
this framework.

We evaluate MinDiff on two datasets, Waterbirds and CelebA that are commonly used in fairness literature,
and observe several notes of caution. Because the success of deep learning can be attributed at least in part
to the surprising ability of over-parameterized deep networks (networks with sufficiently many parameters to
memorize the training dataset) to generalize (Nakkiran et al.| [2020)), we begin by evaluating the relationship
between model capacity and fairness with MinDiff. We observe that MinDiff does increase fairness for small,
under-parameterized models, but is almost entirely ineffective on larger over-parameterized networks. Thus,
in some cases, under-parameterized MinDiff models can have lower fairness-constrained error compared to
their over-parameterized counterparts even though over-parameterized models are always better on baseline
error (i.e., error on models trained without MinDiff optimization). We caution that when using MinDiff for
fairness, ML practitioners must carefully choose model capacity, something which is generally unnecessary
when fairness is not a concern and the goal is simply to minimize error.

We find the reason MinDiff is ineffective in the over-parameterized regime is because an overfit model with
zero training loss means any disparity-based unfairness necessarily goes to zero on the training dataset,
creating an “illusion of fairness” during training, thus turning off the MinDiff optimization (this will apply to
any disparity-based measures which care about errors or accuracy. It won’t apply to demographic parity).
Thus, we explore whether strong regularization used along with MinDiff can alleviate its ineffectiveness.
Specifically, we consider two classes of regularization techniques: implicit (batch sizing (Smith et al.l 2021}
Barrett & Dherinl [2021)) and early stopping (Morgan & Bourlard, |1990)) and explicit (weight decay (Krogh &
Hertz, [1992) and a recently proposed “loss flooding" method (Ishida et al.,2020)) regularizers. We find that:
(1) batch sizing only helps for medium sized models around the interpolation threshold; (2) the remaining
three methods all improve fairness in the over-parameterized regime; (3) early-stopping and flooding result in
the fairest models for the Waterbirds and CelebA datasets, respectively; and (4) with effective regularization,
over-parameterized models are fairer than their under-parameterized counterparts.

2 Related Work

There are several techniques in literature to mitigate algorithmic bias. These techniques can be broadly
categorized as: pre-processing, in-processing and post-processing. Pre-processing techniques aim to de-identify
sensitive information and create more balanced training datasets (Quadrianto et al., 2019; Ryu et al, |2018;
Feldman et al.l [2015; [Wang & Deng, [2019; Karkkainen & Joo| |2021} |Dixon et al., 2018). In-processing (Prost
et all [2019; [Cherepanova et all [2021} [Sagawa et al., 2020a3bt Padala & Gujar] 2021} [Agarwal et al. 2018}
Zafar et al 2019} Donini et al., [2018; [Lahoti et al, [2020; Beutel et al., [2019; Martinez et al., [2020; [Wadsworth]
et all 2018 |Goel et al.| [2018} Wang & Deng} [2019; [Hashimoto et al., [2018)) techniques alter the training
mechanism by imposing fairness constraints to the training objective, or utilize adversarial training
let al.l |2017; [Zhang et al. 2018; Madras et al., 2018) to make predictions independent of sensitive attributes.
Post-processing techniques (Hardt et al., [2016b; Wang et al), 2020} [Savani et al. [2020; |Chzhen et al., 2019;
Jiang et al., [2020f [Wei et al., 2020) alter the outputs of an existing model, for instance, using threshold
correction (Zhou & Liu, 2006} |Collell et al., 2016} [Menon et al. [2021a)) that applies different classification
thresholds to each sensitive group (Hardt et al) 2016b)). In this paper, we focus on MinDiff
, the primary in-processing procedure implemented within TensorFlow’s Responsible Al toolkit. While
our quantitative conclusions might differ, we believe that similar qualitative conclusions will hold for other
in-processing methods because overfit models are trivially fair.

With the growing adoption of large over-parameterized deep networks, recent efforts have sought to investigate
their fairness properties (Menon et al., 2021b; Sagawa et al. [2020a; |Cherepanova et al., [2021; [Sagawa)
let al., 2020b)). Pham et al.| (2021) observed that over-parameterized ERM models have better worst-group
generalization compared to their under-parameterized counterparts. However, [Maity et al.| (2022) warn
that baseline ERM models should not be considered state-of-the-art to train fair over-parameterized models.
[Sagawa et al| (2020b]) proposed a pre-processing technique by investigating the role of training data
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characteristics (such as ratio of majority to minority groups and relative informativeness of spurious versus
core features) on fairness and observed that sub-sampling improves fairness in the over-parameterized regime.
Menon et al.| (2021b]) found that post-processing techniques including retraining with sub-sampled majority
groups and threshold correction also enhance fairness in over-parameterized models. |Cherepanova et al.
(2021) report that in-processing convex surrogates of fairness constraints like equal loss, equalized odds
penalty, disparate impact penalty, etc., (Padala & Gujar] 2021) are ineffective on over-parameterized models,
but do not propose any techniques to increase the effectiveness of in-processing methods. [Wald et al.| (2022)
theoretically show that interpolating models cannot satisfy fairness constraints. However, it is not thoroughly
investigated how fairness constraints can be effectively implemented in over-parameterized models. It is
possible that using methods such as MinDiff may improve the training of fair over-parameterized models.
Our work is the first to systematically compare under- vs. over-parameterized deep models trained using
in-processing fairness methods using MinDiff as a representative method.

Regularization techniques (Morgan & Bourlard) [1990; [Srivastava et al. 2014; [Krogh & Hertz, |1992} Ishida,
et al., [2020) are popularly used in deep learning frameworks to avoid over-fitting. Lately, researchers have
also exploited the benefits of regularizers to train fair models. For example, [Sagawa et al.| (2020al) proposed
distributionally robust optimization (DRO) to improve worst-group generalization, but they observed that
their approach fails if training loss converges to zero. Hence, they use L2 weight regularization and early
stopping to improve fairness in the over-parameterized regime. Our paper systematically evaluates different
regularizers, including batch sizing, early stopping, weight decay and the recently proposed flooding loss (Ishida.
et al., [2020) for MinDiff training across different model sizes, and makes several new observations about the
role of regularization in enhancing fairness.

3 Methodology

We now describe our evaluation methodology.

3.1 Setup

In this paper, we consider binary classification problem on a training dataset D = {x;, a;, y; }~_;, where x;
is an input (an image for instance) a; € {0,1} is a sensitive attribute of the input, and y; € {0,1} is the
corresponding ground-truth label. The training data is sampled from a joint distribution Px 4y, over random
variables X, A, and Y. Deep neural network (DNN) classifiers are represented as a parameterized function
fo : X = [0, 1], where 0 are trainable parameters, obtained in practice by minimizing the binary cross-entropy
loss function Lp:

N
Lp= —% > lyi - log(folw)) + (1 —yi) - log(1 — folx:))] (1)
i=1

via stochastic gradient descent.

We denote the classification threshold as 7 which can be used to make predictions fp (z;7) as shown below

(2)

fola; ) = {1’ foko) = 7

0, otherwise.

Standard DNN training methods seek to achieve low test error P[fp(X;7) # Y] (typically, 7 = 0.5) but

performance conditioned on sensitive attributes can vary, leading to outcomes that are biased in favor of or

against specific sub-groups. Several fairness metrics have been defined in prior work to account for this bias;
in this paper, we will use the widely adopted equality of opportunity metric (Hardt et al., [2016a]).

Equality of Opportunity (Hardt et al.[2016a)) is a widely adopted fairness notion that seeks to equalize
false negative rates (FNR) across sensitive groups. For binary sensitive attributes the FNRg,p, is defined as:

FNRyap = [Bfo(X:7) = 0] = 1, A = 0] — B[fy(X;7) = 0]y = 1,A = 1]]. (3)
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As we describe next, MinDiff (and several other methods) seek to minimize the FNRg,, during training.

3.2 MinDiff Training

MinDiff (Prost et al., |2019) is an in-processing optimization framework that seeks to achieve a balance
between two objectives: low test error and low FNRg,,. For this, MinDiff proposes a modified loss function
L1 = Lp + ALy, where L is the total loss, that is a weighted sum of the cross-entropy loss, defined in
and Ly, a differentiable proxy for the FNRg,,. In the modified loss function, A € Ry is a
user-defined parameter that controls the relative importance of the fairness versus test error. The fairness
term in the modified loss function, £, uses the maximum mean discrepancy (MMD) distance between the
neural network’s outputs for the two sensitive groups when Y =1, i.e.,

Lar=MMD(fo(X)|A=0,Y =1, fo(X)|[A=1,Y =1). (4)

We refer the reader to the original MinDiff paper for a formal definition of the MMD distance (Prost et al.,
2019)).

3.3 Post-hoc Threshold Correction

Due to fairness requirements of the application, ML practitioners might seek to train models with an FNRg.p
lower than a specified threshold Apng. However, MinDiff does not explicitly constrain the FNRg,p; this can
be addressed using an additional post-processing threshold correction step, as proposed by (Hardt et al.,
2016b)). The idea is to use different classification thresholds for each sub-group, 74—g and 74—1, that are

selected such that the FNRg,, constraint is met and test error is minimized.:
IP[fo(X;Taz0) = 0]Y =1,A=0] - P[fy(X;7az1) = 0Y =1, A =1]| < Apnr, (5)

The two thresholds can be picked using grid search on a validation dataset; we refer to the resulting test
error as the fairness-constrained test error. Pareto front of fairness-constrained test error and ApNg 1S
used to compare different model sizes and fairness methods. In particular, a model or method is fairer if it
has lower fairness-constrained test error compared to the alternative for a fixed Apng.

3.4 Regularization Techniques

We evaluate four regularization techniques to improve performance of MinDiff on over-parameterized networks.

Reduced Batch Sizes: Due to the stochastic nature of SGD, smaller batch sizes can act as implicit
regularizers during training (Smith et al., [2021; Barrett & Dherinl [2021). This is because smaller batch sizes
provide a noisy estimate of the total loss L.

Weight Decay: Weight decay (Krogh & Hertz, [1992) explicitly penalizes the parameters 6 of the DNN
from growing too large. Weight decay adds a penalty, usually the L2 norm of the weights, to the loss function.

Early Stopping: Early stopping (Morgan & Bourlard), [1990) terminates DNN training earlier than the
point at which training loss converges to a local minima, and has been shown to be particularly effective for
over-parameterized deep networks (Li et al.[2019). A common implementation of early stopping is to terminate
training once the validation loss has increased for a certain number of gradient steps or epochs (Morgan &
Bourlard), [1990)). For models trained with MinDiff, we explore two versions of early stopping in which we use
either the primary loss, Lp, or total loss, L1, as a stopping criterion.

Flooding Regularizer: Finally, motivated by our goal to prevent the primary training loss from going to
zero (which then turns off MinDiff as well), we apply the flooding regularizer (Ishida et al.|2020) that encodes
this goal ezplicitly. Flooding operates by performing gradient descent only if Lp > b, where b is the flood level.
Otherwise, if £Lp < b, then gradient ascent takes place as shown in This phenomenon ensures
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Figure 1: We show the model-wise double descent behaviour on baseline models trained using (a) Waterbirds
and (b) CelebA datasets respectively. Interpolation threshold (shown in green dotted line) is the point where

the model is large enough to fit the training data. The region beyond the interpolation threshold is called the
over-parameterized regime.
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Figure 2: We show the (a) average test error, and (b) FNR,p versus model width for MinDiff optimization
with A = {0.0,0.5,1.0,1.5}’s on Waterbirds dataset. MinDiff optimization has negligible to no impact on
fairness in the over-parameterized models. However, for under-parameterized models, we find that increasing
A substantially reduces the FNR,,,.

that Lp floats around the flood level b and never approaches zero. We implement flooding by replacing the
primary loss term in £ with a new loss term:

»=|Lp—b|+b, (6)

which, in turn, enables continued minimization of the MinDiff loss term, £j;, over the training process.

4 Experimental Setup

We perform our experiments on the Waterbirds (Sagawa et al., [2020a)) and CelebA (Liu et al.l [2015) datasets
which have previously been used in fairness evaluations of deep learning models. Here, we describe network
architectures, training and evaluations for the two datasets.
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4.1 Waterbirds Dataset

Waterbirds is synthetically created dataset (Sagawa et al., 2020a) which contains water- and land-bird
images overlaid on water and land backgrounds. A majority of waterbirds (landbirds) appear in water (land)
backgrounds, but in a minority of cases waterbirds (landbirds) also appear on land (water) backgrounds. As
in past work, we use the background as the sensitive feature. Further, we use waterbirds as the positive class
and landbirds as the negative class. The dataset is split into training, validation and test sets with 4795,
1199 and 5794 images in each dataset respectively.

We follow the training methodology described in (Sagawa et al., 2020b)) to train a deep network for this
dataset. First, a fixed pre-trained ResNet-18 model is used to extract a d-dimensional feature vector p. This
feature vector is then converted into an m-dimensional feature y/ = ReLU (U ), where U € R™*4 is a random
matrix with Gaussian entries. A logistic regression classifier is trained on p’. Model width is controlled by
varying m, the dimensionality of p’, from 10 to 10, 000.
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Figure 3: We show the progress of primary loss and FNR,,,,, evaluated on training dataset, versus SGD steps
during MinDiff optimization (A = 1.5) for under-parameterized and over-parameterized models on CelebA
dataset. We find that over-parameterized models over-fits to the training data and achieve zero FNRg,p, thus
turning off MinDiff optimization. Whereas, FNRg,;, is positive in the under-parameterized models, allowing
for MinDiff optimization to be effective.

4.2 CelebA Dataset

The CelebA dataset consists of 202,599 celebrity face images annotated with 40 binary attributes including
gender, hair colour, hair style, eyeglasses, etc. In our experiments, we set the target label ) to be hair
color, which is either blond (Y = 1) or non-blond (Y = 0), and the sensitive attribute to be gender. Blond
individuals constitute only 15% of this dataset, and only 6% of blond individuals are men. Consequently
baseline models make disproportionately large errors on blond men versus blond women. The objective of
MinDiff training is to minimize the FNRg,, between blond men and blond women H The dataset is split into
training, validation and test sets with 162770, 19867 and 19962 images, respectively.

We used the ResNet-preact-18 model for this dataset, and vary model capacity by uniformly scaling the
number of channels in all layers.

4.3 Hyper-parameters and Training Details

Waterbirds We train for a total of 30,000 gradient steps using the Adam optimizer. For our baseline
experiments, we set batch size to 128 and use a learning rate schedule with initial learning rate = 0.01
and decay factor of 10 for every 10,000 gradient steps. We ran every experiment 10 times with random
initializations and report the average of all the runs. We trained and evaluated all the models using the
Waterbirds dataset on an Intel Xeon Platinum 8268 CPU (24 cores, 2.9 GHz).

INote that the MinDiff paper uses False Positive Rate, but this is totally arbitrary here since the class labels are arbitrary.
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CelebA We train for a total of 48,000 gradient steps using the Adam optimizer. We set the baseline
batch size to 128 and adopt a learning rate scheduler with initial learning rate of 0.0001 and decay factor
of 10 for every 16,000 gradient steps. In our experiments, we varied the number of channels in the first
ResNet-preact-18 block from 1 to 64 (the number of channels is then scaled up by two in each block). We
trained all the models using the CelebA dataset on NVIDIA 4 x V100 (32 GB) GPU cards.

For both datasets, we performed MinDiff training with values of A = {0.0,0.5,1.0,1.5}, where recall that
A controls the importance of the fairness objective. A = 0.0 corresponds to training with the primary loss
only, and we refer to the resulting model as the baseline model. To study the effect of batch sizing, we
trained additional models with batch sizes {8,32}. We explored with three different weight decay strengths
={0.001,0.1,10.0} and two different flood levels, b € {0.05,0.1}. We report the average + 95% confidence
interval in all figures and tables.

5 Experimental Results

5.1 Identifying the Interpolation Threshold

To distinguish between under- and over-parameterized models, we begin by identifying the interpolation
threshold; the point where the model is sufficiently large to interpolate the training data (achieve zero
error). Figure and Figure show the training and test error curves for baseline training versus
model width for the Waterbirds and CelebA datasets, respectively, showing interpolation thresholds at model
widths of 400 for Waterbirds and 11 for CelebA. On both the datasets, we also observe the double descent
phenomenon (Nakkiran et al., 2020), where the test error decreases with increasing model capacity beyond
the interpolation threshold. That is, for the original model (training without MinDiff), the largest models
provide high accuracy.
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Figure 4: We plot the fairness constrained test error with a Apng < 10% constraint on the MinDiff trained
models with A = {0.0,0.5,1.0,1.5} on (a) Waterbirds and (b) CelebA datasets respectively. On both these
datasets, we find that MinDiff is only effective for under-parameterized models.

5.2 MinDiff Evaluation

We now re-train our models with MinDiff optimization with A = {0.0,0.5,1.0,1.5}. shows the test
error and FNRg,,, versus model width for the Waterbirds dataset. In the under-parameterized regime, we
observe that, increasing the MinDiff weights significantly reduces the FNRg,, with only a small drop in test
accuracy. However, in the over-parameterized regime, we find that MinDiff training has no impact on either
test error or the FNRg,p.

shows the test error and FNRg,), for selected under- and over-parameterized models on the CelebA
dataset trained with MinDiff. Our conclusions are qualitatively the same as for Waterbirds. We find that,
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Figure 5: We plot the fairness constrained test error with a Apng < 10% constraint on the MinDiff trained
model with A = 1.5 on (a) Waterbirds and (b) CelebA datasets respectively. We find that smaller batch sizes
are only effective around the interpolation threshold.

Table 1: We pick three under-parameterized and four over-parameterized model widths and report the average
test error and FNR,,,, for baseline training and several values of A on CelebA dataset. We find that, in the
under-parameterized models, the drop in FNRg,, for MinDiff training vs baseline training is more compared
to that in the over-parameterized models. We report each data point by averaging over 10 runs.

Width A=0 A=05 A=1.0 A=15
Error FNR Gap Error FNR Gap Error FNR Gap Error FNR Gap
5 (Under-) 4.74+£0.07 48.77+144 555+0.39 39.85+382 546+0.36 40454558 547+0.34 37.06=+5.88
7 (Under-) 5.07+£0.07 47.35+1.53 576+05 40.27+2.45 5.64+0.52 427+3.12 548+04 43.05+4.2
9 (Under-) 5.31+0.07 44.784+1.72 572+04 4237+1.75 5.77+0.53 40.91+3.28 5.52+0.42 42.43+3.74
13 (Over-) 5.52+0.07 42.79+2.03 557+0.1 42.16+2.33 5.66+0.17 42.53+0.98 5.67+0.32 43.07+2.12
19 (Over-) 5.36+0.09 43.98+1.81 5.33+0.05 42.52+1.25 5424+0.07 42.63+1.01 545+0.11 41.34+1.41
55 (Over-) 4.98+0.07 44.144+1.55 5.05+0.07 42.46+1.28 5.24+0.06 42.65+1.85 547+0.15 41.93+1.88
64 (Over-) 4.99+0.06 42.54+2.01 5.11+0.06 43.12+2.04 528+0.12 41.8+232 540+0.15 41.56+2.7

MinDiff training significantly reduces the FNR,;, compared to the baseline model in the under-parameterized
regime, for example, from a 48% FNR gap without MinDiff to a 37% FNR gap with A = 1.5 for a model
width of 5. On the other hand, MinDiff training compared with the baseline model has a negligible effect on
both test error and FNRg,,, in the over-parameterized regime, sometimes even resulting in a (small) increase
in both.

Table 2: We tabulate the fairness constrained test error (with a Apnyr < 10% constraint) of early stopped
MinDiff models (trained with A = {0.5,1.0,1.5}) for different widths. We compare two methods for early
stopping (es) based on the stopping criterion: primary validation loss (es(L£p)) and total validation loss
(es(Lr)). We find that, for CelebA dataset, MinDiff 4+ es(Lp) is better than MinDiff + es(Lr).
A=05 A=1.0 A=15
Width =5 Width =19 Width =64 Width =5 Width =19 Width =64 Width=5 Width =19 Width =64

Noes 6.36+0.51 6.54+0.12 5.884+0.13 6.254+043 6.43+0.12 6.06+0.06 6.36+0.35 6.544+0.18 6.07 0.2
es(Lp) 6.17+0.34 591+£026 545+0.22 6.32+0.28 5824032 4.79+£0.17 637+£025 5.63+0.3 4.70 £0.07
es(Ly) T7.76£056 647+031 576+0.61 7.79+047 7.18+£0.58 6.05+0.53 8.65+0.65 7.38+0.77 6.80+0.64

We observe that MinDiff performs poorly for over-parameterized models: Figure [3| shows how the primary
loss and FNR,,;,’s change during SGD steps for under-parameterized and over-parameterized models on the
CelebA dataset. We note that at the beginning of training, the FNR,,, is small because randomly initialized
models make random predictions. These random predictions are fair w.r.t the error rates but not necessarily
fair according to other criteria like Demographic Parity. As training progresses, the over-parameterized model
eventually over-fits the training data at around 20,000 steps, achieving zero primary loss. This model also
appears to be trivially fair from the standpoint of the training data—observe that at the same point, the



Under review as submission to TMLR

FNRgap also goes to zero, and no further optimization takes place. On the other hand, the FNRg,, during
training remains positive for the under-parameterized model.

plots the fairness constrained test error with a Apnyr < 10% constraint using post-training threshold
correction on the MinDiff trained models. We can again observe that MinDiff is only effective for under-
parameterized models. For CelebA, the lowest fairness constrained test error is actually achieved by an
under-parameterized model. In other words, achieving fairness via MinDiff optimization requires careful
selection of model width, including exploring the under-parameterized regime.

Table 3: We tabulate the fairness constrained test error (with a Apnyr < 10% constraint) for different
regularization schemes used in conjunction with MinDiff optimization (A = 1.5) on CelebA dataset. The
performance of best regularizer is highlighted in bold for each model width. Notation: wd is weight decay,
es(Lp) is early stopping w.r.t primary loss and fl is flooding

Method Width =5 Width =19 Width = 64
Under- Over- Over-
A=0 5.924+0.19 6.51+0.11 5.76 £ 0.1
A=15 6.36 £0.35 6.54+0.18 6.07+0.2

A=15+wd=0.001 582+02 653£016 508+£0.15
A=15+wd=01 6.15+0.15 5.82+0.16 6.57+0.1
A=1.5+es(Lp) 6.37+0.25 5.63+£0.3 4.70 £0.07
A=15+1=0.05 6.28+0.25 6.30+£0.23 549+0.17
A=15+11=01 6.30+0.3 525+0.25 4.67+0.12

5.3 Impact of Regularization in Over-parameterized Regime

We now examine if additional regularization can help improve the fairness of MinDiff-regularized models in the
over-parameterized regime. Unless otherwise stated, in all subsequent evaluations we perform post-training
threshold correction with a Apng < 10% constraint and compare fairness constrained test error.

Batch sizing only helps around the interpolation threshold. Small batch sizes cause primary training
loss curves to converge more slowly, potentially providing more opportunity for MinDiff optimizations. In
Figure and Figure we plot fairness constrained test error curves versus model widths for different
batch sizes on the Waterbirds and CelebA datasets, respectively. We find that smaller batch sizes improve
fairness constrained test error only around the interpolation threshold for both the datasets, but do not
noticeably benefit smaller and larger models. On further examination, we note the benefits around the
interpolation threshold are because smaller batch sizes induce stronger regularization effects and push the
interpolation threshold to the right (see Appendix . As a result, MinDiff is effective on a slightly
increased range of model widths. However, other than this behaviour, we see no other benefits of using batch
sizing as a regularizer and do not explore it further.

Early stopping criterion. We evaluate two methods for early stopping. The first uses the primary
validation loss (MinDiff+es(Lp)) as a stopping criterion, while the second uses total validation loss for
stopping (MinDiff+es(Lr)). plots fairness constrained test error versus model width for these two
schemes and different values of A on Waterbirds, and shows the same data for CelebA. We find
that both schemes improve fairness for over-parameterized models, but have limited impact in the under-
parameterized regime. For Waterbirds, the differences between the two are small, although using primary
validation loss as the stopping criterion (MinDiff+-es(Lp)) is marginally better than using total validation
loss (MinDiff+es(Lr)). However, for CelebA, we find that primary loss stopping criterion (MinDiff4-es(Lp))
is substantially better than total loss stopping criterion (MinDiff4+es(Lr)), especially for large models. Thus,
we use the former for the remainder of our experiments.

Comparing regularization methods on Waterbirds. In we plot the fairness constrained test
error versus model width for different regularization schemes including early stopping (A+es), weight decay
with two different values (A+wd=0.001, A+wd=0.1) and flooding (A+fl) on Waterbirds. We find that the early
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stopping and weight decay regularizes substantially improve fairness for models just below the interpolation
threshold and all over-parameterized models. In contrast, flooding shows only small improvements in fairness.
For A = 0.5, we find that early stopping is the best across the board. For A = 1.5, either early stopping and
weight decay are the best depending on model width, although the differences are small.
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Model Width (log scale) Model Width (log scale) Model Width (log scale)
(a) A=0.5 (b) A=1.0 (c) =15

Figure 6: We plot the fairness constrained test error (with a Apyr < 10% constraint) of early stopped
MinDiff models (trained with A = {0.5,1.0,1.5}) for several model widths. We compare two methods for
early stopping (es) based on the stopping criterion: primary validation loss (es(Lp)) and total validation
loss (es(Lr)). We find that, for Waterbirds dataset, using either stopping criterion will significantly improve
fairness constrained error, especially in the over-parameterized regime.
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Figure 7: We plot fairness constrained test error (with a Apng < 10% constraint) versus model widths
for different regularization schemes used in conjunction with MinDiff optimization on Waterbirds dataset.
We find that early stopping and weight decay are preferred choice of regularizers for Waterbirds dataset.
Notation: wd is weight decay, es(Lp) is early stopping w.r.t primary loss and fl is flooding.

Comparing regularization methods on CelebA. compares different regularization schemes
on the CelebA dataset for three model widths and for A = 0.5, A = 1.0 and A = 1.5, respectively. For the
smallest model, we find that weight decay schemes result in the lowest fairness constrained error, while for the
large over-parameterized model, flooding works best. Comparing across model widths, we find that for each
A value, the largest model with flooding provides the overall lowest fairness constrained test error. Recalling
that flooding was ineffective on Waterbirds, we conclude that no one regularizer works best across datasets

10
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and model widths, but additional regularization in general can restore the benefits of over-parameterization
with fairness constraints.

6 Conclusion

In this paper, we have critically examined the performance MinDiff, an in-training fairness regularization
technique implemented within TensorFlow’s Responsible Al toolkit, with respect to DNN model complexity,
with a particular eye towards over-parameterized models. On two datasets commonly used in fairness
evaluations, we find that although MinDiff improves the fairness of under-parameterized models relative to
baseline, it is ineffective in improving fairness for over-parameterized models. As a result, we find that for
one of our two datasets, under-parameterized MinDiff models have lower fairness constrained test error than
their over-parameterized counterparts, suggesting that time-consuming searches for best model size might be
necessary when MinDiff is used with the goal of training a fair model.

To address these concerns, we explore traditional batch sizing, weight decay and early stopping regularizers
to improve MinDiff training, in addition to flooding, a recently proposed method that is evaluated for
the first time in the context of fair training. We find that batch sizing is ineffective in improving fairness
except for model widths near the interpolation threshold. The other regularizers do improve fairness for
over-parameterized models, but the best regularizer depends on the dataset and model size. In particular,
flooding results in the fairest models on the CelebA dataset, suggesting its utility in the fairness toolkit.
Finally, we show that with appropriate choice of regularizer, over-parameterized models regain their benefits
over under-parameterized counterparts even from a fairness lens.

Availability

Code with README.txt file is available at: https://anonymous.4open.science/r/fairml-EBEE/
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A Impact of Regularization in Over-parameterized Regime
A.1 Batch Size
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Figure 8: Batch size - THR with fairness constraint < 10%
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Figure 9: Batch size - THR with fairness constraint < 5%
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Figure 11: Training loss vs model widths for different batch sizes
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Figure 13: Regularization - THR with fairness constraint < 5%
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Figure 14: Regularization - THR with fairness constraint < 1%
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A.2.2 CelebA

Table 4: We tabulate the fairness constrained test error (with a Apygr < 10% constraint) for different
regularization schemes used in conjunction with MinDiff optimization (A = 0.5) on CelebA dataset. The
performance of best regularizer is highlighted in bold for each model width. Notation: wd is weight decay,
es(Lp) is early stopping w.r.t primary loss and fl is flooding

Method Width =5 Width =19 Width = 64
Under- Over- Over-

A=0 5924027 6.514+0.16 5.76 = 0.14

A=0.5 6.36 +0.72 6.54+0.17 5.884+0.19

A=0.5+wd=0.001 58+032 694+0.18 6.25+0.48

A=0.5+wd=0.1 566 +0.18 5.27+0.16 6.40=+0.18

A=0.5+es(Lp) 6.174+£048 5914037 5454+0.32

A=0.5+ 11 =0.05 6.45+0.69 6.53+0.21 6.16 £+ 0.09

A=05+11=0.1 6.344+0.63 5.754+0.35 4.80+0.28
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Table 5: We tabulate the fairness constrained test error (with a Apyr < 10% constraint) for different
regularization schemes used in conjunction with MinDiff optimization (A = 1.0) on CelebA dataset. The
performance of best regularizer is highlighted in bold for each model width. Notation: wd is weight decay,
es(Lp) is early stopping w.r.t primary loss and fl is flooding

Method Width =5 Width =19 Width = 64
Under- Over- Over-

A=0 5924027 6.51+£0.16 5.76 =0.14

A=1.0 6.25 £ 0.61 6.43+0.17  6.06 +0.09

A=10+wd=0.001 594+£039 6.75£035 590+£0.24
A=10+wd=01 580+£0.17 555+019 6.42+0.12
A=1.0+es(Lp) 6.32£040 582+046 4.79+0.24
A=10+11=0.05 6.30+0.68 6.43+£0.17 587%0.11
A=10+11=01 6.33 £ 0.52 544035 4.77+£0.13

Table 6: CelebA (MinDiff: 0.5, FNR Gap < 5%, Batch Size: 128)

Method Width = 5 Width = 19 Width = 64
Under- Over- Over-
Original Model 6.22 £+ 0.31 6.81 4+ 0.21 6.10 + 0.14
MinDiff 6.72 £ 0.70 6.78 & 0.16 6.18 + 0.25
MinDiff + wd = 0.001 6.20 £+ 0.35 7.29 £ 0.21 6.51 £+ 0.55
MinDiff + wd = 0.1 5.84 + 0.13 5.51 4+ 0.15 6.70 &+ 0.14
MinDiff 4 es 6.48 £+ 0.48 6.14 £+ 0.38 5.61 £ 0.30
MinDiff + 1 = 0.05 6.73 + 0.70 6.80 &+ 0.21 6.47 £ 0.11
MinDiff + 1 = 0.1 6.65 + 0.67 5.99 + 0.37 5.03 + 0.29

Table 7: CelebA (MinDiff: 1.0, FNR Gap < 5%, Batch Size: 128)

Method Width = 5 Width = 19 Width = 64
Under- Over- Over-
Original Model 6.22 + 0.31 6.81 + 0.21 6.10 & 0.14
MinDiff 6.57 + 0.56 6.74 £+ 0.20 6.35 £+ 0.07
MinDiff + wd = 0.001 6.26 + 0.45 7.11 £ 0.34 6.21 £+ 0.23
MinDiff + wd = 0.1 6.15 + 0.18 5.82 + 0.14 6.70 + 0.14
MinDiff + es 6.60 £+ 0.40 6.15 4+ 0.50 5.05 & 0.18
MinDiff + f = 0.05 6.57 £+ 0.70 6.74 + 0.14 6.15 £+ 0.15
MinDiff + fl = 0.1 6.58 £+ 0.43 5.67 4+ 0.38 4.92 + 0.06
Table 8: CelebA (MinDiff: 1.5, FNR Gap < 5%, Batch Size: 128)
Method Width = 5 Width = 19 Width = 64
Under- Over- Over-
Original Model 6.22 + 0.31 6.81 4+ 0.21 6.10 + 0.14
MinDiff 6.65 + 0.46 6.90 £+ 0.30 6.40 £+ 0.26
MinDiff + wd = 0.001 6.15 4+ 0.41 6.85 4+ 0.30 5.33 + 0.21
MinDiff + wd = 0.1 6.45 + 0.18 6.11 +£ 0.13 6.81 £+ 0.10
MinDiff + es 6.73 + 0.43 5.89 + 0.45 4.88 + 0.05
MinDiff + fl = 0.05 6.58 + 0.39 6.64 4+ 0.40 5.77 £ 0.18
MinDiff + 1 = 0.1 6.68 + 0.44 5.56 + 0.41 4.86 + 0.14
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Table 9: CelebA (MinDiff: 0.5, FNR Gap < 1%, Batch Size: 128)

Method Width = 5 Width = 19 Width = 64
Under- Over- Over-
Original Model 6.57 £ 0.32 7.13 £ 0.22 6.31 + 0.12
MinDiff 6.96 + 0.72 7.07 £0.14 6.50 &+ 0.26
MinDiff + wd = 0.001 6.52 + 0.35 7.57 £ 0.24 6.86 + 0.55
MinDiff + wd = 0.1 6.12 + 0.13 5.82 + 0.18 6.94 4+ 0.20
MinDiff 4+ es 6.71 £+ .048 6.41 £ 0.42 5.85 4+ 0.29
MinDiff 4+ fl = 0.05 7.04 £+ 0.70 7.09 £+ 0.24 6.78 & 0.10
MinDiff + 1 = 0.1 6.94 + 0.67 6.20 £ 0.42 5.17 + 0.28

Table 10: CelebA (MinDiff: 1.0, FNR Gap < 1%, Batch Size: 128)

Method Width = 5 Width = 19 Width = 64
Under- Over- Over-
Original Model 6.57 = 0.32 7.13 £ 0.22 6.31 + 0.12
MinDiff 6.76 + 0.54 7.00 £ 0.18 6.55 + 0.14
MinDiff + wd = 0.001 6.54 + 0.46 7.43 £ 0.41 6.46 + 0.20
MinDiff + wd = 0.1 6.43 + 0.22 6.11 4+ 0.12 6.97 £ 0.17
MinDiff + es 6.86 £+ 0.42 6.40 £+ 0.53 5.24 £+ 0.21
MinDiff + f = 0.05 6.87 + 0.66 7.04 £ 0.17 6.33 + 0.15
MinDiff + fl = 0.1 6.90 £+ 0.41 5.94 4+ 0.383 5.09 £+ 0.08

Table 11: CelebA (MinDiff: 1.5, FNR Gap < 1%, Batch Size: 128)

Method Width = 5 Width = 19 Width = 64
Under- Over- Over-
Original Model 6.57 + 0.32 7.13 £ 0.22 6.31 + 0.12
MinDiff 6.86 £ 0.49 7.24 £+ 0.31 6.64 + 0.26
MinDiff + wd = 0.001 6.42 + 0.45 7.13 £ 0.30 5.68 £+ 0.25
MinDiff + wd = 0.1 6.75 + 0.22 6.29 + 0.17 7.05 £ 0.14
MinDiff 4+ es 6.97 + 0.38 6.12 £ 0.49 5.07 £+ 0.06
MinDiff + f = 0.05 6.85 + 0.39 6.92 4+ 0.42 5.93 £ 0.24
MinDiff + fl = 0.1 6.89 £ 0.45 5.84 + 0.42 5.04 + 0.16
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