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Abstract
We study reinforcement learning (RL) for deci-
sion processes with non-Markovian reward, in
which high-level knowledge in the form of re-
ward machines is available to the learner. Specifi-
cally, we investigate the efficiency of RL under the
average-reward criterion, in the regret minimiza-
tion setting. We propose two model-based RL
algorithms that each exploits the structure of the
reward machines, and show that our algorithms
achieve regret bounds that improve over those of
baselines by a multiplicative factor proportional
to the number of states in the underlying reward
machine. To the best of our knowledge, the pro-
posed algorithms and associated regret bounds
are the first to tailor the analysis specifically to
reward machines, either in the episodic or average-
reward settings. We also present a regret lower
bound for the studied setting, which indicates that
the proposed algorithms achieve a near-optimal
regret. Finally, we report numerical experiments
that demonstrate the superiority of the proposed
algorithms over existing baselines in practice.

1. Introduction
Most state-of-the-art reinforcement learning (RL) algo-
rithms assume that the underlying decision process has
Markovian reward and dynamics, i.e. that future observa-
tions depend only on the current state-action of the system.
In this case, the Markov Decision Process (MDP) is a suit-
able mathematical model for representing the task to be
solved (Puterman, 2014). However, there are many applica-
tion scenarios with non-Markovian reward and/or dynam-
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ics (Bacchus et al., 1996; Brafman & De Giacomo, 2019;
Littman et al., 2017) that are more appropriately modeled
as Non-Markovian Decision Processes (NMDPs). For ex-
ample, a robot may receive a reward for delivering an item
only if the item was previously requested, and a self-driving
car is more likely to skid and lose control if it previously
rained.

In general, the future observations of an NMDP can de-
pend on an infinite history or trace, preventing efficient
learning. Consequently, recent research has focused on
tractable subclasses of NMDPs. In Regular Decision Pro-
cesses (RDPs) (Brafman & De Giacomo, 2019), the reward
function and next state distribution are conditioned on logi-
cal formulas, making RDPs fully observable. Another pop-
ular formalism is the Reward Machine (RM) (Toro Icarte
et al., 2018; 2022), a Deterministic Finite-State Automaton
(DFA) whose transitions are labeled with high-level events
and whose states compactly encode the entire history of ob-
servations. Hence, the current state of the reward machine
is sufficient to fully specify the reward function.

In this paper, we investigate RL in Markov decision pro-
cesses with reward machines (MDPRMs) under the average-
reward criterion, where the agent performance is measured
through the notion of regret with respect to an oracle aware
of the transition dynamics and associated reward functions.
The goal of the agent is to minimize its regret, which calls
for balancing exploration and exploitation. We focus on an
intermediate setting where the underlying DFA is known,
while the actual transition distributions are unknown. For
a given MDPRM, it is possible to formulate an equivalent
cross-product MDP (adhering to the Markov property) as
discussed in the literature (Toro Icarte et al., 2018) (see
Lemma 2.1), and apply provably efficient off-the-shelf algo-
rithms obliviously to the structure induced by the MDPRM.
However, this would lead to large regret, both empirically
and theoretically, as the associated cross-product MDP usu-
ally has a large state-space. Therefore, sample-efficient
learning of near-optimal policies entails exploiting the in-
trinsic structure of MDPRMs in an efficient manner.

1.1. Outline and Contributions

We formalize regret minimization in average-reward MD-
PRMs (Section 2), and establish a first, to the best of
our knowledge, regret lower bound for MDPRMs (Sec-



tion 5). We introduce two algorithms, UCRL-RM-L1 and
UCRL-RM-B, whose designs are inspired by the celebrated
UCRL2 algorithm (Jaksch et al., 2010) and its variants (e.g.,
(Fruit et al., 2018b; 2020; Zhang & Ji, 2019)), but they are
tailored to leverage the structure in MDPRMs; see Section 3.
The two algorithms admit a similar design and mainly differ
in the choice of confidence sets used. Nonetheless, they at-
tain different performance in terms of empirical and theoret-
ical regret. We present numerical experiments (in Section 6)
demonstrating that both UCRL-RM-L1 and UCRL-RM-B
significantly improve over existing tabular RL baselines
when directly applied to the associated cross-product MDP.
They also attain smaller regret bounds than these baselines
as detailed in Section 4.

Specifically, UCRL-RM-L1 and UCRL-RM-B achieve a re-
gret growing as Õ(

√
kMOAT ), in an MDPRM M , where

OA is the size of its observation-action space, T is the
number of time steps, and Õ(·) hides logarithmic and con-
stant terms. Furthermore, kM is an MDP-dependent and
algorithm-dependent factor, which reflects the contribution
of diameter-like quantities to the regret. In fact, kM is
defined in terms of a notion of diameter, called the RM-
restricted diameter, which reflects the connectivity in M
jointly determined by the dynamics and the sparsity struc-
ture of the reward machine. The RM-restricted diameter
is always smaller than Dcp, and interestingly, in some in-
stances of MDPRM, it is proportional to Dcp/Q. Hence,
this novel notion refines the conventional diameter (Jaksch
et al., 2010), and could be of interest in other settings of
reward machines. The presented regret bound exhibits a
two-fold improvement over those of baselines: (i) It is inde-
pendent of the number Q of states of the reward machine,
whereas the state-of-the-art existing bounds depend on

√
Q;

and (ii) existing bound necessarily depend on Dcp or
√

Dcp,
the diameter of the cross-product MDP, whereas ours de-
pend (via kM ) on RM-restricted diameters of the various
states. In summary, our regret bounds sometimes improve
over the state-of-the-art by a factor of Q3/2 —see Section
4. To the best of our knowledge, this work is the first study-
ing regret minimization in average-reward MDPRMs, and
the proposed algorithms constitute the first attempt to tailor
and analyse regret specifically for MDPRMs or MDPs with
associated DFAs.

1.2. Related Work

In the case of Markovian rewards and dynamics, there is a
rich and growing literature on average-reward RL in finite
tabular MDPs, where several algorithms with theoretical re-
gret guarantees are presented (e.g., (Bartlett & Tewari, 2009;
Burnetas & Katehakis, 1997; Fruit et al., 2018b; Jaksch et al.,
2010; Ouyang et al., 2017; QIAN et al., 2019; Talebi & Mail-
lard, 2018; Tossou et al., 2019; Wei et al., 2020; Bourel et al.,
2020; Zhang & Ji, 2019; Ok et al., 2018)). In the absence of
structure assumptions, as established in (Jaksch et al., 2010),

no algorithm can have a regret lower than Ω(
√
DSAT ) in a

communicating MDP with S states, A actions, diameter D,
and after T steps of interactions. The best available regret
bounds, achievable by computationally implementable algo-
rithms, grow as O(

√
DSAKT log(T )) (Fruit et al., 2020)

or as O(D
√
KSAT log(T )) (Fruit et al., 2018a), where K

denotes the maximal number of next-states under any state-
action pair in the MDP. (We note that (Zhang & Ji, 2019)
reports a regret of O(

√
DSAT log(T )), but the presented

algorithm does not admit a computationally efficient imple-
mentation.) Besides this growing line of research, some
papers study RL in episodic MDPs; see, e.g., (Dann et al.,
2017; Gheshlaghi Azar et al., 2017; Osband et al., 2013).

The focus of this paper is RL for the class of MDPRMs un-
der the average-reward criterion, in an intermediate setting
where the underlying DFA is known, while the actual tran-
sition distributions are unknown. Several authors propose
algorithms with polynomial sample complexity or sublinear
regret for different classes of NMDPs (Lattimore et al., 2013;
Maillard et al., 2013; Sunehag & Hutter, 2015). However,
even though these algorithms could be applied to MDPRMs,
they do not exploit the particular structure of the DFAs, and
hence the resulting theoretical bounds are not as tight as in
our work. The algorithm S3M (Abadi & Brafman, 2020)
integrates RL with the logical formulas of RDPs, but does
not admit polynomial sample complexity in the PAC set-
ting. (Ronca & De Giacomo, 2021) presents the first RL
algorithm for RDPs whose PAC sample complexity grows
polynomially in terms of the underlying parameters, though
the sample complexity bound is not very tight and could not
be used to derive a high-probability regret bound.

Research on reward machines is relatively recent, but has
grown quickly in popularity and already attracted a large
number of researchers to the field. Specifically, there
is previous work for proving convergence guarantees of
RL (Toro Icarte et al., 2018; 2022), for studying the relation-
ship to linear temporal logic (Camacho et al., 2019) and for
investigating how to learn DFAs from traces (De Giacomo
et al., 2020; Furelos-Blanco et al., 2021; Gaon & Brafman,
2020; Hasanbeig et al., 2021; Toro Icarte et al., 2019; Xu
et al., 2020). RL with linear temporal logic, strongly related
to DFAs, has been successfully applied to robotics tasks
with non-Markovian reward (Shah et al., 2020). (Clark
& Thollard, 2004) studies the learnability of probabilistic
DFAs (PDFAs) in the PAC setting. However, we are not
aware of any previous work involving reward machines that
establishes high-probability regret bounds in the episodic or
average-reward setting.

NMDPs are related to Partially-Observable Markov Deci-
sion Processes (POMDPs) (Kaelbling et al., 1998; Sondik,
1971), in which the current agent observation is not suffi-
cient to predict the future. Two common approaches for
POMDPs are 1) maintaining a finite history of observations;



or 2) maintaining a belief state. However, a finite history of
observations yields a history space whose size is exponen-
tial in the history length, while maintaining and updating a
belief state is worst-case exponential in the size of the orig-
inal observation space. The relationship between PDFAs,
hidden Markov models (HMMs) and POMDPs has been
previously studied (Dupont et al., 2005).

Notations. We introduce notations that will be used
throughout. Given a set A, ∆A denotes the simplex of
probability distributions over A. With a slight abuse of no-
tation, we use ∆X,A to denote the set of mappings of the
form X → ∆A. A∗ denotes (possibly empty) sequences
of elements from A, and A+ denotes non-empty sequences.
IA denotes the indicator function of event A.

2. Problem Formulation
2.1. MDPRMs: Average-Reward Markov Decision

Processes with Reward Machines

We begin with introducing some background on Markov
decision processes and reward machines.

Labeled Markov Decision Processes. A labeled average-
reward MDP (Xu et al., 2020) is a tuple M =
(O,A, p,R,P, L), where O is a finite set of (observation)
states with cardinality O, A is a finite set of actions avail-
able at each state with cardinality A, p : O×A → ∆(O) is
the transition function such that p(o′|o, a) denotes the prob-
ability of transiting to state o′ ∈ O, when executing action
a ∈ A in state o ∈ O. R : (O×A)+ → ∆[0,1] denotes a
history-dependent reward function such that for every his-
tory h ∈ (O×A)∗×O and action a ∈ A, R(h, a) defines a
reward distribution.1 P denotes a set of atomic propositions
and L : O×A×O→2P denotes a labeling function such
that L assigns, to each triplet (o, a, o′), a subset of P .

The notion of M above coincides with the conventional
notion of average-reward MDPs except that (i) it assumes a
non-Markovian reward function and (ii) it is equipped with
a labeling mechanism (defined via L and P). These labels
describe high-level events associated to (o, a, o′) triplets
that can be detected from the environment. The interac-
tion between the agent and the environment M proceeds
as follows. Starting from some initial state o1 ∈ O at
time t = 1, at each time step t ∈ N, the agent is in
state ot ∈ O and chooses an action at ∈ A based on
ht :=(o1, a1, . . . , ot−1, at−1, ot). Upon executing at in ot,
the environment generates a next-state ot+1 sampled from
p(·|ot, at), and assigns a label σt=L(ot, at, ot+1) —note
the dependence of ht on σ1, . . . , σt−1 through the label-

1The bounded support [0, 1] is with no loss of generality. This
can be extended to σ-sub-Gaussian reward distributions with un-
bounded supports.

ing function L. Then, the agent receives a random reward
rt ∼ R(ht, at) by the end of the current time step. The state
of M then transits to ot+1 and a new decision step begins.
As in conventional MDPs, after T steps of interactions, the
agent’s cumulative reward is

∑T
t=1 rt.

Reward Machines. In this paper we restrict attention to a
class of non-Markovian reward functions that are encoded
by Reward Machines (RMs) (Toro Icarte et al., 2018; 2022),
whose definition coincides with conventional Deterministic
Finite-State Automata (DFAs). An RM is a tuple R =
(Q, 2P , τ, ν), where Q is a finite set of states and 2P is
an input alphabet. Furthermore, τ : Q×2P →Q denotes
a deterministic transition function such that q′ = τ(q, σ)
denotes the next-state of R when an input σ is received
in state q, with the convention that τ(q, ∅) = q. Finally,
ν : Q×2P → ∆O×A,[0,1] denotes the output function of
R, which returns a reward function r : O×A → ∆[0,1].
This is very similar to the standard definition of reward
machine (Toro Icarte et al., 2022), though in our case the
set of terminal states is empty. In simple words, the RM
R converts a (sequentially received) sequence of labels to
a sequence of Markovian reward functions, such that the
output reward function at time t is rt = ν(qt, σt), where
rt : O×A → ∆[0,1] only depends on the current state qt and
current label σt. Conditioned on (qt, σt), rt is independent
of earlier labels and states (q1, σ1, . . . , qt−1, σt−1). Thus,
RMs provide a compact representation for a class of non-
Markovian reward functions that can depend on the entire
history.

Average-Reward MDPs with Reward Machines. Re-
stricting the generic history-dependent reward function
R to RMs leads to MDPs with RMs. Formally, an
average-reward MDP with RM (MDPRM) is a tuple M=
(O,A, p,R,P, L), where O,A, p,P , and L are defined as
in (labeled) average-reward MDPs, and where R is an RM,
which generates reward functions. The agent’s interaction
with an MDPRM M proceeds as follows. At each time
t ∈ N, the agent observes ot ∈ O and qt ∈ Q, and chooses
an action at ∈ A based on ot and qt as well as (potentially)
her past decisions and observations. The environment gen-
erates a next-state ot+1 ∼ p(·|ot, at) and reveals an event
σt = L(ot, at, ot+1). The RM R, being in state qt, receives
σt and outputs a reward function rt = ν(qt, σt) which is
a mapping rt : O×A → ∆[0,1]. Then, the agent receives
a reward rt ∼ rt(ot, at) (at the end of the current time
step). Then, the environment and RM states transit to their
next states ot+1 and qt+1 = τ(qt, σt), and a new time step
begins.

Figure 1 illustrates the MDP and RM components, respec-
tively, of an example MDPRM based on the popular River-
Swim domain (Strehl & Littman, 2008). The labeled MDP
has N observations o1, . . . , oN , two actions right (solid
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Figure 1. The N -state labeled RiverSwim MDP, and the patrol2
RM.

arrows) and left (broken arrows), and two propositions
σ = 0 and σ = 1. Action left always succeeds, while
action right sometimes fails, and may even move back-
wards. Label {σ = 0} is observed when applying any
action in o1, while label {σ = 1} is similarly observed in
oN . The patrol2 RM simulates a patrolling task with two
checkpoints, providing a stochastic reward each time the
agent completes a cycle of {σ = 0} and {σ = 1}, i.e. the
agent has to repeatedly visit the left-most and right-most
observations of the MDP. We remark that the current MDP
observation is not sufficient to predict what to do next, and
therefore has to be combined with the current RM state.

For a given finite MDPRM, one can derive an equivalent
tabular MDP (with a Markovian reward function). The
state-space of this equivalent MDP is S :=Q×O, namely
the cross-product of the state-space of R and the observa-
tion space. Hence, this associated MDP is often called the
cross-product MDP of M . We shall use Mcp to denote the
associated cross-product MDP of M . The following lemma
characterizes Mcp. Variants of this result appeared in, e.g.,
(Toro Icarte et al., 2022), and we state it here for complete-
ness and to slightly extend it to hold for reward distributions.
Proof is in Appendix B.

Lemma 2.1. Let M = (O,A, p,R,P, L) be a finite MD-
PRM. Then, an associated cross-product MDP to M is
Mcp = (S,A, P,R), where S = Q×O, and where for
s=(q, o), s′=(q′, o′)∈S and a∈A,

P (s′|s, a) = p(o′|o, a)I{q′=τ(q,L(o,a,o′))} , (1)

R(s, a) =
∑
o′∈O

p(o′|o, a)ν(q, L(o, a, o′)). (2)

In view of equivalence between M and Mcp, one could
apply any off-the-shelf algorithm to Mcp, as it perfectly
adheres to the Markovian property. In fact, Mcp can be used
as a proxy to develop learning algorithms for MDPRM.

2.2. Regret Minimization in MDPRMs

We are now ready to formalize RL in MDPRMs in the
regret minimization setting, which is the main focus of this
paper. As in tabular RL, RL in MDPRMs involves an agent
who is seeking to maximize her cumulative reward, and her
performance is measured in terms of regret with respect to
an oracle algorithm being aware of a gain-optimal policy.
To formally define regret, we introduce some necessary
concepts. A stationary deterministic policy in an MDPRM
M is a mapping π : Q×O → A, such that for all pairs
(q, o) ∈ Q×O, it prescribes an action π(q, o) ∈ A. Let Π
be the set of all stationary deterministic policies in M . The
long-term average-reward (or gain) of policy π ∈ Π, when
starting in (q, o), is defined as:

gπ(q, o) = lim inf
T→∞

1

T
Eπ

[ T∑
t=1

rt

∣∣∣q1 = q, o1 = o
]

where rt ∼ rt(ot, at) and rt = ν(qt, L(ot, π(qt, ot), ot+1)
)

for all t. Here the expectation is taken with respect to ran-
domness in rt and over all possible histories ht (which im-
plicitly depend on generated events too). Let g⋆ = maxπ g

π

denote the maximal gain over all (possibly history depen-
dent) policies. Any policy achieving g⋆ is an optimal policy.
Following the same arguments as in tabular MDPs together
with the equivalence between M and its Mcp (Lemma
2.1), it is guaranteed that there exists at least one opti-
mal policy in Π. We assume that the transition function
p is initially unknown, but that the RM R is known2 The
agent interacts with M for T steps according to the pro-
tocol specified in the previous subsection (i.e., observing
(ot, qt), choosing at based on past experience, observing
the event σt = L(ot, at, ot+1) and receiving the reward
rt ∼ rt(ot, at)). We define the regret of an agent (or learn-
ing algorithm) A as

R(A, T ) := Tg⋆ −
T∑

t=1

rt.

Alternatively, the objective of the learner is to minimize
regret, which entails balancing exploration and exploita-
tion. In order to achieve a regret sublinearly growing with
T , we need some notion of connectivity in the MDPRM,
as in tabular MDPs. We first recall that a tabular MDP
is communicating if it is possible to reach any state from
any other state under some stationary deterministic policy.
Alternatively, an MDP is communicating if and only if its
diameter is finite, where the notion of diameter is defined in
(Jaksch et al., 2010).3 We assume that the associated Mcp is

2This implies that both τ and ν are known. The assumption of
knowing ν can be easily relaxed at the expense of a slightly larger
multiplicative factor in our regret bounds; see the discussion in
Appendix A.

3The diameter D of an MDP M is D =
maxs ̸=s′ minπ E[Tπ(s, s′)], where Tπ(s, s′) denotes the



communicating. (Mcp is defined in Lemma 2.1).4

n summary, we impose the following assumption on the
considered MDPRM:
Assumption 2.2. We assume: (i) the RM R is known, and
(ii) Mcp is communicating.

3. Learning Algorithms for MDPRM
In this section, we present algorithms for learning in MD-
PRMs, which follow a model-based approach, similar to
UCRL2 (Jaksch et al., 2010) and its variants (Bourel et al.,
2020; Fruit et al., 2020; 2018b; QIAN et al., 2019; Zhang &
Ji, 2019).

3.1. Confidence Sets

We begin with introducing empirical estimates and confi-
dence sets used by the algorithms. We first present confi-
dence sets for the observation dynamics p, and then show
how they yield confidence sets for the transition and reward
functions of the cross-product MDP Mcp.

Confidence Sets for Observation Dynamics p. Formally,
under a given algorithm, let Nt(o, a, o

′) denote the num-
ber of times a visit to (o, a) was followed by a visit to o′,
up to time t: Nt(o, a, o

′) :=
∑t−1

i=1 I{(oi,ai,o′i+1)=(o,a,o′)}.

Further, Nt(o, a) := max{1,
∑

o′ Nt(o, a, o
′)}. Using the

observations collected up to t ≥ 1, we define the empiri-
cal estimate p̂t(o

′|o, a) = Nt(o,a,o
′)

Nt(o,a)
for p(o′|o, a), for any

o, o′ ∈ O and a ∈ A. We consider two confidence sets for p.
The first one uses a time-uniform variant of Weissman’s con-
centration inequality (Weissman et al., 2003), as introduced
in (Asadi et al., 2019; Maillard, 2019):

C1
t,δ(o, a) =

{
p′ ∈ ∆O : ∥p̂t(·|o, a)− p′∥1 ≤ βNt(o,a)(δ)

}
,

C1
t,δ = ∩o,aC

1
t,δ(o, a),

where for n∈N,

βn(δ) =

√
2
n

(
1 + 1

n

)
log
(√

n+ 1 2O−2
δ

)
.

By construction, this confidence set guarantees that uni-
formly for all t, p ∈ C1

t,δ/OA, with probability at least 1− δ,
that is, P(∃t ∈ N : p /∈ C1

t,δ/OA) ≤ δ. The second one is
based on Bernstein’s inequality (combined with a peeling
technique) and is defined as follows:

C2
t,δ(o, a, o

′) =

{
u ∈ [0, 1] : |p̂t(o′|o, a)− u|

≤
√

2u(1−u)
Nt(o,a)

β′
Nt(o,a)

(δ) +
β′
Nt(o,a)(δ)

3Nt(o,a)

}
,

number of steps it takes to get to s′ starting from s and following
policy π (Jaksch et al., 2010).

4Assuming that R and M are both communicating is not suffi-
cient to guarantee that Mcp is communicating.

and C2
t,δ = ∩o,a,o′C

2
t,δ(o, a, o

′), where for n ∈N and δ ∈
(0, 1), β′

n(δ) := η log
(

log(n+1) log(nη)
δ log2(η)

)
, where η > 1 is

an arbitrary choice (Maillard, 2019). (We set η=1.12, as
suggested in (Maillard, 2019) to get a small bound.) By
construction, C2

t,δ traps p with high probability, uniformly
for all t: P(∃t ∈ N : p /∈ C2

t,δ/O2A)≤2δ.

Confidence Sets for Mcp. We show that C1
t,δ and C2

t,δ

yield confidence sets for the transition function P and re-
ward function R of Mcp. To this effect, let us define the
empirical estimates for P and R as follows. By a slight
abuse of notation, let R̂ denote the empirical mean of distri-
bution R, and let ν denote the mean of the reward function
r = ν(q, σ). For all s = (q, o), s′ = (q′, o′), and a,

P̂t

(
s′|s, a

)
= p̂t(o

′|o, a)I{q′=τ(q,L(o,a,o′))},

R̂t

(
s, a
)
=
∑
o′

p̂t(o
′|o, a)ν

(
q, L(o, a, o′)

)
.

Now, the collection of all p ∈ C1
t,δ (resp. p ∈ C2

t,δ) defines
a confidence set for P (centered at P̂t) and for R (cen-
tered at R̂t) with similar probabilistic guarantees as for C1

t,δ

(resp. C2
t,δ). More concretely, we leverage this observation

to introduce the following set of MDPRMs, which are plau-
sible with the collected data up to time t ≥ 1 and for a
confidence parameter δ ∈ (0, 1):

Mt,δ :=Mt,δ(C) :={M ′=(O,A, p′,R,P, L) :p′ ∈ C} ,

where C = C1
t,δ/OA or C = C2

t,δ/O2A. This construction
ensures that the true MDPRM M belongs to Mt,δ with
high probability, uniformly for all t. More precisely, for all
δ ∈ (0, 1), and for either choice of C, P(∃t ∈ N : M /∈
Mt,δ) ≤ 2δ, as formalized in Lemma C.1 in the Appendix
C. This crucially relies on the equivalence between any
candidate MDPRM M ′ ∈ Mt,δ and its associated cross-
product MDP M ′

cp = (S,A, P ′, R′) where P ′ and R′ are
defined similarly to (1), but with the true p replaced by
p′ ∈ C1

t,δ/OA or p′ ∈ C2
t,δ/O2A.

3.2. From Confidence Sets to Algorithms:
UCRL-RM-L1 and UCRL-RM-B

We present an algorithm, called UCRL-RM, using the con-
fidence sets presented above. We consider two variants
of UCRL-RM, depending on which confidence set is used:
The variant using C1

t,δ, called UCRL-RM-L1, can be seen
as an extension of UCRL2 (Jaksch et al., 2010) to MD-
PRMs. Whereas the variant built using C2

t,δ , which we call
UCRL-RM-B, extends UCRL2-style algorithms with Bern-
stein’s confidence sets (in, e.g., (Bourel et al., 2020; Fruit
et al., 2020; 2018b)) to MDPRMs. Both variants have a
very similar design, and differ only in the choice of the
confidence sets and an internal procedure used in the pol-
icy computation —however, they achieve different regret



bounds and empirical performance. In the sequel, we shall
use UCRL-RM to refer to both variants, but will make spe-
cific pointers to each variant when necessary.

UCRL-RM variants implement a form of the optimism in
the face of uncertainty principle, but in an efficient man-
ner for MDPRMs. Similarly to many model-based ap-
proaches developed based on this principle, they proceed
in internal episodes (indexed by k ∈ N) of varying lengths,
where within each episode the policy is kept unchanged.
Specifically, letting tk denote the first step of episode k,
UCRL-RM considers the set of plausible MDPs, Mtk,δ,
built using C1

t,δ (UCRL-RM-L1) or C2
t,δ (UCRL-RM-B),

and seeks a policy πk : S → A that has the largest gain
over all possible deterministic policies in all MDPRMs in
Mtk,δ. Practically speaking, it suffices to find any 1√

tk
-

optimal solution to the following optimization problem:
maxM ′∈Mt,δ,π∈ΠM′ g

π(M ′), where gπ(M ′) denotes the
gain of policy π ∈ ΠM ′ in MDPRM M ′. As in UCRL2
this optimization problem can be efficiently solved via a
variant of the EVI algorithm of (Jaksch et al., 2010) (see
Algorithm 2 in Appendix A). In each iteration of EVI, the
algorithm has to solve, for each (q, o, a), the following prob-
lem:

max
z∈C(o,a)

∑
(q′,o′)∈S

[
ν
(
q, L(o, a, o′)

)
+ u(q′, o′)I{q′=τ(q,L(o,a,o′))}

]
z(o′),

(3)

where u is the value function at the current iteration of
EVI, and where C(o, a) = C1

t,δ/OA(o, a) or C(o, a) =

∩o′C
2
t,δ/O2A(o, a). EVI (in Algorithm 2 in Appendix A)

returns a policy πk, which is guaranteed to be 1√
tk

-optimal.
The algorithm commits to πk for t ≥ tk until the number of
observations on some pair (o, a) is doubled. In other words,
the sequence (tk)k≥1 satisfies: t1 = 1, and for k ≥ 1,

tk = min
{
t > tk−1 : max

o,a

∑t
t′=tk−1

I{(o
t′ ,at′ )=(o,a)}

Ntk−1
(o,a) ≥ 1

}
The pseudo-code of UCRL-RM is presented in Algorithm 1.
We recover UCRL-RM-L1 (resp. UCRL-RM-B) if Mt,δ is
constructed using C1

t,δ (resp. C2
t,δ). Both algorithms receive

the RM R as well as a confidence parameter δ ∈ (0, 1) as
input. Despite their similar design, they achieve different
performance bounds in terms of regret, both theoretically
and empirically.

4. Regret Bounds
In this section, we present finite-time regret bounds for the
two variants of UCRL-RM that hold with high probability.
Both regret bounds depend on a problem-dependent quantity
that, just as the diameter in tabular MDPs, reflects a measure
of connectivity in MDPRMs.

Algorithm 1 UCRL-RM
Require: O,A,R, δ

Initialize: For all (o, a, o′), set N0(o, a) = 0, N0(o, a, o
′) = 0

and v0(o, a) = 0. Set t0 = 0, t = 1, k = 1, and observe the
initial state s1 = (q1, o1)
for episodes k ≥ 1 do

Set tk = t
Set Ntk (o, a) = Ntk−1(o, a) + vk(o, a) for all (o, a)
Set vk(o, a) = 0 for all (o, a);
Compute empirical estimates p̂tk (·|o, a) for all (o, a)
Compute πk = EVI

(
C, 1√

tk

)
— see Algorithm 2 in Ap-

pendix A.
(Set C = C1

tk,δ/OA for UCRL-RM-L1, and C =

C2
tk,δ/O

2A for UCRL-RM-B.)
while vk(ot, πk(qt, ot)) < max{1, Ntk (ot, πk(qt, ot))}
do

Play action at = πk(qt, ot), and receive the next state
ot+1 and reward rt(qt, L(ot, πk(qt, ot), ot+1))
Set Nt+1(ot, at, ot+1) = Nt(ot, at, ot+1) + 1
Set υk(ot, at) = vk(ot, at) + 1
Set t = t+ 1

end while
end for

We begin with formalizing this notion. For s = (q, o) ∈ S,
define

Bs = ∪a,o′{q′ ∈ Q : q′ = τ(q, L(o, a, o′))} ⊆ Q.

Intuitively, for a given s = (q, o), Bs ⊆ Q collects all
possible next-states of the RM that can be reached via the
detectable events in o. In the worst-case Bs = Q for some
state s ∈ S. However, many high-level tasks in practice
often admit RMs with sparse structures, in which there are
states s for which Bs is a small subset of Q. Using Bs, we
define a notion of RM-restricted diameter for s, which, as
we shall see, proves relevant for MDPRMs:

Definition 4.1 (RM-Restricted Diameter). Consider state
s = (q, o) ∈ S. For s1, s2 ∈ Bs × O with s1 ̸= s2, let
Tπ(s1, s2) denote the number of steps it takes to get to s2
starting from s1 and following policy π. Then, the RM-
restricted diameter of MDPRM M for s, is defined as

Ds := max
s1,s2∈Bs×O

min
π

E[Tπ(s1, s2)].

Replacing Bs with Q in Definition 4.1, one recovers the
diameter of Mcp, i.e., Ds = Dcp. In view of Bs ⊆ Q,
Ds ≤Dcp for all s ∈ S. Since Bs could be a proper (and
possibly small) subset of Q, Ds is therefore a problem-
dependent refinement of Dcp. We remark that a (cardinality-
wise) small Bs does not necessarily imply that Ds≪Dcp
as Ds is determines by both Bs and the transition function
P of Mcp. Interestingly, however, there exist cases where
Ds ≲ Dcp/Q, as we illustrate below.

Consider the MDPRM shown in Figure 4, where there are
two observation states o0 and o1, with identical transition
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Figure 2. Illustrating example for the RM-restricted diameter Ds.

probabilities parameterized by δ ∈ (0, 1
2 ). In o0, there

is one action, but no event. In o1, there are two actions:
a0 (that results in detecting σA) and a1 (which leads to
detecting σB). The RM has Q states arranged in a cycle,
such that σA and σB yield transitions in the clockwise and
counter-clockwise directions, respectively. As detailed in
the Appendix E, we can show that: for all q ∈ Q,

Do1,q = 2
δ + 1 + δ

1−δ , Do0,q = 1
δ ,

whereas Dcp = ⌊Q/2⌋
δ +1+ δ

1−δ So, while Dcp grows with
Q
δ , Ds for all s∈S remain constant and only grow with 1

δ .
In summary, we have Ds ≲ Dcp/Q. Another example with
numerically computed Ds is provided in the Appendix E.

Regret Bounds. We are now ready to present the regret
bounds. The following theorem provides a regret bound for
UCRL-RM-L1, which was constructed using C1

t,δ:

Theorem 4.2 (Regret of UCRL-RM-L1). Under
UCRL-RM-L1, uniformly over all T ≥ 2, with probability
higher than 1− 4δ,

R(T ) ≤ O
(√

cMAT
(
O + log(OA

√
T/δ)

)
+DcpOA log(T )

)
,

where cM =
∑
o∈O

max
q∈Q

D2
q,o .

In the following theorem, we present a regret bound for
UCRL-RM-B (constructed using C2

t,δ). To this end, for
(o, a) ∈ S, we define Ko,a as the number of possible
next-states in O under (o, a), that is, Ko,a := |{o′ ∈ O :
p(o′|o, a) > 0}|.

Theorem 4.3 (Regret of UCRL-RM-B). Under
UCRL-RM-B, uniformly over all T ≥ 2, with proba-
bility higher than 1− 5δ,

R(T ) ≤ O
(√

c′MT log(O2A log(log(T ))/δ)

+DcpOA log(T )
)
,

where c′M =
∑

o∈O,a∈A
Ko,a max

q∈Q
D2

q,o.

We remark that both regret bounds depend on Dcp only via
a logarithmic term. The problem-dependent quantities cM
and c′M reflect the (weighted) contribution of RM-restricted
diameters to the regret. In the worst-case, cM ≤ OD2

cp and
c′M = D2

cp
∑

o,a Ko,a, but in view of the example earlier,
there are problem instances in which cM ≲ OD2

cp/Q
2 and

c′M ≲ D2
cp/Q

2
∑

o,a Ko,a.

Comparison with Tabular RL Algorithms for Mcp.
Any algorithm available for tabular RL could be directly
applied to Mcp, obliviously to the RM. In doing so, UCRL2
(with improved confidence sets used here) achieves a re-
gret of O(Dcp

√
AOQT (OQ+ log T )) whereas UCRL2-B

achieves a regret of5

O
(
Dcp

√
T log(log(T ))

∑
o,a

Ko,a)
)
.

In comparison with these bounds, for moderate time-
horizons T , we obtain an improvement in the regret bound
by a multiplicative factor of at least Q, but in some examples
this can be as large as Q2. For large horizons (relative to O),
the respective gains over UCRL2 are

√
Q and Q3/2. We

also achieve a similar gain over UCRL2-B.

5. Regret Lower Bound
We also present a regret lower bound for learning MDPRMs.
For communicating tabular MDPs with S states, A actions,
and diameter D, a regret lower bound of Ω(

√
DSAT ) is

presented in (Jaksch et al., 2010), which relies on a carefully
constructed family of worst-case MDPs. However, this
does not translate to a lower bound of Ω(

√
DcpQOAT )

for the cross-product Mcp associated to a given MDPRM
M . This is due to the fact that the transition function of
the aforementioned worst-case MDPs does not satisfy (1).
In other words, there exist no MDPRMs for which those

5The regret of UCRL2-B can be improved to
O
(
log(T )

√
TDcp

∑
o,a Ko,a

)
as reported in (Fruit et al.,

2020), and the same improvement can carry over to UCRL-RM-B.
We exclude comparisons to the regret of EBF (Zhang & Ji, 2019)
growing as O(

√
DcpQOAT log(T )), as it does not admit an

efficient implementation.



worst-case MDPs become their associated cross-product
MDPs.

In the following theorem, we present a regret lower bound
that holds for any MDPRM M with a communicating cross-
product Mcp.

Theorem 5.1. For any O ≥ 3, A ≥ 2, Q ≥ 2, and
Dcp ≥Q(6 + 2 logA(O)), T ≥DcpOA and |P| ≥ 2, there
exists a family of MDPRMs with O observation states, A ac-
tions, Q RM states, and diameter Dcp of the associated Mcp,
such that the regret of any algorithm A on these MDPRMs
satisfies

E[R(A, T )] ≥ c0
√

DcpOAT,

where c0 > 0 is a universal constant.

This theorem asserts a worst-case regret lower bound grow-
ing as Ω(

√
DcpOAT ). To establish this result, we carefully

construct an instance of MDPRM (with O observation states,
A actions, and with an RM with Q states). In order to make
it a worst-case instance, both p and R have to be chosen in
a way to challenge exploration. To this end, we construct an
RM, whose structure challenges exploration, whereas for p
we inspire from the worst-case MDPs presented in (Jaksch
et al., 2010). We finally remark that the lower bound does
not contradict our regret bounds, as for the worst-case in-
stances considered maxq Dq,o ≃ Dcp.

6. Experiments
In this section we present a set of experiments comparing
the empirical performance of our algorithms with those
of state-of-the-art baselines (applied to the cross-product
MDP). As baselines, we consider UCRL2 (Jaksch et al.,
2010), UCRL2B (Fruit et al., 2020), and TSDE (Ouyang
et al., 2017). To make the comparison fair, for UCRL2
and UCRL2B, we used improved confidence sets defined
similarly to C1

t,δ and C2
t,δ, respectively. Due to space con-

straint, we report the results for the RiverSwim MDPRM
(Figure 1). All necessary details regarding the reported ex-
perimental results below together with additional results are
provided in Appendix E. Figure 3(a) shows the results of
various algorithms in a 6-state RiverSwim MDPRM, where
all results are averaged over 200 runs, shown together with
95% confidence intervals. Figure 3(b) displays the regret of
various algorithms, but for a 20-state RiverSwim MDPRM,
where all results are averaged over 100 runs. As the two
figures reveal, both variants of UCRL-RM significantly out-
perform all the baselines, implying that the empirical gain in
terms of regret due to exploiting the structure in RM is sig-
nificant. We remark that UCRL-RM-B is computationally
more expensive than UCRL-RM-L1 (the same comparison
holds between UCRL2 and UCRL2B in terms of involved
computations), hence it was excluded.
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Figure 3. Experimental results for a 6-state and 20-state RiverSwim
with patrol2 RM. (Note the logarithmic y-axis.)

7. Conclusion
We studied reinforcement learning in average-reward
Markov decision processes with reward machines (MD-
PRMs), in the regret minimization setting, under the as-
sumption of a known reward machine (RM) but unknown
dynamics. We introduced two algorithms, UCRL-RM-L1
and UCRL-RM-B, tailored to leverage the structure of MD-
PRMs, and analysed their regret. As demonstrated using the
derived regret upper bounds and in numerical experiments,
our algorithms significantly outperform existing baselines,
both in theory and in practice. We also presented a regret
lower bound for MDPRMs, establishing that the reported
regret bounds are near-optimal. An interesting future work
direction is to devise efficient algorithms for MDPRMs
when the state of the RM is not observed.
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A. Further Algorithmic Details
A.1. Extended Value Iteration for MDPRMs

We present the complete specification of Extended Value Iteration (EVI) used as a subroutine in UCRL-RM. Algorithm 2
presents the pseudo-code of EVI, which closely follows the design of EVI in (Jaksch et al., 2010).

Algorithm 2 EVI(C, ε)
Initialize: u(0) ≡ 0, u(−1) ≡ −∞, n = 0
while maxs∈S(u

(n) − u(n−1))(s)−minx(u
(n) − u(n−1))(s) > ε do

Get p̃q for all q ∈ Q using MAXP (Algorithm 3 for UCRL-RM-L1, Algorithm 4 for UCRL-RM-B)
For all (q, o) ∈ S, update:

u(n+1)(q, o) = max
a∈A

∑
(q′,o′)∈S

p̃q(o′|o, a)
[
ν
(
q, L(o, a, o′)

)
+ u(n)(q′, o′)I{q′=τ(q,L(o,a,o′))}

]
Set n = n+ 1

end while
Output:

πn+1(s) = argmax
a∈A

∑
(q′,o′)∈S

p̃q(o′|o, a)
[
ν
(
q, L(o, a, o′)

)
+ u(n)(q′, o′)I{q′=τ(q,L(o,a,o′))}

]

EVI relies on solving the maximization problem in (3) in each round: Algorithm 3 find a solution to problem (3) for
C = C1

t,δ (i.e., for UCRL-RM-L1), whereas Algorithm 4 does it for C = C2
t,δ (i.e., for UCRL-RM-B). Algorithm 3 is quite

similar to the one used in UCRL2 (Jaksch et al., 2010), whereas Algorithm 4 is used in UCRL2B and similar (e.g., in (Dann
& Brunskill, 2015)).

For all (q, o, a), set p̃q(·|o, a) as any optimizer to the inner maximization of the EVI2, resolved for each triplet (q, o, a) by
the algorithms 3 and 4. Here the superscript q in p̃q(·|s, a) signifies that the optimistic transition probability depends on q.

Algorithm 3 MAXP for UCRL-RM-L1
Initialize: ∀o′ ∈ O, p̃q(o′|o, a) = p̂(o′|o, a)
∀o′ ∈ O, u(q,o,a)(o

′) = u(τ(q, L(o, a, o′)), o′)
omax = argmaxo′ µ(q, L(o, a, o

′))u(q,o,a)(o
′)

p̃q(omax|o, a) = max{1, p̂(omax|o, a) + 1
2
βNt(o,a)(

δ
OA

)}
L = argsorto′ µ(q, L(o, a, o

′))u(q,o,a)(o
′) and l = 0

while
∑

o′∈O p̃q(o′|o, a) > 1 do
p̃q(Ll|o, a) = max(0, p̃q(Ll|o, a) + 1−

∑
o′∈S p̃q(o′|o, a))

Set l = l + 1
end while
Output: p̃q(·|o, a)

Algorithm 4 MAXP for UCRL-RM-B
Initialize: ∀o′ ∈ O, p̃q(o′|o, a) = min{p′ ∈ C2

t,δ/O2A(o, a, o
′)}

∀o′ ∈ O, u(q,o,a)(o
′) = u(τ(q, L(o, a, o′)), o′)

L = argsorto′ µ(q, L(o, a, o
′))u(q,o,a)(o

′) and l = OA− 1
while

∑
o′∈O p̃q(o′|o, a) < 1 do

p̃q(Ll|o, a) = min(max(C2
t,δ/O2A(o, a, Ll)), 1−

∑
o′∈O p̃q(o′|o, a))

l = l − 1
end while
Output: p̃q(·|o, a)



A.2. Unknown Mean Rewards

Now we discuss the case o unknown mean rewards, i.e., when the agent has no prior knowledge about ν. To accommodate
this situation, the agent maintains the following confidence sets for the various mean rewards: For (q, σ) ∈ Q× 2P , define

C reward
t,δ (q, σ) =

{
λ ∈ [0, 1] : |ν̂t(·|q, σ)− λ| ≤ βNt(q,σ)(δ)

}
, C reward

t,δ = ∩q,σC
reward
t,δ (q, σ),

where ν̂t(·|q, σ) denotes the empirical mean reward built using Nt(q, σ) observations collected from the reward distribution

ν(q, σ). Here, for n∈N, βn(δ) =
√

1
2n

(
1 + 1

n

)
log
(√

n+ 1/δ
)
.

Then, it suffices to replace ν with the upper confidence set, that is, to replace ν(q, σ) with ν̂t(·|q, σ) + βNt(q,σ)(δ) . The
penalty due to this is to increase the regret bound by an additive logarithmic factor.

B. The Cross-Product MDP: Proof of Lemma 2.1
Lemma 2.1 (restated) Let M=(O,A, p,R,P, L) be a finite MDPRM. Then, an associated cross-product MDP to M is
Mcp=(S,A, P,R), where S=Q×O, and where for s=(q, o), s′=(q′, o′)∈S , and a∈A,

P (s′|s, a) = p(o′|o, a)I{q′=τ(q,L(o,a,o′))} , R(s, a) =
∑
o′∈O

p(o′|o, a)ν(q, L(o, a, o′)).

Proof. Let M = (O,A, p,R,P, L) and S = Q × O. For any t ∈ N, let ht := (s1, a1, . . . , st−1, at−1, st), where
st′ := (qt′ , ot′). We show that for any h ∈ (S ×A)t−1 × S , s′ = (q′, o′) ∈ S, a ∈ A, and r ∈ [0, 1]:

P(st+1 = s′|ht = h, at = a) = p(o′|o, a)I{q′=τ(q,L(o,a,o′))} ,

P(rt = r|ht = h, at = a) =
∑
o′∈O

p(o′|o, a)ν
(
q, L(o, a, o′)

)
,

thus implying that the state and reward dynamics are fully determined by (st, at). For any (q′, o′) ∈ S, we have

P
(
st+1 = (q′, o′)

∣∣∣ht = h, at = a
)

= P
(
ot+1 = o′

∣∣∣ht = h, at = a
)
P
(
qt+1 = q′

∣∣∣ht = h, ot+1 = o′, at = a
)

= P
(
ot+1 = o′

∣∣∣ot = o, at = a
)
P
(
qt+1 = q′

∣∣∣st = (q, o), ot+1 = o′, at = a
)

= p(o′|o, a)I{q′=τ(q,L(o,a,o′))} .

Moreover, for any r ∈ [0, 1], we have

P
(
rt = r

∣∣∣ht = h, at = a
)

=
∑
o′∈O

P
(
ot+1 = o′

∣∣∣ht = h, at = a
)
P
(
rt = r

∣∣∣ht = h, ot+1 = o′, at = a
)

=
∑
o′∈O

p(o′|o, a)P
(
rt = r

∣∣∣st = (q, o), ot+1 = o′, at = a
)

=
∑
o′∈O

p(o′|o, a)ν
(
q, L(o, a, o′)

)
,

thus verifying the two claims. Now letting P and R be defined as in the lemma, we have that (S,A, P,R) constitutes an
MDP. □

C. Regret Analysis of UCRL-RM
In this section, we provide regret analyses of the two variants of UCRL-RM.

We first present a lemma, which formally states that the set of plausible MDPRMs maintained by UCRL-RM-L1 and
UCRL-RM-B contain the true MDPRM with high probability and uniformly over time:



Lemma C.1. For all δ ∈ (0, 1), we have:

(i) P(∃t ∈ N : M /∈ Mt,δ(C
1)
)
≤ δ ,

(ii) P(∃t ∈ N : M /∈ Mt,δ(C
2)
)
≤ 2δ .

The proof of Lemma C.1, presented below, builds on the concentration inequalities collected in Section C.4.

Proof (of Lemma C.1). Part (i). Using Lemma C.9 gives: For any (o, a),

P
(
∃t ∈ N, p(·|o, a) /∈ C1

t,δ/OA(o, a)
)
≤ δ

OA
.

For Mt,δ constructed using C1
t,δ/OA, we thus have,

P
(
∃t ∈ N, M /∈ Mt,δ

)
= P

(
∃t ∈ N,∃p /∈ C1

t,δ/OA

)
= P

(
∃t ∈ N,∃(o, a) ∈ O ×A, p(·|o, a) /∈ C1

t,δ/OA(o, a)
)

≤
∑

o∈O,a∈A
P
(
∃t ∈ N, p(·|o, a) /∈ C1

t,δ/OA(o, a)
)

≤
∑

o∈O,a∈A

δ

OA
= δ .

Part (ii). Lemma C.10 ensures that for any (o, a, o′),

P
(
∃t ∈ N, p(o′|o, a) /∈ C2

t,δ/O2A(o, a, o
′)
)
≤ 2δ

O2A
.

Hence, for Mt,δ built using C2
t,δ/O2A, we have

P
(
∃t ∈ N, M /∈ Mt,δ

)
= P

(
∃t ∈ N,∃p /∈ C2

t,δ/O2A

)
= P

(
∃t ∈ N,∃(o, a, o′) ∈ O ×A, p(o′|o, a) /∈ C2

t,δ/O2A(o, a, o
′)
)

≤
∑

o,o′∈O,a∈A
P
(
∃t ∈ N, p(o′|o, a) /∈ C2

t,δ/O2A(o, a, o
′)
)

≤
∑

o,o′∈O,a∈A

2δ

O2A
= 2δ .

□

C.1. Proof of Theorem 4.2

The proof follows quite similar lines as in the proof of (Jaksch et al., 2010, Theorem 2). Let δ ∈ (0, 1). To simplify notations,
we define the short-hand Jk := Jtk for various random variables that are fixed within a given episode k and omit their
dependence on δ (for example Mk := Mtk,δ). We let m(T ) denote the number of episodes initiated by the algorithm up to
time T . Observe that E[rt|st, at] =

∑
o′ p(o

′|ot, at)ν(qt, L(ot, at, o′)). Hence, by applying Corollary C.8, we deduce that

R(T ) =

T∑
t=1

g⋆ −
T∑

t=1

rt

≤
T∑

t=1

∑
o,q,a

(
g⋆ −

∑
o′

p(o′|o, a)ν(q, L(o, a, o′))
)
I{(qt,ot,at)=(q,o,a)} +

√
1
2 (T + 1) log(

√
T + 1/δ)

=
∑
o,q,a

(
g⋆ −

∑
o′

p(o′|o, a)ν(q, L(o, a, o′))
)
Nm(T )(q, o, a) +

√
1
2 (T + 1) log(

√
T + 1/δ) ,



with probability at least 1− δ.

Denoting µ(s, a) :=
∑

o′ p(o
′|o, a)ν(q, L(o, a, o′)) for s = (q, o), we have

∑
s,a

Nm(T )(s, a)(g
⋆ − µ(s, a)) =

m(T )∑
k=1

∑
s,a

tk+1−1∑
t=tk

I{st=s,at=a}
(
g⋆ − µ(s, a)

)
=

m(T )∑
k=1

∑
s,a

vk(s, a)
(
g⋆ − µ(s, a)

)
.

Introducing ∆k :=
∑

s,a vk(s, a)
(
g⋆ − µ(s, a)

)
for 1 ≤ k ≤ m(T ), we get

R(T ) ≤
m(T )∑
k=1

∆k +
√

1
2 (T + 1) log(

√
T + 1/δ) ,

with probability at least 1− δ.

A given episode k is called good if M ∈ Mk (that is, the set of plausible MDPRMs contains the true model), and bad
otherwise.

Control of the regret due to bad episodes. By Lemma C.1, the set Mk contains the true MDPRMs with probability
higher than 1− δ uniformly for all T , and for all episodes k = 1, . . . ,m(T ). As a consequence, with probability at least
1− δ,

∑m(T )
k=1 ∆kI{M/∈Mk}=0.

Control of the regret due to good episodes. To upper bound regret in good episodes, we closely follow (Jaksch et al.,
2010) and decompose the regret to control the transition and reward functions. Consider a good episode k (hence, M ∈ Mk).
Since M ∈ Mk, the choice of πk and M̃k = (S,A, p̃,R,P,L), we have that gk := gπk

(M̃k) ≥ g⋆ − 1√
tk

. Hence, the
regret accumulated in episode k satisfies:

∆k ≤
∑
s,a

vk(s, a)
(
gk − µ(s, a)

)
+
∑
s,a

vk(s, a)√
tk

. (4)

It is a direct consequence of (Puterman, 2014, Theorem 8.5.6) that when the convergence criterion holds at iteration i, then

|u(i+1)
k (s)− u

(i)
k (s)− gk| ≤

1√
tk

, ∀s ∈ S . (5)

By the design of EVI, note that for all s ∈ S,

u
(i+1)
k (s) =

∑
s′∈S

p̃qk(o
′|o, πk(s))

[
ν(q, L(o, πk(s), o

′)) + I{q′=τ(q,L(o,πk(s),o′))}u
(i)
k (s′)

]
,

where we recall that p̃qk(·|o, πk(q, o)) is the transition probability distribution of the optimistic MDPRM M̃k in s = (q, o).
For s ∈ S and a ∈ A, define

µ̃k(s, a) :=
∑
s′∈S

p̃qk(o
′|o, a)ν(q, L(o, a, o′)) .

Then, (5) gives, for all s ∈ S,∣∣∣gk − µ̃k(s, πk(s))−
(∑

s′

p̃qk(o
′|o, πk(s))I{q′=τ(q,L(o,πk(s),o′))}u

(i)
k (s′)− u

(i)
k (s)

)∣∣∣ ≤ 1√
tk

.

Defining gk = gk1, µ̃k :=
(
µ̃k(s, πk(s))

)
s

, P̃k :=
(
p̃qk
(
o′|o, πk(s)

)
I{q′=τ(q,L(o,πk(s),o′))}

)
s,s′

and vk :=(
vk
(
s, πk(s)

))
s

, we can rewrite the above inequality as:∣∣∣gk − µ̃k − (P̃k − I)u
(i)
k

∣∣∣ ≤ 1√
tk
1 .



Combining this with (4) yields

∆k ≤
∑
s,a

vk(s, a)
(
gk − µ̃(s, a)

)
+
∑
s,a

vk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+
∑
s,a

vk(s, a)√
tk

. (6)

The first term in the right-hand side of (6) is bounded by vk(P̃k − I)u
(i)
k +

∑
s,a

vk(s,a)√
tk

. The second term is bounded as
follows:

∑
s,a

vk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
=
∑
s,a

vk(s, a)
∑
o′∈O

(
p̃q(o′|o, a)− p(o′|o, a)

)
ν(q, L(o, a, o′))

≤
∑
s,a

vk(s, a)
∥∥p̃q(·|o, a)− p(·|o, a)

∥∥
1

≤ 2
∑
s,a

vk(s, a)βNk(o,a)

(
δ

OA

)
= 2

∑
o,a

βNk(o,a)

(
δ

OA

)∑
q

vk(q, o, a)︸ ︷︷ ︸
=vk(o,a)

= 2
∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)
,

where we used that ν(q, L(o, a, o′)) ≤ 1 Moreover, since tk ≥ maxo,a Nk(o, a), we can bound the third term in the
right-hand side of (6) as:

∑
s,a

vk(s, a)√
tk

≤
∑
o,a

1√
Nk(o, a)

∑
q

vk(q, o, a) ≤
∑
o,a

vk(o, a)√
Nk(o, a)

.

Putting these three bounds together, we thus get

∆k ≤ vk(P̃k − I)u
(i)
k + 2

∑
s,a

vk(o, a)βNk(o,a)

(
δ

OA

)
+ 2

∑
s,a

vk(s, a)√
tk

.

Let us define, for all s ∈ S,

wk(s) := u
(i)
k (s)− 1

2

(
min

s′∈Bs×O
u
(i)
k (s′) + max

s′∈Bs×O
u
(i)
k (s′)

)
.

In view of the fact that P̃k is row-stochastic (i.e., its rows sum to one), we obtain

∆k ≤ vk(Pk − I)wk + vk(P̃k −Pk)wk︸ ︷︷ ︸
L1

+2
∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)
+ 2

∑
o,a

vk(o, a)√
Nk(o, a)

. (7)



Upper bound on L1. We have

vk(P̃k −Pk)wk =
∑
s∈S

∑
s′∈S

vk(s, πk(s))
(
P̃k(s

′|s, πk(s))− P (s′|s, πk(s))
)
wk(s

′)

≤
∑
s∈S

vk(s, πk(s))
∑
o′∈O

∑
q′∈Q

(
p̃qk(o

′|o, πk(s))− p(o′|o, πk(s))
)
I{q′=τ(q,L(o,πk(s),o′))}wk(q

′, o′)

≤
∑
s∈S

vk(s, πk(s))
∑
o′∈O

∣∣∣p̃qk(o′|o, πk(s))− p(o′|o, πk(s))
∣∣∣ · max

s′∈Bq,o×O

∣∣wk(q
′, o′)

∣∣ ∑
q′∈Q

I{q′=τ(q,L(o,πk(s),o′))}︸ ︷︷ ︸
=1

≤
∑
s∈S

vk(s, πk(s))
∥∥(p̃qk − p

)
(·|o, πk(s))

∥∥
1
· max
s′∈Bq,o×O

∣∣wk(q
′, o′)

∣∣
≤
∑
o∈O

∑
q∈Q

vk(q, o, πk(q, o))βNk(o,πk(q,o))

(
δ

OA

)
·Dq,o (8)

≤
∑
a∈A

∑
o∈O

∑
q∈Q

vk(q, o, a) · βNk(o,a)

(
δ

OA

)
·Dq,o

≤
∑
a∈A

∑
o∈O

βNk(o,a)

(
δ

OA

)
·max
q∈Q

Dq,o

∑
q∈Q

vk(q, o, a)

≤
∑
a∈A

∑
o∈O

βNk(o,a)

(
δ

OA

)
·max
q∈Q

Dq,o · vk(o, a) , (9)

where (8) follows from Lemma C.2, stated and proven in Section C.3. Combining (9) with (7) and summing over all good
episodes, we obtain:

m(T )∑
k=1

∆kI{M∈Mk} ≤
m(T )∑
k=1

vk(Pk − I)wkI{M∈Mk} + 2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+

m(T )∑
k=1

∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)(
2 + max

q∈Q
Dq,o

)

=

m(T )∑
k=1

vk(Pk − I)wkI{M∈Mk} + 2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+

m(T )∑
k=1

∑
o,a

vk(o, a)

√
2

Nk(o, a)

(
1+

1

Nk(o, a)

)
log
(

OA(2O−2)
δ

√
Nk(o, a)+1

)(
2 + max

q∈Q
Dq,o

)

=

m(T )∑
k=1

vk(Pk − I)wkI{M∈Mk}︸ ︷︷ ︸
L2

+2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+ 2
√
O + log

(
OA

√
T + 1/δ

)m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

(
max
q∈Q

Dq,o + 2
)
. (10)

Upper bound on L2. To upper bound L2, we define a martingale difference sequence similarly to the proof of Theorem 2
in (Jaksch et al., 2010). However, we provide a finer of control of such a sequence. Let (Zt)t≥1 be a sequence with

Zt := (P (·|st, at)− est+1)wk(t)I{M∈Mk(t)},



for all t, where k(t) denotes the episode containing time step t. For any k with M ∈Mk, we have:

vk(Pk − I)wk =

tk+1−1∑
t=tk

(P (·|st, at)− est)wk

=

tk+1−1∑
t=tk

(
P (·|st, at)− est+1 + est+1 − est

)
wk

=

tk+1−1∑
t=tk

Zt + wk(stk+1
)− wk(stk) ≤

tk+1−1∑
t=tk

Zt +Dcp ,

where ei denotes a vector with the i-th element being 1 and the others being zero. Hence, L2 ≤
∑T

t=1 Zt +m(T )Dcp.

Let supp(·) denote the support set of a distribution. Since st+1 ∈ supp(P (·|s, a)), we have

|Zt| ≤
∣∣∣∑

s′

P (s′|st, at)wk(t)(s
′)− wk(t)(st+1)

∣∣∣
≤
∑
s′

P (s′|st, at)
∣∣wk(t)(s

′)− wk(t)(st+1)
∣∣

≤
∑
s′

P (s′|st, at) max
s∈S,s′∈∪a∈Asupp(P (·|s,a))

|wk(t)(s
′)− wk(t)(s)|

= max
s∈S,s′∈∪a∈Asupp(P (·|s,a))

|wk(t)(s
′)− wk(t)(s)| .

Note that
supp(P (·|s, a)) = {(q′, o′) ∈ S : p(o′|o, a) > 0 and q′ = L(o, a, o′)} ⊆ Bs ×O .

Hence,

|Zt| ≤ max
s∈S,s′∈Bs×O

|w(s′)− w(s)| ≤ max
s

Ds

So, Zt is bounded by 1
2 maxs Ds, and also E[Zt|s1, a1, . . . , st, at] = 0, so that (Zt)t≥1 is martingale difference sequence.

Therefore, by Corollary C.8, we get:

P
(
∃T :

T∑
t=1

Zt ≥ max
s

Ds

√
1
2 (T + 1) log(

√
T + 1/δ)

)
≤ δ .

Thus, for all T , with probability at least 1− δ, it holds

L2 ≤ max
s

Ds

√
1
2 (T + 1) log(

√
T + 1/δ) +m(T )Dcp

≤ max
s

Ds

√
1
2 (T + 1) log(

√
T + 1/δ) +DcpOA log2

(
8T
OA

)
, (11)

where we used Lemma C.5 to upper bound m(T ).

The Final Bound. For the regret built during the good episodes, we have

m(T )∑
k=1

∆kI{M∈Mk} ≤ 2
√
O + log

(
OA

√
T + 1/δ

)m(T )∑
k=1

∑
o,a

(
max
q∈Q

Dq,o + 2
) vk(o, a)√

Nk(o, a)

+ 2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+ max
s

Ds

√
1
2 (T + 1) log(

√
T + 1/δ) +DcpOA log2

(
8T
OA

)
, (12)



with probability higher than 1− δ and uniformly over all T ∈ N. Applying Lemma C.4 and using the Cauchy-Schwarz
inequality:

m(T )∑
k=1

∑
o,a

max
q∈Q

Dq,o
vk(o, a)√
Nk(o, a)

≤ (
√
2 + 1)

∑
o,a

max
q∈Q

Dq,o

√
NT (o, a)

≤ (
√
2 + 1)

√∑
o,a

max
q∈Q

D2
q,o ·

∑
o,a

NT (o, a)

= (
√
2 + 1)

√
T
∑
o,a

max
q∈Q

D2
q,o = (

√
2 + 1)

√
cMAT ,

where, with a slight abuse of notation, we used NT (o, a) to denote the number of visits to (o, a) after T rounds. Similarly,
we have

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

≤ (
√
2 + 1)

∑
o,a

√
NT (o, a) ≤ (

√
2 + 1)

√
OA

∑
o,a

NT (o, a) = (
√
2 + 1)

√
OAT .

Combining this with (12), and putting together, we have that with probability at least 1− 4δ,

R(T ) ≤ 2(
√
2 + 1)

√
O + log

(
OA

√
T + 1/δ

)(√
cM + 2

)√
AT + 2(

√
2 + 1)

√
OAT

+ (max
s

Ds + 1)
√

1
2 (T + 1) log(

√
T + 1/δ) +DcpOA log2

(
8T
OA

)
,

thus proving the theorem. □

C.2. Proof of Theorem 4.3

Let δ ∈ (0, 1). Following the same steps as in the proof of Theorem 4.2, we have

R(T ) ≤
m(T )∑
k=1

∆k +
√

1
2 (T + 1) log(

√
T + 1/δ) ,

with probability at least 1− δ, where ∆k is defined similarly to the proof of Theorem 4.2. Furthermore, By Lemma C.1,
with probability at least 1− 2δ,

∑m(T )
k=1 ∆kI{M/∈Mk}=0.

Let’s now focus on good episodes, i.e., episodes k where M ∈ Mk. Similarly to the proof of Theorem 4.2, we have that

∆k ≤
∑
s,a

vk(s, a)
(
gk − µ̃(s, a)

)
+
∑
s,a

vk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+
∑
s,a

vk(s, a)√
tk

.

The first and third terms are bounded as in the proof of Theorem 4.2. However, the second term in the right-hand side is



bounded as follows:

µ̃k(s, a)− µ(s, a) =
∑
o′∈O

(
p̃q(o′|o, a)− p(o′|o, a)

)
ν(q, L(o, a, o′))

≤
∑
o′∈O

∣∣p̃q(o′|o, a)− p(o′|o, a)
∣∣

≤
∑
o′∈O

√
2p̃q(o′|o, a)(1− p̃q(o′|o, a))

Nk(o, a)
β′
Nk(o,a)

(
δ

O2A

)
+
∑
o′∈O

√
2p(o′|o, a)(1− p(o′|o, a))

Nk(o, a)
β′
Nk(o,a)

(
δ

O2A

)
+

2

3Nk(o, a)
β′
Nk(o,a)

(
δ

O2A

)
(a)
≤
√
β′
T

(
δ

O2A

) ∑
o′∈O

√
2p̂k(o′|o, a)(1− p̂k(o′|o, a))

Nk(o, a)

+
√
β′
T

(
δ

O2A

) ∑
o′∈O

√
2p(o′|o, a)(1− p(o′|o, a))

Nk(o, a)
+

4

Nk(o, a)
β′
T

(
δ

O2A

)
(b)
≤

√
8β′

T

(
δ

O2A

) Ko,a

Nk(o, a)
+

4

Nk(o, a)
β′
T

(
δ

O2A

)
(13)

where (a) follows from Lemma C.3, and where (b) uses the fact that for a distribution p ∈ ∆O, with K non-zero elements,
we have ∑

o∈O

√
p(o)(1− p(o)) =

∑
o:p(o)>0

√
p(o)(1− p(o))

√ ∑
o:p(o)>0

p(o)
∑

o:p(o)>0

(1− p(o)) =
√
K − 1 .

Hence, using the bounds derived in the proof of Theorem 4.2, we have

∆k ≤ vk(Pk − I)wk + vk(P̃k −Pk)wk︸ ︷︷ ︸
L1

+
√

8β′
T

(
δ

O2A

)∑
o,a

vk(o, a)

√
Ko,a

Nk(o, a)

+ 4β′
T

(
δ

O2A

)∑
o,a

vk(o, a)

Nk(o, a)
+ 2

∑
o,a

vk(o, a)

Nk(o, a)
.

where wk is defined as in the proof of Theorem 4.2.

Upper Bound on L1. We have

vk(P̃k −Pk)wk

≤
∑
s∈S

vk(s, πk(s))
∑
o′∈O

∑
q′∈Q

(
p̃qk(o

′|o, πk(s))− p(o′|o, πk(s))
)
I{q′=τ(q,L(o,πk(s),o′))}wk(q

′, o′)

≤
∑
a∈A

∑
s∈S

vk(s, a)
∑
o′∈O

∑
q′∈Q

(
p̃qk(o

′|o, a)− p(o′|o, a)
)
I{q′=τ(q,L(o,a,o′))}wk(q

′, o′)

≤
∑
a∈A

∑
s∈S

vk(s, a)
∑
o′∈O

∣∣∣p̃qk(o′|o, a)− p(o′|o, a)
∣∣∣ · max

s′∈Bq,o×O

∣∣wk(q
′, o′)

∣∣ ∑
q′∈Q

I{q′=τ(q,L(o,a,o′))}︸ ︷︷ ︸
=1

≤ 1

2

∑
a∈A

∑
s∈S

Dsvk(s, a)
∑
o′∈O

∣∣∣p̃qk(o′|o, a)− p(o′|o, a)
∣∣∣ ,

where the last inequality follows from Lemma C.2.



Now plugging in the bound derived for
∑

o′∈O
∣∣p̃qk(o′|o, a)− p(o′|o, a)

∣∣ in (13), we obtain

vk(P̃k −Pk)wk

≤
√
8β′

T

(
δ

O2A

)∑
a∈A

∑
o∈O

max
q∈Q

Dq,o · vk(o, a)

√
Ko,a

Nk(o, a)
+ 4Dcpβ

′
T

(
δ

O2A

)∑
a∈A

∑
o∈O

vk(o, a)

Nk(o, a)
.

The rest of the proof follows similar lines as in the proof of Theorem 4.2. The only difference is that the final bound holds
with probability 1− 5δ. □

C.3. Technical Lemmas

Lemma C.2. For all (s, a) ∈ S ×A, we have:

max
s′∈Bs×O

|wk(s
′)| ≤ Ds

2
, ∥wk∥∞ ≤

Dcp

2
.

Proof. We first show that for all s1, s2 ∈ Bs ×O, we have u
(i)
k (s1)− u

(i)
k (s2) ≤ Ds, which further implies

max
x∈Bs×O

|wk(x)| ≤ Ds

2 .

To prove this, recall that similarly to (Jaksch et al., 2010), we can combine all MDPRMs in Mk to form a single MDPRM
M̃k with continuous action space A′. In this extended MDPRM, in any s = (q, o) ∈ S, and for each a ∈ A, there is an
action in A′ with mean µ̃k(s, a) and transition probability P̃k(·|s, a) (of the associated Mcp) belonging to the maintained
confidence sets. Similarly to (Jaksch et al., 2010), we note that u(i)

k (s) amounts to the total expected i-step reward of an
optimal non-stationary i-step policy starting in state s on the MDPRM M̃k with the extended action set. The RM-restricted
diameter of state s of this extended MDPRM is at most Ds, since by assumption k is a good episode and hence Mk contains
the true MDPRM M , and therefore, the actions of the true MDPRM are contained in the continuous action set of M̃k. Now,
if there were states s1, s2 ∈ Bs ×O with u

(i)
k (s1)− u

(i)
k (s2) > Ds, then an improved value for u(i)

k (s1) could be achieved
by the following non-stationary policy: First follow a policy that moves from s1 to s2 most quickly, which takes at most Ds

steps on average. Then follow the optimal i-step policy for s2. We thus have u(i)
k (s1) ≥ u

(i)
k (s2)−Ds, since at most Ds of

the i rewards of the policy for s2 are missed. This is a contradiction, and so the claim follows. The second bound directly
follows from the same arguments as in (Jaksch et al., 2010). □

Lemma C.3. Consider x and y satisfying |x− y| ≤
√
2y(1− y)ζ + ζ/3. Then,√

y(1− y) ≤
√
x(1− x) + 2.4

√
ζ .

Proof. By Taylor’s expansion, we have

y(1− y) = x(1− x) + (1− 2x)(y − x)− (y − x)2

= x(1− x) + (1− x− y)(y − x)

≤ x(1− x) + |1− x− y|
(√

2y(1− y)ζ + 1
3ζ
)

≤ x(1− x) +
√
2y(1− y)ζ + 1

3ζ .

Using the fact that a ≤ b
√
a+ c implies a ≤ b2 + b

√
c+ c for nonnegative numbers a, b, and c, we get

y(1− y) ≤ x(1− x) + 1
3ζ +

√
2ζ
(
x(1− x) + 1

3ζ
)
+ 2ζ

≤ x(1− x) +
√

2ζx(1− x) + 3.15ζ

=

(√
x(1− x) +

√
1
2ζ

)2

+ 2.65ζ , (14)



where we have used
√
a+ b ≤

√
a +

√
b valid for all a, b ≥ 0. Taking square-root from both sides and using the latter

inequality give the desired result:√
y(1− y) ≤

√
x(1− x) +

√
1
2ζ +

√
2.65ζ ≤

√
x(1− x) + 2.4

√
ζ .

□

Lemma C.4 ((Jaksch et al., 2010, Lemma 19),(Talebi & Maillard, 2018, Lemma 24)). For any sequence of numbers
z1, z2, . . . , zn with 0 ≤ zk ≤ Zk−1 := max{1,

∑k−1
i=1 zi}, it holds

(i)

n∑
k=1

zk√
Zk−1

≤
(√

2 + 1
)√

Zn .

(ii)

n∑
k=1

zk
Zk−1

≤ 2 log(Zn) + 1 .

Lemma C.5 ((Jaksch et al., 2010, Proposition 18)). The number m(T ) of episodes up to time T ≥ OA satisfies

m(T ) ≤ OA log2
(

8T
OA

)
.

C.4. Concentration Inequalities

In this subsection, we collect a few useful concentration inequalities. They can be found in, e.g., (Maillard, 2019; Lattimore
& Szepesvári, 2020; Dann et al., 2017; Bourel et al., 2020).

We begin with the following definition:
Definition C.6 (Sub-Gaussian Observation Noise). A sequence (Yt)t has conditionally σ-sub-Gaussian noise if

∀t,∀λ ∈ R, logE[exp
(
λ(Yt − E[Yt|Ft−1])

)∣∣Ft−1] ≤
λ2σ2

2
,

where Ft−1 denotes the σ-algebra generated by Y1, . . . , Yt−1.
Lemma C.7 (Time-Uniform Laplace Concentration for Sub-Gaussian Distributions). Let Y1, . . . , Yn be a sequence of n
i.i.d. real-valued random variables with mean µ, such that Yn−µ is σ-sub-Gaussian. Let µ̂n = 1

n

∑n
s=1 Ys be the empirical

mean estimate. Then, for all δ ∈ (0, 1), it holds

P
(
∃n ∈ N, |µ̂n − µ| ≥ σ

√(
1 +

1

n

)2 ln (√n+ 1/δ
)

n

)
≤ δ .

The “Laplace” method refers to using the Laplace method of integration for optimization. We recall that random variables
bounded in [0, 1] are 1

2 -sub-Gaussian. The following corollary is an immediate consequence of Lemma C.7:
Corollary C.8 (Time-Uniform Azuma-Hoeffding Concentration Using Laplace). Let (Xt)t≥1 be a martingale difference
sequence such that for all t, Xt ∈ [a, b] almost surely for some a, b ∈ R. Then, for all δ ∈ (0, 1), it holds

P
(
∃T ∈ N :

T∑
t=1

Xt ≥ (b− a)
√

1
2 (T + 1) log(

√
T + 1/δ)

)
≤ δ .

Lemma C.7 can be used to provide a time-uniform variant of Weissman’s concentration inequality (Weissman et al., 2003)
using the method of mixture (a.k.a. the Laplace method):
Lemma C.9 (Time-Uniform L1-Deviation Bound for Categorical Distributions Using Laplace). Consider a finite alphabet
X and let P be a probability distribution over X . Let (Xt)t≥1 be a sequence of i.i.d. random variables distributed according
to P , and let P̂n(x) =

1
n

∑n
i=1 I{Xi=x} for all x ∈ X . Then, for all δ ∈ (0, 1),

P

(
∃n ∈ N : ∥P − P̂n∥1 ≥

√
2

n

(
1 +

1

n

)
log

(√
n+ 1

2|X | − 2

δ

))
≤ δ .



The first lemma provides a time-uniform Bernstein-type concentration inequality for bounded random variables:

Lemma C.10 (Time-Uniform Bernstein for Bounded Random Variables Using Peeling). Let Z = (Zt)t∈N be a sequence
of random variables generated by a predictable process, and F = (Ft)t be its natural filtration. Assume for all t ∈ N,
|Zt| ≤ b and E[Z2

s |Fs−1] ≤ v for some positive numbers v and b. Let n be an integer-valued (and possibly unbounded)
random variable that is F-measurable. Then, for all δ ∈ (0, 1),

P
(
∃n ∈ N,

1

n

n∑
t=1

Zt ≥
√

2ℓn(δ)v

n
+

ℓn(δ)b

3n

)
≤ δ ,

P
(
∃n ∈ N,

1

n

n∑
t=1

Zt ≤ −
√

2ℓn(δ)v

n
− ℓn(δ)b

3n

)
≤ δ ,

where ℓn(δ) := η log
(

log(n) log(ηn)
δ log2(η)

)
, with η > 1 being an arbitrary parameter.

Lemma C.10 is derived from Lemma 2.4 in (Maillard, 2019). We note that any η > 1 is valid here, but numerically
optimizing the bound shows that η = 1.12 seems to be a good choice and yields a small bound. For example, when (Xt)t∈N
is a sequence of i.i.d. Bernoulli random variables with mean µ, we have, for all δ ∈ (0, 1),

P
(
∃n ∈ N, µ− 1

n

n∑
t=1

Xt ≥
√

2ℓn(δ)µ(1− µ)

n
+

ℓn(δ)

3n

)
≤ δ ,

P
(
∃n ∈ N, µ− 1

n

n∑
t=1

Xt ≤ −
√

2ℓn(δ)µ(1− µ)

n
− ℓn(δ)

3n

)
≤ δ ,

D. Regret Lower Bound
In this section, we prove Theorem 5.1. Our proof uses the machinery of establishing a minimax regret lower bound in
(Jaksch et al., 2010) for tabular MDPs. (We also refer to (Lattimore & Szepesvári, 2020, Chapter 38.7).) This machinery,
for tabular MDPs, consists in crafting a worst-case MDP and showing that the regret under any algorithm on the MDP is
lower bounded. We take a similar approach here but stress that constructing a worst-case MDPRM entails constructing a
worst-case reward machine and a labeled MDP simultaneously. In terms of notations and presentation, we closely follow
(Lattimore & Szepesvári, 2020, Chapter 38.7).

o0

o1 o2 o3

oA oB

1 − δ
σA∩B

1 − δ
σA∩B

δ, σB
δ, σA

Figure 4. Construction of the underlying labeled MDP for the LB with A = 2 and O = 8, based on (Lattimore & Szepesvári, 2020,
Chapter 38.7).
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q1

q2

qN−1

qN

σA
(r = 1)

σA, σB
(r = 1)

σA∩B
(r = 1)

σA∩B
(r = 1)

σA∩B
(r = 1)

σA∩B
(r = 1)

σA, σB
(r = 1)

σA, σB
(r = 1)

σA, σB
(r = 1)

σA, σB
(r = 1)

q′1

q′2

q′
N′−1

q′
N′

σB

σA, σB

σA, σB

σA, σB

σA, σB

σA, σB

Figure 5. Construction of the underlying RM for the LB with a double-cyclic a ‘good’ cycle giving rewards and ‘bad’ cycle of similar
length giving no reward.

Proof (of Theorem 5.1). To prove the theorem, we construct a worst-case MDPRM, which can be seen as an MDPRM that
models a bandit problem with approximately OA arms, such that obtaining the reward requires to pick the ‘good arm’ Q
times. Figures 5 and 4 show the construction, given O and A: We build a tree of minimum depth with at most A children
for each node using exactly O − 2 observations. The root of the tree is denoted o0 and transitions within the tree are
deterministic. So, in a node of the tree the agent can simply select the child to transition to. Let L be the number of leaves,
and let us index observations as o1, o2, . . . , oL. The last two observations are oA and oB where events are given as detailed
later. Then, for each i ∈ 1, L the agent can choose any action a ∈ A and transitions to either oA or oB according to:

p(oA|oi, a) =
1

2
+ ε(a, i) and p(oB |oi, a) =

1

2
− ε(a, i),

where ε(a, i) = 0 for all (a, i) pairs except for one particular pair, for which ε(a, i) = ∆ > 0. (∆ will be chosen later in the
proof.) The transition probabilities at oA and oB under any a ∈ A satisfy:

p(o|o, a) = 1− δ, p(o0|o, a) = δ, o ∈ {oA, oB} .

Let us choose δ = 6Q
Dcp

. Note that by the assumptions of the theorem, δ ∈ (0, 1]. Furthermore, this choice ensures that the
cross-product diameter of the described MDPRM is at most Dcp, regardless of the value of ∆. Also, for the diameter of the
labeled MDP, D, we will have D = 4

δ .

The labelling function is defined as follows. Since we assume P ≥ 2, we can consider three events σA, σB , σA∩B and
define labelling function as follows: For all action a ∈ A,

L(oA, a, oA) = σA, L(oA, a, o0) = σA∩B ,

L(oB , a, oB) = σB , L(oA, a, o0) = σA∩B .

To build the RM, we let N = ⌈(Q− 1)/2⌉ and N ′ = ⌊(Q− 1)/2⌋. The idea is to divide the RM into 2 cycles of length N

and N ′. To this effect, we have q0 the origin, then a set {qi}Ni=1 of RM states for the good cycle, and a set {q′j}N
′

j=1 for the
bad cycle. Then, we build the following RM transitions function τ and reward function r, for all i ∈ 1, N and all j ∈ 1, N ′



(see Figure 4):

τ(q0, σA) = q1, r(q0, σA) = 1,

τ(q0, σB) = q′1, r(q0, σA) = 0,

τ(qi, σA) = qi+1, r(qi, σA) = 1,

τ(qi, σB) = qi+1, r(qi, σB) = 1,

τ(qi, σA∩B) = qi, r(qi, σA∩B) = 1,

τ(qN , σA) = q0, r(qN , σA) = 1,

τ(qN , σB) = q0, r(qN , σB) = 1,

τ(qN , σA∩B) = qN , r(qN , σA∩B) = 1,

τ(q′j , σA) = q′j+1, r(q′j , σA) = 0,

τ(q′j , σB) = q′j+1, r(q′j , σB) = 0,

τ(q′N ′ , σA) = q0, r(q′N ′ , σA) = 0,

τ(q′N ′ , σB) = q0, r(q′N ′ , σB) = 0,

where all non-specified transitions imply no change of state, and where all non-specified rewards are zero. This means that
in q0, the agent needs to realize the event σA to initiate a rotation of the ‘good’ cycle, where in all states the agent will get a
reward when staying in either oA or oB and progress on step forward in the cycle when leaving one of both RM-states. On
the other hand, if the agent is in q0, she receives the event σB and then initiates a rotation of the ‘bad’ cycle, without any
reward but similar length and transitions as for the ‘good’ cycle.

In summary, each time the agent arrives in s0 = (o0, q0), she selects which leaf to visit and then chooses an action from
that leaf. This corresponds to choosing one of k = LA = Ω(OA) meta actions. The optimal policy is to select the meta
action with the largest probability of transitioning to the observation oA. The choice of δ ensures that the agent expects
to stay on state oA or oB for approximately D rounds. Since all choices are equivalent when q ̸= q0, the agent expects to
make about 2T

DQ decisions and the rewards are roughly in [0, DQ
8 ], or 3DQ = 2Dcp, so we should expect the regret to be

Ω(Dcp
√
kT/Dcp) = Ω(

√
TDcpOA).

Characterisation of the MDPRM Using the introduced notations, we introduce L and LM :

L = {(q0, o, a) : a ∈ A and o is a leaf of the tree},
LM = {(o, a) : a ∈ A and o is a leaf of the tree}.

By definition, both have k elements. Then, let M0 be the MDPRM with ε(o, a) = 0 for all pairs in LM . Then let Mj be the
MDPRM with ε(o, a) = ∆ for the j-th observation-action pair in the set LM . Similarly to (Lattimore & Szepesvári, 2020),
we define the stopping time Tstop as the first time when the number of visits of (q0, s0) is at least T/Dcp − 1, or T if the
state (q0, s0) is not visited enough:

Tstop = min

{
T,min

{
t :

t∑
t′=1

I{st′=(q0,o0)} ≥ T

Dcp
− 1
}}

.

Also, let Tj be the number of visits to the j-th triplet of L until Tstop and Ttot =
∑k

j=1 Tj . We also let Pj , 0 ≤ j ≤ k

denote the probability distribution of T1, . . . , Tk induced by the interaction of π and Mj and let Ej [·] be the expectation
with respect to Pj .

Now, we study the characteristics of the MDPRM, to do so we first build upon (Lattimore & Szepesvári, 2020, Claim 38.9)
that shows that the diameter of the underlying MDP of Mj , that will be written D(Mj), is bounded by D for all j ∈ 1, k.
Then we have for Dcp(Mj) cross-product diameter of the MDPRM Mj :

Dcp(Mj) ≤ DN +DN

∞∑
i=1

1

2i
+DN ′ ≤ 3

2
QD = Dcp,



the first inequality can be interpreted as the fact that the cross product diameter is smaller that completing the 2 loops of the
RM, plus accounting the probability to have a transition to the ”wrong” loop when in q0. The rest follows by construction
and we note that we can ignore ∆ due to the fact that it can only reduce the diameters.

Following the same arguments as in Claim 38.10 of (Lattimore & Szepesvári, 2020), there exist universal constants
0 < c1 < c2 < ∞ such that DcpE0[Tσ]/T ∈ [c1, c2]. By construction, we have

DcpE0[Ttot]

T
≤ E[Ttot]

OA
≤ T

DN ′OA
≤ c2

Similarly,

DcpE[Ttot]

T
≥ E0[Ttot]

OA
≥ T

DNOA
≥ c1.

Finally, we write E[Rj(T )] the expected regret of policy π in the MDPRM Mj over T steps and prove that there exists an
universal constant c3 > 0 such that:

E[Rj(T )] ≥ c3∆DcpE[Ttot − Tj ]

To prove this result, we first write the definition of the expected regret:

E[Rj(T )] =

T∑
t=1

E⋆
j [rt]−

T∑
t=1

Ej [rt],

where E⋆
j is the expectation in MDPRM Mj when following the optimal policy, which mean always choosing the j-th

element of L when in (q0, o0). Now, we can decompose the cumulative reward by ”episode” where a new episode start
whenever reaching (q0, o0). This yields immediately, by construction and using our knowledge of the optimal policy:

E[Rj(T )] ≥ Ej [Ttot]
(1
2
+ ∆

)DN

4
− E[Ttot − Tj ]

DN

8
− Ej [Tj ]

(1
2
+ ∆)

DN

4

= Ej [Ttot − Tj ]∆
DN

4
,

or by definition of D and N there exists a universal constant c3 > 0 such that c3Dcp ≥ DN
4 , which allow us to conclude.

The Final Lower Bound. Let D(P,Q) denote the Kullback-Leibler divergence between two probability distributions P
and Q. Similarly to (Lattimore & Szepesvári, 2020, Chapter 38.7) and (Jaksch et al., 2010) (as well as lower bound proofs
for bandit problems), we have D(P0, Pj) = E0[Tj ]d(1/2, 1/2+∆), where d(p, q) is the relative entropy between Bernoulli
distributions with respective means p and q. Now the conclusion of the proof is exactly the same as for MDPs (Jaksch
et al., 2010): We assume that the chosen ∆ will satisfy ∆ ≤ 1/4, then using the entropy inequalities from (Lattimore &
Szepesvári, 2020, Equation 14.16), we have:

D(P0, Pj) ≤ 4∆2E0[Tj ].

Then following the same steps as in (Lattimore & Szepesvári, 2020, Chapter 38.7) and using Pinsker’s inequality, and using
the fact that 0 ≤ Ttot − Tj ≤ Ttot ≤ T/Dcp, we have

Ej [Ttot − Tj ] ≥ E[Ttot − Tj ]−
T

Dcp

√
D(P0, Pj)

2
≥ E0[Ttot − Tj ]−

T∆

Dcp

√
2E0[Tj ].

Summing over j and applying Cauchy-Schwarz give us

k∑
j=1

Ej [Ttot − Tj ] ≥
k∑

j=1

E0[Ttot − Tj ]−
T∆

Dcp

k∑
j=1

√
2E0[Tj ]

≥ (k − 1)E0[Ttot]−
T∆

Dcp

√
2kE0[Ttot]

≥ c1T (k − 1)

Dcp
− T∆

Dcp

√
2c2Tk

Dcp
.



Now choosing ∆ = c1(k−1)
2

√
Dcp

2c2Tk yields

k∑
j=1

Ej [Ttot − Tj ] ≥
c1T (k − 1)

2kDcp
.

This implies that there exists j such that Ej [Ttot − Tj ] ≥ c1T (k−1)
2kDcp

, which leads to the final result using the previous lower
bound on the regret

E[Rj(T )] ≥ c3Dcp∆Ej [Ttot − Tj ] ≥
c21c3T (k − 1)2

4k

√
Dcp

2c2Tk
= c0

√
DcpOAT,

with c0 > 0 being a universal constant. □

E. Details of Diameter Computations
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Figure 6. Example Dcp → ∞ when D → 1

Diameters Computation for the MDPRPM in Figure 4. In this MDPRM, we notice that for δ ∈ (0, 1
2 ), the RM restricted

diameter from o0 for any q ∈ Q coincides with the diameter of the underlying MDP. Hence, Do0,q = 1
δ for all q ∈ Q. Now,

Observe that the diameter for both Dcp and the restricted diameters from o1 will be the expected number of steps for a
trajectory from (q, o0) and (q′, o0) where q and q′ are two RM-states with the maximum number of steps possible between
them. We denote this number of step N then we give ourselves DN the diameter over a communicating subset of Q with
maximum number of steps between 2 steps being Nn we can then observe that:

D1 =
1

δ
+ (1− δ) + δ(1 +

1

1− δ
) =

1

δ
+ 1 +

δ

1− δ
,

then a simple recurrence show that for all N :

DN =
N

δ
+ 1 +

δ

1− δ
,

or, we have N = 2 for Dq,o1 and N = ⌊Q/2⌋ for Dcp, which conclude the analysis.

Diameters computation for example of Figure 6. This additional example shows the absence of correlation in general
between the diameter D of the underlying MDP and the diameter Dcp of the cross product. Indeed, if assume δ ∈ (0, 1) and
L ≥ 2 then we immediately have D = 1

1−δ , and the construction of MDPRM ensures that Dcp > 1
δL

. Thus when δ → 0 we
can immediately conclude that D → 1 and Dcp → ∞.

This example illustrates the difficulty of MDPRM when the events are “dense”, which can lead in extreme cases to unsolvable
problems (non-communicating cross-product) despite a simple underlying MDP. Nonetheless, we remark that in a practical
use of MDPRM, events would be expected to be scarce thus leading to MDPRM where Dcp ≤ DN where N is the longest
path within the RM. The previous example represents such a case.



F. Details of Experiments and Further Experiments
In this section, we provide further details about the experiments reported in Section 6 and present additional experimental
results. All our experiments are implemented in python3, the environments being based on a framework from the package
gym (see (Brockman et al., 2016)).

Figure 7 shows the cross-product MDP Mcp associated to riverSwim-patrol2 MDPRM. In fact, this is the MDP to which the
baseline algorithms in the experiments are applied. We also present in Figures 9(a) and 9(b) the same results as in section 6
but without the log-scale, which could be useful to better compare the standard deviation of various algorithms.

Through tables we illustrate the practical values of the diameters and the associated leading terms of regret bounds of
UCRL-RM-L1, UCRL-RM-B, UCRL2, and UCRL2B (excluding the exact universal constants and T ). Table 1 presents
these values for different RiverSwim MDPRMs with progressive difficulty levels. As the table shows, there is not a big
difference between the RM-restricted diameter and Dcp due to the specific structure of RiverSwim. On the other hand,
Table 2 shows similar values associated to the MDPRM shown in Figure 8 for various lengths N of the abnormal sub-task.
Note that 2 actions are available in this MDPRM, both with the same transitions but one yielding no event. It is a relevant
example in matter of diameters as it represents a simplification (for computational and illustrative purpose) of a situation
where multiple sub-tasks are part of the RM, each with their own rewards.

We note that in all the reported experiments, we ran TSDE without using the knowledge of the mean rewards, contrary to
the other algorithms. This is because in our domains, rewards are deterministic for which TSDE exhibits a very unstable
behaviour, which in turn would increase the realized regret significantly. In other words, we did so to attain a better empirical
for TSDE.
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Figure 7. The cross-product MDP associated to the N -state RiverSwim MDP with the patrol2 RM

O
√
OAcM

√
c′M Dcp

√∑
q,o,a K(q,o),a DcpQO

√
A

6 93.8 54.0 133.6 334.3
12 319.3 130.28 443.1 1551.1
20 726.0 229.6 1009.4 4542.5
40 2130.5 476.4 2978.0 18893.9
70 5005.4 846.1 7013.4 58783.2
100 8595.8 1215.6 12044.3 120745.6

Table 1. Various quantities related to the regret bounds for RiverSwim with patrol2 RM with various number of observation states: Column
2 (UCRL-RM-L1), Column 3 (UCRL-RM-B), Column 4 (UCRL2B), Column 5 (UCRL2).



N
√
OAcM

√
c′M Dcp

√∑
q,o,a K(q,o),a DcpQO

√
A

4 468.0 272.4 3032.0 20339.3
5 468.1 272.4 3360.6 23100.5
6 468.2 272.5 3699.7 26029.4
8 504.2 293.2 4407.0 32384.4
10 550.1 319.5 5151.9 39404.6
12 600.2 348.3 5932.8 47090.0

Table 2. Various quantities related to the regret bounds for the Multitask MDPRM with various length N of the abnormal sub-task:
Column 2 (UCRL-RM-L1), Column 3 (UCRL-RM-B), Column 4 (UCRL2B), Column 5 (UCRL2).
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Figure 8. The Multitask MDPRM.
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Figure 9. Regret in 6-state and 20-state RiverSwim


