
AutoLogi: Automated Generation of Logic Puzzles for Evaluating
Reasoning Abilities of Large Language Models

Anonymous ACL submission

Abstract

While logical reasoning evaluation of Large001
Language Models (LLMs) has attracted signif-002
icant attention, existing benchmarks predomi-003
nantly rely on multiple-choice formats that are004
vulnerable to random guessing, leading to over-005
estimated performance and substantial perfor-006
mance fluctuations. To obtain more accurate007
assessments of models’ reasoning capabilities,008
we propose an automated method for synthe-009
sizing open-ended logic puzzles, and use it010
to develop a bilingual benchmark, AutoLogi.011
Our approach features program-based verifi-012
cation and controllable difficulty levels, en-013
abling more reliable evaluation that better dis-014
tinguishes models’ reasoning abilities. Exten-015
sive evaluation of eight modern LLMs shows016
that AutoLogi can better reflect true model ca-017
pabilities, with performance scores spanning018
from 35% to 73% compared to the narrower019
range of 21% to 37% on the source multiple-020
choice dataset. Beyond benchmark creation,021
this synthesis method can generate high-quality022
training data by incorporating program verifiers023
into the rejection sampling process, enabling024
systematic enhancement of LLMs’ reasoning025
capabilities across diverse datasets.026

1 Introduction027

Large Language Models (LLMs) have demon-028

strated remarkable capabilities across diverse ap-029

plications (OpenAI, 2024; Anthropic, 2022; Qwen030

et al., 2025). Among these capabilities, logical rea-031

soning has emerged as a critical skill (Luo et al.,032

2023; Wei et al., 2022; Yao et al., 2024; Zhu et al.,033

2024). The increasing emphasis on reasoning capa-034

bilities has highlighted the pressing need for reli-035

able evaluation methodologies.036

However, the field of reasoning evaluation faces037

three fundamental challenges: the vulnerability to038

random guessing, insufficient difficulty variation039

to differentiate model capabilities, and high human040

annotation costs in dataset construction. A critical041

…… Please think step by step, generate an arrangement that meets the above
constraints. Your arrangement must be answered according to the following input
format requirements: Inputs is a dictionary, where each key corresponds to……AutoLogi

(...CoT hidden...) The answer is:{'K': 'fall', 'L': 'spring', 'M': ‘fall', 'N': 'fall’, 'O':
'fall', 'P': 'spring'}

(...CoT hidden...) The answer is:{'K': 'fall', 'L': 'spring', 'M': 'spring', 'N': 'fall’,
'O': 'fall', 'P': 'spring'}👿

Verify
Function

…… If M is published in the fall, N must be published in the spring, which
contradicts the statement. So M is published in the spring. The answer is C.

Because M and P is different, M must in the fall. Thus, the answer is C.👿

Multiple Choice
Question

If N is published in the fall, which one of the following must be true?
 A. K is published in the spring B. M is published in the fall
 C. M is published in the spring D. P is published in the fall

A publisher is planning to publish six cookbooks—K, L, M, N, O, and P ……
following conditions: M and P cannot be published in the same season as each other.
If M is published in the fall, N must be published in the spring……Background

Figure 1: Comparison of evaluation processes between
multiple-choice questions and our method. While
multiple-choice questions may allow underperforming
models to guess the correct answer, our method gener-
ates open generative questions, and utilize a verification
function to validate the generated solution, providing a
more accurate reflection of model performance.

issue lies in the prevalent reliance on closed-ended 042

questions in existing benchmarks, where models 043

are simply required to select answers from prede- 044

fined options (Liu et al., 2020; Bansal et al., 2023; 045

Zhong et al., 2021; Han et al., 2024; Ismayilzada 046

et al., 2023). This format allows models with mini- 047

mal reasoning capabilities to achieve substantially 048

overestimated performance, leading to deeply mis- 049

leading evaluation results that mask true reasoning 050

deficiencies. The rapid advancements in LLMs 051

are leading to the saturation of scores on existing 052

benchmarks, reducing their effectiveness in differ- 053

entiating model capabilities. Consequently, there is 054

a growing and continuous need for the development 055

of more challenging and distinctive benchmarks to 056

better evaluate model performance. Nevertheless, 057

constructing such high-quality reasoning datasets 058

requires extensive human annotation effort, which 059

substantially limits the scale of available evaluation 060

resources. 061

1

To address these challenges, we introduce a062

novel method for automatically synthesizing open-063

ended logic puzzles to construct a reasoning bench-064

mark named AutoLogi. Our approach offers three065

key advantages: (1) as is illustrated in Figure 1,066

the open-ended format requires models to construct067

complete solutions from scratch, significantly miti-068

gating the performance inflation caused by random069

guessing; (2) automated augmentation generates070

puzzles with varying logical constraints, enabling071

balanced difficulty distribution; (3) fully automated072

generation with minimal human verification sub-073

stantially reduces benchmark construction costs.074

These innovations directly address the aforemen-075

tioned challenges, offering a more reliable, bal-076

anced, and scalable evaluation methodology.077

The proposed method follows a three-stage078

pipeline: information extraction from corpora for079

open-ended question synthesis, program-based ver-080

ifier generation using advanced LLMs, and dataset081

augmentation for difficulty balance. Since most082

generation steps are based on LLMs thus po-083

tentially introducing errors, we employ a cross-084

validation framework where verification functions085

and traversal functions verify each other. The086

traversal functions validate puzzle correctness087

through exhaustive search, while verification func-088

tions check the traversal results. Although this pro-089

vides only necessary conditions, our experiments090

show it corrects 23% of erroneous data. Building091

upon this foundation, We further develop a data092

augmentation method that creates puzzle variants093

by modifying logical constraints to control diffi-094

culty levels, enabling us to expand our dataset to095

1,575 English and 883 Chinese puzzles.096

Based on our insights that code execution pro-097

vides verifiable reward signals for reasoning tasks,098

we explore its utility in synthesizing high-quality099

training data. Through rejection-sampling with ver-100

ifiers, we generate both verified correct answers for101

supervised fine-tuning (SFT) and correct-incorrect102

answer pairs for Direct Preference Optimization103

(DPO, Rafailov et al., 2024). This verification104

mechanism provides stronger guarantees of solu-105

tion correctness, thereby enabling the collection of106

higher-quality supervised training data.107

Through comprehensive experiments with eight108

state-of-the-art language models (including GPT-109

4, Claude, Qwen, and LLaMA), we evaluate our110

method from two aspects. First, as a benchmark,111

AutoLogi exhibits superior discriminative power112

with a wider score distribution (35.25 to 72.61)113

compared to traditional multiple-choice formats 114

(21.04 to 37.39), better reflecting models’ true rea- 115

soning capabilities. Second, when used for train- 116

ing, our synthesized dataset leads to substantial 117

improvements on independent reasoning bench- 118

marks, notably improving Qwen’s performance on 119

LiveBench from 30% to 35% at 7B scale and from 120

46% to 52% at 72B scale. 121

Our core contributions are: 122

• We develop a method to generate open-ended 123

logic puzzles with controllable complexity, 124

mitigating the performance inflation caused by 125

random guessing and ensuring reliable evalu- 126

ation through code-based verification. 127

• We introduce AutoLogi, a bilingual logi- 128

cal reasoning benchmark that better reflects 129

models’ reasoning capabilities compared to 130

multiple-choice formats. 131

• We leverage our method to generate training 132

data that improves model performance across 133

multiple independent benchmarks 1. 134

2 Related Work 135

2.1 Logical Reasoning Benchmarks 136

Question Types Existing logical reasoning 137

datasets primarily use multiple-choice questions 138

(Liu et al., 2020; Bansal et al., 2023; Zhong et al., 139

2021; bench authors, 2023; Suzgun et al., 2022), 140

true/false questions (Han et al., 2024; Ismayilzada 141

et al., 2023), or classification tasks (Sinha et al., 142

2019; Tian et al., 2021). These formats, while en- 143

abling simple evaluation through keyword match- 144

ing, are vulnerable to random guessing. Open- 145

ended questions provide more rigorous assessment 146

by requiring complete solution generation. While 147

datasets like Zebra Puzzle (Prosser, 1993) have 148

explored this format, our AutoLogi dataset lever- 149

ages programmatic verification for more reliable 150

evaluation of logical reasoning abilities. 151

Dataset Construction Approach The current 152

mainstream approaches to constructing logical 153

reasoning datasets are threefold: human annota- 154

tion (Clark et al., 2020; Ismayilzada et al., 2023; 155

Han et al., 2024), extraction from academic ex- 156

ams (Liu et al., 2020; Bansal et al., 2023; Zhong 157

et al., 2021), and synthesize (Saparov and He, 2022; 158

Sinha et al., 2019; White et al., 2024). Among the 159

1We will release our complete implementation, including
code, training and evaluation datasets.

2

three methods, synthesize is most cost-effective but160

usually limited in diversity since they heavily rely161

on rule-based templates.162

Our AutoLogi dataset is synthesized, but differ-163

ent from previous methods, we employ LLMs to164

reformulate questions from established academic165

reasoning assessments (such as LogiQA (Liu et al.,166

2020) and AR-LSAT (Zhong et al., 2021), which167

are derived from real human logical reasoning168

tests), thus ensuring rich linguistic quality and log-169

ical, real-world connected contexts. We design170

our synthesis process to explicitly control difficulty171

levels (discussed in 3.2), allowing for better dis-172

crimination of model reasoning abilities.173

2.2 Program-aided Methods174

LLMs, despite their capabilities, can generate factu-175

ally incorrect responses. Integrating reliable feed-176

back mechanisms, such as code interpreters, of-177

fers a potential solution. This approach, termed178

Program-aided Language model or Program of179

Thought, has been shown by Gao et al. (2023)180

and Chen et al. (2023) to outperform Chain of181

Thought methods across various domains, partic-182

ularly in tasks requiring definitive answers (Wang183

et al., 2024b,a; Lu et al., 2023). Inspired by (Dong184

et al., 2024)’s use of program-based verifiers in185

training, we combine this approach with rejection186

sampling to generate our training data.187

3 Method188

As shown in Figure 2, our method consists of three189

stages: Puzzle Formulation, Format & Verifiers190

Generation, and Data Augmentation.191

3.1 Puzzle Formulation192

The Puzzle Formulation stage takes a source cor-193

pus containing puzzle-related content as input and194

leverages advanced LLMs with direct prompting195

(detailed prompts in Appendix A.4) to extract and196

restructure the text. The source corpus should pro-197

vide background information suitable for construct-198

ing logical puzzles, for example, questions from ex-199

isting multiple-choice reasoning benchmarks. The200

output consists of two key components: Back-201

ground and Logical Constraints. The Background202

provides the context and basic elements of the puz-203

zle, defining the objects to be arranged and their204

value ranges. The Logical Constraints specify the205

conditions limiting valid arrangements. These com-206

ponents, combined with a request for test LLMs207

to generate any valid arrangement satisfying these 208

constraints, as illustrated in Figure 1, form the puz- 209

zle stem. 210

A notable strength of this transformation ap- 211

proach lies in its broad applicability - as long as 212

the source text contains background information 213

related to logical reasoning, it can be converted 214

into our open-ended format, regardless of question 215

types or the presence of answers. 216

3.2 Format & Verifiers Generation 217

Stage 2 focuses on establishing a reliable evalua- 218

tion mechanism. We design a program-based ver- 219

ification scheme consisting of three tightly cou- 220

pled components: Format Requirement specifies 221

the expected JSON output structure (including Ar- 222

rangement Format and Arrangement Example); 223

Verifiers contain program-based format verifier 224

and constraint verifier for checking format com- 225

pliance and logical constraints; Traversal Func- 226

tion searches for all possible valid solutions. This 227

code execution-based verification approach effec- 228

tively overcomes limitations of traditional evalua- 229

tion methods: since our logical puzzles may have 230

multiple valid answers (which can grow exponen- 231

tially when logical constraints are sparse), rule- 232

based matching becomes impractical; meanwhile, 233

model-based scoring (LLM-as-a-judge) introduces 234

instability in complex tasks (discussed in Section 235

5.4). 236

Given the strong correlation between Format Re- 237

quirement and Verifiers, we generate these two 238

components simultaneously using advanced LLM, 239

with Background and Logical Constraints from 240

Stage 1 as input. Subsequently, we generate the 241

Traversal Function based on the produced Format 242

Requirement and Verifiers. 243

To ensure the reliability of the evaluation mech- 244

anism, we propose a cross-validation method to 245

check the correctness of LLM-generated Verifiers 246

and Traversal Function. We run the Traversal Func- 247

tion to examines all possible combinations within 248

the value ranges defined in Background (Domain 249

space), and validates them through Verifiers to de- 250

termine the existence of solutions satisfying all 251

constraints (Solution space). When no solution 252

is found (empty solution space) or syntax errors 253

occur, a regeneration is triggered. Through the ver- 254

ification, we ensure that each problem has at least 255

one valid solution, which is a necessary condition 256

for problem validity. The effectiveness of Traversal 257

Function are discussed in Section 5.4. 258

3

Background
A publisher is planning to publish six cookbooks—K, L, M, N, O, and P—over the course

of the next year. Each cookbook will be published in one of two seasons—fall or spring.

Logical Constraints
Please generate an arrangement that meets the following constraints:

(1) M and P cannot be published in the same season as each other

(2) K and N must be published in the same season as each other

Logical Puzzles

Puzzle

Generate Format & Verifiers

Constraint Verifier

Check and Re-generate

Arrangement Format
Please think step by step, your arrangement must be answered according to the following input format requirements:

At the end of your answer you need to give an input to represent your final arrangement, where inputs is a dictionary, where each key corresponds to one

of the cookbooks (K, L, M, N, O, P) and the value is a string representing the season (fall or spring) in which that particular cookbook will be published.

Stage 1

Arrangement Example
{'K': 'fall', 'L': 'spring', 'M': 'spring', 'N': 'fall', 'O': 'fall', 'P': 'spring'}

Format Verifier

Stage 3

Background

Logical

Constraints

Solution space

Constraint

Verifier

Expansion

& Reduction

Traversal Function

Domain space:
Arrangements that satisfy the Format Verifier

Constraint Verifier

Stage 2

constraint_1

constraint_2

constraint_3

Logical Constraints
Constraint

Verifier

constraint_4

Execution

(1) M and P cannot be published in

the same season as each other

(2) K and N must be published in

the same season as each other

(3) If K is published in the fall, O

must also be published in the fall

(4) If M is published in the fall, N

must be published in the spring.

Solution space:
Arrangements that satisfy the Format Verifier and the Constraint Verifiers

Data Augmentation

Formulation

Figure 2: An overview of our method. The process consists of three stages: Stage 1 formulates logic puzzles
by extracting background information and constraints from a source corpus. Stage 2 uses large language models
(LLMs) to generate verifiers, which are programs that check puzzle solutions and ensure correct formatting. Stage 3
augments the puzzles by adding or removing constraints to create varying difficulty levels. All three stages leverage
powerful LLMs, such as GPT-4, for generation.

3.3 Data Augmentation259

Stage 3 performs data augmentation through two260

complementary techniques, Reduction and Expan-261

sion, to construct a dataset with balanced difficulty262

distribution, enabling better discrimination of mod-263

els’ logical reasoning capabilities.264

In the Reduction process, we randomly select265

and remove one logical constraint along with its266

corresponding components in the Verifier. By re-267

ducing the number of constraints, the problem is268

simplified, yielding more problems of lower dif-269

ficulty. For each problem, we iteratively remove270

logical constraints to generate new problems until271

only one constraint remains.272

In the Expansion process, we utilize advanced273

LLMs to generate additional constraints and their274

corresponding Verifiers, taking as input the Back-275

ground and Logical Constraints from Stage 1, along276

with the solution space and Verifier from Stage 2.277

To ensure data quality, we leverage the Traversal278

Function developed in Stage 2 to verify the solvabil-279

ity of newly generated problems. The expansion280

process terminates when either the maximum num-281

ber of attempts is reached or the solution space size282

reduces to one.283

3.4 Synthesizing Training Data 284

Beyond benchmark construction, our data synthesis 285

method can also be used to generate model train- 286

ing data through rejection-sampling with a verifier, 287

naturally obtaining two categories: verified correct 288

responses for Supervised Fine-Tuning (SFT) and 289

pairs of correct-incorrect responses for DPO. 290

A significant advantage of this approach is 291

that rejection sampling with program-based ver- 292

ifiers produces more accurate training data. Un- 293

like multiple-choice questions that risk accepting 294

responses where models guess correctly despite 295

flawed reasoning, potentially introducing noise into 296

the training data, our method ensures accuracy by 297

using program-based verifier to examine model re- 298

sponses. 299

4 Dataset Construction 300

To construct the AutoLogi dataset, we leveraged 301

two established logical reasoning datasets: AR- 302

LSAT (Zhong et al., 2021) and LogiQA (Liu et al., 303

2020). Both datasets comprise multiple-choice 304

questions designed to assess logical reasoning ca- 305

pabilities. The complete set of prompts utilized in 306

our study is detailed in Section A.4. 307

4

Source Corpus Stage 1 Stage 2 Stage3

Backgrounds # Samples # Sample # Samples # Samples

EN 40 230 210 206 1575
ZH 90 123 147 139 883

Table 1: Statistics of our testing data. The AutoLogi benchmark corresponds to the sample number of stage 2, and
the AutoLogi (Augumented) corresponds to stage 3.

Testing Set Construction We applied our pro-308

posed method to construct the testing set through309

three stages, with detailed statistics presented in310

Table 1.311

First, we employed GPT-4 to filter suitable sam-312

ples from the source corpus, resulting in 230 En-313

glish questions from AR-LSAT (40 distinct back-314

grounds) and 123 Chinese questions from LogiQA315

(90 backgrounds). In stage 1, we applied Puz-316

zle Formulation to transform these multiple-choice317

questions into open-ended puzzles. To maximize318

coverage, we created separate cases by pairing each319

question stem with individual options. After dedu-320

plication, this yielded 210 English and 147 Chinese321

open-ended logic puzzles.322

In stage 2, we utilized both GPT-4 and GPT-4o to323

generate format requirements and verifiers, as their324

complementary capabilities helped address model-325

specific limitations. Finally, in stage 3, we applied326

data augmentation techniques to expand our dataset327

to 1,575 English and 883 Chinese puzzles.328

Training Set Construction We utilize the329

cleaned training sets from LogiQA and AR-LSAT330

as source corpora, applying our proposed synthe-331

sis method to generate 1,675 Chinese samples and332

5,064 English samples as Dtraining. The rejection333

sampling process involves two models: Qwen2.5-334

7b-instruct and Qwen2.5-72b-instruct, each per-335

forming rejection sampling with 8 rounds per input336

to obtain corresponding candidate responses.337

By employing our verifier to evaluate these can-338

didate responses, we naturally derive two types of339

training datasets:340

• Dsft: A collection of responses verified as341

correct, serving as high-quality demonstra-342

tions for supervised fine-tuning.343

• Ddpo: Pairs of correct and incorrect responses,344

forming natural positive-negative sample pairs345

(x, yw, yl) for DPO.346

Through eight rounds of rejection sampling, as347

presented in Table 2, we constructed two datasets:348

Dsft and Dpref. Dsft was formed by excluding349

Dtraining Ddpo(7b) Ddpo(72b) Dsft(72b)

EN 5064 2877 2349 3724
CN 1675 901 621 1170

Table 2: Statistics of our training data.

examples without correct solutions, while Dpref 350

was further refined by removing instances lack- 351

ing contrastive pairs. Given their trivial nature, 352

single-constraint puzzles were excluded from both 353

datasets. 354

5 Experiment 355

5.1 Experimental Setup 356

Models We evaluate 8 models in our experiments: 357

Qwen2.5-7B/72B-Instruct (Qwen et al., 2025), 358

LLama3.1-8B/70B/405B-Instruct (MetaAI, 2024), 359

GPT-3.5-Turbo (OpenAI, 2022), GPT-4o-2024- 360

08-06 (OpenAI, 2024), and Claude-3.5-Sonnet- 361

20240620 (Anthropic, 2022). 362

Evaluation Datasets We conduct evaluations on 363

two versions of our AutoLogi benchmark: the 364

base version (AutoLogi) and its augmented ver- 365

sion (AutoLogi Augmented). We also evaluate on 366

the original multiple-choice datasets that served 367

as our source corpus - AR-LSAT (Zhong et al., 368

2021) and LogiQA (Liu et al., 2020). To analyze 369

the reliability of our benchmark, we compare the 370

performance patterns with two established reason- 371

ing benchmarks: MUSR (Sprague et al., 2024) and 372

LiveBench (Reasoning, 2024-08-31) (White et al., 373

2024). For all evaluations, we report the mean and 374

standard deviation across 5 independent runs to 375

ensure reliable results. 376

5.2 Benchmark Results 377

We evaluate the effectiveness of our synthesis 378

method in constructing high-quality logical rea- 379

soning benchmarks through extensive experiments 380

across eight modern LLMs. 381

Superior Assessment Capability Experimen- 382

tal results in Table 3 demonstrate AutoLogi’s 383

5

Model AutoLogi AutoLogi(Augmented) AR-LSAT LogiQA MUSR LiveBench
EN CN EN CN

Qwen2.5-7b-instruct 27.28±2.41 30.94±1.76 43.64±1.25 42.08±1.50 22.70±0.84 34.42±1.38 47.14±0.73 30.67†

Qwen2.5-72b-instruct 53.50±0.93 54.10±0.28 68.18±0.77 63.92±0.56 31.65±1.89 47.92±1.37 54.21±0.41 46.00†

LLama3.1-8b-instruct 25.53±3.64 17.41±3.61 37.96±1.41 23.69±1.33 22.61±2.47 25.04±1.40 49.63±0.58 15.33†

LLama3.1-70b-instruct 53.79±2.92 42.59±2.41 62.47±0.96 53.77±0.95 30.26±1.36 36.25±2.55 57.28±0.76 40.67†

LLama3.1-405b-instruct 59.42±3.04 56.98±1.79 70.43±1.39 65.39±1.07 32.61±1.94 39.35±1.10 57.68±0.67 53.33†

GPT-3.5-Turbo 18.93±3.83 22.30±2.39 35.25±0.81 34.47±1.39 21.04±1.71 26.34±4.13 48.33±1.07 26.67†

GPT-4o-2024-08-06 62.04±1.59 55.54±3.78 72.61±0.76 66.70±1.25 37.39±0.91 43.74±1.30 59.95±1.13 54.67†

Claude-3.5-sonnet 60.97±0.88 60.29±3.19 72.53±0.82 68.24±0.98 34.35±1.76 46.83±3.24 60.53±0.63 58.68†

Table 3: Results on the original multiple-choice datasets (AR-LSAT, LogiQA), and our benchmarks (AutoLogi and
Augmented AutoLogi). The accuracy was reported with a standard deviation (std) of 5 trials. Results marked with †

are sourced from the LiveBench leaderboard(2024-08-31).

Model AutoLogi AR-LSAT LogiQA MUSR LiveBench
EN CN

Baseline Qwen2.5-7b-instruct 43.64 42.08 22.70 34.42 47.14 30.67†

+Self-Alignment DPO 48.80+5.16 45.39+3.31 26.09+3.39 38.05+3.63 47.57+0.43 35.73+5.06
+Strong-to-Weak RFT 48.33+4.69 47.54+5.46 27.30+4.60 35.93+1.51 49.15+2.01 30.07−0.60

Baseline Qwen2.5-72b-instruct 68.18 63.92 31.65 47.92 54.21 46.00†

+Self-Alignment DPO 74.79+6.61 69.54+5.62 38.70+7.05 48.14+0.22 56.48+2.27 52.13+6.13

Table 4: Performance comparison across different training settings. Results report the average of five trials, with
standard deviations shown in Section A.8. Subscripted values indicate performance gains over the baseline model,
and the best accuracy for each setup is highlighted in green . Results marked with † are sourced from the LiveBench
leaderboard(2024-08-31).

distinct advantage in model capability assess-384

ment compared to traditional benchmarks. On385

conventional multiple-choice datasets (AR-LSAT,386

LogiQA), models achieve similar scores within387

a narrow range, making it difficult to distinguish388

their true capabilities. In contrast, both AutoLogi389

and Augmented AutoLogi reveal more pronounced390

performance gaps between models, enabling finer-391

grained capability assessment. For instance, while392

Qwen2.5-72b achieves unexpectedly high scores393

on LogiQA, this performance anomaly diverges394

from its relative standings across other benchmarks,395

suggesting potential evaluation bias in traditional396

tests. Notably, AutoLogi yields clear performance397

stratification among models, and this hierarchical398

distribution strongly correlates with established399

benchmarks (MUSR, LiveBench), validating its400

reliability as an evaluation framework.401

Bilingual Evaluation Capability A key feature402

of AutoLogi is its provision of parallel English403

and Chinese evaluation benchmarks. Our analy-404

sis reveals that most models maintain comparable405

performance across both languages, indicating ro-406

bust bilingual capabilities. However, we observe407

notable variations in cross-lingual performance:408

LLaMA-series models demonstrate significantly 409

lower performance on Chinese tests compared to 410

English, indicating limitations in Chinese language 411

processing. In contrast, Claude, Qwen, and GPT3.5 412

exhibit more balanced performance across both lan- 413

guages, suggesting superior cross-lingual general- 414

ization ability. This bilingual evaluation dimension 415

provides crucial insights into models’ language- 416

agnostic reasoning capabilities. 417

5.3 Training Results 418

We investigate the utility of our synthesized data 419

in enhancing models’ logical reasoning abilities 420

through training experiments. 421

Training Settings We investigate two training 422

settings. The first is Self-Alignment, where we use 423

the training model itself to perform rejection sam- 424

pling to generate preference data Dpref (containing 425

pairs of correct and incorrect answers), followed by 426

reinforcement learning training using Direct Pref- 427

erence Optimization (DPO, Rafailov et al., 2024). 428

The second setting is Strong-to-weak Distillation 429

based on RFT (Rejection sampling Fine-Tuning, 430

Yuan et al., 2023). In this approach, we leverage 431

a more powerful model (Qwen2.5-72b-instruct) to 432

6

perform rejection sampling to generate SFT data433

Dsft, which is then used for fine-tuning the target434

model.435

Significant In-domain Improvements As436

shown in Table 4, our optimization methods437

achieve substantial improvements on the AutoLogi438

benchmark. Notably, the DPO method brings439

significant performance gains of 6.61% and 5.62%440

on English and Chinese tests respectively for441

Qwen2.5-72b, demonstrating the effectiveness of442

our optimization approach on the target tasks.443

Broad Cross-domain Generalization Models444

trained on our synthesized data demonstrate strong445

generalization capability on tasks with similar prob-446

lem context but entirely different problem formats.447

For instance, Qwen2.5-72b achieves a 7.05% im-448

provement on the AR-LSAT test set. The enhanced449

performance extends to tasks with substantially450

different source distributions, as evidenced by a451

6.13% performance gain on the LiveBench test set,452

thoroughly validating the immense potential of our453

proposed synthesis approach in generating high-454

quality training data to enhance models’ general455

logical reasoning capabilities.456

Relationship between Model Scale and Opti-457

mization Effects Larger models demonstrate458

more substantial improvements in performance.459

Across various benchmarks, calculating the mean460

improvements under the DPO setting reveals that461

72B models achieve higher average performance462

gains (4.65%) compared to their 7B counterparts463

(3.50%). This suggests that models with stronger464

foundational capabilities can further unlock their465

logical reasoning potential when leveraging high-466

quality synthetic training data.467

5.4 Analysis468

Augmentation Effectiveness Analysis As illus-469

trated in Figure 3, experimental results demon-470

strate that all models experience accuracy degra-471

dation with increasing number of constraints (the472

number of logical rules per puzzle) and decreas-473

ing Solution Space Ratio (the proportion of valid474

solutions within the total possibility space, repre-475

senting theoretical random-guess probability). The476

consistent decline in model accuracy indicates in-477

creasing problem difficulty, and the significant cor-478

relation between these metrics validates that our479

augmentation strategy successfully generates prob-480

lems across diverse difficulty levels. The baseline481

Constraints Nums

Q
ue

sti
on

 Q
ua

nt
iti

es

Solution Space Proportion

A
cc

ur
ac

y

Figure 3: The question quantities on the Chinese subset
of AutoLogi before and after data augmentation, and
the accuracy of eight models across different constraints
and solution space proportions. The figure of English
subset can be found in Appendix A.1.

Autologi dataset exhibited inherent limitations in 482

its difficulty distribution, as problems were exclu- 483

sively derived from the source corpus. This depen- 484

dency resulted in an unbalanced complexity spec- 485

trum, with a maximum of 6 constraints per problem 486

and a sparse representation of higher-difficulty in- 487

stances. Our augmentation methodology addresses 488

these limitations by introducing a more uniform 489

distribution of problem complexities, thereby cre- 490

ating a more balanced and representative dataset 491

for logical reasoning evaluation. 492

Cross-Validated Solution Existence Analysis 493

To ensure dataset quality, we incorporate traver- 494

sal functions in Stage 2 to verify the existence of 495

valid solution paths. This verification mechanism 496

proves essential in detecting incorrect generated 497

verifiers and invalid problems before they enter our 498

dataset. For instance, in our experiments with the 499

AutoLogi Chinese subset, among the 139 problems 500

initially generated from 147 information units, 23% 501

were identified as unsolvable(11% in English sub- 502

set). Furthermore, during Stage 3’s augmentation 503

process, where additional logical constraints are 504

introduced, the traversal function becomes indis- 505

pensable as each constraint addition risks creating 506

unsolvable problems, with approximately 30% of 507

LLM-generated additional constraints leading to 508

unsolvable puzzles. Through this cross-validation 509

method, we effectively maintain dataset integrity 510

by eliminating invalid problems throughout our 511

pipeline. 512

7

Precision: 0.95 Recall: 0.97 F1-Score: 0.96 Precision: 0.84 Recall: 0.69 F1-Score: 0.76

Negative Positive

Fa
ls
e

Tr
ue

Program-based Verifier LLM Judger
Fa
ls
e

Tr
ue

Negative Positive

Figure 4: The precision and recall of evaluations using
our verification function (Program-based Verifier) and
GPT-4 as the evaluator (LLM Judger). True/False indi-
cates the ground truth correctness of the answer. Posi-
tive/Negative is the output label predicted by Program-
based Verifier or LLM Judger.

Human Alignment Analysis To evaluate the ef-513

fectiveness of program-based Verifier as an evalua-514

tion tool, we conducted a comparative experiment515

focusing on human alignment. We randomly se-516

lected 90 AutoLogi reasoning problems from di-517

verse backgrounds and utilized Claude-3.5-Sonnet518

to generate responses as the model outputs to be519

evaluated. To ensure evaluation reliability, we col-520

lected voting results from three human evaluators521

as the ground truth. In our evaluation methodology,522

we employed both the program-based Verifier for523

direct answer validation and GPT-4-Turbo as an524

LLM judge. The experimental results, illustrated525

through the confusion matrix in Figure 4, demon-526

strate a significant performance disparity between527

the two evaluation methods: the program-based528

Verifier showed only 3 mismatches out of 90 cases529

(F1 score: 0.96), while the LLM judge exhibited 17530

mismatches (F1 score: 0.76). Figure 5 also presents531

a representative case where the LLM judge made532

an incorrect assessment while the program-based533

Verifier provided accurate evaluation.534

Beyond superior accuracy, the program-based535

Verifier demonstrates substantial advantages in536

computational efficiency and cost-effectiveness,537

particularly crucial for large-scale evaluations.538

These experimental findings strongly validate the539

reliability and practicality of utilizing program-540

based Verifier as an evaluation tool.541

Error Analysis Table 3 reveals that even ad-542

vanced LLMs exhibit error rates exceeding 30% in543

logical reasoning tasks. To gain a comprehensive544

understanding of these limitations, we conducted545

an in-depth error analysis using Claude-3.5-Sonnet546

as our representative model. Based on the 90 prob-547

1 Question
Consider five railway stations … Please generate an
arrangement that satisfies the following constraints: (1) Fuyi
Station is east of Haoyu Station, west of Huyao Station, and
adjacent to Huyao Station … Please think step by step and
format your answer according to the following requirements: …

2 Model Response (Claude)
Let's solve this step by step:
1.First, we know Fuyi Station is east of Haoyu Station, west of
Huyao Station, and adjacent to Huyao Station. This means Fuyi
and Huyao must be next to each other, with Fuyi being east of
Huyao. （Incorrect reasoning: Fuyi should be west of Huyao,
not east）
…
Therefore, the final arrangement is: ["Huyao Station", "Fuyi
Station", "Haoyu Station", "Jiushang Station", "Yinling Station"]

4 LLM Judger Response (GPT-4-Turbo)
Analyzing the model's response and the given constraints: ...
"Huyao Station" and "Fuyi Station": Fuyi is east of Huyao and
they are adjacent. This satisfies condition 1 …
Since all conditions are met correctly with the model's proposed
solution, the response is correct.
Output: 1

3 Prompt for LLM Judger
You are a scoring assistant. Your task is to evaluate the results
of a model and determine whether they are correct or incorrect.
At the last line of your response, output 1 for correct and 0 for
incorrect.
Quesstion:[[question]]
Model_Response: [[model_response]]

Figure 5: An example of the LLM Judger making mis-
takes in verifying model responses.

lems from our human alignment experiment in Sec- 548

tion 5.4, we enlisted human annotators to provide 549

detailed explanations for all failure cases. Through 550

systematic analysis of these explanations, we cate- 551

gorized the error sources into four primary types: 552

Incorrect Logical Inference (incorrect deductive 553

steps, 81%), Contradictory Conclusion (inconsis- 554

tencies between inference and conclusions, 13%), 555

Unanalyzed Condition (failure to consider certain 556

given logical constraint, 3%), and Inconsistent For- 557

mat (structural or presentational issues in responses, 558

3%). Detailed statistical analysis of these error pat- 559

terns and specific case studies for each category 560

are thoroughly discussed in Appendix A.2 and Ap- 561

pendix A.3, respectively. 562

6 Conclusion 563

In conclusion, we present a method for automati- 564

cally synthesizing open-ended logic puzzles, which 565

we use to create the bilingual benchmark AutoLogi 566

and high-quality training data. Our approach pro- 567

vides more accurate assessment of LLMs’ reason- 568

ing capabilities by mitigating random guessing and 569

enabling controllable difficulty levels, while the 570

synthesized training data proves effective in en- 571

hancing models’ reasoning abilities. 572

8

Limitations573

Our methods may contains the following limita-574

tions:575

Dependence on LLMs Our method relies on576

advanced large language models (LLMs) such as577

GPT-4 for generating logic puzzles and verification578

functions. If the only accessible LLMs have lim-579

ited capacity, our method may suffer from a high580

failure rate in synthesizing the questions. However,581

as LLMs continue to advance, we expect the effec-582

tiveness and reliability of our approach to improve583

accordingly.584

Verification Function Limitations Although585

AutoLogi uses program-based verification to han-586

dle multiple valid solutions, this approach does not587

guarantee that the verification functions are perfect,588

especially in complex conditions. In our experi-589

ment, we still find there is about 3% of validation590

results contain errors (Section 5.4).591

References592

Anthropic. 2022. Claude 3.5 sonnet.593

Srijan Bansal, Semih Yavuz, Bo Pang, Meghana Bhat,594
and Yingbo Zhou. 2023. Few-shot unified question595
answering: Tuning models or prompts? Preprint,596
arXiv:2305.14569.597

BIG bench authors. 2023. Beyond the imitation game:598
Quantifying and extrapolating the capabilities of lan-599
guage models. Transactions on Machine Learning600
Research.601

Wenhu Chen, Xueguang Ma, Xinyi Wang, and602
William W. Cohen. 2023. Program of thoughts603
prompting: Disentangling computation from rea-604
soning for numerical reasoning tasks. Preprint,605
arXiv:2211.12588.606

Peter Clark, Oyvind Tafjord, and Kyle Richardson.607
2020. Transformers as soft reasoners over language.608
Preprint, arXiv:2002.05867.609

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu610
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.611
2024. Self-play with execution feedback: Improving612
instruction-following capabilities of large language613
models. Preprint, arXiv:2406.13542.614

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,615
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-616
ham Neubig. 2023. Pal: Program-aided language617
models. Preprint, arXiv:2211.10435.618

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-619
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,620
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,621

Alex Wardle-Solano, Hannah Szabo, Ekaterina 622
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, 623
Brian Wong, Malcolm Sailor, Ansong Ni, Linyong 624
Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. 625
Fabbri, Wojciech Kryscinski, Semih Yavuz, Ye Liu, 626
Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caim- 627
ing Xiong, Rex Ying, Arman Cohan, and Dragomir 628
Radev. 2024. Folio: Natural language reasoning with 629
first-order logic. Preprint, arXiv:2209.00840. 630

Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor 631
Geva, and Antoine Bosselut. 2023. Crow: Bench- 632
marking commonsense reasoning in real-world tasks. 633
Preprint, arXiv:2310.15239. 634

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, 635
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal- 636
lenge dataset for machine reading comprehension 637
with logical reasoning. Preprint, arXiv:2007.08124. 638

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai- 639
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and 640
Jianfeng Gao. 2023. Chameleon: Plug-and-play 641
compositional reasoning with large language models. 642
Preprint, arXiv:2304.09842. 643

Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj 644
Varshney, Pratyay Banerjee, Somak Aditya, Chitta 645
Baral, et al. 2023. Towards logiglue: A brief sur- 646
vey and a benchmark for analyzing logical reason- 647
ing capabilities of language models. arXiv preprint 648
arXiv:2310.00836. 649

MetaAI. 2024. The llama 3 herd of models. Preprint, 650
arXiv:2407.21783. 651

OpenAI. 2022. Introducing chatgpt. 652

OpenAI. 2024. Gpt-4 technical report. Preprint, 653
arXiv:2303.08774. 654

Patrick Prosser. 1993. Hybrid algorithms for the con- 655
straint satisfaction problem. Computational intelli- 656
gence, 9(3):268–299. 657

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 658
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 659
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 660
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 661
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 662
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 663
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 664
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 665
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 666
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 667
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 668
report. Preprint, arXiv:2412.15115. 669

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano 670
Ermon, Christopher D. Manning, and Chelsea Finn. 671
2024. Direct preference optimization: Your lan- 672
guage model is secretly a reward model. Preprint, 673
arXiv:2305.18290. 674

Abulhair Saparov and He He. 2022. Language models 675
are greedy reasoners: A systematic formal analysis of 676
chain-of-thought. arXiv preprint arXiv:2210.01240. 677

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2305.14569
https://arxiv.org/abs/2305.14569
https://arxiv.org/abs/2305.14569
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2002.05867
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2406.13542
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2310.15239
https://arxiv.org/abs/2310.15239
https://arxiv.org/abs/2310.15239
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2407.21783
https://openai.com/index/chatgpt/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle678
Pineau, and William L. Hamilton. 2019. CLUTRR:679
A diagnostic benchmark for inductive reasoning from680
text. In Proceedings of the 2019 Conference on681
Empirical Methods in Natural Language Processing682
and the 9th International Joint Conference on Natu-683
ral Language Processing (EMNLP-IJCNLP), pages684
4506–4515, Hong Kong, China. Association for Com-685
putational Linguistics.686

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri,687
and Greg Durrett. 2024. Musr: Testing the limits688
of chain-of-thought with multistep soft reasoning.689
Preprint, arXiv:2310.16049.690

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-691
bastian Gehrmann, Yi Tay, Hyung Won Chung,692
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny693
Zhou, et al. 2022. Challenging big-bench tasks and694
whether chain-of-thought can solve them. arXiv695
preprint arXiv:2210.09261.696

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,697
Hao He, and Yaohui Jin. 2021. Diagnosing the698
first-order logical reasoning ability through logicnli.699
In Proceedings of the 2021 Conference on Empiri-700
cal Methods in Natural Language Processing, pages701
3738–3747.702

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and703
Heng Ji. 2024a. Leti: Learning to generate from704
textual interactions. Preprint, arXiv:2305.10314.705

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,706
Lifan Yuan, Hao Peng, and Heng Ji. 2024b. Mint:707
Evaluating llms in multi-turn interaction with tools708
and language feedback. Preprint, arXiv:2309.10691.709

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten710
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,711
et al. 2022. Chain-of-thought prompting elicits rea-712
soning in large language models. Advances in neural713
information processing systems, 35:24824–24837.714

Colin White, Samuel Dooley, Manley Roberts, Arka715
Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,716
Neel Jain, Khalid Saifullah, Siddartha Naidu, et al.717
2024. Livebench: A challenging, contamination-free718
llm benchmark. arXiv preprint arXiv:2406.19314.719

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,720
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.721
2024. Tree of thoughts: Deliberate problem solving722
with large language models. Advances in Neural723
Information Processing Systems, 36.724

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting725
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and726
Jingren Zhou. 2023. Scaling relationship on learning727
mathematical reasoning with large language models.728
Preprint, arXiv:2308.01825.729

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,730
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and731
Nan Duan. 2021. Ar-lsat: Investigating analytical732
reasoning of text. arXiv preprint arXiv:2104.06598.733

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, 734
and Xing Xie. 2024. Dynamic evaluation of large 735
language models by meta probing agents. In Forty- 736
first International Conference on Machine Learning. 737

10

https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2305.10314
https://arxiv.org/abs/2305.10314
https://arxiv.org/abs/2305.10314
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825

A Appendix A738

A.1 Difficulty Control through Data739

Augmentation740

The experimental results on the English subset are741

presented in Figure 6. Our analysis reveals a clear742

negative correlation between model performance743

and two key difficulty metrics: the number of con-744

straints and the solution space size. Specifically,745

model accuracy demonstrates a consistent decline746

as the number of constraints increases and as the so-747

lution space becomes more constrained. These find-748

ings align closely with our previous observations749

on the Chinese dataset, reinforcing the language-750

agnostic nature of these performance patterns.751

The augmented dataset achieves a more balanced752

distribution across these difficulty indicators, en-753

abling a more nuanced and comprehensive evalua-754

tion of model capabilities. Through systematic ma-755

nipulation of constraint density and solution space,756

AutoLogi demonstrates its effectiveness in gener-757

ating targeted evaluation scenarios with controlled758

difficulty levels.759

A.2 Error Analysis760

To gain insights into improving model performance761

in logical reasoning tasks, we conducted a system-762

atic analysis of incorrect responses. We examined763

90 samples, one from each background category764

in AutoLogi’s Chinese dataset, focusing on Claude765

3.5 Sonnet’s responses. Among these samples, the766

model failed on 37 cases. We categorized these767

errors into four distinct types:768

1. Unanalyzed Condition: Cases where the769

model completely overlooked critical condi-770

tions in the problem statement.771

2. Incorrect Logical Inference: Instances772

where the model made erroneous deductions773

when processing specific logical conditions.774

3. Contradictory Conclusion: Cases where de-775

spite appearing to follow a sound reasoning776

process, the model’s final conclusion contra-777

dicted its own analysis.778

4. Inconsistent Format: Responses that devi-779

ated from the required output format, includ-780

ing issues with naming conventions and data781

structure consistency.782

Detailed examples for each error category are783

provided in Appendix A.3. The distribution of784

these errors across the 37 failed cases is illustrated 785

in Figure 7. Our analysis reveals that Claude 3.5 786

Sonnet demonstrates strong instruction-following 787

capabilities and processes constraints systemati- 788

cally. Consequently, Inconsistent Format and Un- 789

analyzed Condition errors were relatively rare. The 790

most prevalent issue was Incorrect Logical Infer- 791

ence. 792

Further investigation into the Incorrect Logical 793

Inference cases revealed two primary challenges: 794

1. Complex Logic: Errors emerged when han- 795

dling logical conditions that required multiple 796

interconnected judgments. 797

2. Misinterpretation of Logical Negations: 798

Common mistakes included misunderstand- 799

ing logical operators, particularly in cases in- 800

volving negations (e.g., confusing "not less 801

than" with "less than"). 802

A.3 Error Cases 803

Following the analysis of four distinct error types 804

and their distribution in Section A.2, here we 805

present one representative example for each type 806

from the AutoLogi Chinese dataset. These exam- 807

ples also serve as sample problems demonstrating 808

how the system processes logical reasoning ques- 809

tions. While the AutoLogi dataset contains both 810

Chinese and English problems, we focus on Chi- 811

nese examples here since English problems typi- 812

cally have much longer problem descriptions. For 813

each example, we provide both the original Chinese 814

text and its English translation. 815

The following examples illustrate: Unanalyzed 816

Condition (Table 5), Incorrect Logical Inference 817

(Table 6), Contradictory Conclusion (Table 7), and 818

Inconsistent Format (Table 8). 819

A.4 Prompt Design 820

A.4.1 Stage 1: Puzzle Formulation 821

The first stage focuses on extracting two essential 822

components from the source corpus for open-ended 823

logic puzzle generation: Background information 824

and Logical Constraints. To automate this extrac- 825

tion process, we employ GPT-4o with a one-shot 826

learning approach, providing a single comprehen- 827

sive example. Table 9 details the prompt instruc- 828

tions in both Chinese and English. 829

11

Constraints Nums

Q
ue

sti
on

 Q
ua

nt
iti

es

Solution Space Proportion

A
cc

ur
ac

y

Figure 6: Distribution of questions in AutoLogi’s English subset before and after data augmentation, alongside the
performance analysis of eight models across varying constraints and solution space proportions.

Figure 7: Distribution of error types in model responses,
analyzing 37 incorrect answers from Claude across 90
test questions.

A.5 Stage 2: Generation of Format and 830

Verifiers 831

This stage utilizes prompts to instruct GPT-4o to 832

generate two key components based on the previ- 833

ously extracted Background information and Logi- 834

cal Constraints. The first component is the synthe- 835

sized puzzle, consisting of the Arrangement Format 836

and an Arrangement Example. The second compo- 837

nent comprises two code-based verifiers: a Format 838

Verifier to ensure structural correctness and a Con- 839

straint Verifier to validate logical consistency. The 840

detailed prompts in both Chinese and English are 841

presented in Figures 8, 9, 10, 11, 12, and 13. 842

A.6 Stage 2: Validation and Regeneration 843

A crucial verification step involves the implemen- 844

tation of a Traversal Function to validate the cor- 845

rectness of the generated puzzles. This function 846

employs an enumeration approach to verify the 847

12

PROMPT (CHINESE): 有7名运动员参加男子5千米的决赛，他们是:S、T、U、W、X、Y和Z。运动员穿的服装不是红
色，就是绿色，没有运动员同时到达终点。请你生成一个安排方案满足以下约束： (1)相继到达终点的运动员，他
们的服装不全是红色的。 (2) Y在T和W之前的某一时刻到达了终点。 (3)在Y之前到达终点的运动员，恰好有两位穿
的是红色服装。 (4) S是第六个到达终点的运动员。 (5) Z在U之前的某一时刻到达终点。
请你一步一步思考，你的安排方案必须按照为以下输入格式要求来进行回答：在回答的最后，你需要给出一个输
入，以表示你的最终安排方案,其中inputs是一个字典，包含两个键："order"和"colors"。- inputs["order"]是一个包
含7个元素的list，元素为运动员的名字（字符串），表示运动员的到达顺序。所有可能的元素为["S", "T", "U", "W",
"X", "Y", "Z"]。- inputs["colors"]是一个字典，键为运动员的名字（字符串），值为"red"或"green"（字符串），表示
运动员的衣服颜色。下面提供一个输入样例（注意这只是一个合法输入的例子，不一定是正确方案）：
{ "order": ["T", "Y", "Z", "U", "W", "S", "X"], "colors": {S": "red", "T": "green", "U": "red", "W": "green", "X": "red", "Y":
"green", "Z": "green"} }

PROMPT (ENGLISH,TRANSLATED): There are 7 athletes participating in the men’s 5-kilometer final, and they are: S, T, U, W,
X, Y, and Z. The athletes’ outfits are either red or green, and no athletes reached the finish line simultaneously. Please generate
an arrangement that meets the following constraints:
(1) The athletes who reached the finish line consecutively do not all wear red outfits. (2) Y reached the finish line at some point
before T and W. (3) Among the athletes who reached the finish line before Y, exactly two wore red outfits. (4) S is the sixth
athlete to reach the finish line. (5) Z reached the finish line at some point before U.
Please think step by step, and your arrangement must be answered according to the following input format requirements: At
the end of your answer, you need to provide an input to represent your final arrangement. The inputs should be a dictionary
containing two keys: "order" and "colors". - ‘inputs["order"]‘ is a list containing 7 elements, with each element being the name
of an athlete (string) representing the order in which the athletes reached the finish line. Possible elements are ‘["S", "T", "U",
"W", "X", "Y", "Z"]‘. - ‘inputs["colors"]‘ is a dictionary where the key is the name of an athlete (string) and the value is "red" or
"green" (string), representing the color of the athlete’s outfit. Below is an example input (note this is just an example of valid
input, not necessarily the correct arrangement):
{ "order": ["T", "Y", "Z", "U", "W", "S", "X"], "colors": {S": "red", "T": "green", "U": "red", "W": "green", "X": "red", "Y":
"green", "Z": "green"} }

MODEL RESPONSE (CHINESE): 好的,让我们一步步思考来满足所有约束条件: 1. 首先,我们知道S是第六个到达终点
的,所以我们可以先把S放在第六位。 2. Y在T和W之前到达终点。（这里进行了简单重复没有分析） 3. Z在U之前到
达终点,所以Z必须在U前面。 4. 在Y之前到达终点的运动员,恰好有两位穿的是红色服装。这意味着Y之前的运动员
中,必须有两个红色,一个绿色。 5. 相继到达终点的运动员,他们的服装不全是红色的。这意味着不能有两个连续的红
色。
根据这些条件,我们可以尝试以下安排: 1. X (红色) 2. T (绿色) 3. Y (绿色) 4. Z (红色) 5. W (绿色) 6. S (红色) 7. U (绿色)
这个安排满足所有条件: - S在第六位 - Y在T和W之前 - Z在U之前 - Y之前有两个红色(X和T) -没有连续的红色 -总共
有3个红色,4个绿色。因此,最终的输入格式如下:

{"order": ["X", "T", "Y", "Z", "W", "S", "U"],
"colors": {S": "red","T": "green","U": "green","W": "green","X": "red","Y":"green","Z": "red"}}

MODEL RESPONSE(ENGLISH,TRANSLATED): Let’s think step by step to meet all the constraints: 1. First, we know S is the
sixth to reach the finish line 2. Y reached the finish line before T and W (This was merely repeated without proper analysis) 3. Z
reached the finish line before U 4. Among the athletes before Y, exactly two wore red outfits 5. No consecutive athletes can wear
red
Based on these conditions, we can arrange as follows: 1. X (red) 2. T (green) 3. Y (green) 4. Z (red) 5. W (green) 6. S (red) 7. U
(green)
Final solution in required format:

{"order": ["X", "T", "Y", "Z", "W", "S", "U"],
"colors": {"S": "red", "T": "green", "U": "green","W": "green", "X": "red", "Y": "green","Z": "red"} }

Error Type: Unanalyzed Condition

There was no analysis of the constraint "(2) Y reached the finish line at some point before T and W".

Table 5: Error Case: Unanalyzed Condition

existence of solutions that satisfy both verifiers es-848

tablished in the previous stage. By exhaustively849

exploring the value ranges of puzzle parameters,850

the Traversal Function helps ensure the quality and851

solvability of the synthesized puzzles. We utilize852

a two-shot prompting approach to guide GPT-4o853

in generating this function based on the value do-854

mains specified in the puzzle. The detailed prompts855

in both English and Chinese can be found in Fig- 856

ures 14, 15, 16, 17, 18, and 19. 857

A.7 Stage 3: Data Augmentation 858

The third stage implements data augmentation 859

through two approaches: Reduction and Expansion. 860

In the Expansion process, we leverage GPT-4o to 861

generate additional constraints by learning from 862

13

PROMPT (CHINESE): 某国东部沿海有5个火山岛E、F、G、H、I，它们由北至南排成一条直线。请你生成一个安排
方案满足以下约束： (1) F与H相邻并且在H的北边 (2) I和E相邻 (3) G在F的北边某个位置 (4) G和E相邻
请你一步一步思考，你的安排方案必须按照为以下输入格式要求来进行回答：在回答的最后，你需要给
出一个输入，以表示你的最终安排方案, 其中inputs 是一个包含5个元素的list，元素为字符串，取值范围
是["E","F","G","H","I"]。下面提供一个输入样例（注意这只是一个合法输入的例子，不一定是正确方案）：[’F’,
’H’, ’I’, ’E’, ’G’]

PROMPT (ENGLISH,TRANSLATED): There are 5 volcanic islands, E, F, G, H, and I, located along the eastern coast of a
country, arranged in a straight line from north to south. Please generate an arrangement that satisfies the following constraints: 1.
F is adjacent to H and is located north of H. 2. I is adjacent to E. 3. G is located somewhere north of F. 4. G is adjacent to E.
Please think step by step, and your arrangement must follow the input format requirements below: At the end of your answer,
you need to provide an input to represent your final arrangement. The input should be a list containing 5 elements, with each
element being a string from the range ‘["E", "F", "G", "H", "I"]‘. Below is an example input (note that this is just an example of
valid input and may not be the correct arrangement): [’F’, ’H’, ’I’, ’E’, ’G’]

MODEL RESPONSE (CHINESE): 让我们一步步思考这个问题： 1. 根据约束(1)，F与H相邻并且在H的北边。所以我们
知道F和H必须相邻，且F在H的北边。 2. 根据约束(3)，G在F的北边某个位置。这意味着G必须在F的北边，但不一定
紧邻F。 3. 根据约束(4)，G和E相邻。结合约束(3)，我们可以推断E必须在G的北边，因为G已经在F的北边了。(推理
错误：G不一定在F北边) 4. 根据约束(2)，I和E相邻。考虑到前面的推论，I只能在E的北边或者H的南边。 5. 综合以
上分析，我们可以得出一个可能的排列：G-E-I-F-H或I-G-E-F-H。 6. 考虑到题目要求从北到南排列，I-G-E-F-H是符
合所有约束的一个有效排列。因此，最终的安排方案如下：

['I', 'G', 'E', 'F', 'H']

这个排列满足所有给定的约束条件：- F与H相邻并且在H的北边- I和E相邻- G在F的北边- G和E相邻

MODEL RESPONSE (ENGLISH,TRANSLATED): Let’s think through this problem step by step: 1. According to constraint
(1), F is adjacent to H and is north of H. So, we know F and H must be adjacent, with F to the north of H. 2. According to
constraint (3), G is located somewhere north of F. This means G must be north of F, but not necessarily immediately adjacent.
3. According to constraint (4), G is adjacent to E. Combining this with constraint (3), we can infer that E must be north of G
because G is already north of F.(Logical error: G is not necessarily north of F) 4. According to constraint (2), I is adjacent to E.
Considering the previous inferences, I can only be either north of E or south of H. 5. Combining all the above analysis, one
possible arrangement is G-E-I-F-H or I-G-E-F-H. 6. Considering the requirement that the arrangement is from north to south,
I-G-E-F-H is a valid arrangement that satisfies all constraints. Therefore, the final arrangement is as follows:

['I', 'G', 'E', 'F', 'H']

This arrangement satisfies all the given constraints: - F is adjacent to H and is north of H. - I is adjacent to E. - G is north of F. -
G is adjacent to E

Error Type: Incorrect Logical Inference

Error in step 3 of the reasoning: The conclusion that "E must be north of G" cannot be derived from the premises "G is north of
F" and "G is adjacent to E"

Table 6: Error Case: Incorrect Logical Inference

existing ones and their known solution sets. The863

model analyzes the patterns in current constraints864

and their corresponding solutions to synthesize new,865

compatible constraints. To ensure the validity of866

the augmented puzzles, we employ the Traversal867

Function for verification, confirming that each ex-868

panded puzzle maintains solvability. The complete869

prompts for this stage are presented in Figures 20,870

21, 22, 23, 24, and 25.871

A.8 Detailed Training Results872

The experimental results presented in Table 10 re-873

port the accuracy scores with their corresponding874

standard deviations (std), calculated across five in-875

dependent trials.876

14

PROMPT (CHINESE): G、H、J、K、L、M和O七人结伴出游。在他们4天的露营生活中，每天要安排两个人值班为
大家做饭。要求这4天的人员安排不能重复，且恰好有一人值班两天。 请你生成一个安排方案满足以下约束： (1)
J要排在H值班的次日。 (2)值班两天的那个人必须排在第四天，不能排在第三天。 (3) G必须与J和O中的某一个人排
在同一天。 (4)第一天或第二天至少有一天安排K。 (5) O必须排在第三天。
请你一步一步思考，你的安排方案必须按照为以下输入格式要求来进行回答：在回答的最后，你
需要给出一个输入，以表示你的最终安排方案, 其中inputs是一个字典，包含四个键：‘"day1"‘, ‘"day2"‘,
‘"day3"‘和‘"day4"‘。‘inputs["day1"]‘, ‘inputs["day2"]‘, ‘inputs["day3"]‘, ‘inputs["day4"]‘都是一个包含两个元素的set，包
含值班人员名字（字符型）。取值范围是[’G’, ’H’, ’J’, ’K’, ’L’, ’M’, ’O’]。下面提供一个输入样例（注意这只是一个
合法输入的例子，不一定是正确方案）：{’day1’: {’K’, ’G’}, ’day2’: {’K’, ’H’}, ’day3’: {’O’, ’L’}, ’day4’: {’J’, ’M’}}

PROMPT (ENGLISH,TRANSLATED): Seven people, G, H, J, K, L, M, and O, go on a trip together. During their 4-day camping,
two people are assigned each day to cook for the group. The assignment must not be repeated over the 4 days, and exactly one
person must be on duty for two days. Please generate an arrangement that satisfies the following constraints: 1. J must be on duty
the day after H. 2. The person who is on duty for two days must be assigned on the fourth day and cannot be assigned on the
third day. 3. G must be on the same day as either J or O. 4. K must be scheduled on either the first or the second day. 5. O must
be scheduled on the third day.
Please think step by step, and your arrangement must follow the input format requirements below: At the end of your answer,
you need to provide an input to represent your final arrangement. The input should be a dictionary containing four keys: "day1",
"day2", "day3", and "day4". ‘inputs["day1"]‘, ‘inputs["day2"]‘, ‘inputs["day3"]‘, and ‘inputs["day4"]‘ are each *sets* containing
two elements representing the names of the people on duty (*strings*). The range of values is ‘[’G’, ’H’, ’J’, ’K’, ’L’, ’M’, ’O’]‘.
Below is an example input (note that this is just an example of valid input and may not be the correct arrangement): {’day1’:
{’K’, ’G’}, ’day2’: {’K’, ’H’}, ’day3’: {’O’, ’L’}, ’day4’: {’J’, ’M’}}

MODEL RESPONSE (CHINESE): 好的，我会一步步思考来制定一个满足所有约束条件的安排方案。 1. O必须排在
第三天，所以先确定： - inputs["day3"] = ’O’, 某人 2. J要排在H值班的次日，所以H必须在第1或第2天，J在第2或
第3天。但J不能和O同天，所以： - inputs["day2"] = ’H’,某人 - inputs["day3"] = ’O’, ’J’ (这里要求’J’安排在第三天，与
最终给出的结论是相互矛盾的) 3. 值班两天的人必须在第四天，不能在第三天。G必须和J或O同一天，但G不能是值
班两天的人(因为G不在第四天)，所以G必须和O同一天： - inputs["day3"] = ’O’, ’G’ - inputs["day4"] = ’J’,值班两天的
人 4. 第一天或第二天至少有一天安排K。我们可以把K安排在第一天： - inputs["day1"] = ’K’,某人 5. 剩下L和M还没
安排。L可以安排在第一天，M可以安排在第二天： - inputs["day1"] = ’K’, ’L’ - inputs["day2"] = ’H’, ’M’ 6. 现在，值班
两天的人只能是M，因为其他人都只值班了一次。综上所述，最终的安排方案是：

{'day1': {'K', 'L'}, 'day2': {'H', 'M'}, 'day3': {'O', 'G'}, 'day4': {'J', 'M'}}

这个方案满足了所有给定的约束条件。

MODEL RESPONSE (ENGLISH,TRANSLATED): Let’s think step by step to create an arrangement that satisfies all the
constraints. 1. O must be scheduled on the third day, so first we set: - inputs["day3"] = ’O’, someone 2. J must be on duty
the day after H, so H must be on the 1st or 2nd day, and J on the 2nd or 3rd day. But J cannot be on the same day as O, so: -
inputs["day2"] = ’H’, someone - inputs["day3"] = ’O’, ’J’ (There’s a contradiction between requiring ’J’ to be on day 3 here and
the final arrangement presented) 3. The person on duty for two days must be on the fourth day, and not on the third day. G must
be on the same day as either J or O, but G cannot be the person on duty for two days (because G is not on the fourth day). So G
must be with O: - inputs["day3"] = ’O’, ’G’ - inputs["day4"] = ’J’, the person on duty for two days 4. K must be scheduled on
either the first or second day. We can place K on the first day: - inputs["day1"] = ’K’, someone 5. L and M are left. L can be
scheduled on the first day, and M on the second day: - inputs["day1"] = ’K’, ’L’ - inputs["day2"] = ’H’, ’M’ 6. Now, the person
on duty for two days can only be M, because everyone else is only on duty once. Therefore, the final arrangement is:

{'day1': {'K', 'L'}, 'day2': {'H', 'M'}, 'day3': {'O', 'G'}, 'day4': {'J', 'M'}}

This arrangement satisfies all the given constraints.

Error Type: Contradictory Conclusion

There’s a contradiction: While step 2 of the reasoning process states that ’J’ must be on day 3, the final solution puts it on day 4!

Table 7: Error Case: Contradictory Conclusion

15

PROMPT (CHINESE): 一个委员会工作两年，每年都由4人组成，其中2名成员来自下面4位法官：F、G、H和I，另
外2名成员来自下面3位科学家：V、Y和Z。每一年，该委员会有1名成员做主席。请你生成一个安排方案满足以
下约束： 1. 在第一年做主席的成员在第二年必须退出该委员会。在第二年做主席的人在第一年必须是该委员会的成
员。 2. G和V不能在同一年成为该委员会的成员。 3. H和Y不能在同一年成为该委员会的成员。 4. 每一年，I和V
中有且只有一位做该委员会的成员。
请你一步一步思考，你的安排方案必须按照为以下输入格式要求来进行回答：输入是一个字典，包含四个
键："committee_year1"、"chairman_year1"、"committee_year2" 和"chairman_year2"。- 在回答的最后，你需要给出
一个输入，以表示你的最终安排方案,其中‘inputs["committee_year1"]‘是一个包含4个元素的set，包含第一年的委员
会成员的名字。取值范围是‘["F","G","H","I","V","Y","Z"]‘。- ‘inputs["chairman_year1"]‘是一个字符串，是第一年的
主席名字，必须是第一年的委员。- ‘inputs["committee_year2"]‘ 是一个包含4 个元素的set，包含第二年的委员会成
员的名字。取值范围是‘["F","G","H","I","V","Y","Z"]‘。- ‘inputs["chairman_year2"]‘是一个字符串，第二年的主席名
字必须是第二年的委员，并且是第一年的委员。下面提供一个输入样例（注意这只是一个合法输入的例子，不一定
是正确方案）：{’committee_year1’: {’Z’, ’V’, ’F’, ’G’}, ’chairman_year1’: ’G’, ’committee_year2’: {’Y’, ’V’, ’F’, ’H’},
’chairman_year2’: ’F’}

PROMPT (ENGLISH): A committee works for two years, and each year it consists of 4 members, including 2 judges from the
following: F, G, H, and I, and 2 scientists from the following: V, Y, and Z. Each year, the committee has one member serve as
chairman. Please generate an arrangement that satisfies the following constraints: 1. The member who serves as chairman in
the first year must leave the committee in the second year. The member who serves as chairman in the second year must be a
member of the committee in the first year. 2. G and V cannot be members of the committee in the same year. 3. H and Y cannot
be members of the committee in the same year. 4. Each year, either I or V, but not both, must be a member of the committee.
Please think step by step, and your arrangement must follow the input format requirements below: The input is a dictionary
containing four keys: "committee_year1", "chairman_year1", "committee_year2", and "chairman_year2". - At the end of your
answer, you need to provide an input representing your final arrangement, where inputs["committee_year1"] is a set containing 4
elements, representing the members of the committee in the first year. The range of values is ["F","G","H","I","V","Y","Z"]. -
inputs["chairman_year1"] is a string representing the chairman of the first year, and this person must be a committee member in
the first year. - inputs["committee_year2"] is a set containing 4 elements, representing the members of the committee in the
second year. The range of values is ["F","G","H","I","V","Y","Z"]. - inputs["chairman_year2"] is a string representing the
chairman of the second year, and this person must be a committee member in both the current and previous year. Below is an
example input (note that this is just an example of valid input and may not be the correct arrangement): {’committee_year1’:
{’Z’, ’V’, ’F’, ’G’}, ’chairman_year1’: ’G’, ’committee_year2’: {’Y’, ’V’, ’F’, ’H’}, ’chairman_year2’: ’F’}

MODEL RESPONSE (CHINESE): 好的,我会一步步思考来制定一个满足所有约束条件的安排方案。第一步：考虑第
一年的委员会成员 -需要2名法官和2名科学家 - G和V不能同时在委员会中 - H和Y不能同时在委员会中 - I和V中
必须有且只有一位考虑到这些约束，我们可以选择： - F, I (法官) - V, Z (科学家)第二步：选择第一年的主席从F, I, V,
Z中选择一位作为主席。我们选择F作为第一年的主席。第三步：考虑第二年的委员会成员 -第一年的主席F必须退
出 -需要包含第二年主席的人选 -仍然需要遵守其他约束条件考虑到这些,我们可以选择： - G, H (法官) - Y, Z (科学
家)第四步：选择第二年的主席从G, H, Y, Z中选择一位作为主席，且这个人必须是第一年的委员。唯一符合条件的
是Z。最终的安排方案如下：

```python
committee_year1 = {"F", "I", "V", "Z"}
chairman_year1 = "F"
committee_year2 = {"G", "H", "Y", "Z"}
chairman_year2 = "Z"
```

(不符合格式要求)

MODEL RESPONSE (ENGLISH): Let’s think step by step to create an arrangement that satisfies all the constraints.
Step 1: Consider the members of the committee for the first year - We need 2 judges and 2 scientists - G and V cannot both be in
the committee - H and Y cannot both be in the committee - One of I or V must be in the committee, but not both Considering
these constraints, we can select: - Judges: F, I - Scientists: V, Z
Step 2: Select the chairman for the first year From F, I, V, Z, select one as chairman. We select F as the chairman for the first year.
Step 3: Consider the members of the committee for the second year - The first year’s chairman F must leave the committee - The
second year’s chairman must be included - Still need to adhere to the other constraints Considering these, we can select: - Judges:
G, H - Scientists: Y, Z
Step 4: Select the chairman for the second year From G, H, Y, Z, select one as chairman, and this person must have been a
member in the first year. The only eligible person is Z. The final arrangement is as follows:

```python
committee_year1 = {"F", "I", "V", "Z"}
chairman_year1 = "F"
committee_year2 = {"G", "H", "Y", "Z"}
chairman_year2 = "Z"
```

(Does not meet the format requirements)

Error Type: Inconsistent Format

The answer uses Python assignment syntax, but a dictionary definition is required.

Table 8: Error Case: Inconsistent Format

16

INSTRUCTION(ENGLISH): Provide a description of a problem, which contains some background and definition of the problem
(usually the first one or two sentences), as well as some logical constraints. You need to divide these two parts, you can reorganize
the language, but do not change the original meaning of the problem.

INPUT: "A supermarket is neatly arranged with 7 rows of shelves from front to back, displaying 7 categories of goods: stationery,
snacks, condiments, daily necessities, alcohol, grains and oils, and beverages, each occupying one row. It is known that: \nThe
alcohol is placed before the condiments; \nThere are 3 rows between the stationery and the condiments; \nThe grains and oils are
after the snacks, with 2 rows in between; \nThe daily necessities are either in the row before or after the stationery; \nThe snacks
are in the first row."
OUTPUT:
```json
{

"background": "A supermarket is neatly arranged with 7 rows of shelves from front to back, displaying 7
categories of goods: stationery, snacks, condiments, daily necessities, alcohol, grains and oils,
and beverages, each occupying one row.",
"logic_constraints": "The alcohol is placed before the condiments; There are 3 rows between the
stationery and the condiments; The grains and oils are after the snacks, with 2 rows in between; The
daily necessities are either in the row before or after the stationery; The snacks are in the first row."

}
```

INPUT: [[[question]]]
OUTPUT:

INSTRUCTION(CHINESE): 提供一个问题的描述，这个描述中有一些是问题的背景以及定义(一般就是开头一两句)，
也有一些是逻辑的限制条件，你需要把这两部分划分出来，可以自己重新组织语言，但不要改变原题意。

INPUT: "某超市从前到后整齐排列着7排货架，放置着文具、零食、调料、日用品、酒、粮油和饮料7类商品，每类
商品\n占据一排。已知：\n酒类排在调料类之前；\n文具类和调料类中间隔着3排；\n粮油类在零食类之后，中间隔
着2排；\n日用品类紧挨在文具类前一排或者后一排。\n零食类排在第1排"
OUTPUT:
```json
{

"background":"某超市从前到后整齐排列着7排货架，放置着文具、零食、调料、日用品、酒、粮油和饮料7类商
品，每类商品占据一排。",

"logic_constraints": "酒类排在调料类之前；文具类和调料类中间隔着3排；粮油类在零食类之后，中间隔着2排；
日用品类紧挨在文具类前一排或者后一排；零食类排在第1排。"

}
```

INPUT: [[[question]]]
OUTPUT:

Table 9: Instructions for Puzzle Formulation

Model AutoLogi AR-LSAT LogiQA MUSR LiveBench
EN CN

Baseline Qwen2.5-7b-instruct 43.64±1.25 42.08±1.50 22.70±0.84 34.42±1.38 47.14±0.73 30.67†

+Self-Alignment DPO 48.80±0.91 45.39±0.41 26.09±2.37 38.05±4.00 47.57±0.30 35.73±2.94
+Strong-to-Weak RFT 48.33±0.63 47.54±0.71 27.30±0.97 35.93±2.59 49.15±0.55 30.07±2.00

Baseline Qwen2.5-72b-instruct 68.18±0.77 63.92±0.56 31.65±1.89 47.92±1.37 54.21±0.41 46.00†

+Self-Alignment DPO 74.79±0.41 69.54±0.87 38.70±1.98 48.14±3.98 56.48±0.47 52.13±1.48

Table 10: Results on various benchmarks. Numbers in parentheses indicate standard deviation over 5 trials. †Results
reported from LiveBench leaderboard(2024-08-31).

17

def verify_function(inputs, inputs_check, constraint_list):
 # First check if the inputs are valid
 if not inputs_check(inputs): # If the input format is not satisfied
 return False

 # Traverse the constraint_list and check each constraint function
 for constraint in constraint_list:
 if not constraint(inputs): # If the constraint is not satisfied
 return False

 # All constraints have been checked and satisfied
 return True

1
2
3
4
5
6
7
8
9
10
11
12

Figure 8: Stage 2 prompt for English Data(1/3). This prompt is designed to simultaneously generate both puzzle
requirements (Arrangement Format + Arrangement Example) and program-based verifiers for answer validation,
using a one-shot demonstration approach.

18

{"female": {"Emily", "Sophia"},"male": {"James", "Michael", "William"}}1

def inputs_check(inputs):
 # Check if inputs is a dictionary
 if not isinstance(inputs, dict):
 return False
 # Check if inputs contains "female" and "male" two keys
 if "female" not in inputs or "male" not in inputs:
 return False
 # Check if the values corresponding to "female" and "male" are sets
 if not isinstance(inputs["female"], set) or not
isinstance(inputs["male"], set):
 return False
 # Check if the sets corresponding to "female" and "male" contain the
correct number of elements

1
2
3
4
5
6
7
8
9

10
11

Figure 9: Stage 2 prompt for English Data(2/3). This prompt is designed to simultaneously generate both puzzle
requirements (Arrangement Format + Arrangement Example) and program-based verifiers for answer validation,
using a one-shot demonstration approach.

19

 if len(inputs["female"]) != 2 or len(inputs["male"]) != 3:
 return False
 # Check if the elements of the sets corresponding to "female" and "male"
are correct
 if not inputs["female"].issubset({"Emily", "Sophia", "Olivia"}) or not
inputs["male"].issubset({"James", "Michael", "William", "David", "Robert"}):
 return False
 return True

12
13
14

15

16
17

def constraint_1(inputs):
 if "Sophia" in inputs["female"] and "Robert" in inputs["male"]:
 return False
 return True

def constraint_2(inputs):
 if "James" in inputs["male"] and "David" in inputs["male"]:
 return False
 return True

def constraint_3(inputs):
 if "Michael" in inputs["male"] and "Robert" in inputs["male"]:
 return False
 return True

constraint_list = [constraint_1, constraint_2, constraint_3]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 10: Stage 2 prompt for English Data(3/3). This prompt is designed to simultaneously generate both puzzle
requirements (Arrangement Format + Arrangement Example) and program-based verifiers for answer validation,
using a one-shot demonstration approach.

20

def verify_function(inputs, inputs_check, constraint_list):
inputs
 if not inputs_check(inputs): #
 return False
constraint_list
 for constraint in constraint_list:
 if not constraint(inputs): #
 return False

 return True

1
2
3
4
5
6
7
8
9
10

Figure 11: Stage 2 prompt for Chinese Data(1/3). This prompt is designed to simultaneously generate both puzzle
requirements (Arrangement Format + Arrangement Example) and program-based verifiers for answer validation,
using a one-shot demonstration approach.

21

{ "female": {" ", " "},
 "male": {" ", " ", " "}}

1
2

def inputs_check(inputs):
inputs
 if not isinstance(inputs, dict):
 return False
inputs "female" "male"
 if "female" not in inputs or "male" not in inputs:
 return False
"female" "male" set
 if not isinstance(inputs["female"], set) or not isinstance(inputs["male"],
set):
 return False
"female" "male" set
 if len(inputs["female"]) != 2 or len(inputs["male"]) != 3:
 return False
"female" "male" set
 if not inputs["female"].issubset({" ", " ", " "}) or not
inputs["male"].issubset({" ", " ", " ", " ", " "}):
 return False
 return True

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17

Figure 12: Stage 2 prompt for Chinese Data(2/3). This prompt is designed to simultaneously generate both puzzle
requirements (Arrangement Format + Arrangement Example) and program-based verifiers for answer validation,
using a one-shot demonstration approach.

22

def constraint_1(inputs):
 if " " in inputs["female"] and " " in inputs["male"]:
 return False
 return True
def constraint_2(inputs):
 if " " in inputs["male"] and " " in inputs["male"]:
 return False
 return True
def constraint_3(inputs):
 if " " in inputs["male"] and " " in inputs["male"]:
 return False
 return True
constraint_list = [constraint_1, constraint_2, constraint_3]

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 13: Stage 2 prompt for Chinese Data(3/3).This prompt is designed to simultaneously generate both puzzle
requirements (Arrangement Format + Arrangement Example) and program-based verifiers for answer validation,
using a one-shot demonstration approach.

23

{
 "background&definition": "Background and definition: A supermarket has 7
neatly arranged shelves, displaying 7 categories of goods: stationery,
snacks, condiments, daily necessities, wine, grain and oil, and beverages,
each category occupying one shelf.",
 "inputs_format": 'inputs is a list containing 7 elements, each element is
a string, representing the category of goods on a shelf. The range of values
is ["stationery","snacks","condiments","daily necessities","wine","grain and
oil","beverages"].',
 "inputs_example": ["stationery", "daily necessities", "snacks",
"condiments", "wine", "grain and oil", "beverages"],
}

1
2

3

4

5

from itertools import permutations1

Figure 14: Traversal Function prompt for English Data(1/3). This prompt is designed to generate traversal functions
that enumerate all possible solutions, using a two-shots demonstration approach.

24

def count_valid_arrangements():
 goods = ["stationery","snacks","condiments","daily
necessities","wine","grain and oil","beverages"]
 all_arrangements = list(permutations(goods, 7))
 valid_count = 0
 total_count = 0
 for arrangement in all_arrangements:
 if not inputs_check(list(arrangement)):
 continue
 if verify_function(list(arrangement), inputs_check, constraint_list):
 valid_count += 1
 total_count += 1
 return valid_count, total_count

2
3
4

5
6
7
8
9
10
11
12
13
14

{
 "background&definition": "There are 7 heart disease patients E, F, G, H,
I, J, K who need to be assigned to 4 doctors: Dr. Zhang, Dr. Li, Dr. Wang,
and Dr. Liu for treatment. Each patient can only be treated by one doctor,
and each doctor can treat up to two patients. Among them, J and K are
children, and the remaining 5 are adults; E, F, and J are males, and the
remaining 4 are females.",
 "input_format": 'inputs is a dictionary containing four keys: "Dr_Zhang",
"Dr_Li", "Dr_Wang", and "Dr_Liu". inputs["Dr_Zhang"] is a set containing 0-
2 elements, including the names of the patients (strings) that Dr. Zhang is
responsible for. The range of values is ["E","F","G","H","I","J","K"].
inputs["Dr_Li"] is a set containing 0-2 elements, including the names of the
patients (strings) that Dr. Li is responsible for. The range of values is
["E","F","G","H","I","J","K"]. inputs["Dr_Wang"] is a set containing 0-2
elements, including the names of the patients (strings) that Dr. Wang is
responsible for. The range of values is ["E","F","G","H","I","J","K"].
inputs["Dr_Liu"] is a set containing 0-2 elements, including the names of the
patients (strings) that Dr. Liu is responsible for. The range of values is
["E","F","G","H","I","J","K"].',
 "example_input": {
 "Dr_Zhang": {"E", "F"}, "Dr_Li": {"G"},
 "Dr_Wang": {"H", "J"}, "Dr_Liu": {"I", "K"}
 },
}

1
2

3

4
5
6
7
8

Figure 15: Traversal Function prompt for English Data(2/3). This prompt is designed to generate traversal functions
that enumerate all possible solutions, using a two-shots demonstration approach.

25

from itertools import combinations, permutations
def count_valid_arrangements():
 patients = ["E","F","G","H","I","J","K"]
 doctors = ["Dr_Zhang", "Dr_Li", "Dr_Wang", "Dr_Liu"]
 all_arrangements = []
 for i in range(8):
 for comb in combinations(patients, i):
 remaining = [p for p in patients if p not in comb]
 for j in range(len(remaining) + 1):
 for comb2 in combinations(remaining, j):
 remaining2 = [p for p in remaining if p not in comb2]
 for k in range(len(remaining2) + 1):
 for comb3 in combinations(remaining2, k):
 remaining3 = [p for p in remaining2 if p not in
comb3]
 for perm in permutations([comb, comb2, comb3,
remaining3]):
 all_arrangements.append({
 doctors[0]: set(perm[0]),
 doctors[1]: set(perm[1]),
 doctors[2]: set(perm[2]),
 doctors[3]: set(perm[3]),
 })
 valid_count = 0
 total_count = 0
 for arrangement in all_arrangements:
 if not inputs_check(arrangement):
 continue
 if verify_function(arrangement, inputs_check, constraint_list):
 valid_count += 1
 total_count += 1
 return valid_count, total_count

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

{
 "background&definition": [[[background]]],
 "inputs_format": [[[inputs_format]]],
 "inputs_example": [[[inputs_example]]],
}

1
2
3
4
5

Figure 16: Traversal Function prompt for English Data(3/3). This prompt is designed to generate traversal functions
that enumerate all possible solutions, using a two-shots demonstration approach.

26

{
"background&definition": " 7

7 ",
"inputs_format": inputs 7 list

[" "," "," "," "," "," "," "] ,
"inputs_example": [" ", " ", " ", " ", " ", " ", " "],
}

1
2

3

4
5

from itertools import permutations
def count_valid_arrangements():
 goods = [" "," "," "," "," "," "," "]
 all_arrangements = list(permutations(goods, 7))
 valid_count = 0
 total_count = 0
 for arrangement in all_arrangements:
 if not inputs_check(list(arrangement)):
 continue
 if verify_function(list(arrangement), inputs_check, constraint_list):
 valid_count += 1

1
2
3
4
5
6
7
8
9
10
11

Figure 17: Traversal Function prompt for Chinese Data(1/3). This prompt is designed to generate traversal functions
that enumerate all possible solutions, using a two-shots demonstration approach.

27

 total_count += 1
 return valid_count, total_count

12
13

{
"background&definition": " 7 E F G H I J K 4

1
J K 5 E F J 4 ",

"input_format": inputs "Dr_Zhang", "Dr_Li",
"Dr_Wang" "Dr_Liu"
inputs["Dr_Zhang"] 0-2 set

["E","F","G","H","I","J","K"] inputs["Dr_Li"] 0-2 set
["E","F","G","H","I","J","K"]

inputs["Dr_Wang"] 0-2 set
["E","F","G","H","I","J","K"] inputs["Dr_Liu"] 0-2 set

["E","F","G","H","I","J","K"] ,
"example_input": {
 "Dr_Zhang": {"E", "F"}, "Dr_Li": {"G"},
 "Dr_Wang": {"H", "J"}, "Dr_Liu": {"I", "K"}
},
}

1
2

3

4

5
6
7
8
9

from itertools import combinations, permutations
def count_valid_arrangements():
 patients = ["E","F","G","H","I","J","K"]
 doctors = ["Dr_Zhang", "Dr_Li", "Dr_Wang", "Dr_Liu"]
 all_arrangements = []
 for i in range(8):
 for comb in combinations(patients, i):
 remaining = [p for p in patients if p not in comb]
 for j in range(len(remaining) + 1):
 for comb2 in combinations(remaining, j):
 remaining2 = [p for p in remaining if p not in comb2]
 for k in range(len(remaining2) + 1):
 for comb3 in combinations(remaining2, k):
 remaining3 = [p for p in remaining2 if p not in
comb3]
 for perm in permutations([comb, comb2, comb3,
remaining3]):
 all_arrangements.append({

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15

16

Figure 18: Traversal Function prompt for Chinese Data(2/3). This prompt is designed to generate traversal functions
that enumerate all possible solutions, using a two-shots demonstration approach.

28

 doctors[0]: set(perm[0]),
 doctors[1]: set(perm[1]),
 doctors[2]: set(perm[2]),
 doctors[3]: set(perm[3]),
 })
 valid_count = 0
 total_count = 0
 for arrangement in all_arrangements:
 if not inputs_check(arrangement):
 continue
 if verify_function(arrangement, inputs_check, constraint_list):
 valid_count += 1
 total_count += 1
 return valid_count, total_count

17
18
19
20
21
22
23
24
25
26
27
28
29
30

{
"background&definition": "[[[background]]]",
"inputs_format": "[[[inputs_format]]]",
"inputs_example": [[[inputs_example]]],
}

1
2
3
4
5

Figure 19: Traversal Function prompt for Chinese Data(3/3). This prompt is designed to generate traversal functions
that enumerate all possible solutions, using a two-shots demonstration approach.

29

{
"background": "A supermarket is neatly arranged with 7 rows of shelves from
front to back, placing 7 types of goods: stationery, snacks, condiments,
daily necessities, wine, grain and oil, and beverages, each type of goods
occupies one row.",
"logic_constraints": "The wine is in front of the condiments; there are 3
rows between the stationery and the condiments; the grain and oil is after
the snacks, with 2 rows in between; the daily necessities are either in front
of or behind the stationery.",
"solution_space": [
 "['Stationery', 'Daily necessities', 'Snacks', 'Wine', 'Condiments',
'Grain and oil', 'Beverages']",
 "['Stationery', 'Daily necessities', 'Wine', 'Snacks', 'Condiments',
'Beverages', 'Grain and oil']",
 "['Snacks', 'Stationery', 'Daily necessities', 'Grain and oil', 'Wine',
'Condiments', 'Beverages']",
 "['Snacks', 'Daily necessities', 'Stationery', 'Grain and oil', 'Wine',
'Beverages', 'Condiments']",
 "['Snacks', 'Daily necessities', 'Stationery', 'Grain and oil',
'Beverages', 'Wine', 'Condiments']",
 "['Snacks', 'Wine', 'Condiments', 'Grain and oil', 'Beverages', 'Daily
necessities', 'Stationery']",
 "['Daily necessities', 'Stationery', 'Wine', 'Snacks', 'Beverages',
'Condiments', 'Grain and oil']",
 "['Daily necessities', 'Stationery', 'Beverages', 'Snacks', 'Wine',
'Condiments', 'Grain and oil']",

1
2

3

4
5

6

7

8

9

10

11

12

Figure 20: Stage 3 prompt for English Data(1/3). This prompt is designed to augment logical constraints by
generating both textual descriptions and corresponding program-based verifiers, using a one-shot demonstration
approach.

30

 "['Wine', 'Stationery', 'Daily necessities', 'Snacks', 'Beverages',
'Condiments', 'Grain and oil']",
 "['Wine', 'Snacks', 'Stationery', 'Daily necessities', 'Grain and oil',
'Beverages', 'Condiments']",
 "['Wine', 'Snacks', 'Condiments', 'Beverages', 'Grain and oil', 'Daily
necessities', 'Stationery']",
 "['Wine', 'Condiments', 'Beverages', 'Snacks', 'Daily necessities',
'Stationery', 'Grain and oil']",
 "['Beverages', 'Stationery', 'Daily necessities', 'Snacks', 'Wine',
'Condiments', 'Grain and oil']",
 "['Beverages', 'Snacks', 'Stationery', 'Daily necessities', 'Grain and
oil', 'Wine', 'Condiments']"
],
"Constraint_List_code": "def constraint_1(inputs):\n if
inputs.index(\"Wine\") >= inputs.index(\"Condiments\"):\n return
False\n return True\n\ndef constraint_2(inputs):\n if
abs(inputs.index(\"Stationery\") - inputs.index(\"Condiments\")) != 4:\n
 return False\n return True\n\ndef constraint_3(inputs):\n if
inputs.index(\"Grain and oil\") <= inputs.index(\"Snacks\") or
inputs.index(\"Grain and oil\") - inputs.index(\"Snacks\") != 3:\n
return False\n return True\n\ndef constraint_4(inputs):\n if
abs(inputs.index(\"Daily necessities\") - inputs.index(\"Stationery\")) !=
1:\n return False\n return True\n\nconstraint_list = [constraint_1,
constraint_2, constraint_3, constraint_4]",
}

13

14

15

16

17

18

19
20

21

{"new_constraints": "Beverages cannot be placed in the first and last rows"}1

def constraint_1(inputs):
 if inputs.index("Wine") >= inputs.index("Condiments"):

1
2

Figure 21: Stage 3 prompt for English Data(2/3). This prompt is designed to augment logical constraints by
generating both textual descriptions and corresponding program-based verifiers, using a one-shot demonstration
approach.

31

 return False
 return True

def constraint_2(inputs):
 if abs(inputs.index("Stationery") - inputs.index("Condiments")) != 4:
 return False
 return True

def constraint_3(inputs):
 if inputs.index("Grain and oil") <= inputs.index("Snacks") or
inputs.index("Grain and oil") - inputs.index("Snacks") != 3:
 return False
 return True

def constraint_4(inputs):
 if abs(inputs.index("Daily necessities") - inputs.index("Stationery")) !=
1:
 return False
 return True

def constraint_5(inputs):
 # Beverages cannot be placed in the first and last rows
 if inputs.index("Beverages") == 0 or inputs.index("Beverages") ==
len(inputs) - 1:
 return False
 return True

constraint_list = [constraint_1, constraint_2, constraint_3, constraint_4,
constraint_5]

3
4
5
6
7
8
9
10
11
12

13
14
15
16
17

18
19
20
21
22
23

24
25
26
27

{
"background": "[[[background]]]",
"logic_constraints": "[[[logic_constraints]]]",
"solution_space": [[[solution_space]]],
"Constraint_List_code": "[[[Constraint_List_code]]]",
}

1
2
3
4
5
6

Figure 22: Stage 3 prompt for English Data(3/3). This prompt is designed to augment logical constraints by
generating both textual descriptions and corresponding program-based verifiers, using a one-shot demonstration
approach.

32

{
"background": " 7

7 ",
"logic_constraints": " 3

2 ",
"solution_space": [
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']",
 "[' ', ' ', ' ', ' ', ' ', ' ', ' ']"
],
"Constraint_List_code": "def constraint_1(inputs):\n if inputs.index(\"
\") >= inputs.index(\" \"):\n return False\n return True\n\ndef
constraint_2(inputs):\n if abs(inputs.index(\" \") - inputs.index(\"
\")) != 4:\n return False\n return True\n\ndef
constraint_3(inputs):\n if inputs.index(\" \") <= inputs.index(\" \")
or inputs.index(\" \") - inputs.index(\" \") != 3:\n return
False\n return True\n\ndef constraint_4(inputs):\n if
abs(inputs.index(\" \") - inputs.index(\" \")) != 1:\n return

1
2

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 23: Stage 3 prompt for Chinese Data(1/3). This prompt is designed to augment logical constraints by
generating both textual descriptions and corresponding program-based verifiers, using a one-shot demonstration
approach.

33

False\n return True\n\nconstraint_list = [constraint_1, constraint_2,
constraint_3, constraint_4]",
}21

{"new_constraints": " ",}1

def constraint_1(inputs):
 if inputs.index(" ") >= inputs.index(" "):
 return False
 return True

def constraint_2(inputs):
 if abs(inputs.index(" ") - inputs.index(" ")) != 4:
 return False
 return True

def constraint_3(inputs):
 if inputs.index(" ") <= inputs.index(" ") or inputs.index(" ") -
inputs.index(" ") != 3:
 return False
 return True

def constraint_4(inputs):
 if abs(inputs.index(" ") - inputs.index(" ")) != 1:
 return False
 return True

def constraint_5(inputs):
 #
 if inputs.index(" ") == 0 or inputs.index(" ") == len(inputs) - 1:
 return False

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

Figure 24: Stage 3 prompt for Chinese Data(2/3). This prompt is designed to augment logical constraints by
generating both textual descriptions and corresponding program-based verifiers, using a one-shot demonstration
approach.

34

 return True

constraint_list = [constraint_1, constraint_2, constraint_3, constraint_4,
constraint_5]

25
26
27

{
"background": "[[[background]]]",
"logic_constraints": "[[[logic_constraints]]]",
"solution_space": [[[solution_space]]],
"Constraint_List_code": "[[[Constraint_List_code]]]",
}

1
2
3
4
5
6

Figure 25: Stage 3 prompt for Chinese Data(3/3). This prompt is designed to augment logical constraints by
generating both textual descriptions and corresponding program-based verifiers, using a one-shot demonstration
approach.

35

	Introduction
	Related Work
	Logical Reasoning Benchmarks
	Program-aided Methods

	Method
	Puzzle Formulation
	Format & Verifiers Generation
	Data Augmentation
	Synthesizing Training Data

	Dataset Construction
	Experiment
	Experimental Setup
	Benchmark Results
	Training Results
	Analysis

	Conclusion
	Appendix A
	Difficulty Control through Data Augmentation
	Error Analysis
	Error Cases
	Prompt Design
	Stage 1: Puzzle Formulation

	Stage 2: Generation of Format and Verifiers
	Stage 2: Validation and Regeneration
	Stage 3: Data Augmentation
	Detailed Training Results

