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ABSTRACT

We consider the problem of using expert data with unobserved confounders for
imitation and reinforcement learning. We begin by defining the problem of learn-
ing from confounded expert data in a contextual MDP setup. We analyze the limi-
tations of learning from such data with and without external reward and propose an
adjustment of standard imitation learning algorithms to fit this setup. In addition,
we discuss the problem of distribution shift between the expert data and the online
environment when partial observability is present in the data. We prove possibility
and impossibility results for imitation learning under arbitrary distribution shift of
the missing covariates. When additional external reward is provided, we propose
a sampling procedure that addresses the unknown shift and prove convergence to
an optimal solution. Finally, we validate our claims empirically on challenging
assistive healthcare and recommender system simulation tasks.

1 INTRODUCTION

Reinforcement Learning (RL) is increasingly used across fields to derive agents learning via inter-
action and reward feedback (Vinyals et al., 2019; Tessler et al., 2021; Mandel et al., 2014). Often,
we rely on experts to perform certain tasks, integrating their knowledge to improve learning effi-
ciency and overall performance. Imitation Learning (IL, Hussein et al. (2017)) is concerned with
learning via expert demonstrations without access to a reward function. Similarly, RL settings often
utilize expert data to boost performance, eliminating the need to learn from scratch. In this work we
consider both paradigms in the presence of partially observable expert data.

While expert demonstration data is useful, in many realistic settings such data may be prone to
hidden confounding (Gottesman et al., 2019), i.e., there may be features used by the expert which
are unobserved to the learning agent. This can occur due to, e.g., privacy constraints, continually
changing features in ongoing production pipelines, or when not all information available to the
human expert was recorded. As we show in our work, covariate shift of unobserved factors between
the expert data and the real world may lead to significant negative impact on performance, frequently
rendering the data useless for imitation (see Figure 1 and Theorem 2). We discuss two concrete
examples from the assistive healthcare and recommender system domains below.

Assistive Healthcare. Consider the important challenge of providing versatile physical assistance
to disabled persons. Typical duties of a caregiver might include taking care of someone who has
a chronic illness or disease, helping them bathe, eat, or get dressed. Demonstrations from human
caregivers can help develop assistive autonomous robots to serve as versatile caregivers (Erickson
et al., 2020). Nevertheless, not all information on the patient’s state may be provided in the data (e.g.,
age, gender, disabilities, and personal preferences of the person receiving care). Moreover, covariate
shift in the unobserved information may be present due to geographic changes or distribution drifts
in time. In our experiments (see Section 5), we demonstrate the usage of such data in a simulative
assistive-healthcare environment.

Recommender Systems. In practical recommender systems, sequential interaction with users
presents a great challenge for optimizing users’ long-term engagement and overall satisfaction (Ie
et al., 2019). Leveraging expert data collected using, e.g., surveys to users, may greatly benefit fu-
ture solutions. As features are repeatedly added to these systems, information in the data is naturally
absent. Moreover, these confounding factors may contain shifted distributions, bringing about arbi-
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Online Context Distribution
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55% female, 45% male
Average age 77
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40% female, 60% male
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Figure 1: Failure of using confounded expert data under context distribution mismatch between online envi-
ronment and expert data. Caregiver does not learn to perform well in a dressing task when covariate shift of
hidden confounders is present but not accounted for.

trary errors if not carefully controlled. In this work, we demonstrate these limitations through a user
interaction model with a slate-based recommender system (see experiments in Section 5).

In this paper we define the tasks of imitation and reinforcement learning using expert data with
unobserved confounders in a contextual MDP setup (Hallak et al., 2015). In this setting, a context
is sampled at every episode from some distribution, affecting both the reward and the transition
between states. We assume additional access to expert data generated by an optimal policy, and focus
on a case in which the expert’s sampled context is unobserved or unknown, i.e., missing from the
data. Nevertheless, this context is observed in the online environment. Such a situation may occur,
e.g., in the assistive healthcare setting, where the expert does not provide information on specific
preferences of the patient, yet this information is available (for new patients) when interacting in the
real-world.

We begin by analyzing the imitation learning problem (i.e., without access to reward) in Section 3.
Under no covariate shift in the unobserved context, we characterize a sufficient and necessary set
of optimal policies. In contrast, we prove that when covariate shift is present, if the true reward
is dependent on the context then the imitation learning problem is non-identifiable and prone to
catastrophic errors (see Section 3.2 and Theorem 2).

We continue and analyze the RL setting (i.e., with access to reward and confounded expert data) in
Section 4. Figure 1 depicts a possible failure case of using confounded expert data with unknown
covariate shift in a dressing assistive-healthcare environment. In contrast to the imitation setting,
we show that optimality can still be achieved using confounded expert data with arbitrary covariate
shift. We use a corrective data sampling procedure and prove convergence to an optimal policy.

Finally, in Section 5, we conduct extensive experiments on the RecSim (Ie et al., 2019) and Assistive-
gym (Erickson et al., 2020) environments, demonstrating our theoretical results, and suggesting that
confounded expert data can be used in a controlled manner to improve the efficiency and perfor-
mance of RL agents.

2 PRELIMINARIES

We consider a contextual MDP (Hallak et al., 2015) defined by the tuple
M = (S,X ,A, P, r, ρo, ν, γ), where S is the state space, X is the context space, A is the action
space, P : S×S×A×X 7→ [0, 1] is the context dependent transition kernel, r : S×A×X 7→ [0, 1]
is the context dependent reward function, and γ ∈ (0, 1) is the discount factor. We assume an initial
distribution over contexts ρo : X 7→ [0, 1] and an initial state distribution ν : S × X 7→ [0, 1].

The environment initializes at some context x ∼ ρo(·), and state s0 ∼ ν(·|x). At time t the en-
vironment is at state st ∈ S and an agent selects an action at ∈ A. The agent receives a reward
rt = r(st, at, x) and the environment then transitions to state st+1 ∼ P (·|st, at, x).
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We define a Markovian stationary policy π as a mapping π : S × X × A 7→ [0, 1],
such that π(·|s, x) is the action sampling probability. We define the value of a policy π by
vM(π) = Eπ[ (1− γ)

∑∞
t=0 γ

tr(st, at, x) | x ∼ ρo, s0 ∼ ν(· | x) ], where Eπ denotes the expecta-
tion induced by the policy π. We denote by Π the set of all Markovian policies and Πdet the set of de-
terministic Markovian policies. We define the optimal value and policy by v∗M = maxπ∈Π vM(π),
and π∗M ∈ arg maxπ∈Π vM(π), respectively. Whenever appropriate, we simplify notation and write
v∗, π∗. We use Π∗M to denote the set of optimal policies inM, i.e., Π∗M = arg maxπ∈Π vM(π).
We also define the set of catastrophic policies Π†M as the set

Π†M = arg min
π∈Π

vM(π). (1)

We will later use this set to show impossibility of imitation under arbitrary covariate shift and a
context-independent transition function.

Expert Data with Unobserved Confounders. We assume additional access to a con-
founded dataset consisting of expert trajectories D∗ =

{
(si0, a

i
0, s

i
1, a

i
1, . . . , s

i
H , a

i
H)
}n
i=1

,
where aij ∼ π∗ ∈ Π∗M. The trajectories in the dataset were sampled i.i.d.
from the marginalized expert distribution (under possible context covariate shift)
P ∗(s0, a0, s1, a1, . . . , sH) =

∑
x ρe(x)ν(s0|x)

∏H−1
t=0 P (st+1|st, at, x)π∗(at|st, x), where ρe

is some distribution over contexts. Importantly, ρe does not necessarily equal ρo – the distribution
of contexts in the online environment. Notice that it is assumed that π∗ that generated the data had
access to the context xi (i.e., π∗ is context-dependent), though it is missing in the data.

In this work we consider two settings:

1. Confounded Imitation Learning (Section 3): access to confounded expert data (with context
distribution ρe) as well as real environment (S,X ,A, P, ρo, ν, γ), without access to reward.

2. Reinforcement Learning with Confounded Expert Data (Section 4): access to confounded
expert data (with context distribution ρe) as well asM (with context distribution ρo), i.e.,
with access to reward.

In both settings we aim to find a context-dependent policy which maximizes the cumulative reward.

Marginalized Stationary Distribution. We denote the stationary distribution of a policy π ∈ Π
given context x ∈ X by dπ(s, a|x) = (1 − γ)

∑∞
t=0 γ

tPπ(st = s, at = a|x, s0 ∼ ν(·|x)), where
Pπ denotes the probability measure induced by π. Similarly, given a distribution over contexts,
we define the marginalized stationary distribution of a policy π under the corresponding context
distribution by

dπρo(s, a) = Ex∼ρo [dπ(s, a | x)] (online environment),

dπ
∗

ρe (s, a) = Ex∼ρe
[
dπ
∗
(s, a | x)

]
(offline expert data).

3 IMITATION LEARNING WITH UNOBSERVED CONFOUNDERS

In this section we analyze the confounded imitation learning problem, i.e., learning from expert
trajectories with hidden confounders and without reward. Similar to previous work, we consider the
task of imitation learning from expert data in the setting where the agent is allowed to interact with
the environment Ho & Ermon (2016); Fu et al. (2017); Kostrikov et al. (2019); Brantley et al. (2019).
In the first part of this section, we assume no covariate shift between the online environment and the
data is present, i.e., ρe = ρo. To solve this setup, we define an ambiguity set of candidate optimal
policies and prove its sufficiency for characterizing this set. For completeness, we also provide an
algorithm in Appendix B which calculates the ambiguity set and selects a robust policy.

In the second part of this section, we discuss the imitation learning problem under context-
distribution mismatch between the data and the online environment, i.e., ρe 6= ρo. We prove that
when the state transition function is independent of the unobserved context (even with access to
the true transition function) the imitation learning problem is in general unsolvable, rendering the
data useless of imitation. In contrast, we show that when the reward function is independent of the
unobserved context, the optimal policy is indeed identifiable from the expert demonstrations.
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3.1 NO HIDDEN COVARIATE SHIFT: ρo = ρe

We first consider the scenario in which no covariate shift is present between the offline data and the
online environment, i.e., ρo = ρe. We begin by defining the marginalized ambiguity set, a central
component of our work.

Definition 1 (Ambiguity Set). For a policy π ∈ Π, we define the set of all deterministic policies that
match the marginalized stationary distributions of π by

Υπ =
{
π′ ∈ Πdet : dπ

′

ρo(s, a) = dπρe(s, a), s ∈ S, a ∈ A
}
.

Recall that, in general, π∗ ∈ Π∗M may depend on the context x ∈ X . Therefore, the set Υπ∗

corresponds to all deterministic policies that cannot be distinguished from π∗ based on the expert
data. The following theorem shows that for any policy π∗ ∈ Π∗M and any policy π0 ∈ Υπ∗ , one
could design a reward function r0, for which π0 is optimal, while the set Υπ∗ is indiscernible from
Υπ0

, i.e., Υπ∗ = Υπ0
(see Appendix G for proof). In other words, Υπ∗ is the smallest set of

candidate optimal policies, and if |Υπ∗ | > |Π∗M| then the imitation problem is underdetermined.

Theorem 1. [Sufficiency and Necessity of Υπ∗] Assume ρe ≡ ρo. Let π∗ ∈ Π∗M and let π0 ∈ Υπ∗ .
Then, Υπ∗ = Υπ0 . Moreover, if π0 6= π∗, then there exists r0 such that π0 ∈ Π∗M0

but π∗ /∈ Π∗M0
,

whereM0 = (S,A,X , P, r0, ρo, ν, γ).

The above theorem shows that any policy in Υπ∗ is a candidate optimal policy, yet without knowing
the context the expert used, no policy in Υπ∗ can be ruled out (as they all have identical marginalized
stationary distributions). Hence, the imitation solution is uniquely defined by the set Υπ∗ . Such
ambiguity can result in selection of a suboptimal or even catastrophic policy. Nevertheless, as we
show in the following proposition, acting uniformly w.r.t. Υπ∗ is better than the worst policy in the
set, i.e., robust to the ambiguity set (see Appendix G for proof).

Proposition 1. Define the mean policy π̄(a|s, x) =

∑
π∈Υπ∗

dπ(s,a,x)∑
π∈Υπ∗

∑
a′ d

π(s,a′,x) , and denote

α∗ =
|Π∗M|
|Υπ∗ |

∈ [0, 1]. Then, vM(π̄) ≥ α∗v∗ + (1− α∗) minπ∈Υπ∗ vM(π).

Remark 1. Note that π̄ is generally not the average policy 1
|Υπ∗ |

∑
π∈Υπ∗

π(a|s, x).

Remark 2. In an episodic setting, π̄ can be estimated by uniformly sampling a policy π ∈ Υπ∗ and
playing it until the environment terminates per episode.

We provide a practical algorithm in Appendix B (Algorithm 3) which calculates the ambiguity set
Υπ∗ , and returns π̄ of Proposition 1, with computational guarantees, showing that π̄ is returned after
exactly |Υπ∗ | iterations. In the next subsection we analyze a more challenging scenario, for which
ρo 6= ρe. In this case Υπ∗ may not be sufficient for the imitation problem.

3.2 HIDDEN COVARIATE SHIFT: ρo 6= ρe

Next, we assume covariate shift exists between the online environment and the expert data, i.e.,
ρo 6= ρe. Particularly, without further assumptions on the extent of covariate shift, we show two
extremes of the problem. In Theorem 2 we prove that whenever the transitions are independent of
the context, the data cannot in general be used for imitation. In contrast, in Theorem 3 we prove that,
whenever the reward is independent of the context, the imitation problem can be efficiently solved.

Clearly, if Supp(ρo) 6⊆ Supp(ρe)
1 then there exists x ∈ Supp(ρo) for which π∗ is not identifiable

from the expert data 2. We therefore assume throughout that Supp(ρo) ⊆ Supp(ρe). We begin by
defining the set of non-identifiable policies as those that cannot be distinguished from their respective
stationary distributions without information on ρe.

Definition 2. We say that {πi}ki=1 are non-identifiable policies if there exist {ρi}ki=1 such that
dπiρi (s, a) = d

πj
ρj (s, a) for all i 6= j.

1For a distribution P we denote by Supp(P) the support of P.
2We use the notion of identifiability as defined in Definition 2 of Pearl (2009)
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Figure 2: A spectrum for the difficulty of confounded imitation with covariate shift.

Next, focusing on catastrophic policies (recall Equation (1)), we define catastrophic expert policies
as those which could be either optimal or catastrophic under ρo for different reward functions.

Definition 3. We say that {πi}ki=1 are catastrophic expert policies for the tuple
(S,X ,A, P, ρo, ν, γ), if there exist {ri}ki=1 such that for all i, πi ∈ Π∗Mi

, and ∃j 6= i such
that πi ∈ Π†Mj

, whereMj = (S,X ,A, P, rj , ρo, ν, γ).

Using the fact that both ρe and r are unknown, the following theorem shows that whenever
P (s′|s, a, x) is independent of x, one could find two policies which are non-identifiable, catastrophic
expert policies (see Appendix G for proof). In other words, in the case of context-independent tran-
sitions, without further information on ρe or r the expert data is useless for imitation. Furthermore,
attempting to imitate the policy using the expert data could result in a catastrophic policy.
Theorem 2. [Catastrophic Imitation] Assume |X | ≥ |A|, and P (s′|s, a, x) = P (s′|s, a, x′) for all
x, x′ ∈ X . Then ∃πe,1, πe,2 s.t. {πe,1, πe,2} are non-identifiable, catastrophic expert policies.

While Theorem 2 shows the impossibility of imitation for context-free transitions, whenever the
reward is independent of the context, the imitation problem becomes feasible. In fact, as we show
in the following theorem, for context-free rewards, any policy in Υπ∗ is an optimal policy.
Theorem 3. [Sufficiency of Context-Free Reward] Assume Supp(ρo) ⊆ Supp(ρe) and
r(s, a, x) = r(s, a, x′) for all x, x′ ∈ X . Then Υπ∗ ⊆ Π∗M.

Theorems 2 and 3 suggest that the hardness of the imitation problem under covariate shift lies on
a wide spectrum (as depicted in Figure 2). While dependence of the transition P (s′|s, a, x) on x
provides us with information to identify x in the expert data, the dependence of the reward r(s, a, x)
on x increases the degree of confounding in the imitation problem. Both of these results are con-
cerned with arbitrary confounding. For the interested reader, we further analyze the case of bounded
confounding in Appendix C. We also demonstrate the effect of bounded confounding in Section 5.

In the following section, we show that, while arbitrary confounding may result in catastrophic results
for the imitation learning problem, when coupled with reward, one can still utilize the expert data.

4 USING EXPERT DATA WITH UNOBSERVED CONFOUNDERS FOR RL

In the previous section we showed sufficient conditions under which imitation is possible, with and
without covariate shift. When covariate shift is present, but unknown, the imitation learning problem
may be hard, or even impossible (see Theorem 2, catastrophic imitation). We ask, had we had access
to the reward function, would the expert data be useful under arbitrary covariate shift? In this section
we show that expert data with unobserved confounders can be used to converge to an expert policy,
even when arbitary covariate shift is present. In our experiments (Section 5) we empirically show
that using our method can also improve overall performance.

We view the confounded expert data as side information to the reinforcement learning problem.
Specifically, we assume access to the true reward signal in the online environment and wish to
leverage the offline expert data to aid the agent in converging to an optimal policy. To do this,
we define an optimization problem that maximizes the cumulative reward, while minimizing an
f -divergence (e.g., KL-divergence, TV-distance, χ2-divergence) of stationary distributions in Υπ∗ ,

max
π∈Π

Ex∼ρo,s,a∼dπ(s,a|x)[r(s, a, x)]− λDf (dπρo(s, a)||dπ
∗

ρe (s, a)). (P1)
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Algorithm 1 RL using Expert Data with Unobserved Confounders (Follow the Leader)
1: input: Expert data with missing context D∗, λ > 0, policy optimization algorithm ALG-RL
2: init: Policy π0

3: for k = 1, . . . do
4: ρs ← argminρDKL(d

πk−1

ρo (s, a)||dπ
∗
ρ (s, a))

5: gk ← 1
k

(
gk−1 + E

s,a∼dπk−1
ρo

[
1

dπ
∗
ρs

(s,a)

])
(FTL Cost Player)

6: πk ← ALG-RL(r(s, a, x)− λgk(s, a))
7: end for

Here, λ > 0 and Df is the f -divergence, where f is a convex function f : (0,∞) 7→ R. The
solution to Problem (P1) is an optimal policy π∗ ∈ Π∗M as long as ρo ≡ ρe. Rewriting Df using its
variational form (see Appendix A for background on the variational form of f -divergences) we get
the following equivalent optimization problem (motivated by Nachum et al. (2019)),

max
π∈Π

min
g:S×A7→R

Ex∼ρo,s,a∼dπ(s,a|x)[r(s, a, x) + λg(s, a)]− λEs,a∼dπ∗ρe (s,a)[f
∗(g(s, a))], (P1b)

where f∗ is the convex conjugate of f , i.e., f∗(y) = supx xy − f(y).

Unfortunately, when covariate shift exists (i.e., ρo 6= ρe), Problems (P1) and (P1b) are not ensured
to converge to an optimal policy (Theorem 2). Instead, we propose to reformulate Problem (P1b)
using a distribution ρs which minimizes the f -divergence, as follows,

max
π∈Π

min
g:S×A7→R
ρs∈B(X )

Ex∼ρo,s,a∼dπ(s,a|x)[r(s, a, x) + λg(s, a)]− λEs,a∼dπ∗ρs (s,a)[f
∗(g(s, a))]. (P2)

Here, B(X ) denotes the set of probability measures on the Borel sets of X , and
dπ
∗

ρs (s, a) = Ex∼ρs
[
dπ
∗
(s, a | x)

]
. Indeed, whenever Supp(ρo) ⊆ Supp(ρe), we have that

(π, ρs) = (π∗, ρo) is an optimal solution to Problem (P2).

Corrective Trajectory Sampling (CTS). Solving Problem (P2) involves an expectation over an
unknown distribution, dπ

∗

ρs (s, a). Fortunately, dπ
∗

ρs (s, a) can be equivalently written as an expectation
over trajectories inD∗, rather than expectation over unobserved contexts, as shown by the following
proposition (see Appendix G for proof).
Proposition 2. [Trajectory Sampling Equivalence] Let ρ∗s which minimizes Problem (P2) for some
π ∈ Π, g : S × A 7→ R, and assume Supp(ρo) ⊆ Supp(ρe). Then, there exists pn ∈ ∆n such that
dπ
∗

ρ∗s
(s, a) = lim

n→∞
Ei∼pn

[
(1− γ)

∑∞
t=0 γ

t1
{

(sit, a
i
t) = (s, a)

}]
.

Proposition 2 allows us to estimate the inner minimization problem over ρs in Problem (P2) using
trajectory samples. Particularly, we uniformly sample k distributions pn1 , . . . p

n
k , where pnj ∈ ∆n,

and then estimate

min
ρs

Df (dπρo ||d
π∗

ρs ) ≈ min
j∈{1,...,k}

{
Df

(
dπρo(s, a)

∣∣∣∣∣∣ Ei∼pnj
[ ∞∑
t=0

γt1
{

(sit, a
i
t) = (s, a)

}])}
, (2)

which can be estimated equivalently by the variational form of Df (see Appendix A). We call this
procedure Corrective Trajectory Sampling (CTS), as it uses complete trajectory samples to account
for the unknown context distribution ρe.

Solving Problem (P2). Algorithm 1 provides an iterative procedure for solving the optimization
problem in Problem (P2). It uses alternative updates of a cost player (line 5) and policy player
(line 6). In line 5 the gradient of DKL w.r.t. dπ is taken using a Follow the Leader (FTL) cost
player to estimate the next bonus iterate. Finally, in line 6, an efficient, approximate policy op-
timization algorithm ALG-RL is executed using an augmented reward. The following theorem,
provides convergence guarantees for Algorithm 1 with an approximate best response RL-algorithm
(see Appendix G for proof based on Zahavy et al. (2021)).
Theorem 4. Let ALG-RL be an approximate best response player that solves the RL problem in
iteration k to accuracy εk = 1√

k
. Then, Algorithm 1 will converge to an ε-optimal solution to

Problem (P2) in O
(

1
ε4

)
samples.
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Algorithm 2 RL using Expert Data with Unobserved Confounders (Online Gradient Descent)
1: input: Expert data with missing context, λ,B,N > 0, policy optimization algorithm ALG-RL
2: init: Policy π0, bonus reward network gθ
3: for k = 1, . . . do
4: ρs ← argminρDf (d

πk−1
ρo (s, a)||dπ

∗
ρ (s, a))

5: for e = 1, . . . N do
6: Sample batch {si, ai}Bi=1 ∼ d

πk−1
ρo (s, a)

7: Sample batch {sei , aei}Bi=1 ∼ d
π∗
ρs (s, a)

8: Update gθ according to ∇θL(θ) = 1
B

∑B
i=1∇θ[f

∗(gθ(s
e
i , a

e
i ))− gθ(si, ai)]

9: end for
10: πk ← ALG-RL(r(s, a, x)− λgθ(s, a))
11: end for

Notice that, while Theorem 4 shows Algorithm 1 converges to an optimal policy, it does not deter-
mine whether the expert data improves overall learning efficiency. We leave this theoretical question
for future work. Nevertheless, in the following section we conduct extensive experiments to show
that such data can indeed improve overall performance on various tasks.

A drawback of Algorithm 1 is that it needs to estimate the stationary distributions instead of only
sample from it. A practical implementation of this approach using online gradient descent (OGD)
is provided in Algorithm 2. Similar to Algorithm 1, we use CTS (see Equation (2)) to estimate ρs
in line 4 according to some f -divergence. Here, samples are drawn from the current policy as well
as samples from D∗ (with CTS). We write Df in its variational form, and use a neural network
representation for gθ. We then use the aforementioned samples to minimize the f -divergence using
OGD. Finally, the policy is updated using ALG-RL and an augmented reward.

5 EXPERIMENTS

We tested the effects of hidden confounding on expert data using our approach in recommender-
system and assistive-healthcare environments.

Experimental setup. In both environments we used a default context distribution ρe for the expert
data. The shift strength in distribution for the online environment was calculated by a distance mea-
sure between the expert and online distribution. We compared confounded imitation and RL results
on both environments, with increasing covariate shift strength (i.e., increasing distance from default
distribution ρe). We use β ∈ [0, 1] to denote this normalized distance, where β = 0 corresponds
to no covariate shift, and β = 1 corresponds to strong covariate shift. For all our experiments we
used χ2-divergence as our choice of f -divergence, as we found it to work best. Comparison to other
divergences is provided in Figure 4 (left) and Appendix D. We used PPO (Schulman et al., 2017)
implemented in RLlib (Liang et al., 2018) for both the imitation as well as reinforcement learn-
ing settings. We include specific choice of hyperparameters and an exhaustive overview of further
implementation details in Appendix F.

Assistive Healthcare. A recently proposed set of tasks for assistive-healthcare simulate autonomous
robots as versatile caregivers (Erickson et al., 2020). Each task has a unique goal, affected by
both the physical world as well as the patient’s specific preferences and disabilities. We tested our
algorithm on four tasks: feeding, dressing, bathing, and drinking. In these, we used the following
features to define the user’s context: gender, mass, radius, height, patient impairment, and patient
preferences. The patient’s mass, radius, and height distributions were dependent on gender. The
patient’s impairment was given by either limited movement, weakness, or tremor (with sporadic
movement). Finally, the patient’s preferences were affected by the velocity and pressure of touch
forces applied by the robot. For further information, we refer the reader to Appendix F.

Figure 3 depicts results for executing Algorithm 2 on four assistive-gym environments with various
covariate shift strengths. As evident in most of the enviornments, covariate shift strongly affected
overall performance. Particularly in the feeding, drinking, and dressing environments, the success of
reaching the goal (i.e., spoon to mouth, cup to mouth, and sleeve to hand) was highly affected by the
degree of covariate shift. This is due to the changing distribution of size, movement, and preferences
of the patient, and thus of the goal. Nevertheless, in all environments, using the expert data (with
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Figure 3: Plots compare training curves of using CTS vs. normal sampling of expert data for small (β = 0.3)
and large (β = 0.8) covariate shift bias in four assistive-healthcare tasks. Dashed black lines show expert and
RL (without data) scores. Runs were averaged over 5 seeds. Legend is shared across all plots.

and without CTS) was found to help induce better policies than executing the same RL algorithm
without expert data. This suggests that expert data can assist in improving overall RL performance,
yet correcting for covariate shift may significantly improve it in these domains.

Recommender Systems. We used the recently proposed RecSim Interest Evolution environment
(Ie et al., 2019), simulating sequential user interaction with a slate-based recommender system. The
environment consists of a document model for sampling documents, a user model for defining a
distribution over user context features, and a user choice model, which defines the intent of the user
based on observable document features and the user’s sampled context (e.g., personality, satisfaction,
interests, demographics, and other behavioral features such as session length or visit frequency).

We used a slate of 10 documents and a user context of dimension 20. To test the severity of the
implications of Theorem 2 in the confounded imitation setting, we used a user-model sampled from
a Beta-distribution. Particularly, for the expert data the user context features x = (x0, . . . , x19)
were sampled from a Beta-distribution, where xi ∼ Beta(αi, 4), and αi = 1.5 + 8.5

19 i. In
contrast, the online environment features were sampled from a shifted Beta-distribution with
αi = (1− β)

(
1.5 + 8.5

19 i
)

+ β
(
10− 8.5

19 i
)
, where β ∈ [0, 1] defined the shift strength.

Figure 4(a) depicts the effect of increased covariate shift on imitation in the RecSim environment
with a dataset of 100 expert trajectories (generated by an optimal policy that had access to the
full context). Without covariate shift (β = 0) an optimal score is achieved, and as β increases,
performance decreases. Particularly, as the mirrored distribution is reached (β = 1), a catastrophic
policy is reached. While the imitator “believes” to have reached an optimal policy, it has in fact
reached a catastrophic one, as shown by the orange plot. Conversely, Figure 4(b) depicts the benefit
of using confounded expert data in the RL setting, i.e. when an online reward signal is available.
Though strong confounding is present, the agent is capable of leveraging the data to improve overall
learning performance.

6 RELATED WORK

Imitation Learning. The imitation learning problem has been extensively studied in both the fully
offline (Pomerleau, 1989; Bratko et al., 1995) as well as online setting (Ho & Ermon, 2016; Fu

8
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Figure 4: Left plot shows comparison of different choices of f -divergences for pure imitation (without reward
and without covariate shift) on the BedBathing environment. Middle plot depicts execution of imitation with
hidden confounding (without reward) for different levels of covariate shift. Right plot compares our CTS
correction on the RecSim environment with strong covariate shift bias. All runs were averaged over 5 seeds.

et al., 2018; Kim & Park, 2018; Brantley et al., 2019). Specific to our work are GAIL (Ho & Ermon,
2016), AIRL (Fu et al., 2017), and DICE (Kostrikov et al., 2019), which use distribution matching
methods. Our work generalizes these settings to imitation with hidden confounders.

Reinforcement Learning with Expert Data. Much work has revolved on leveraging offline data
for RL. Recently, offline RL (Levine et al., 2020) has shown great improvement over regular offline
imitation techniques (Kumar et al., 2020; Kostrikov et al., 2021; Tennenholtz et al., 2021a; Fujimoto
& Gu, 2021). In the online RL setting, the combination of offline data to improve RL efficiency has
shown great success (Nair et al., 2020). KL-regularized techniques (Peng et al., 2019; Siegel et al.,
2019) as well as DICE-based algorithms (Nachum et al., 2019) have also shown efficient utilization
of offline data. Our work generalizes the latter to the confounded setting.

Intersection of Causal Inference and Imitation Learning. Closely related to our work is that of
Zhang et al. (2020). There, the authors suggest a notion of imitability, showing when observational
data can help identify a policy under some partially observed structural causal model. Our work
provides an alternative perspective on the problem. In contrast to their work, we rely on concur-
rent imitation approaches and allow access to the online environment. Furthermore, we provide
guarantees and practical algorithms for both the imitation as well as reinforcement learning settings.

Another intersection with causal inference discusses the problem of causal confusion in imitation
(de Haan et al., 2019). causal confusion is concerned with the problem of nuisances in observed
confounded data due to an unknown causal structure. These “causal misidentifications” can lead to
spurious correlations and catastrophic failures in generalization. In contrast, our work discusses the
orthogonal problem of hidden confounders with possible covariate shift.

Intersection of Causal Inference and Reinforcement Learning. Previous work has analyzed
the problem of optimal control from logged data with unboserved confounders (Lattimore et al.,
2016), as well as utilizing (non-expert) confounded data for online interactions (Tennenholtz et al.,
2021b). Much work has revolved around the reinforcement learning setup with access to (non-
expert) confounded data (Zhang & Bareinboim, 2019; Wang et al., 2020). Other work has considered
the problem of off-policy evaluation from confounded data (Tennenholtz et al., 2020; Oberst &
Sontag, 2019; Kallus & Zhou, 2020). Our work is focused on leveraging expert data with hidden
confounders and possible covariate shift in both the imitation and the RL settings.

7 CONCLUSION

This work presented and analyzed the problem of using expert data with hidden confounders for
both the imitation and RL settings. We showed that covariate shift of hidden confounders between
the expert data and the online environment can result in learning catastrophic policies, rendering the
imitation learning hard or even impossible (Theorem 2). In addition, we showed that when a reward
is provided, using the expert data is still possible under arbitrary hidden covariate shift (Theorem 4).
We proposed new algorithms for tackling this problem using corrective trajectory sampling (CTS).
Our empirical demonstrate our results and suggest that taking hidden covariate shift into account
may significantly improve overall performance.
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Distribution Matching Equivalent Representation Comments

Distribution Ratio supg:S×A7→(0,1) Es,a∼dπ′ρe [log(g(s, a))] + Es,a∼dπρo [log(1− g(s, a))] GAIL
(Ho & Ermon, 2016)

KL-divergence supg:S×A7→R Es,a∼dπρo [g(s, a)]− logEs,a∼dπ′ρe

[
eg(s,a)

]
Donsker-Varadhan Representation

(Kostrikov et al., 2019)

χ2-divergence supg:S×A7→R 2Es,a∼dπρo [g(s, a)]− Es,a∼dπ′ρe
[
g2(s, a)

]
Variational Representation

of f -Divergence

TV Distance sup|g|≤ 1
2
Es,a∼dπρo [g(s, a)]− Es,a∼dπ′ρe [g(s, a)] Variational Representation

of f -Divergence

Table 1: Different distribution matching techniques and their equivalent representations.

APPENDIX

A BACKGROUND: DISTRIBUTION MATCHING FOR IMITATION LEARNING

A common approach used in (non-confounded) imitation learning is matching the policy’s stationary
distribution dπρo to the offline target distribution dπ

∗

ρe . Consider a source distribution p ∈ ∆N and tar-
get distribution q ∈ ∆N . GAIL (Ho & Ermon, 2016) uses the distribution ratio objective log(p/q),
which can estimated using a GAN-like objective DR(p||q) = supg:Z7→(0,1) Ep[log(g(z))] +

Eq[log(1− g(z))], to match the distribution p to q.

This technique can be generalized to f -divergences (Csiszár & Shields, 2004; Liese & Vajda, 2006;
Kostrikov et al., 2019; Ke et al., 2020). Specifically, we wish to minimize a discrepancy measure
from p to q, namely minp∈KD(p||q). For a convex function f : [0 :∞) 7→ R, the f -divergence of

p from q is defined by Df (p||q) = Eq
[
f
(
p
q

)]
. DICE (Kostrikov et al., 2019) uses the variational

representation of the f -divergence,

Df (p||q) = sup
g:Z7→R

Ep[g(z)]− Eq[f∗(g(z))],

where f∗ is the Fenchel conjugate of f defined by f∗(y) = supx xy − f(y). The convex conjugate
has closed form solutions for the total variation distance, KL-divergence, χ2-divergence, Squared
Hellinger distance, Le Cam distance, and Jensen-Shannon divergence. Using the variational repre-
sentation of the f -divergence we can estimate Df using samples from p and q. We refer the reader
to the appendix for details on optimizing the f -divergence.

B CONFOUNDED IMITATION - ALGORITHM AND CONVERGENCE
GUARANTEES

B.1 A TOY EXAMPLE

To gain intuition, we start with a simple toy example. Consider the three-state example depicted
in Figure 5. Here, the environment initiates at state A w.p. 1, after which the agent can choose to
(deterministicaly) transition to state B or C. The agent then receives a reward depending on the
context. The optimal policy is given by π∗(a|s, x) = 1{a = aB , x = x1}+ 1{a = aC , x = x2}
for s = A, and any action is optimal for s 6= A. Without loss of generality we as-
sume π∗(aB |B, x) = π∗(aC |C, x) = 1. We turn to analyze the marginalized station-
ary distribution, which uniquely defines the set of optimal policies (Puterman, 2014). De-
noting ρe(x1) = ρ, we have that dπ

∗

ρe (s, a) = ρdπ
∗
(s, a|x1) + (1− ρ)dπ

∗
(s, a|x2). Then,

dπ
∗

ρe (s, a) = (1− γ)1{s = A}+ ργ1{s = B, a = aB}+ (1− ρ)γ1{s = C, a = aC}.
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Figure 5: A contextual MDP with state space S = {A,B,C}, action space A = {aB , aC} and
context space X = {x1, x2}. We assume ν(A|x) = 1 for all x ∈ X . The actions aB , aC transition
the agent to states B,C, respectively, after which the agent receives a reward r ∈ {0, 1} depending
on the context. We assume B,C are sink states.

Algorithm 3 Confounded Imitation

1: input: Expert data with missing context D∗ ∼ dπ∗ρe , λ > 0, sensitivity bound δ ≥ 0.
2: init: Υ = ∅
3: for n = 1, . . . do
4: Sample u(s, a) ∼ U [0, δ],∀s, a
5: L∗(π; g0) := Es,a∼dπρo (s,a)[g0(s, a)]− Es,a∼dπ∗ρe (s,a)+u(s,a)[g0(s, a)]

6: Li(π; gi) := Ex∼ρo,s,a∼dπ(s,a|x)[gi(s, a, x)]− Ex∼ρo,s,a∼dπi (s,a|x)[gi(s, a, x)] , i ≥ 1
7: Compute πn by solving

min
π∈Πdet

max
|g0|≤ 1

2 ,|gi|≤
1
2

{
L∗(π; g0(s, a))− λmin

i
Li(π; gi(s, a, x))

}
(4)

8: if πn ∈ Υ then
9: Terminate and return π̄(a|s, x) =

∑n−1
i=1 dπi (s,a,x)∑n−1

i=1

∑
a′ d

πi (s,a′,x)

10: else
11: Υ = Υ ∪ {πn}
12: end if
13: end for

No Covariate Shift. Suppose ρo = ρe, and ρ = 1
2 . Trivially dπ

∗

ρe (s, a) = dπ
∗

ρo (s, a). We define the
(suboptimal) policy

π0(a|A, x) = 1− π∗(a|A, x) , a ∈ A, x ∈ X . (3)

It can be verified that dπ
∗

ρe (s, a) = dπ0
ρo (s, a) still holds, yet π0 is catastrophic (Equation (1)) with

value zero. A question arises: can we show that π0 is a suboptimal policy given access to the expert
data (i.e., access to dπ

∗

ρe (s, a)) and a forward model P (s′|s, a, x)?

Unfortunately, one cannot prove that π0 is suboptimal. Informally, notice that π0 is an optimal
policy for an alternative reward function, r0(s, a, x) = 1− r(s, a, x), yet is catastrophic w.r.t. the
true reward r. Indeed, since r is unknown and dπ0

ρo (s, a) = dπ
∗

ρo (s, a), we cannot reject r0 (i.e.,
we cannot conclude that r0 is not the true reward). In other words, one cannot use the data to
differentiate which of {π0, π

∗} is the optimal policy.

With Covariate Shift. Next, assume ρo 6= ρe, and define π0 as in Equation (3). Let ρ̃e = 1− ρe
and recall that ρe(x1) = ρ. Then, we have that

dπ0

ρ̃e
(s, a) = (1− ρ)dπ0(s, a|x1) + ρdπ0(s, a|x2) = (1− ρ)dπ

∗
(s, a|x2) + ρdπ

∗
(s, a|x1) = dπ

∗

ρe (s, a).

Indeed, the expert data is incapable of distinguishing π0 and π∗, since dπ0

ρ̃e
= dπ

∗

ρe , and ρe is un-
known. Unfortunately, as we’ve shown previously, π0 achieves value zero. Notice that, unlike the
previous section, one cannot distinguish π∗ from the catastrophic policy π0 for any choice of ρo.
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B.2 A PRACTICAL ALGORITHM

Algorithm 3 describes our method for calculating the ambiguity set of Theorem 1, and returns π̄ of
Proposition 1. At every iteration of the algorithm, we find a new policy in the set by minimizing the
total variation distance (written in variational form) between dπ

∗

ρo (s, a) and dπρo(s, a), while regular-
izing it with the distance between π and all previously collected πi ∈ Υ. Algorithm 3 also uses a
sensitivity parameter δ ≥ 0 (defined formally in Appendix C) whenever bounded covariate shift is
present. For this section we assume δ = 0.

In practice, the functions L∗ and Li in lines 4 and 5 are estimated using samples from trajectories
of π, πi, and D∗. We then solve the min-max problem of Equation (4) using a parametric represen-
tations of gi and online gradient decent. The following proposition states that Algorithm 3 indeed
retrieves the set Υπ∗ .
Proposition 3. Assume ρe ≡ ρo and |Υπ∗ | < ∞. Then there exists λ∗ > 0 such that for any
λ ∈ (0, λ∗), Algorithm 3 (with δ = 0 sensitivity) will return π̄ of Proposition 1 after exactly |Υπ∗ |
iterations.

C BOUNDED HIDDEN CONFOUNDING

In this section we discuss the imitation learning problem under bounded hidden confounders. There
are several ways to define boundness of unobserved confounders. In Section 3 we showed that,
under arbitrary covariate shift and context-free transitions, the imitation learning problem is impos-
sible, i.e., one cannot rule out a catastrophic policy. We begin by considering the effect of bounded
covariate shift, i.e., ρoρe ≤ C. We then consider almost-context-free rewards, showing a tradeoff w.r.t.
the hardness of the imitation problem.

A Sensitivity Perspective. A common approach in causal inference is to bound the bias of unob-
served confounding through sensitivity analysis (Hsu & Small, 2013; Namkoong et al., 2020; Kallus
& Zhou, 2021). In our setting, this confounding bias occurs due to a covariate shift of the unobserved
covariates. As we’ve shown in Theorem 2, though these covariates are observed in the online envi-
ronment, their shifted and unobserved distribution in the offline data can render catastrophic results.
Therefore, we consider the odds-ratio bounds of the sensitivity in distribution between the online
environment and the expert data, as stated formally below.
Assumption 1 (Bounded Sensitivity). We assume that Supp(ρe) ⊆ Supp(ρo) and that there exists
some Γ ≥ 1 such that for all x ∈ Supp(ρe)

Γ−1 ≤ ρo(x)(1− ρe(x))

ρe(x)(1− ρo(x))
≤ Γ.

Next, we define the notion of δ-ambiguity, a generalization of the ambiguity set in Definition 1.
Definition 4 (δ-Ambiguity Set). For a policy π ∈ Π, we define the set of all deterministic policies
that are δ-close to π by

Υδ
π =

{
π′ ∈ Πdet :

∣∣∣dπ′ρo(s, a)− dπρe(s, a)
∣∣∣ < δ, s ∈ S, a ∈ A

}
.

Similar to Definition 1, the δ-ambiguity set considers all deterministic policies with a marginalized
stationary distribution of distance at most δ from π. The following results shows that ΥΓ−1

π∗ is a
sufficient set of candidate optimal policies, as long as Assumption 1 holds for some Γ ≥ 1.

Theorem 5. [Sufficiency of ΥΓ−1
π∗ ] Let Assumption 1 hold for some Γ ≥ 1. Then π∗ ∈ ΥΓ−1

π∗ .

The above result suggests that Algorithm 3 can be executed over ΥΓ−1
π∗ by adding δ = Γ − 1

additive uniform noise to dπ
∗

ρe (s, a) (see Line 4 of Algorithm 3), and executing the algorithm for a
finite number of iterations, finally selecting a robust policy from the approximate set.

Context Reconstruction. When bounded covariate shift is present, one might attempt to learn an
inverse mapping of contexts from observed trajectories in the data.
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We denote by Pπρ the probability measure over contexts x ∈ X and trajectories
τ = (s0, a0, s1, a1, . . . sH) as induced by the policy π and context distribution ρ. That is,

Pπρ (x, τ) = ρ(x)ν(s0|x)

H−1∏
t=0

P (st+1|st, at, x)π(at|st, x).

As the true context is observed in the online environment, we can calculate for any π the quan-
tity Pπρo(x, τ). As the expert data distribution was generated by the marginalized distribution
Pπ
∗

ρo (τ) =
∑
x∈X P

π∗

ρo (x, τ), it is unclear if knowledge of Pπρo(x, τ) is beneficial.

Fortunately, whenever Assumption 1 holds, a high probability of a context in the online environment
induces a high probability in the expert data. To see this, assume that there exists δ ∈ [0, 1] such that
for all π ∈ ΥΓ−1

π∗ , τ ∈ Supp(Pπρe(τ)), there exists x ∈ X such that

Pπρo(x|τ) ≥ min{(1− δ)(ρo(x) + Γ(1− ρo(x))), 1}. (5)

That is, we assume that for any policy that δ-ambiguous to π∗, and any induced trajectory of x ∈ X ,
one can with high probability identify x in the online environment. Importantly, this property can
be verified in the online environment. When Assumption 1 and 5 hold, we get that

Pπρe(x|τ) =
Pπρe(τ |x)ρe(x)

Pπρe(τ)
≥
Pπρe(τ |x)

Pπρe(τ)

ρo(x)

ρo(x) + Γ(1− ρo(x))
=

Pπρo(x|τ)

ρo(x) + Γ(1− ρo(x))
≥ 1− δ.

In other words, we can reconstruct x with probability 1 − δ for any trajectory τ which satisfies the
above. This may allow us to deconfound essential parts of the expert data, rendering it useful for the
imitation problem, even when reward is not provided. We leave this direction of research for future
work.

Context-Dependent Reward. We are still in progress of completing the information of this sec-
tion.

D FURTHER EXPERIMENTS

We are still in progress of completing the information of this section.

E RELATION TO CAUSAL INFERENCE

We are still in progress of completing the information of this section.

F IMPLEMENTATION DETAILS

We are still in progress of completing the information of this section.
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*

*

*

Figure 6: A Causal Diagram.

G MISSING PROOFS

G.1 PROOFS OF MAIN RESULTS

We begin by proving two auxilary lemmas.

Lemma 1. Let π2 ∈ Υπ1 . Then, Υπ1 = Υπ2 .

Proof. We show that Υπ1
⊆ Υπ2

and Υπ2
⊆ Υπ1

.

Let π ∈ Υπ1
, then dπ(s, a) = dπ1(s, a). By our assumption, π2 ∈ Υπ1

, then dπ2(s, a) = dπ1(s, a).
Hence, dπ(s, a) = dπ2(s, a). That is, π ∈ Υπ2

. This proves Υπ1
⊆ Υπ2

.

Similarly, let π ∈ Υπ2 , then dπ(s, a) = dπ2(s, a). By our assumption, π2 ∈ Υπ1 , then dπ2(s, a) =
dπ1(s, a). Hence, dπ(s, a) = dπ1(s, a). That is, π ∈ Υπ1 . This proves Υπ2 ⊆ Υπ1 , completing the
proof.

Lemma 2. Let π0 be a deterministic policy and let M0 = (S,A,X , P, r0, γ) such that
r0(s, a, x) = 1{a = π0(s, x)}. Then π0 is the unique, optimal policy inM0.

Proof. By definition of π0 and r0,

r0(s, π0(s, x), x) = 1,∀s ∈ S, x ∈ X .

In particular, Eπ0 [r0(st, at, x)] = 1. Then

V ∗M0
≤ (1− γ)

∞∑
t=0

γt = Eπ0

[
(1− γ)

∞∑
t=0

γtr0(st, at, x)

]
= V π0

M0
.
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This proves π0 is an optimal policy. To prove uniqueness, assume by contradiction there exists an
optimal policy π1 6= π0. Then,

V π1 = Es,a,x∼dπ1 (s,a,x)[1{a = π0(s, x)}] = Es,x∼dπ1 (s,x)

[
Ea∼π1(·|s,x)[1{a = π0(s, x)}]

]
< 1 = V π0

M0
.

In contradiction to π1 is optimal. Then, π0 is a unique optimal policy.

We are now ready to prove Theorem 1.

Theorem 1. [Sufficiency and Necessity of Υπ∗] Assume ρe ≡ ρo. Let π∗ ∈ Π∗M and let π0 ∈ Υπ∗ .
Then, Υπ∗ = Υπ0

. Moreover, if π0 6= π∗, then there exists r0 such that π0 ∈ Π∗M0
but π∗ /∈ Π∗M0

,
whereM0 = (S,A,X , P, r0, ρo, ν, γ).

Proof. Let π∗ ∈ Π∗M and let π0 ∈ Υπ∗ . By Lemma 1, as π0 ∈ Υπ∗ , it holds that Υπ∗ = Υπ0
.

Next, choosing r0(s, a, x) = 1{a = π0(s, x)}, by Lemma 2 we get that π0 is an optimal policy in
M0. This proves π0 ∈ Π∗M0

. Finally, by Lemma 2, Π∗M0
= {π0}, proving π∗ /∈ Π∗M0

if and only
if π∗ 6= π0.

Proposition 1. Define the mean policy π̄(a|s, x) =

∑
π∈Υπ∗

dπ(s,a,x)∑
π∈Υπ∗

∑
a′ d

π(s,a′,x) , and denote

α∗ =
|Π∗M|
|Υπ∗ |

∈ [0, 1]. Then, vM(π̄) ≥ α∗v∗ + (1− α∗) minπ∈Υπ∗ vM(π).

Proof. Let π̃ as defined. Then by linearity of expectation

V π̃M = Es,a,x∼dπ̃ [r(s, a, x)] =
1

|Υπ∗ |
∑

π∈Υπ∗

Es,a,x∼dπ [r(s, a, x)] =
1

|Υπ∗ |
∑

π∈Υπ∗

V πM.

Then

V π̃M =
1

|Υπ∗ |
∑
π∈Π∗M

V πM +
1

|Υπ∗ |
∑

Υπ∗\Π∗M

V πM

=
|Π∗M|
|Υπ∗ |

V ∗M +
1

|Υπ∗ |
∑

Υπ∗\Π∗M

V πM

≥ |Π
∗
M|

|Υπ∗ |
V ∗M +

|Υπ∗ | − |Π∗M|
|Υπ∗ |

min
π∈Υπ∗\Π∗M

V πM.

We see that if |Υπ∗ | = |Π∗M|, then V π̃M ≥ V ∗M. Otherwise,

V π̃M ≥
|Π∗M|
|Υπ∗ |

V ∗M +
|Υπ∗ | − |Π∗M|
|Υπ∗ |

min
π∈Υπ∗\Π∗M

V πM

>
|Π∗M|
|Υπ∗ |

max
π∈Υπ∗\Π∗M

V πM +
|Υπ∗ | − |Π∗M|
|Υπ∗ |

min
π∈Υπ∗\Π∗M

V πM

≥ min
π∈Υπ∗\Π∗M

V πM

= min
π∈Υπ∗

V πM,

where the strict inequality follows since ∀π ∈ Υπ∗\Π∗M, V πM < V ∗M, and the last equality holds by
definition of Π∗.

Theorem 2. [Catastrophic Imitation] Assume |X | ≥ |A|, and P (s′|s, a, x) = P (s′|s, a, x′) for all
x, x′ ∈ X . Then ∃πe,1, πe,2 s.t. {πe,1, πe,2} are non-identifiable, catastrophic expert policies.

Proof. Let ρo, d∗(a). Without loss of generality, let X = {x0, . . . , xm}, A = {a0, . . . , ak} with
m ≥ k, and denote Xk = {x1, . . . , xk} ⊆ X . By definition there exists an injective function from
A into X .
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Define

f(x) =

{
ai , x = xi, i = 0, . . . , k

a0 , o.w.

g(x) =

{
ai+1 (mod k) , x = xi, i = 0, . . . , k

a0 , o.w.

Then we can select π1, π2, ρe, ρ̃e as follows

π1(a|x) = 1{a = f(x), x ∈ Xk}+
1

k + 1
1{x /∈ Xk}

π2(a|x) = 1{a = g(x), x ∈ Xk}+
1

k + 1
1{x /∈ Xk},

and

ρe(x) = d∗(f(x))1{x ∈ Xk},
ρ̃e(x) = d∗(g(x))1{x ∈ Xk}.

We get that

dπ1
ρe (a) =

m∑
i=1

ρe(xi)π1(a|xi)

=

k∑
i=1

d∗(f(xi))1{a = f(xi)}

=

k∑
i=1

d∗(ai)1{ai = a} = d∗(a).

Similarly,

dπ2

ρ̃e
(a) =

k∑
i=1

d∗(g(xi))1{a = g(xi)}

=

k∑
i=1

d∗(ai+1 (mod k))1
{
ai+1 (mod k) = a

}
=

k∑
i=1

d∗(ai)1{ai = a} = d∗(a).

This proves the first part of the theorem. For the other parts, choose r1, r2 as follows

r1(a, x) = 1{x = xi, a = ai, 0 ≤ i ≤ k}
r2(a, x) = 1

{
x = xi, a = ai+1 (mod k), 0 ≤ i ≤ k

}
.

Then, by definition, for any P (x) such that Supp(P ) ∩ Xk 6= ∅,

Ex∼P (x),a∼π1(·|x)[r1(a, x)] = 1 = max
π∈Π

Ex∼P (x),a∼π(·|x)[r1(a, x)],

Ex∼P (x),a∼π1(·|x)[r2(a, x)] = 0 = min
π∈Π

Ex∼P (x),a∼π(·|x)[r2(a, x)].

And similarly,

Ex∼P (x),a∼π2(·|x)[r1(a, x)] = 0 = min
π∈Π

Ex∼P (x),a∼π(·|x)[r1(a, x)],

Ex∼P (x),a∼π2(·|x)[r2(a, x)] = 1 = max
π∈Π

Ex∼P (x),a∼π(·|x)[r2(a, x)].

The condition on the support holds for ρe, ρ̃e by definition. If, Supp(ρo) ∩ Xk = ∅, then the result
holds trivially as Ex∼ρo(x),a∼π(·|x)[r1(a, x)] = Ex∼ρo(x),a∼π(·|x)[r2(a, x)] = 0 for all π ∈ Π. This
completes the proof.
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Lemma 3. Assume Supp(ρo) ⊆ Supp(ρe). Then

arg max
π

Ex∼ρe(x),s,a∼dπ(s,a|x)[r(s, a, x)] ⊆ arg max
π

Ex∼ρo(x),s,a∼dπ(s,a|x)[r(s, a, x)]

Proof. For clarity we denote

Π∗ρe = arg max
π

Ex∼ρe(x),s,a∼dπ(s,a|x)[r(s, a, x)]

Π∗ρo = arg max
π

Ex∼ρo(x),s,a∼dπ(s,a|x)[r(s, a, x)]

Π∗Supp(ρe)
= ×
x∈Supp(ρe)

arg max
π

Es,a∼dπ(s,a|x)[r(s, a, x)].

To prove the lemma, we will show Π∗ρe = Π∗Supp(ρe)
⊆ Π∗ρo .

We begin by proving Π∗ρe = Π∗Supp(ρe)
. Indeed, let π∗ ∈ Π∗Supp(ρe)

. Then, for any x ∈ Supp(ρe)

Es,a∼dπ∗ (s,a|x)[r(s, a, x)] = max
π

Es,a∼dπ(s,a|x)[r(s, a, x)].

In particular,

Ex∼ρe(x),s,a∼dπ∗ (s,a|x)[r(s, a, x)] = Ex∼ρe(x)

[
max
π

Es,a∼dπ(s,a|x)[r(s, a, x)]
]
≥ max

π
Ex∼ρe(x),s,a∼dπ∗ (s,a|x)[r(s, a, x)],

where we used Jensen’s inequality. This proves Π∗Supp(ρe)
⊆ Π∗ρe .

To see the other direction, let πe ∈ Π∗ρe and assume by contradiction that πe /∈ Π∗Supp(ρe)
. Then,

there exists x̃ ∈ Supp(ρe) such that

Es,a∼dπe (s,a|x̃)[r(s, a, x̃)] < max
π

Es,a∼dπ(s,a|x̃)[r(s, a, x̃)].

Define

π̃(·|s, x) = 1{x = x̃}πx̃(·|s, x̃) + 1{x 6= x̃}πe(·|s, x),

where πx̃ ∈ arg maxπ Es,a∼dπ(s,a|x̃)[r(s, a, x̃)]. Then,

v(πe) = P (x = x̃)Es,a∼dπe (s,a|x̃)[r(s, a, x̃)] +
∑

x∈Supp(ρe)\{x̃}

P (x)Es,a∼dπe (s,a|x)[r(s, a, x)]

< P (x = x̃)Es,a∼dπ̃(s,a|x̃)[r(s, a, x̃)] +
∑

x∈Supp(ρe)\{x̃}

P (x)Es,a∼dπe (s,a|x)[r(s, a, x)] = v(π̃),

in contradiction to πe ∈ Π∗ρe . This proves Π∗ρe ⊆ Π∗Supp(ρe)
. We have thus shown that Π∗ρe =

Π∗Supp(ρe)
.

Finally, it is left to show that Π∗Supp(ρe)
⊆ Π∗ρo . Similar to before, let π∗ ∈ Π∗Supp(ρe)

. Then, for any
x ∈ Supp(ρe), by Jensen’s inequality

Ex∼ρo(x),s,a∼dπ∗ (s,a|x)[r(s, a, x)] = Ex∼ρo(x)

[
max
π

Es,a∼dπ(s,a|x)[r(s, a, x)]
]
≥ max

π
Ex∼ρo(x),s,a∼dπ∗ (s,a|x)[r(s, a, x)].

This completes the proof.

Theorem 3. [Sufficiency of Context-Free Reward] Assume Supp(ρo) ⊆ Supp(ρe) and
r(s, a, x) = r(s, a, x′) for all x, x′ ∈ X . Then Υπ∗ ⊆ Π∗M.

Proof. Let π0 ∈ Υπ∗ , we will show π0 ∈ Π∗M. Since r(s, a, x) = r(s, a, x′) for all x ∈ X we
denote r(s, a) = r(s, a, x). By definition of Υπ∗ we have that.

dπ0
ρo (s, a) = dπ

∗

ρe (s, a)
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Then,

v(π0) = Ex∼ρo(x),s,a∼dπ0 (s,a|x)[r(s, a)]

= Ex∼ρo(x)

 ∑
s∈S,a∈A

dπ0(s, a | x)r(s, a)


=

∑
s∈S,a∈A

r(s, a)Ex∼ρo(x)[d
π0(s, a | x)]

= Es,a∼dπ0
ρo (s,a)[r(s, a)]

= Es,a∼dπ∗ρe (s,a)[r(s, a)]

= Ex∼ρe(x),s,a∼dπ∗ (s,a|x)[r(s, a)]

= max
π

Ex∼ρe(x),s,a∼dπ(s,a|x)[r(s, a)]

Then, π0 ∈ arg maxπ Ex∼ρe(x),s,a∼dπ(s,a|x)[r(s, a)]. Applying Lemma 3

π0 ∈ arg max
π

Ex∼ρo(x),s,a∼dπ(s,a|x)[r(s, a)] = Π∗M,

completing the proof.

Proposition 2. [Trajectory Sampling Equivalence] Let ρ∗s which minimizes Problem (P2) for some
π ∈ Π, g : S × A 7→ R, and assume Supp(ρo) ⊆ Supp(ρe). Then, there exists pn ∈ ∆n such that
dπ
∗

ρ∗s
(s, a) = lim

n→∞
Ei∼pn

[
(1− γ)

∑∞
t=0 γ

t1
{

(sit, a
i
t) = (s, a)

}]
.

Proof. We can write

dπ(s, a | x) = (1− γ)

∞∑
t=0

γtP (st = s, at = a|x)

= (1− γ)
∑
τ

∞∑
t=0

γtP (st = s, at = a|x, τ)P (τ |x)

= (1− γ)
∑
τ

∞∑
t=0

γt1{τt = (s, a)}P (τ |x).

Then, denoting Pπρ∗s (τ) = Ex∼ρ∗s [P (τ | x) ], we get that

dπρ∗s (s, a) = (1− γ)
∑
τ

∞∑
t=0

γt1{τt = (s, a)}Pπρ∗s (τ)

= Eτ∼Pπ
ρ∗s

[
(1− γ)

∞∑
t=0

γt1{τt = (s, a)}

]
.

Since, Supp(ρo) ⊆ Supp(ρe), there exists pn ∈ ∆n such that
Ei∼pn

[
(1− γ)

∑∞
t=0 γ

t1
{
sit, a

i
t = (s, a)

}]
is an unbiased estimator of dπρ∗s (s, a). The result

follows by the law of large numbers.

Theorem 4. Let ALG-RL be an approximate best response player that solves the RL problem in
iteration k to accuracy εk = 1√

k
. Then, Algorithm 1 will converge to an ε-optimal solution to

Problem (P2) in O
(

1
ε4

)
samples.

Proof. We begin by showing that h(P ) = minx∈∆n
Df (P ||Ex[Qx]) is convex in P . We can write

Df in its variational form, rewriting h(P ) as

h(P ) = min
x∈∆n

max
g:Z7→R

Ez∼P [g(z)]− Ex,z∼Qx [f∗(g(z))],
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where

f∗(w) = sup
y
{yw − f(y)}.

We have that Ez∼P [g(z)]−Ex,z∼Qx [f∗(g(z))] is affine in g and x. Therefore, strong duality holds,
yielding

h(P ) = max
g:Z7→R

min
x∈∆n

Ez∼P [g(z)]− Ex,z∼Qx [f∗(g(z))]

= max
g:Z7→R

{
Ez∼P [g(z)] +

(
max
x∈∆n

Ex,z∼Qx [f∗(g(z))]

)}
We have that maxx∈∆n

Ex,z∼Qx [f∗(g(z))] is convex in g as a maximum over convex (affine) func-
tions in a compact set. Therefore h(P ) is also convex as a maximum over convex functions.

Then, the objective in Problem (P2) is convex in dπρo . Following the meta algorithm framework
for convex RL in Zahavy et al. (2021), we write the gradient of Df (dπρo(s, a)||dπ∗ρe (s, a)). Notice

that for any general f -divergence Df (xi||yi) = Eyi
[
f
(
xi
yi

)]
it holds that

∇xjDf (xi||yi) = 0, j 6= i,

and

∇xiDf (xi||yi) = ∇xiEyi
[
f

(
xi
yi

)]
= Eyi

[
1

yi
∇zf(z) |z= xi

yi

]
.

Specifically, for the KL-divergence, DKL(pi||qi) = −Eqi
[
log
(
pi
qi

)]
. Then,

∇piDKL(pi||qi) = Eqi
[

1

pi

]
.

Applying Lemma 2 of Zahavy et al. (2021) with a Follow the Leader (FTL) cost player completes
the proof.

G.2 PROOFS OF RESULTS IN APPENDIX

Proposition 3. Assume ρe ≡ ρo and |Υπ∗ | < ∞. Then there exists λ∗ > 0 such that for any
λ ∈ (0, λ∗), Algorithm 3 (with δ = 0 sensitivity) will return π̄ of Proposition 1 after exactly |Υπ∗ |
iterations.

Proof. Denote

λ∗1 = max
π∈Πdet,π 6∈Υπ∗ ,π′∈Υπ∗

dTV

(
dπρo(s, a, x), dπ

′

ρo(s, a, x)
)
,

λ∗2 = min
π∈Πdet,π 6∈Υπ∗

dTV (dπρo(s, a), dπ
∗

ρe (s, a)),

where dTV is the total variation distance. Let λ∗ =
λ∗2
λ∗1

and λ ∈ (0, λ∗) and notice that λ∗ > 0.

To prove the result., we will show that at iteration n of the algorithm πn ∈ Υπ∗ and that either
πn /∈ Υn−1 := {πj}n−1

j=1 or Υn−1 = Υπ∗ .

Base case (n = 1). By the variational representation of the f -divergence,

max
g0:S×A7→R

Es,a∼dπρo (s,a)[g0(s, a)]− Es,a∼dπ∗ρe (s,a)[f
∗(g0(s, a))] = dTV (dπρo(s, a), dπ

∗

ρe (s, a)).

By definition Υπ∗ = arg minπ∈Πdet dTV (dπρo(s, a)||dπ∗ρe (s, a)). Then, π1 ∈ Υπ∗ . Finally since
Υ0 = ∅, we have that π1 /∈ Υ0.

Induction step. Suppose the claim holds for some n = k. We will show it holds for n = k + 1.
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We begin by showing that πk+1 ∈ Υπ∗ . Assume by contradiction that πk+1 ∈ Πdet, πk+1 /∈ Υπ∗ .
Using the variational form of the f -divergence,

max
gi:S×A×X

Li(πk+1; gi) = dTV (dπk+1
ρo (s, a, x), dπiρo(s, a, x)) ≤ λ∗1,

max
g0:S×A

L∗(πk+1; g0) = dTV (dπk+1
ρo (s, a), dπ

∗

ρe (s, a)) ≥ λ∗2.

We have that

max
g0:S×A7→R,
gi:S×A×X 7→R

L∗(πk+1; g0)− λmin
i
Li(πk+1; gi) ≥ λ∗2 − λλ∗1 > λ∗2 − λ∗λ∗1 = 0.

Next, let π̃k+1 ∈ Υπ∗ , then

max
g0:S×A7→R,
gi:S×A×X 7→R

L∗(π̃k+1; g0)− λmin
i
Li(π̃k+1; gi) ≤ 0,

where we used the fact that L∗(π̃k+1; g0) = 0 by definition of Υπ∗ , and Li ≥ 0. We have reached a
contradiction to πk+1 being a solution to Equation (4). This proves that πk+1 ∈ Υπ∗ .

Finally, we show that πk+1 /∈ Υk if and only if Υk 6= Υπ∗ . First, notice that if Υk = Υπ∗

then Equation (4) will return πk+1 ∈ Υk by definition of the total variation distance. Next, as-
sume Υk 6= Υπ∗ and assume by contradiction πk+1 ∈ Υk. Then, ∃i : maxgi Li(πk+1; gi) = 0, and
maxg0:S×A7→R L

∗(πk+1; g0) = 0, by definition of Υπ∗ . Hence,

max
g0:S×A7→R,
gi:S×A×X 7→R

L∗(πk+1; g0)− λmin
i
Li(πk+1; gi) = 0.

In contrast, since Υk 6= Υπ∗ , there exists π̃ ∈ Υπ∗ such that π̃ /∈ Υk, and

max
g0:S×A7→R,
gi:S×A×X 7→R

L∗(π̃; g0)− λmin
i
Li(π̃; gi) ≤ λ∗1 < 0,

in contradiction to πk+1 being a solution Equation (4). This completes the proof.

Theorem 5. [Sufficiency of ΥΓ−1
π∗ ] Let Assumption 1 hold for some Γ ≥ 1. Then π∗ ∈ ΥΓ−1

π∗ .

Proof. Let π ∈ Π. We will show that π ∈ ΥΓ−1
π . By elementary algebra, we have that, under

Assumption 1,

ρo(x)(1− Γ−1) + Γ−1 ≤ ρo(x)

ρe(x)
≤ ρo(x)(1− Γ) + Γ.

Since Supp(ρe) ⊆ Supp(ρo),

dπρo(s, a) = Ex∼ρo(x)[d
π(s, a | x)]

= Ex∼ρe(x)

[
ρo(x)

ρe(x)
dπ(s, a | x)

]
≤ Ex∼ρe(x)[(ρo(x)(1− Γ) + Γ)dπ(s, a | x)].

Subtracting dπρe from both sides we get that

dπρo(s, a)− dπρe(s, a) ≤ Ex∼ρe(x)[(ρo(x)(1− Γ) + Γ− 1)dπ(s, a | x)]

= (Γ− 1)Ex∼ρe(x)[(1− ρo(x))dπ(s, a | x)]

≤ Γ− 1.

Similarly,

dπρo ≥ Ex∼ρe(x)

[(
ρo(x)(1− Γ−1) + Γ−1

)
dπ(s, a | x)

]
.
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Hence,

dπρo(s, a)− dπρe(s, a) ≥ Ex∼ρe(x)

[(
ρo(x)(1− Γ−1) + Γ−1 − 1

)
dπ(s, a | x)

]
=
(
Γ−1 − 1

)
Ex∼ρe(x)[(1− ρo(x))dπ(s, a | x)]

≥ −(1− Γ−1)

≥ −(Γ− 1)

where the last two transitions hold since Γ ≥ 1. Then, we have that∣∣dπρo(s, a)− dπρe(s, a)
∣∣ ≤ Γ− 1.

This completes the proof.
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