
Streamlining the Collaborative Chain of Models
into A Single Forward Pass in Generation-Based Tasks

Anonymous ACL submission

Abstract

In Retrieval-Augmented Generation (RAG) and001
agent-based frameworks, the "Chain of Mod-002
els" approach is widely used, where multi-003
ple specialized models work sequentially on004
distinct sub-tasks. This approach is effec-005
tive but increases resource demands as each006
model must be deployed separately. Recent007
advancements attempt to address this by apply-008
ing prompt tuning, which allows a shared base009
model to adapt to multiple tasks with minimal010
parameter changes. However, a key challenge011
remains: intermediate outputs, passed between012
models as plain text, require recomputation of013
hidden states (i.e., Key and Value (KV) states in014
Transformers) during inference. In this paper,015
we introduce FTHSS, a novel prompt-tuning016
method that enables models to share KV hidden017
states, eliminating redundant forward passes018
and reducing KV cache storage. By modify-019
ing input and attention masks during training,020
FTHSS allows models to effectively utilize KV021
hidden states from prior models in both single-022
and multi-round scenarios. Empirical results023
on four tasks show that FTHSS matches the024
performance of traditional model chains while025
improving inference efficiency. 1026

1 Introduction027

In many Retrieval-Augmented Generation (RAG)028

and agent-based frameworks (Lewis et al., 2020),029

multiple Large Language Models (LLMs) often col-030

laborate sequentially. Each model focuses on a spe-031

cific sub-task and passes its output as input to the032

next model until the task is completed(Zhang et al.,033

2024b). For instance, some RAG post-retrieval034

optimization methods (Xu et al., 2023; Kim et al.,035

2024) involve summarizing retrieved documents036

with a summarization model, and then generating037

answers with a question-answering model. These038

stepwise approaches leverage the strengths of indi-039

vidual models and have proven effective in many040

1Code: https://anonymous.4open.science/r/FTHSS-8367/.

LLM C

LLM B

LLM A

(a) Chain of Models

Input

Output A

Output B

Final Answer

(b) FTHSS

Step 1

Output A

Output A
KV Hidden States

Step 2

Output B

Params ALLM

Params B

Params C

LLM

LLM

Switch

Input

Output A KV Hidden States

Final Answer

Output B KV Hidden States Switch

Figure 1: Comparison of "Chain of Models" (a) and
FTHSS (b): In (a), models sequentially pass outputs as
plain text, requiring KV recomputation. In (b), FTHSS
shares KV hidden states, reducing redundant forward
passes. PEFT methods allow the deployment of multiple
models on a single device, with parameters changing, so
there is no communication overhead for hidden states.

scenarios. As a result, the "Chain of Models" ap- 041

proach has gained popularity (Zhang et al., 2024b). 042

Deploying every specialized LLM in such chains 043

significantly increases the resources needed. To ad- 044

dress this, researchers have explored parameter- 045

efficient fine-tuning (PEFT) methods, such as 046

prompt tuning (Liu et al., 2021) and LoRA (Hu 047

et al., 2021). These techniques allow fine-tuning 048

with a fraction of the parameters when training. 049

During inference, a shared base model is deployed 050

on a single device and handles multiple tasks with 051

distinct parameter configurations. This approach 052

merges "Chain of Models" workflows into a single 053

architecture, adapting to various sub-tasks through 054

selective parameter usage. However, a critical bot- 055

tleneck remains: in the chain, the intermediate key- 056

value(KV) hidden states from one model cannot 057

be directly reused by the next model due to pa- 058

rameter differences. As a result, communication 059

between models in the chain relies on passing plain 060

text, forcing the downstream model to recompute 061

hidden states. This practice not only adds computa- 062

tional overhead, but also raises KV cache storage 063

1

https://anonymous.4open.science/r/FTHSS-8367/

requirements for each model in the chain, further064

hampering efficiency.065

In this paper, we argue that such recomputa-066

tion is unnecessary. Even with parameter differ-067

ences, the KV hidden states produced by one model068

should only differ marginally from those recalcu-069

lated by the next. Particularly in prompt-tuning070

methods, the KV hidden states produced by the071

previous model are essentially conditioned on a072

few noisy tokens. With appropriate fine-tuning, the073

subsequent model can effectively interpret and uti-074

lize the KV hidden states of the previous model075

despite these noises, as Figure 1 shows.076

To realize this vision, we propose FTHSS(Fine-077

Tuning for Hidden State Sharing), a prompt-tuning-078

based method that enables models in a chain to079

share KV hidden states. Specifically, when fine-080

tuning the model in single-round scenarios, where081

each model is invoked only once, we use KV hid-082

den states from the prior models as input rather than083

plain text. This training approach requires exten-084

sive storage and access to KV hidden states, which085

may potentially increase training time and storage086

demands. To mitigate this, we introduce an online087

optimization strategy. By modifying the input and088

attention mask for each layer, we recompute the089

prior model’s KV hidden states in memory during090

training, thus avoiding the overhead of storage and091

access. In multi-round scenarios, where models in092

the chain are invoked repeatedly, each model must093

adapt to the KV hidden states of others, so all mod-094

els in the chain are trained synchronously to ensure095

mutual adaptation. After fine-tuning, models can096

dynamically switch learnable prompt tokens dur-097

ing inference, adapting based on task requirements,098

while leveraging precomputed KV cache for direct099

generation. And since prompt-tuning-based meth-100

ods enable the deployment of multiple models on a101

single device, communication overhead for hidden102

states is effectively eliminated.103

Empirical results on four tasks, including single-104

round and multi-round, demonstrate that FTHSS105

leads to a comparable performance to the chain106

of models, while enhancing inference efficiency.107

Technical contributions of this paper can be sum-108

marized as follows:109

• To the best of our knowledge, we are the first110

to streamline the chain of models by sharing111

KV hidden states, thereby reducing the need112

for recomputing intermediate results.113

• We introduce a prompt-tuning-based training114

strategy, FTHSS, that supports KV hidden 115

state sharing across models in both single- 116

round and multi-round scenarios. 117

• Experimental results show that FTHSS main- 118

tains comparable performance while signifi- 119

cantly reducing inference latency and elimi- 120

nating redundant KV cache storage. 121

2 Related Work 122

2.1 Chain of Models 123

The Chain of Models approach sequentially links 124

specialized models, using the output of one as 125

the input for the next (Zhang et al., 2024b). This 126

method allows for incremental processing of sub- 127

tasks, and has been widely adopted across various 128

domains. For example, Retrieval-Augmented Gen- 129

eration (RAG) (Lewis et al., 2020) improves the 130

performance of question-answering (QA) tasks by 131

combining retrieval and generation models. Ad- 132

ditionally, the Chain of Models framework has 133

proven highly effective for mathematical reason- 134

ing(Sun et al., 2023; Dong et al., 2024; Lei et al., 135

2024) and long-text generation (Xi et al., 2025; 136

Wang et al., 2024). 137

While leveraging specialized models improves 138

performance, it also increases deployment costs. 139

One optimization strategy is to consolidate mul- 140

tiple models into a single, unified model through 141

distillation. For instance, GritLM (Muennighoff 142

et al., 2024) enables task-switching through in- 143

struction modifications, combining retrieval and 144

generation. OneGen (Zhang et al., 2024a) intro- 145

duces retrieval tokens, allowing LLMs to handle 146

both tasks in a single forward pass. RankRAG (Yu 147

et al., 2024) integrates ranking and generation into 148

a single retrained model. However, these methods 149

require the distilled model to perform well in mul- 150

tiple tasks, which remains a significant challenge. 151

The FTHSS method proposed in this paper diverges 152

from the distillation paradigm, and it still leverages 153

the strengths of multiple models while reducing the 154

demand for computing resources. 155

2.2 KV Cache Compression and Sharing 156

Large Language Models (LLMs) face significant 157

bottlenecks due to high memory and computational 158

demands, with the key-value (KV) cache being a 159

major contributor. The KV cache stores the keys 160

and values for each Transformer layer during gen- 161

eration to avoid redundant computations. During 162

2

deployment, the KV cache can occupy over 30%163

of GPU memory (Kwon et al., 2023).164

Some straightforward approaches address this165

issue by compressing context length (Ge et al.,166

2023; Jiang et al., 2023a; Li et al., 2023) or em-167

ploying sparse attention matrices (Xiao et al.,168

2023; Han et al., 2023). More recently, meth-169

ods focusing on KV cache reuse have been pro-170

posed. YOCO (Sun et al., 2024) utilizes a cross-171

decoder mechanism with cross-attention to reuse172

cached values, allowing the model to store KV173

pairs only once while maintaining global atten-174

tion capabilities. LCKV (Wu and Tu, 2024) and175

KVSharer (Yang et al., 2024) enable KV cache176

sharing across layers within the same model. While177

these methods effectively enhance model efficiency178

by reusing and sharing KV caches at different lay-179

ers of a single model, FTHSS extends this concept180

to multiple models.181

3 Methodology182

In this section, we begin by highlighting a key183

challenge: model chains rely on text-based commu-184

nication, which prevents the direct transfer of KV185

hidden states between models. We then explore the186

feasibility of fine-tuning the downstream model to187

process KV hidden states from the upstream model,188

although these hidden states often include noise189

tokens irrelevant to the downstream task. Lastly,190

we propose training strategies, FTHSS, to achieve191

KV hidden state sharing.192

3.1 Preliminary193

Multiple models M1,M2, . . . ,Mn often collabo-194

rate sequentially in RAG and agent-based tasks,195

with each model Mi handling a specific task com-196

ponent. Specifically, model Mi processes the out-197

put Ti−1 from the previous model, along with198

its unique input xi, to produce output Ti for the199

next model. This process is expressed as: Ti =200

Mi(Ti−1, xi), forming a chain of models.201

Given the high cost of deploying all models in202

such a chain, we can adopt a prompt-tuning ap-203

proach. A shared base model Mθ is fine-tuned to204

perform different tasks, with each model Mi dis-205

tinguished solely by its fine-tuned prompt tokens206

Pi. This approach allows us to deploy only Mθ,207

dynamically adjusting prompt tokens to replicate208

the behavior of multiple models:209

Ti = Mθ(Ti−1, xi, Pi). (1)210

While this approach simplifies the model chain, 211

communication between models still occurs via 212

text. Upon receiving the output Ti−1 from the pre- 213

vious model, each model Mi recalculates the hid- 214

den state of Ti−1 based on its prefix Pi(a process 215

known as "prefilling"), and then generates the out- 216

put Ti and the corresponding hidden states OTi 217

autoregressively(a process known as "decoding"): 218

HTi−1 , Hxi , HPi = Prefilling(Ti−1, xi, Pi), (2) 219
220

Ti, OTi = Decoding(HTi−1 , Hxi , HPi), (3) 221

where Ti is the output text and OTi is the output 222

hidden states of Ti. 223

In this paper, we argue that recalculating the 224

KV hidden state HTi−1 is unnecessary. Instead, 225

model Mi can directly use KV hidden states OTi−1 226

output by the previous model Mi−1 as inputs. Be- 227

sides, since prompt tuning allows the deployment 228

of multiple models on a single device, there is no 229

communication overhead of hidden states. 230

3.2 Fine-Tuning for Hidden State Sharing 231

Based on the above analysis, we aim to ensure 232

that the KV hidden states computed by the previ- 233

ous model can be directly interpreted by the next. 234

This is feasible due to the minimal differences be- 235

tween HTi and OTi . Since models fine-tuned with 236

prompt tuning on the same base model share iden- 237

tical structures and parameters, they differ only in 238

the fine-tuned prompt tokens and input data. 239

Specifically, the output KV hidden state of Mi 240

during generation of the j + 1-th token: 241

_, OTi,j = Decoding(Ti,1:j , HTi−1 , HPi), (4) 242

where OTi,j is the hidden state of token Ti,j output 243

by Mi. We ignore the unique input for simplicity. 244

When Ti,j serves as the input of Mi+1 rather 245

than the output of Mi, the KV hidden state must be 246

recomputed: 247

HTi,j = Prefilling(Ti,1:j), (5) 248

where HTi,j is the KV hidden state of token Ti,j 249

calculated by Mi+1. We omit the prefix Pi+1 as it 250

can be appended after Ti,1:j−1. 251

Since the attention calculation method is the 252

same in both prefilling and decoding stages, the 253

difference between equations (4) and (5) is min- 254

imal, with only the prefixes and inputs differing. 255

This suggests that the output hidden state of Mi in- 256

troduces minimal noise for Mi+1, and fine-tuning 257

may be a practical solution. 258

3

Calculate Hidden
States in Memory

Layer 1

			…

Layer 2

Layer N

𝑜!! , 𝑜!" , 𝑜!# …𝑜!$

… … … …

Text Outputs of Model B

Causal

Full

Causal

Full

Masked

Causal

Masked Masked Masked Causal

Full FullFullMasked Causal

Calculate the Output
KV Hidden States of
Model A in Memory

Fine-tuning Model B to Leverage Output
KV Hidden States of Model A

Layer 1

Layer 2

Layer N

𝑜!! , 𝑜!" , 𝑜!# …𝑜!$

… … …

Text Outputs of Model B

(a) Offline Training Strategy (b) Online Recalculation Training Strategy (c) Cascade Attention Mask in Online Strategy

Shared Content: Already Trained Prompt Tokens(A): Prompt Tokens(B): Outputs of A, Also Inputs of B: Outputs of B:PT(A)Share O(A) O(B)PT(B)

Share

PT(A)

O(A)

PT(B)

O(B)

Share PT(A) O(A) PT(B) O(B)

Share PT(A) 			… O(A) PT(B)			… 			…

Share PT(A) O(A) PT(B)			… 			… 			… 			…

O(A) Share PT(B)			… 			… 			…

O(A) Share PT(B)			… 			… 			…KV Hidden
States

KV Hidden
States

KV Hidden
States

KV Hidden
States

Word
Emb.

…

Offline
Output KV

Hidden
States
of A

Word
Emb.

Figure 2: An example of fine-tuning model B in the model chain A → B. For simplicity, the unique inputs of model
A and model B are omitted. Left: Offline fine-tuning, where the output KV hidden states of fully trained model
A are stored and used as input for model B. Middle: Online, where the output KV hidden states of model A are
recalculated in memory. Right: We calculate the output KV hidden states of model A in memory and fine-tune
model B by adjusting the attention mask for each layer. We use the online training strategy in practical applications.

We propose FTHSS (Fine-Tuning for Hidden259

State Sharing), a fine-tuning method to minimize260

these differences. By fine-tuning model Mi with261

noisy KV hidden states from model Mi−1 as input,262

rather than the original ones, performance can be263

maintained despite the noise. We are currently264

exploring the implementation of this process.265

3.2.1 Fine-Tuning Strategies of Single-Round266

In practical applications, model chains are de-267

ployed in two configurations: single-round, where268

each model is called once, and multi-round, where269

models may be invoked multiple times. These con-270

figurations require distinct fine-tuning strategies.271

Consider a model chain consisting of A and B in272

a single-round scenario, where model A precedes273

model B, and its output serves as B’s input. The274

training data and processes are organized as:275

Model Input Since model A is the first in the276

chain, it does not require adjustment to any preced-277

ing model’s input. Thus, the fine-tuning data for278

model A follows standard prompt tuning. However,279

we refine this process by reordering the input:280

• Model A input order: shared content tokens,281

learnable prompt tokens (A), unique input con-282

tent tokens for A.283

We place the shared content before the learnable284

prompt tokens. Since the shared content is used285

across all models in the chain, this arrangement286

ensures that the KV hidden states of the shared287

content remain unaffected by the learnable tokens,288

thereby preventing the introduction of noise.289

Since the output of model A serves as the input 290

for model B, A must be fully fine-tuned before 291

fine-tuning B. Besides, the input to model B should 292

consist of the output KV hidden states from A, 293

rather than the tokens generated by A. 294

• Model B input order: shared content tokens, 295

output KV hidden states of fine-tuned model 296

A, learnable prompt tokens (B), and unique 297

content tokens for B. 298

Fine-Tuning Process As mentioned earlier, 299

model B must be trained after model A, using the 300

output KV hidden states from A. The fine-tuning 301

process for the model chain proceeds as follows: 302

• Fine-tune A to generate output A. 303

• Store the output KV hidden states from the 304

fully fine-tuned model A. 305

• Offline load the hidden states and fine-tune B 306

to leverage them in generating output B. 307

When fine-tuning model B, the position ID 308

should not start at 0. Since model A’s hidden states 309

already contain position information, the position 310

IDs for model B should begin at l + 1, where l 311

is the last position ID in model A. As the LLM 312

in this paper employs relative position encoding 313

(e.g., RoPE (Su et al., 2024)), the absolute position 314

is not critical. Therefore, the position ID ranges 315

[0, 1, . . . , l] and [l+1, l+2, . . . , 2l+1] are equiv- 316

alent for attention computation. The proof is pro- 317

vided in Appendix D. 318

4

Prompt Tokens(A): Outputs of A, Also Inputs of B:
Prompt Tokens(B): Outputs of B, Also Inputs of A:

Causal

Full

(Round-1)

(Round-1)

CausalMasked

Causal

Masked Causal

Full FullFullMasked Causal

Masked

Full Full

(Round-1)

(Round-1)

(Round-2)

(Round-2)

…

PT(A)
PT(B)

O(A)
O(B)

PT(A)

PT(B)

O(A)

O(B)

O(A)

O(A)O(B)O(A)PT(A) PT(B)

Masked

Masked

Masked Masked

Masked

Masked

Masked

Masked

Masked

Masked

Figure 3: Cascade attention mask for every layer in the
multi-round scenario.

Fine-Tuning Tricks to Save Storage Given that319

most existing LLMs are based on the Transformer320

architecture, they typically include numerous lay-321

ers and attention heads. As Figure 2(a) shows, the322

approach described above requires storing and ac-323

cessing a large number of KV hidden states, which324

can be impractical. To address this, we propose325

recomputing the output KV hidden states of model326

A in memory, rather than storing them offline, as327

illustrated in Figure 2(b).328

Specifically, during the training of model B, we329

modify the input to B as follows:330

• Model B input order: shared content tokens,331

fine-tuned prompt tokens (A), unique input332

content tokens for A, output tokens of A, learn-333

able prompt tokens (B), and unique content334

tokens for B.335

Notably, We incorporate the fine-tuned prompt336

tokens (A), along with both the input and output337

tokens of model A, as part of model B’s input. By338

adjusting the attention mask, we calculate model339

A’s output KV hidden states in memory (red box in340

Figure 2(c)). Simultaneously, the learnable prompt341

tokens (B) are fine-tuned to generate model B’s342

output, using the recalculated KV hidden states343

from model A (blue box in Figure 2(c)).344

The above algorithm outlines the fine-tuning pro-345

cess for a simplified model chain A→B. In practi-346

cal applications, when more than two models are in-347

volved in a model chain, each model can be trained348

sequentially, following the order of the chain. Dur-349

ing this process, each model’s input and attention350

mask should be adjusted accordingly.351

3.2.2 Fine-Tuning Strategies of Multi-Round 352

In a multi-round scenario, models may be invoked 353

sequentially multiple times, allowing for more com- 354

plex chains, such as A → B → A → B. In this 355

context, model B must adapt to the output of model 356

A, while model A must also adapt to the output of 357

model B. This differs from a single-round scenario, 358

since models must be fine-tuned simultaneously. 359

To address this challenge, we modify the inputs 360

and attention masks for both models, as illustrated 361

in Figure 3. Specifically, the prompt tokens for 362

both models are positioned at the beginning of the 363

input. When computing the loss on the output 364

of model A, attention scores are computed while 365

masking the prompt tokens of model B. Conversely, 366

When computing the loss on the output of model 367

B, the prompt tokens of model A are masked. This 368

ensures that model A’s tasks are guided solely by 369

its own prompt tokens, while model B’s tasks are 370

directed by its respective prompt tokens. 371

4 Experiments 372

4.1 Setup 373

We conduct experiments on both single-round and 374

multi-round tasks. These experiments aim to eval- 375

uate whether the FTHSS approach can retain the 376

functionality of model chains while improving in- 377

ference efficiency in various scenarios. 378

4.1.1 Single-Round Evaluation 379

Tasks Many RAG frameworks involve chains of 380

models due to their modular nature, making them 381

suitable for our evaluation. Common RAG opti- 382

mization methods include pre-retrieval and post- 383

retrieval optimization. We select two tasks from 384

each of them as benchmarks: 385

• Context Compression & Question Answering 386

• Query Rewriting & Question Answering 387

The Context Compression & QA task involves 388

compressing retrieved content into a noise-free con- 389

text for the final response. The Query Rewriting & 390

QA task rewrites the query to retrieve more relevant 391

information, and then generates the final response. 392

For the training data of Context Compression 393

& QA task, we follow the data specified in Re- 394

Comp(Xu et al., 2023), while for the training data 395

of Query Rewriting & QA task, we adhered to the 396

data outlined by Ma et al. (2023). 397

5

Task (→) Context Compression & QA
Dataset (→) HQA TQA NQ
Metric (→) EM F1 EM F1 EM F1

Single Model
Native 14.4 22.8 40.1 53.7 14.5 26.4

Standard RAG 24.0 36.2 47.0 58.3 28.5 44.8
Prompt Tuning 26.0 36.2 26.4 44.2 32.7 45.1

Chain of Models
Compress&QA 30.4 43.8 59.7 68.3 35.0 48.3

Streamlining
Distill 28.3 42.1 54.3 63.9 21.4 33.1

FTHSS(Our) 29.0 42.2 59.3 67.5 35.8 45.6

Table 1: Performance on the single-round task: Compres-
sion&QA for FTHSS and other methods. Bold numbers
indicate the best performance, except for the original chain
of models (denoted in gray). Same below.

Task (→) Query Rewriting & QA
Dataset (→) HQABM25 2WikiBM25
Metric (→) EM F1 EM F1

Single Model
Native 13.4 19.5 13.8 21.4

Standard RAG 19.0 31.1 14.4 21.6
Prompt Tuning 18.2 29.8 20.6 27.4

Chain of Models
Rewrite&QA 27.0 37.2 24.4 30.2

Streamlining
Distill 20.8 30.4 18.0 23.9

FTHSS(Our) 27.4 36.6 24.0 29.9

Table 2: Performance on the single-round task: Query
Rewrite&QA for FTHSS and other methods.

Baselines In the experiment, we compare three398

types of methods: (1) direct answer from a single399

model (Native, Standard RAG, Prompt Tuning),400

(2) using a model chain to generate intermediate401

results, which are then used to provide the final402

answer (Compress&QA, Rewrite&QA), and (3)403

simplifying the model chain to perform similarly404

to a single model (Distill, FTHSS). Distill refers405

to fine-tuning one model to generate all interme-406

diate steps, effectively distilling the capabilities407

of multiple models into a single model. We use408

Llama-3-8B (Dubey et al., 2024) as the base model409

for all models in the chain. To ensure a fair com-410

parison, all fine-tuning techniques discussed in this411

paper employ prompt tuning (Liu et al., 2021).412

Datasets We use the following widely adopted413

datasets to validate our approach: Natural Ques-414

tions (NQ)(Kwiatkowski et al., 2019), Trivi-415

aQA (TQA)(Joshi et al., 2017), 2WikiMulti-416

HopQA(2Wiki) (Ho et al., 2020) and HotpotQA417

(HQA)(Yang et al., 2018).418

4.1.2 Multi-Round Evaluation419

Tasks In multi-round scenarios, models in a420

chain are invoked repeatedly. We selected "Rea-421

soning & Memory" as a validation task (Jin et al.,422

2024), which decomposes the inference process423

into two iterative steps: (1) memory recall, retriev-424

ing relevant knowledge from the model’s memory,425

and (2) reasoning, applying logical operations to426

the recalled knowledge. Additionally, we evaluate427

our methods on an active retrieval augmented gen-428

eration task (Jiang et al., 2023b). The Active RAG429

task involves multiple rounds of retrieval, which430

actively decides what to retrieve across the course 431

of the generation. 432

For the training data of Memory&Reasoning 433

task, we use the data from Jin et al. (2024), while 434

for the training data of Active RAG task, we follow 435

the data proposed by Lyu et al. (2024). 436

Baselines The multi-round baselines are essen- 437

tially identical to the single-round approach. They 438

are categorized into three types: (1) direct answer- 439

ing (Single Model), (2) using a model chain to 440

generate intermediate results (Memory&Reason, 441

Plan&Generation), and (3) simplifying the model 442

chain (Distill, FTHSS). 443

Datasets We take the following widely adopted 444

datasets for evaluation: StrategyQA (Geva et al., 445

2021), TruthfulQA(TruthQA) (Lin et al., 2021), 446

CommonsenseQA(ComQA) (Talmor et al., 2018), 447

PubHealth (Zhang et al., 2023), 2WikiMulti- 448

HopQA(2Wiki) (Ho et al., 2020) and HotpotQA 449

(HQA)(Yang et al., 2018). 450

For more details, we explain each task and other 451

hyper-parameters in the Appendix A and B. 452

4.2 Main Results 453

FTHSS leads to a comparable performance with 454

the chain of models in both single-round and 455

multi-round scenarios. We benchmark FTHSS 456

with other models in Table 1 and 2 in single-round 457

settings, and find that FTHSS outperforms all sin- 458

gle models while achieving comparable perfor- 459

mance to the chain of models. This demonstrates 460

that our method avoids repeated computation of in- 461

termediate KV hidden states, improving efficiency 462

6

Task (→) Memory & Reasoning
Dataset (→) StrategyQA ComQA TruthQA
Metric (→) Acc Acc Acc

Single Model
Zero-shot 63.0 57.9 39.0

CoT 63.0 66.1 47.6
Prompt Tuning 63.6 66.7 65.2

Chain of Models
Memory&Reason 70.1 71.3 69.2

Streamlining
Distill 65.1 62.3 65.2

FTHSS(Our) 69.2 70.3 68.9

Table 3: Performance on the multi-round task: Memory
& Reasoning for FTHSS and other methods. We evalu-
ate the performance on multiple-choice questions using
accuracy as the metric.

Task (→) Active RAG
Dataset (→) Pubhealth 2WikiBM25
Metric (→) Acc F1

Single Model
Native 69.5 21.4

Standard RAG 56.1 21.6
Prompt Tuning 69.1 27.4

Chain of Models
Plan&Generation 73.4 33.6

Streamlining
Distill 70.1 23.1

FTHSS(Our) 72.0 31.9

Table 4: Performance on the multi-round task: Plan &
Retrieval for FTHSS and other methods.

without sacrificing performance.463

For instance, in the Context Compression&QA464

task on the TQA dataset, FTHSS achieves an EM465

score just 0.4 points lower than the approach using466

separate models, demonstrating nearly identical467

performance. Importantly, the compressed context468

no longer requires a forward pass through the QA469

model. Instead, it directly leverages the KV hidden470

states output by the compression model, reducing471

redundant computations and inference time.472

Table 3 and 4 present the results of multi-round473

experiments, which align closely with the findings474

from single-round experiments. This consistency475

highlights that, in addition to eliminating redun-476

dant intermediate computations, our method also477

removes the necessity of storing KV caches for478

individual models within the chain.479

The chain of models outperforms single models.480

As shown in Tables 1, 2, 3, and 4, methods like481

Compress&QA and Query Rewrite&QA, which482

generate intermediate results, outperform single-483

model approaches. This highlights the potential of484

chain-of-model collaboration. Our FTHSS method485

further optimizes this by reducing redundant com-486

putations, yielding significant efficiency gains.487

FTHSS outperforms Distill in both single-round488

and multi-round scenarios. While Distill at-489

tempts to fine-tune a single model to handle all490

intermediate steps, distilling multiple models’ ca-491

pabilities into one, this approach presents notable492

challenges. It requires the model to excel across493

all intermediate tasks; otherwise, the final result494

may be compromised. As shown in Table 1, 2, 3,495

and 4, experimental results reveal that distilling the 496

capabilities of multiple models into a single model 497

leads to varying degrees of performance degrada- 498

tion in both single-round and multi-round tasks. 499

This underscores the superiority of FTHSS, where 500

each model is allowed to specialize in its strengths, 501

resulting in improved overall performance. 502

4.3 Inference Efficiency Improvements 503

To demonstrate the efficiency of our method, we 504

present latency speed-ups achieved by eliminat- 505

ing redundant forward passes over intermediate 506

results. We compare the inference latency of model 507

B in FTHSS with that of the original model chain 508

(where model A’s output serves as input to model 509

B), evaluating various intermediate result lengths. 510

Results are averaged over 10 runs, performed on an 511

Nvidia L20 GPU with the Llama-3-8B architecture. 512

Table 5 shows that for input sequences of 3,000 513

tokens, FTHSS reduces inference latency to less 514

than one-third of the original model’s. This im- 515

provement demonstrates that FTHSS maintains ac- 516

curacy while significantly reducing latency. For 517

sequences of 250 tokens, however, the speed-up is 518

minimal due to GPUs’ efficient parallel processing, 519

limiting acceleration for smaller token counts. 520

In multi-round tasks, where each model in the 521

chain may be repeatedly invoked, multiple copies 522

of KV Caches are typically stored. FTHSS ad- 523

dresses this by enabling shared KV hidden states 524

across models, reducing KV Cache storage to a 525

single instance, regardless of chain length. As 526

shown in Table 5, FTHSS significantly reduces 527

GPU memory usage compared to a standard model 528

7

Inference latency(s)(single-round task)

tokens Chain of models FTHSS

250 0.45 0.41
500 0.52 0.42
1000 0.66 0.43
3000 1.44 0.46

KV cache size(MB)(multi-round task)

Models Chain of models FTHSS

1 137.5 137.5
2 137.5 ∗ 2 137.5
3 137.5 ∗ 3 137.5

Table 5: Top: Inference latency of model B in the chain
A → B, with varying intermediate result lengths (in
tokens), while output length is fixed at 16. Bottom:
GPU memory occupancy for KV cache under varying
model counts in multi-round tasks, with total length
fixed at 1000. Latencies are measured on an NVIDIA
L20, with KV states stored in bfloat16.

chain. For the Llama-3-8B architecture, the KV529

Cache size for an input sequence of 1000 tokens is530

137.5 MB. When multiple models are used, FTHSS531

saves (n− 1)× 137.5 MB of GPU memory. Thus,532

in multi-round tasks, FTHSS not only eliminates533

redundant computations, reducing latency, but also534

removes the need for multiple KV Cache copies,535

resulting in substantial memory savings.536

4.4 Further Analysis537

In practice, specialized models are already trained538

using methods like Prompt Tuning. To apply our539

approach and simplify the model chain, these mod-540

els may require re-fine-tuning, which can be com-541

putationally expensive. This raises the question:542

can these trained models—trained on plain text543

instead of the KV hidden states of previous mod-544

els—be used with minimal or no fine-tuning?545

Figure 4 compares three approaches: (1) the546

standard prompt-tuned model without additional547

re-fine-tuning (Standard), which attempts to inter-548

pret the noisy KV hidden states of the previous549

model directly; (2) continuing fine-tuning the stan-550

dard prompt-tuned model on 5,000 examples using551

FTHSS (5000 samples); and (3) fully fine-tuning552

the base model on the entire dataset with FTHSS553

(Fully FTHSS). Experiments on the Context Com-554

pression&QA task show that even the standard fine-555

tuned model generates mostly correct answers. On556

the TQA dataset, the F1 score of the standard model557

No addtional fine-tuning FTHSS(5000 example) Fully FTHSS0

10

20

30

40

50

60

70

80

P
er

fo
rm

an
ce

 M
et

ric
s

37.9
42.0 42.1

64.7 67.2 67.5

34.2

45.5 45.6

HQA(F1) TQA(F1) NQ(F1)

Figure 4: Performance comparison of three fine-tuning
strategies on Context Compression & QA task: (1) No
additional fine-tuning, using noisy KV hidden states
directly; (2) FTHSS (5000 samples), where the standard-
prompt-tuning model is fine-tuned on 5,000 examples;
and (3) Fully FTHSS, where the base model undergoes
full dataset fine-tuning.

is close to that of the fully fine-tuned model us- 558

ing FTHSS. However, performance drops on more 559

complex datasets like HotpotQA and NQ due to 560

noise in the KV hidden states. Additionally, fine- 561

tuning models on a small dataset significantly im- 562

proves performance. This suggests that fine-tuning 563

standard prompt-tuned models on a small dataset 564

using FTHSS is sufficient to mitigate noise, making 565

full-dataset re-fine-tuning unnecessary. 566

As discussed in Section 3.2, passing KV hidden 567

states between models mainly introduces unneces- 568

sary attention to noisy tokens. Previous work, such 569

as attention sink (Xiao et al., 2023), has shown 570

that attention exhibits sparsity properties, meaning 571

that a few noisy tokens do not significantly impact 572

the final output. Consequently, using a standard 573

prompt-tuned model without further fine-tuning 574

can still yield strong performance on simpler tasks. 575

5 Conclusion 576

In this paper, we introduced FTHSS, a method 577

that enables models in a chain to directly share 578

KV hidden states, eliminating redundant forward 579

passes over intermediate results and reducing KV 580

cache storage. By reordering the input and atten- 581

tion masks at each layer, FTHSS allows down- 582

stream models to leverage KV hidden states from 583

upstream models. Our experiments demonstrate 584

that FTHSS matches the performance of traditional 585

model chains while significantly improving the in- 586

ference efficiency in both single-round and multi- 587

round scenarios. 588

8

6 Limitations589

While our method is effective for open-source mod-590

els, it cannot be directly applied to closed-source591

models that only provide API access, limiting its592

applicability in such settings. Additionally, because593

the method involves fine-tuning, experiments were594

not conducted on large models, such as those with595

70B parameters, due to computational resource con-596

straints. Future work should explore the general-597

izability of hidden state sharing methods in larger598

models and across diverse, high-quality, and chal-599

lenging datasets.600

References601

Zixuan Dong, Baoyun Peng, Yufei Wang, Jia Fu, Xi-602
aodong Wang, Yongxue Shan, and Xin Zhou. 2024.603
Effiqa: Efficient question-answering with strate-604
gic multi-model collaboration on knowledge graphs.605
arXiv preprint arXiv:2406.01238.606

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,607
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,608
Akhil Mathur, Alan Schelten, Amy Yang, Angela609
Fan, et al. 2024. The llama 3 herd of models. arXiv610
preprint arXiv:2407.21783.611

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu612
Wei. 2023. In-context autoencoder for context com-613
pression in a large language model. arXiv preprint614
arXiv:2307.06945.615

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,616
Dan Roth, and Jonathan Berant. 2021. Did aristotle617
use a laptop? a question answering benchmark with618
implicit reasoning strategies. Transactions of the619
Association for Computational Linguistics, 9:346–620
361.621

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp622
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc623
Sun, and Benjamin Bossan. 2022. Accelerate: Train-624
ing and inference at scale made simple, efficient and625
adaptable. https://github.com/huggingface/626
accelerate.627

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng628
Ji, and Sinong Wang. 2023. Lm-infinite: Simple629
on-the-fly length generalization for large language630
models. arXiv preprint arXiv:2308.16137.631

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,632
and Akiko Aizawa. 2020. Constructing a multi-hop633
qa dataset for comprehensive evaluation of reasoning634
steps. arXiv preprint arXiv:2011.01060.635

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan636
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,637
and Weizhu Chen. 2021. Lora: Low-rank adap-638
tation of large language models. arXiv preprint639
arXiv:2106.09685.640

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se- 641
bastian Riedel, Piotr Bojanowski, Armand Joulin, 642
and Edouard Grave. 2021. Unsupervised dense in- 643
formation retrieval with contrastive learning. arXiv 644
preprint arXiv:2112.09118. 645

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing 646
Yang, and Lili Qiu. 2023a. Llmlingua: Compressing 647
prompts for accelerated inference of large language 648
models. arXiv preprint arXiv:2310.05736. 649

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing 650
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, 651
Jamie Callan, and Graham Neubig. 2023b. Ac- 652
tive retrieval augmented generation. arXiv preprint 653
arXiv:2305.06983. 654

Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang, 655
Wenyue Hua, Ruixiang Tang, William Yang Wang, 656
and Yongfeng Zhang. 2024. Disentangling memory 657
and reasoning ability in large language models. arXiv 658
preprint arXiv:2411.13504. 659

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke 660
Zettlemoyer. 2017. Triviaqa: A large scale distantly 661
supervised challenge dataset for reading comprehen- 662
sion. arXiv preprint arXiv:1705.03551. 663

Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin 664
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha, 665
and Jinwoo Shin. 2024. Sure: Summarizing re- 666
trievals using answer candidates for open-domain 667
qa of llms. arXiv preprint arXiv:2404.13081. 668

Diederik P Kingma. 2014. Adam: A method for stochas- 669
tic optimization. arXiv preprint arXiv:1412.6980. 670

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 671
field, Michael Collins, Ankur Parikh, Chris Alberti, 672
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 673
ton Lee, et al. 2019. Natural questions: a benchmark 674
for question answering research. Transactions of the 675
Association for Computational Linguistics, 7:453– 676
466. 677

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 678
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 679
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 680
memory management for large language model serv- 681
ing with pagedattention. In Proceedings of the 29th 682
Symposium on Operating Systems Principles, pages 683
611–626. 684

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen 685
Ding. 2024. Macm: Utilizing a multi-agent system 686
for condition mining in solving complex mathemati- 687
cal problems. arXiv preprint arXiv:2404.04735. 688

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 689
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 690
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 691
täschel, et al. 2020. Retrieval-augmented generation 692
for knowledge-intensive nlp tasks. Advances in Neu- 693
ral Information Processing Systems, 33:9459–9474. 694

9

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin.695
2023. Compressing context to enhance inference696
efficiency of large language models. arXiv preprint697
arXiv:2310.06201.698

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.699
Truthfulqa: Measuring how models mimic human700
falsehoods. arXiv preprint arXiv:2109.07958.701

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,702
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-703
tuning v2: Prompt tuning can be comparable to fine-704
tuning universally across scales and tasks. arXiv705
preprint arXiv:2110.07602.706

Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen, and707
Yaohua Tang. 2024. Turborag: Accelerating retrieval-708
augmented generation with precomputed kv caches709
for chunked text. arXiv preprint arXiv:2410.07590.710

Yuanjie Lyu, Zihan Niu, Zheyong Xie, Chao Zhang,711
Tong Xu, Yang Wang, and Enhong Chen. 2024.712
Retrieve-plan-generation: an iterative planning and713
answering framework for knowledge-intensive llm714
generation. arXiv preprint arXiv:2406.14979.715

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,716
and Nan Duan. 2023. Query rewriting for retrieval-717
augmented large language models. arXiv preprint718
arXiv:2305.14283.719

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan720
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and721
Douwe Kiela. 2024. Generative representational in-722
struction tuning. arXiv preprint arXiv:2402.09906.723

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,724
and Yuxiong He. 2020. Zero: Memory optimizations725
toward training trillion parameter models. In SC20:726
International Conference for High Performance Com-727
puting, Networking, Storage and Analysis, pages 1–728
16. IEEE.729

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and730
Yuxiong He. 2020. Deepspeed: System optimiza-731
tions enable training deep learning models with over732
100 billion parameters. In Proceedings of the 26th733
ACM SIGKDD International Conference on Knowl-734
edge Discovery & Data Mining, pages 3505–3506.735

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,736
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-737
hanced transformer with rotary position embedding.738
Neurocomputing, 568:127063.739

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu,740
Xipeng Qiu, and Lingpeng Kong. 2023. Corex:741
Pushing the boundaries of complex reasoning742
through multi-model collaboration. arXiv preprint743
arXiv:2310.00280.744

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui745
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,746
and Furu Wei. 2024. You only cache once: Decoder-747
decoder architectures for language models. arXiv748
preprint arXiv:2405.05254.749

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 750
Jonathan Berant. 2018. Commonsenseqa: A question 751
answering challenge targeting commonsense knowl- 752
edge. arXiv preprint arXiv:1811.00937. 753

Qiyao Wang, Shiwen Ni, Huaren Liu, Shule Lu, Guhong 754
Chen, Xi Feng, Chi Wei, Qiang Qu, Hamid Alinejad- 755
Rokny, Yuan Lin, et al. 2024. Autopatent: A multi- 756
agent framework for automatic patent generation. 757
arXiv preprint arXiv:2412.09796. 758

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv 759
cache for efficient inference of large language models. 760
arXiv preprint arXiv:2405.10637. 761

Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Run- 762
nan Fang, Ningyu Zhang, Jiang Yong, Pengjun Xie, 763
Fei Huang, and Huajun Chen. 2025. Omnithink: Ex- 764
panding knowledge boundaries in machine writing 765
through thinking. arXiv preprint arXiv:2501.09751. 766

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 767
Han, and Mike Lewis. 2023. Efficient streaming 768
language models with attention sinks. arXiv preprint 769
arXiv:2309.17453. 770

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re- 771
comp: Improving retrieval-augmented lms with com- 772
pression and selective augmentation. arXiv preprint 773
arXiv:2310.04408. 774

Yifei Yang, Zouying Cao, Qiguang Chen, Libo 775
Qin, Dongjie Yang, Hai Zhao, and Zhi Chen. 776
2024. Kvsharer: Efficient inference via layer- 777
wise dissimilar kv cache sharing. arXiv preprint 778
arXiv:2410.18517. 779

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 780
gio, William W Cohen, Ruslan Salakhutdinov, and 781
Christopher D Manning. 2018. Hotpotqa: A dataset 782
for diverse, explainable multi-hop question answer- 783
ing. arXiv preprint arXiv:1809.09600. 784

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan 785
You, Chao Zhang, Mohammad Shoeybi, and Bryan 786
Catanzaro. 2024. Rankrag: Unifying context ranking 787
with retrieval-augmented generation in llms. arXiv 788
preprint arXiv:2407.02485. 789

Jintian Zhang, Cheng Peng, Mengshu Sun, Xiang Chen, 790
Lei Liang, Zhiqiang Zhang, Jun Zhou, Huajun Chen, 791
and Ningyu Zhang. 2024a. Onegen: Efficient one- 792
pass unified generation and retrieval for llms. In 793
Findings of the Association for Computational Lin- 794
guistics: EMNLP 2024, pages 4088–4119. 795

Tianhua Zhang, Hongyin Luo, Yung-Sung Chuang, Wei 796
Fang, Luc Gaitskell, Thomas Hartvigsen, Xixin Wu, 797
Danny Fox, Helen Meng, and James Glass. 2023. In- 798
terpretable unified language checking. arXiv preprint 799
arXiv:2304.03728. 800

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, 801
Rui Zhang, and Sercan Ö Arik. 2024b. Chain of 802
agents: Large language models collaborating on long- 803
context tasks. arXiv preprint arXiv:2406.02818. 804

10

Dataset name Train/Test

Context Compression&QA task
Natural Questions(NQ) 39,466/3,610

TriviaQA(TQA) 47,531/11,313
HotpotQA(HQA) 26,556/500

Query Rewrite&QA task
Training Data (Ma et al., 2023) 37,520/-

2WikiMultiHop(2Wiki) -/500
HotpotQA(HQA) -/500

Memory&Reasoning task
Training Data (Jin et al., 2024) 10,925/-

StrategyQA -/687
TruthfulQA(TruthQA) -/164

CommonsenseQA(ComQA) -/1,221

Active RAG task
Training Data (Lyu et al., 2024) 47,689/-

2WikiMultiHop(2Wiki) -/500
Pubhealth -/987

Table 6: Dataset statistics.

A Hyperparameters and Datasets805

Hyperparameters. We fine-tune all parameters806

of our models for up to 3 epochs on 4 Nvidia A6000807

GPUs. Our learning rate is 2e-4, and the gradi-808

ent accumulation step is set to 8. We use 3% of809

steps for linear warm-up of the learning rate and810

decay it linearly to 0 over training. To save mem-811

ory, we use DeepSpeed ZeRo-2 (Rajbhandari et al.,812

2020; Rasley et al., 2020) optimization, gradient813

checkpointing, and BF16 mixed precision train-814

ing. During training, we use a maximum sequence815

length of 1224 for every sample, 100 learnable816

prompt tokens, and finetune using the Adam opti-817

mizer (Kingma, 2014) with no weight decay. Our818

training script is based on HuggingFace acceler-819

ate (Gugger et al., 2022) libraries.820

All base models in this paper are Llama-3-8B-821

Base unless otherwise specified. All PEFT fine-822

tuning methods are based on Prompt tuning, with823

the number of learnable prompt tokens set to 100.824

For methods that do not involve model training825

(e.g., Native, Standard RAG, and CoT), we utilize826

Llama-3-8B-Instruct, as its instruction-following827

capability is essential for these approaches.828

Datasets. The statistical details of the training829

and test datasets used in the experiments are pro-830

vided in Table 6. In the Context Compression&QA831

task, the training phase utilizes the augmented NQ, 832

TQA, and HQA datasets from recomp (Xu et al., 833

2023). These datasets were created by using Chat- 834

GPT to semantically compress retrieved documents 835

into concise summaries, generating synthetic train- 836

ing data. For model evaluation, we use the full test 837

sets of NQ and TQA, along with a subset of the 838

HQA development set, as validation benchmarks 839

to ensure a comprehensive and reliable assessment 840

of model performance. In the Query Rewrite&QA 841

task, we use the dataset from Ma et al. (2023) for 842

training and evaluate the model on the multi-hop 843

question datasets HQA and 2Wiki. In the Activate 844

RAG task, we use the dataset from Lyu et al. (2024) 845

for training and evaluate the model on the short- 846

form QA dataset PubHealth and the multi-hop QA 847

dataset 2Wiki. 848

As for the retrieved documents, by default, we 849

use the top one document ranked by Contriever-MS 850

MARCO (Izacard et al., 2021) on Wikipedia cor- 851

pus from Dec. 20, 2018, which is done to ensure 852

a fair comparison among all baseline models. In 853

the Query Rewrite&QA and Active RAG tasks, we 854

use the top one document ranked by the BM25 re- 855

trieval algorithm. Improving the retriever is not the 856

primary focus of this work; therefore, the retriever 857

selection criterion is to maintain consistency with 858

the papers that proposed these tasks. 859

B Task Explanation 860

In this section, we provide detailed examples to 861

demonstrate why the evaluation tasks used in this 862

paper involve multiple models. Table 7 illustrates 863

the Compression&QA task. The documents re- 864

trieved by RAG are often excessively long and 865

contain a significant amount of noise, which can 866

mislead the question-answering model if input di- 867

rectly. By first using a model to compress the docu- 868

ments and then providing its output as input to the 869

question-answering model, the accuracy of the re- 870

sponses can be significantly improved. The model 871

chain in the Compression&QA task is designed 872

based on this approach, consisting of a summariza- 873

tion model whose output serves as the input to the 874

question-answering model. 875

Table 8 presents the Query Rewriting&QA task. 876

For complex problems such as multi-hop QA, di- 877

rectly using the question as a query often fails to 878

retrieve the appropriate context. To address this, we 879

utilize another model to rewrite the query, which 880

is then used to retrieve more accurate contextual 881

11

Input: How many episodes are there in dragon ball z?(NQ)
Input of the compression model: <retrieved>April 5, 2009, the series premiered in Japan airing in Fuji TV.
D̈ragon Ball Z Kair̈educed the episode count to 159 episodes (167 episodes internationally), from the original
footage of 291 episodes. Damaged frames were removed, resulting in some minor shots being remade from
scratch in order to fix cropping, and others to address continuity issues. The majority of the international
versions, including Funimation Entertainment’s English dub, are titled D̈ragon Ball Z Kai.̈ premiered on Fuji
TV on February 7, 1996 and ran until November 19, 1997 for 64 episodes. Unlike the first two anime series,
it is not. Edition,ẅhich collects three individual volumes into a single large volume. However, in 2013 Viz
began publishing new 3-in-1 volumes collecting the entire manga series, including what they previously released
as D̈ragon Ball Z,̈ under the D̈ragon Balln̈ame. The D̈ragon Ball Zf̈ilms comprise a total of 15 entries as of
2015...</retrieved>
Output of the compression model: <compressed>PD̈ragon Ball Z Kaiḧas a total of 159 episodes (167
internationally), reducing the original count of 291 episodes. The last aired episode of D̈ragon Ball Kaiïn Japan
was the 97th episode, with the 98th episode being released direct-to-video on August 2, 2011.</compressed>
Output of the question answering model: <final_answer>291 episodes</final_answer>

Table 7: An Example for NQ datasets in Compression&QA task. Model chain: compression model→question
answering model.

Input: Which one was established first, Grouplogic or Inbios?(2Wiki)
Output of the query rewriting model: <query_rewrite>Grouplogic establishment year; Inbios establishment
year</query_rewrite>
Input of the question answering model: <retrieved>GroupLogic, Inc., founded in 1988 and headquartered
in Arlington, Virginia, USA, is an enterprise software company that develops, sells and supports software for
moving and storing data including activEcho, mobilEcho, ArchiveConnect, MassTransit and ExtremeZ- IP...
InBios International, Inc. is a medical diagnostic company based in Seattle that specializes in the detection of
infectious diseases. The company was founded in 1996, and since its inception has developed several technologies
useful in designing rapid and ELISA based immunodiagnostic assays. In April 2011, InBios International
announced the clearance of its IgM test for dengue fever, DENV Detect IgM Capture ELISA...</retrieved>
Output of the question answering model: <Final answer>291 episodes</Final answer>

Table 8: An Example for 2Wiki datasets in Query Rewriting&QA task. Model chain: query rewriting
model→question answering model.

information, followed by inputting this refined con-882

text into the question-answering model. The Query883

Rewriting&QA task also involves a model chain.884

Tables 9 and 10 demonstrate the model chains885

in multi-round scenarios, where the models are886

not invoked only once but are iteratively called.887

In the Memory&Reasoning task, the model first888

recalls the knowledge required to answer the ques-889

tion, then uses this recalled knowledge to reason890

and generate the answer. Since these two sub-tasks891

differ significantly, different models must be de-892

ployed to handle them separately. Furthermore,893

a single round is insufficient to ensure that all re-894

quired knowledge is retrieved, so these two sub-895

tasks need to be executed alternately and repeatedly.896

Additionally, the Active RAG task involves multi-897

ple rounds of retrieval, where the model dynami-898

cally decides what to retrieve during the generation899

process (the planning phase), followed by generat-900

ing the response based on the retrieved information901

(the answering phase). The planning and answer- 902

ing sub-tasks are iteratively performed, requiring 903

two distinct models to be deployed. 904

C Inference Details 905

Algorithm 1 illustrates the process of inference in 906

a single-round task, where multiple prompt-tuning- 907

based models share KV hidden states. The perfor- 908

mance of a shared base model across different tasks 909

depends on the learnable, task-specific prompt to- 910

kens. During inference, these prompt tokens are dy- 911

namically switched, as demonstrated in line 12 of 912

the algorithm. Furthermore, sharing hidden states 913

implies that the KV cache from the previous model 914

can be reused directly, without the need to recom- 915

pute the intermediate KV hidden states of Yi. The 916

red-striped portion in the algorithm shows the com- 917

putational savings of our approach compared to 918

previous prompt-tuning methods. 919

Assuming the total length of intermediate results 920

12

Input: Question: Sammy wanted to go to where the people were. Where might he go? Options: A.race track
B.populated areas C.the desert D.apartment E.roadblock (ComQA)
Output: <reason_start>Let’s reason with knowledge: The objective is to determine a location where there are
many people, as per Sammy’s desire to be where the people are. Each option needs to be evaluated based on the
likelihood of it being a place with many people.<reason_end><memory_start>Let’s recall the knowledge: A race
track can be very crowded during events. However, it may not always be populated, so it lacks consistency in
being populated. Populated areas are locations where there are a high number of people living or congregating,
such as cities and towns. This option aligns closely with the goal of being where people are consistently present.
Deserts are typically sparsely populated because of harsh living conditions, making them unlikely places for
finding many people. While an apartment building may contain a number of residents, it is not as widely or
consistently populated as broader populated areas like cities. A roadblock is usually not a gathering place for
people. It might temporarily have a group or line of vehicles, but it is not known for large groups of people
congregating for extended periods.<memory_end><reason_start>Let’s reason with knowledge: Based on the
assessments, option B (populated areas) is the most appropriate choice as it consistently fulfills the objective of
being a place where there is a high number of people present. [The answer is]: B <reason_end>

Table 9: An Example for CommonsenceQA datasets in Memory&Reasoning task. The reasoning and memory
models are iteratively called multiple times during inference.

Input: Which movie came out first Escape to Witch Mountain or Pete’s Dragon?(HotpotQA)
Output: <plan_start>Escape to Witch Mountain release<plan_end><retrieved>Escape to Witch Moun-
tain is a 1975 American fantasy-children’s film, adapted from the 1968 science fiction novel of the
same name written by Alexander H. Key</retrieved><answer_start>Escape to Witch Mountain came out
first,<answer_end><plan_start>Pete’s Dragon release<plan_end><retrieved>Pete’s Dragon is a 2016 Amer-
ican fantasy comedy-drama adventure film directed by David Lowery, written by Lowery and Toby
Halbrooks, and produced by James Whitaker. </retrieved><answer_start>before Pete’s Dragon. <an-
swer_end>[Combine]<answer_start>Escape to Witch Mountain<answer_end>

Table 10: An Example for HotpotQA datasets in Active RAG task.

is n, the computational savings of this algorithm921

are O(n2), given the quadratic complexity of the922

transformer.923

Notably, the computational savings occur during924

the prefilling phase, which runs in parallel. There-925

fore, when the length of the intermediate results is926

relatively short, the savings have a minimal impact927

on the inference latency.928

D Position ID Rearrangement929

If l is the last position ID of the preceding model,930

the position encoding of the current model should931

begin at l + 1, ensuring that the accuracy of the at-932

tention computation during inference is unaffected.933

This is because, under Rotary Position Embedding934

(RoPE), the position ID ranges [0, 1, . . . , l] and935

[l + 1, l + 2, . . . , 2l + 1] are equivalent in atten-936

tion computation. The proof of this conclusion is937

presented below.938

We prove that RoPE computes attention based939

solely on the relative position m− n , independent940

of the absolute positions m or n. Given a query941

vector qm at position m and a key vector kn at942

position n, RoPE applies rotations:943

qm = Rmq, Rm =

[
cosmθ − sinmθ
sinmθ cosmθ

]
,

kn = Rnk, Rn =

[
cosnθ − sinnθ
sinnθ cosnθ

]
,

(6) 944

where θ is a frequency parameter. The attention 945

score is: 946

Score(m,n) = q⊤mkn = (q⊤R⊤
m)(Rnk). (7) 947

Since rotation matrices are orthogonal (R⊤R = 948

I), and satisfy R⊤
mRn = Rn−m, the score can 949

simplify to: 950

Score(m,n) = q⊤Rn−mk, (8) 951

which depends only on (n − m). For high- 952

dimensional vectors, RoPE divides the vector into 953

d/2 subspaces, applying rotations independently in 954

each subspace: 955

R(i)
m =

[
cosmθi − sinmθi
sinmθi cosmθi

]
, (9) 956

13

Algorithm 1 The Inference Process of FTHSS in Single-Round Tasks(The red-striped portion represents
operations that are necessary for the original model chain, but are optimized and removed in FTHSS).

1: Input: Input sequence X = (x1, x2, . . . , xn)
2: Output: Sub-task output sequences Y1 = (y11, y12, . . .), Y2, . . . , Yt
3: Initialize:
4: - Decoder-only transformer T with parameters θ
5: - Task-specific soft prompt tokens {P1, P2, . . . , Pt}
6: - KV Cache: Cache← T (X) (Encode input sequence)
7: - Intermediate results: Y0
8: for i = 1 to t do
9: Prefilling Phase:

10: Cache← ∅
11: Cache← T (Pi, Yi−1,Cache)
12: Cache← T (Pi,Cache) (Compute and cache task-specific KV)
13: Initialize output sequence: Yi ← [<start>]
14: Decoding Phase (Autoregressive):
15: for k = 1 to max_length do
16: 1. Current token: yk−1 ← Yi[−1] (Last generated token)
17: 2. Compute embedding: ek ← E(yk−1)
18: 3. Update decoder layers with KV Cache:
19: hk,Cache← T (ek,Cache) (Reuse cached KV)
20: 4. Compute logits: p(yk)← softmax(Wohk) (hk from last layer)
21: 5. Sample next token: yk ∼ p(yk)
22: 6. Append yk to Yi
23: end for
24: end for
25: Return: Output sequences Y1, Y2, . . . , Yt

yielding:957

Score(m,n) =

d/2∑
i=1

q⊤i R
(i)
n−mki. (10)958

Thus, RoPE strictly encodes relative positions,959

eliminating absolute position dependence. This960

property has been utilized in some precomputed961

KV cache scenarios (Lu et al., 2024).962

14

	Introduction
	Related Work
	Chain of Models
	KV Cache Compression and Sharing

	Methodology
	Preliminary
	Fine-Tuning for Hidden State Sharing
	Fine-Tuning Strategies of Single-Round
	Fine-Tuning Strategies of Multi-Round

	Experiments
	Setup
	Single-Round Evaluation
	Multi-Round Evaluation

	Main Results
	Inference Efficiency Improvements
	Further Analysis

	Conclusion
	Limitations
	Hyperparameters and Datasets
	Task Explanation
	Inference Details
	Position ID Rearrangement

