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Abstract
End-to-end speech translation (ST) presents no-001
table disambiguation challenges as it neces-002
sitates simultaneous cross-modal and cross-003
lingual transformations. While word sense dis-004
ambiguation is an extensively investigated topic005
in textual machine translation, the exploration006
of disambiguation strategies for ST models re-007
mains limited. Addressing this gap, this pa-008
per introduces the concept of speech sense dis-009
ambiguation (SSD), specifically emphasizing010
homophones - words pronounced identically011
but with different meanings. To facilitate this,012
we first create a comprehensive homophone013
dictionary and an annotated dataset rich with014
homophone information established based on015
speech-text alignment. Building on this unique016
dictionary, we introduce AmbigST, an inno-017
vative homophone-aware contrastive learning018
approach that integrates a homophone-aware019
masking strategy. Our experiments on different020
MuST-C and CoVoST ST benchmarks demon-021
strate that AmbigST sets new performance stan-022
dards. Specifically, it achieves SOTA results on023
BLEU scores for English to German, Spanish,024
and French ST tasks, underlining its effective-025
ness in reducing speech sense ambiguity. Data,026
code, and scripts will be released.027

1 Introduction028

Speech translation (ST) translates acoustic speech029

from one language to another and sees a steady in-030

crease in its application (Duong et al., 2016; Bérard031

et al., 2016; Anastasopoulos and Chiang, 2018;032

Ansari et al., 2020; Li et al., 2021b; Bentivogli033

et al., 2021). Particularly, recent research involves034

the development of unified end-to-end ST models,035

leveraging the joint pre-training of speech and text036

(Wang et al., 2020b; Dong et al., 2021a,b; Inaguma037

et al., 2021; Tang et al., 2022; Zhang et al., 2022b).038

This approach effectively mitigates the challenges039

posed by the limited availability of ST data.040

Despite advances in end-to-end ST, these sys-041

tems struggle with managing concurrent cross-042

modal and cross-lingual conversions, suffering 043

from ambiguity in both acoustics and semantics. 044

This challenge mirrors word sense disambiguation 045

(WSD) in textual machine translation (Rios Gon- 046

zales et al., 2017; Luan et al., 2020; Campolungo 047

et al., 2022). Specifically within ST, a paramount 048

obstacle is the disambiguation of homophones - 049

words possess identical phonetic properties but 050

hold distinct semantic interpretations. 051

Traditionally, numerous ST approaches were re- 052

liant on cascade models, where homophone ambi- 053

guities were addressed either at the speech recogni- 054

tion stage (Ghosh et al., 2016; Zheng et al., 2020) 055

or the machine translation stage (Xue et al., 2020; 056

Qin et al., 2021; Liu et al., 2018). This delineated 057

approach stands in contrast with the integrated phi- 058

losophy of end-to-end ST. Although several end- 059

to-end ST studies (Zhang et al., 2021; Bang et al., 060

2022; Zhang et al., 2023a) try to incorporate con- 061

text as a mechanism to enhance homophonic clues, 062

such indirect methods restrict optimal disambigua- 063

tion to the scope of understanding context. Conse- 064

quently, semantic ambiguities persist as a notable 065

source of errors in modern ST models. 066

To address this pressing concern, our study fo- 067

cuses on the issue of homophones, framing it as 068

a disambiguation task that we term Speech Sense 069

Disambiguation (SSD). Our objective is to explore 070

the question: how can we efficiently leverage SSD 071

in ST models? As an initial step, we develop com- 072

prehensive homophone dictionaries for the English 073

(En), French (Fr), German (De), and Spanish (Es) 074

languages and generate six language-pair anno- 075

tated speech translation datasets through speech- 076

text alignments. To bolster the model’s capacity 077

for recognizing and processing ambiguous words, 078

we introduce AmbigST, a novel homophone-aware 079

contrastive learning methodology. This approach 080

intertwines a homophone-aware masking strategy 081

with contrastive learning, operating at the levels 082

of individual tokens, entire sentences, and the ST 083
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model. Through this, the model robustly discerns084

homophone details adjacent to ambiguous tokens085

by consistently directing the extraction of context-086

sensitive representations from speech, thus effec-087

tively addressing semantic ambiguity.088

We integrate AmbigST within a robustly pre-089

trained model (Zhang et al., 2022b) to evaluate its090

efficacy across various datasets. Our evaluation091

encompasses En-{De, Es, Fr} ST tasks within the092

MuST-C dataset, as well as {De, Es, Fr}-En ST093

tasks within the CoVoST datasets. AmbigST con-094

sistently outperforms the strong baseline across all095

metrics. Specifically, this substantial improvement096

not only sets a new performance standard, surpass-097

ing the current state-of-the-art, but also makes sig-098

nificant strides in addressing the pervasive problem099

of speech sense ambiguity in ST tasks. The main100

contributions of this paper are:101

• We focus on addressing the intricate problem102

of semantic disambiguation in ST and define103

a task called SSD, which specifically aims to104

disambiguate homophones where the underly-105

ing surface form is different.106

• We construct comprehensive homophone dic-107

tionaries for {En, Fr, De, Es}, and generate108

annotated datasets for six ST language-pairs109

encompassing a total of 1M instances.110

• We propose a novel AmbigST method with111

the homophone-aware masking strategy and112

multi-level contrastive learning methodology,113

for conducting effective SSD in ST models.114

• Further analysis shows AmbigST boosts115

the translation of low-frequency words and116

shorter sentences, which often encounter more117

pronounced ambiguity issues.118

2 Related Work119

End-to-end ST Addressing the inherent chal-120

lenges of error propagation and high latency in121

cascaded speech translation systems, Bérard et al.122

(2016); Duong et al. (2016) underscore the via-123

bility of end-to-end ST models, eliminating the124

need for intermediary transcription. This methodol-125

ogy gains significant attention recently (Vila et al.,126

2018; Salesky et al., 2018, 2019; Gangi et al., 2019;127

Di Gangi et al., 2019b; Bahar et al., 2019; Inaguma128

et al., 2020). However, due to the high cost associ-129

ated with data collection, ST data is often scarce. A130

multitude of studies focus on enhancing model per- 131

formance under the constraint of limited data. For 132

instance, existing works employ multitask learn- 133

ing to share knowledge across different tasks to 134

improve ST (Le et al., 2020; Vydana et al., 2021; 135

Ye et al., 2021), implement curriculum learning 136

to enhance the robustness of the ST model (Kano 137

et al., 2017; Wang et al., 2020b), and combine self- 138

supervised learning with semi-supervised learning 139

for speech translation (Wang et al., 2021; Bapna 140

et al., 2022). To bridge the modality gap, Han et al. 141

(2021); Huang et al. (2021); Xu et al. (2021) in- 142

troduce further encoding of acoustic states, which 143

adapt more aptly to the decoder. Most recently, 144

the unified pretraining of speech and text emerges 145

as a dominant paradigm (Zheng et al., 2021; Xu 146

et al., 2021; Zhang et al., 2022b). In this paper, we 147

introduce a novel approach, AmbigST, explicitly 148

designed to address ambiguity challenges in the 149

unified end-to-end ST model effectively. 150

Semantic Disambiguation Ambiguous words 151

in translation pose a challenge as the model 152

needs to determine appropriate meaning in the 153

given context (Rodd et al., 2002). Studies have 154

been dedicated to addressing the intricate issue of 155

WSD within the scope of textual machine trans- 156

lation (Navigli, 2009; Rios Gonzales et al., 2017; 157

Luan et al., 2020). A parallel challenge within 158

ST involves the handling of homophones. The 159

prevalent approaches predominantly employ cas- 160

cade models, wherein homophone ambiguities are 161

addressed at the stage of speech recognition (Ghosh 162

et al., 2016; Zheng et al., 2020), or machine trans- 163

lation (Li et al., 2018; Liu et al., 2018; Xue et al., 164

2020; Qin et al., 2021). In end-to-end models, the 165

research centers on extracting contextual informa- 166

tion. Strategies such as incorporating an additional 167

context encoder (Bang et al., 2022), utilizing con- 168

text in the output (Hussein et al., 2023), integrating 169

document information (Zhang et al., 2021), and 170

optimizing the connectionist temporal classifica- 171

tion loss (Zhang et al., 2023a) are explored. Unlike 172

these studies, our research emphasizes preserving 173

the inherent model architecture and eliminating the 174

necessity for supplementary modifications. 175

Contrastive Learning Our methodology is in- 176

spired by the recent advancements in contrastive 177

representation learning. In the NLP area, con- 178

trastive frameworks are employed for tasks such as 179

sentence representation learning (Fang et al., 2020; 180

Shen et al., 2020; Gao et al., 2021; Wu et al., 2022; 181
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Figure 1: Homophone dictionary construction process.

Speech: Ted_23_22.wav:24162314305:109163
Transcript: I fell asleep on the plane at night ...
Translation: Ich bin nachts im Flugzeug eingeschlafen ...
Homophone word: plane (plain), night (knight)
Homophone index: 5,7

Table 1: An instance from the annotated dataset.

Yan et al., 2021) and machine translation (Pan et al.,182

2021; Zhang et al., 2022a). More recently, con-183

trastive learning is also applied to cross-modal top-184

ics in speech translation (Dong et al., 2019; Zhou185

et al., 2020; Li et al., 2021a; Ouyang et al., 2022).186

Unlike prior research focusing on the contrast be-187

tween speech and text representations, our method188

centers on the speech representation itself.189

3 Speech Sense Disambiguation190

Typically, a speech translation corpus includes191

triples of speech-transcription-translation, denoted192

as D = (S,X ,Y). We leverage transcription X as193

the basis to explain the notion of speech sense ambi-194

guity. Consequently, we curate a dedicated dataset195

that embodies homophone information, thereby196

providing valuable resources to tackle the issue197

of ambiguity in ST tasks.198

Problem Definition Homophones, for example,199

“I” versus “eye” and “would” versus “wood”, are200

prevalent linguistic phenomena (Zhang et al., 2021;201

Chung et al., 2022). SSD’s process entails discern-202

ing the specific meaning of a homophone, which203

shares its pronunciation with other words but car-204

ries a distinct meaning. SSD plays a crucial role205

due to the varying translations associated with dif-206

ferent speech senses. To conduct SSD in ST, we207

propose to construct homophone dictionaries and208

then use them to annotate ST datasets.209

Annotating the Dataset Figure 1 provides the210

process of constructing a homophone dictionary.211

We use transcriptions X to construct a homophone212

dictionary by identifying sets of words that pos-213

sess identical phonemes, facilitated by the utiliza-214

tion of the Montreal Forced Aligner (McAuliffe215

et al., 2017), an open-source tool engineered for216

the accurate alignment of speech with its corre-217

sponding orthographic transcription. The homo-218

phone dictionary consists of sets of words that 219

share the same pronunciation. For instance, the 220

phonemes of “P EH R” would include terms such 221

as pear, pair. Similarly, the phonemes of “P L 222

EY N” would encompass terms like plain, plane. 223

The annotated dataset, organized in quintuples, 224

highlights ambiguous words and their positions 225

within sentences. A detailed example is presented 226

in Table 1. We annotated the datasets from the 227

MuST-C dataset (Di Gangi et al., 2019a) covering 228

translations from En-{De, Es, Fr} and CoVoST 229

dataset (Wang et al., 2020a) covering translations 230

from {De, Es, Fr}-En. To ensure easy and auto- 231

matic implementations, we design our process to be 232

as streamlined as possible. The annotation process 233

can also be easily applied to other datasets. We pro- 234

vide the statistics of our constructed homophone 235

dictionary and annotated data in Appendix A.1. 236

4 AmbigST 237

4.1 Model Architecture 238

Inspired by the latest advancements in end-to-end 239

ST (Zhang et al., 2022b; Fang et al., 2022), our 240

work restructures the foundational model into three 241

distinct components: the speech encoder, the trans- 242

lation encoder, and the translation decoder. The 243

speech encoder first compresses speech representa- 244

tions into hidden states. These hidden states subse- 245

quently serve as inputs for the translation encoder, 246

yielding enriched semantic information derived 247

from the condensed speech data. The translation 248

decoder generates the result based on the output of 249

the translation encoder. Furthermore, our model 250

incorporates pre-trained parameters from a unified 251

speech-text pre-training methodology (Zhang et al., 252

2022b), enhancing its effectiveness in speech trans- 253

lation tasks. An overarching visual depiction of our 254

proposed methodology can be found in Figure 2. 255

4.2 Homophone-aware Masking Strategy 256

As mentioned in §3, the conventional ST model 257

encounters difficulties in handling speech sense 258

ambiguity. Consequently, the model struggles to 259

accurately capture the intended semantic proper- 260

ties of these ambiguous tokens. To alleviate the 261

aforementioned challenge, we introduce a novel 262

homophone-aware masking strategy leveraging the 263

annotated dataset we have constructed. Given an 264

speech, the speech encoder receives the original se- 265

quence s as input and produces its contextual repre- 266

sentation H = [h1,h2, ...,hI]. We employ a word- 267
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Figure 2: Overall framework of AmbigST. The dashed/solid lines indicate negative/positive pairs. We first utilize
a homophone-aware masking strategy, effectively masking the speech representation associated with ambiguous
tokens. Then, we propose three-level contrastive learning methods. These methods facilitate the alignment of
ambiguous words with their corresponding reference representation, generated from the original speech input.

level forced alignment technique (Fang et al., 2022)268

between the speech and transcriptions to pinpoint269

the temporal occurrence of individual words within270

the speech segment. Consequently, the homophone-271

aware masking matrix of the speech representation272

denoted as m = [m1,m2, ...,mI], is generated in273

line with a homophone dictionary to identify the274

precise location of homophonic segments in the275

speech representation. With a certain probability276

p∗, the calculation of the masking matrix is:277

mi =

{
1 i ∈ index, p > p∗

0 else
, (1)278

where p is sampled from the uniform distribution279

U(0, 1), index represents the index set of the ho-280

mophone representation in the speech sequence.281

4.3 Homophone-aware Contrastive Learning282

Token-level Learning We argue that the precise283

semantics of individual small homophone units are284

crucial to address speech sense ambiguity effec-285

tively. Our objective is to utilize homophone infor-286

mation to advance progress in contrastive learning,287

with a specific focus on intricate levels of granular- 288

ity. Inspired by Su et al. (2022), we propose a token- 289

level contrastive learning method. We utilize the 290

identical model to generate the speech encoder out- 291

put twice. In one instance, we apply a homophone- 292

aware masking strategy to generate a masked rep- 293

resentation, denoted as H̃ = [h̃1, h̃2..., h̃I]. The 294

proposed token-aware contrastive learning objec- 295

tive is then defined as: 296

LToken = −
I∑

i=1

I(h̃i) log
ecosine(h̃i,hi)/τ∑I
j=1 e

cosine(h̃i,hj)/τ
,

(2) 297

where I(h̃i) is an indicator function that evaluates 298

to 1 if h̃i represents a masked homophone, and 299

0 otherwise. τ is a temperature hyper-parameter 300

and cosine(·, ·) computes the cosine similarity. The 301

underlying intuition of this approach is to encour- 302

age the generation of masked token that closely 303

aligns with the corresponding homophone gener- 304

ated by the model while remaining distinguishable 305

from other tokens within the sequence. As a result, 306

this approach enhances the model’s capacity to ef- 307
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fectively understand the distinctive characteristics308

associated with homophones.309

Sentence-level Learning To further enhance the310

effectiveness of contrastive learning and identify311

the optimal sentence-level representation, we in-312

troduce a self-supervised approach that focuses on313

sentence-level contrastive learning. Our approach314

incorporates the application of dropout noise (Gao315

et al., 2021) in conjunction with our proposed316

homophone-aware masking strategy. Subsequently,317

we average both H and H̃ across the temporal di-318

mension. As a result, we obtain sentence-level rep-319

resentations for both the original and homophone-320

masked forms, denoted as z and z̃. For a minibatch321

of K examples, the sentence-level contrastive learn-322

ing objective of n-th sentence is defined as:323

LSentence = − log
ecosine(zn,z̃n)/τ∑K
k=1 e

cosine(zn,z̃k)/τ
(3)324

Employing this objective enables the model to325

grasp sophisticated semantic nuances by compre-326

hensively considering the wider context and inter-327

connections inherent within a sentence.328

Model-level Learning We propose a refined329

model-level contrastive learning framework to en-330

sure consistent guidance in extracting context-331

aware representations from speech. Crucially, this332

framework is specifically designed to tackle the333

challenges presented by homophones and assist334

the model in robustly identifying the information335

present near ambiguous tokens. Unlike the tradi-336

tional knowledge distillation approach (Kim and337

Rush, 2016) matching predictions of a single sam-338

ple from two networks, we enhance model perfor-339

mance by leveraging the inherent knowledge of a340

single network through predictions of diverse sam-341

ples. i.e., self-knowledge distillation (Zhang et al.,342

2019). This strategy can be seen as a unique variant343

of contrastive learning characterized by the pres-344

ence of positive examples alone. Formally, given345

the original and masked contextual representations346

obtained from the speech encoder, the model-level347

contrastive learning objective is defined as:348

LMCL =

|y|∑
j=1

KL
(
Pθ(yj |y<j ,H)∥Pθ(yj |y<j , H̃)

)
(4)349

where KL denotes the Kullback-Leibler (KL) diver-350

gence. Pθ(yj |y<j ,H) is the predicted probability351

distribution of the j-th target token given the speech352

representation H as the input of translation encoder, 353

and Pθ(yj |y<j , H̃) is that given the masked rep- 354

resentation as input. Therefore, by incorporating 355

ST loss LST, the ultimate training objective LAmbig 356

can be stated as follows: 357

LAmbig = λ( LST + αLMCL)

+ (1− λ)(LToken + LSentence),
(5) 358

where λ, α is the coefficient weight to control 359

LAmbig. We use them to ensure a balanced distribu- 360

tion across diverse tasks, which in turn enhances 361

the proficiency of disambiguation processes. 362

4.4 Discussion 363

In summary, our proposed three-level contrastive 364

learning approach fundamentally focuses on re- 365

fining training data from multiple granularities. 366

The token-level method enhances the represen- 367

tation of ambiguous words, while sentence-level 368

methods capture more detailed contextual features, 369

and model-level optimization directly refines the 370

model’s parameters. Importantly, there is no expan- 371

sion in model parameters or training data size, and 372

no influence on decoding speed, making it easily 373

integrated into existing frameworks. 374

5 Experiments 375

5.1 Experimental Setups 376

Dataset Our experiment are conducted on the 377

MuST-C dataset (Di Gangi et al., 2019a), a mul- 378

tilingual speech translation corpus featuring over 379

385 hours of TED Talks speech in English with cor- 380

responding manual transcriptions and translations. 381

For our specific analysis, we select three language 382

pairs of En-{De, Es, Fr}. The dev set is employed 383

for validation and the tst-COMMON set for testing. 384

Additionally, we utilized the CoVoST-2 ST dataset 385

(Wang et al., 2020a), another extensive multilin- 386

gual ST corpus, focusing on translations of {De, 387

Es, Fr}-En to further assess the model’s translation 388

accuracy across different linguistic contexts. 389

Pre-processing For speech input, we utilize raw 390

16-bit, 16kHz mono-channel audio waves. From 391

the transcripts within the training set, we con- 392

struct the homophone dictionaries, then we anno- 393

tate dataset through a speech-text alignment pro- 394

cess using the Montreal Forced Aligner1. For each 395

1https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner
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ID Model
En-De En-Es En-Fr

BLEU HomoP BR BLEU HomoP BR BLEU HomoP BR

Existing Method
1 Context-ST (Zhang et al., 2021) 22.9 - - 27.3 - - 32.5 - -
2 STEMM (Fang et al., 2022) 28.7 - - 31.0 - - 37.4 - -
3 ConST (Ye et al., 2022) 28.3 - 64.5 32.0 - - 38.3 - -
4 SpeechUT (Zhang et al., 2022b) 30.1 - - 33.6 - - 41.4 - -
5 CMOT (Zhou et al., 2023) 29.0 - - 32.8 - - 39.5 - -

Our Implemented Method
6 Baseline (Zhang et al., 2022b) 30.1 39.2 67.1 33.5 42.8 67.7 41.4 49.1 66.2
7 6 + Model-level CL 30.3 39.7 67.7 33.7 43.2 68.2† 41.7 49.6 66.5
8 7 + Sentence-level CL 30.2 40.0 67.7 33.5 43.3 68.1 41.6 49.2 66.4
9 7 + Token-level CL 30.5 39.8 67.5 33.9 43.4 68.1 41.8 49.9 66.6
10 AmbigST (6 + All) 30.6† 40.2† 67.8† 34.0† 43.5† 68.0 41.9† 49.9† 67.7†

Table 2: Case-sensitive tokenized BLEU score, homophone accuracy and BLEURT score on MuST-C tst-COMMON
set. “+” means incorporating contrastive learning (CL) into our models. “†” indicates that the proposed method is
significantly better than baseline results at a significance level (p < 0.05).

translation direction, we use a unigram Sentence-396

Piece2 to learn a vocabulary on the text data from397

the ST dataset. The vocabulary is shared for source398

and target with a size of 10K.399

Model Configuration Our model consists of400

three modules. For the speech encoder, we use401

Hubert (Hsu et al., 2021). It adheres to the base402

configuration, utilizing six transformer layers with403

a hidden dimension size of 512. For the translation404

encoder, we use Ne = 6 transformer encoder lay-405

ers. For the translation decoder, we use Nd = 6406

transformer decoder layers. Each of these trans-407

former layers comprises 512 hidden units, 8 atten-408

tion heads, and 3,072 feed-forward hidden units.409

Training and Inference During model training,410

we load a speech-text pre-training model3. The411

max-token is set to 800K (50 seconds), and we412

drop the training samples longer than that. We ap-413

ply a speech masking probability of 5% and set414

label smoothing to 0.3. The learning rate increases415

linearly to 3e − 5 in the first 5K steps, then de-416

cays linearly to zero in total 50K steps. The mask-417

ing probability p is set at 0.5, a value determined418

through validation results among options of 0.3,419

0.5, and 0.7. The temperature parameter, τ , is set420

at 0.01 and selected based on validation scores of421

0.01, 0.1, and 1.0. The weight parameter, α, is set422

to 1.0 for En-De and 0.5 for other tasks, with the423

parameter λ being fixed at 0.9 across all tasks. We424

2https://github.com/google/sentencepiece
3https://github.com/microsoft/SpeechT5/tree/

main/SpeechUT

implement our models based on fairseq4. Models 425

train on 2 GPUs with an update frequency of 16. 426

During inference, we average the checkpoints 427

of the last five epochs for evaluation. We employ 428

beam search with a beam size of 10 to generate 429

optimal results. For the computation of evaluation 430

metrics, we utilize sacreBLEU5 (Post, 2018) to 431

assess translation quality (Papineni et al., 2002), 432

APT (Miculicich Werlen and Popescu-Belis, 2017) 433

for evaluating homophone accuracy and BLEURT 434

score6 (Sellam et al., 2020) for measuring the qual- 435

ity of the generated text. We conduct the statisti- 436

cal significance with paired bootstrap resampling 437

(Koehn, 2004) for BLEU score, paired t-tests (Hsu 438

and Lachenbruch, 2014) for homophone accuracy, 439

and Z-tests for BLEURT score. 440

5.2 Results on En-XX ST Tasks 441

Table 2 shows the results on MuST-C En→De, 442

En→Fr, and En→Es tst-COMMON set. Models (1) 443

to (5) represent the existing benchmarks. Model 444

(6) represents our implementation of the previously 445

state-of-the-art method, SpeechUT, in which we 446

initialize the pre-trained parameters and fully fine- 447

tune them. One should note that all our imple- 448

mented systems share the same training hyperpa- 449

rameters and steps. 450

Sub-module Results We decompose AmbigST 451

into sub-modules, starting with Model (7) employ- 452

ing model-level CL for foundational comprehen- 453

4https://github.com/pytorch/fairseq
5https://github.com/mjpost/sacrebleu
6https://github.com/google-research/bleurt
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Model
De-En Es-En Fr-En

BLEU HomoP BR BLEU HomoP BR BLEU HomoP BR

Baseline 24.2 52.8 56.2 29.6 48.5 61.7 29.9 36.9 48.6
AmbigST 24.8† 53.6† 56.8† 30.1† 49.3† 62.4† 30.8† 37.8† 49.2†

Table 3: Case-sensitive tokenized BLEU score, homophone accuracy and BLEURT score on CoVoST test set.

sion. Model (8) integrates sentence-level CL into454

Model (7), followed by Model (9), which replaces455

sentence-level CL with token-level CL to examine456

the impact of finer-grained methods. The results457

reveal that the individual application of each sub-458

module can lead to improvements.459

Overall Results Model (10), denoted as Am-460

bigST, incorporates all three proposed CL meth-461

ods. AmbigST surpasses all strong baselines across462

all these three tasks, achieving an average BLEU463

score of 35.5, establishing a new state-of-the-art464

performance. Notably, AmbigST achieves marked465

improvements (+0.9 on average) in the more reli-466

able metric BLEURT, indicating that it addresses467

more semantically complex difficulties rather than468

surface-level ones, which tend to pose more sig-469

nificant challenges. Subsequently, we assess the470

accuracy of homophone translation using our con-471

structed homophone dictionary. AmbigST signif-472

icantly and consistently outperforms the baseline473

across all language directions. This suggests that474

AmbigST can address the pervasive problem of475

speech sense ambiguity in ST tasks.476

5.3 Results on XX-En ST Tasks477

Table 3 shows the results on the CoVoST test478

sets. We began by initializing the parameters from479

En→De, En→Es, En→Fr pretrained model (Zhang480

et al., 2022b), subsequently fine-tuning these pa-481

rameters with out proposed contrastive learning482

methods. AmbigST outperforms established base-483

lines in terms of all the metrics. This evidence484

highlights AmbigST’s ability to boost model per-485

formance consistently across different languages,486

showcasing its language-agnostic nature.487

6 Analysis488

6.1 Variant of Homophone Setups489

To investigate whether the enhancements are at-490

tributed solely to homophone-aware masking, we491

execute two supplementary experiments on En-De492

tst-COMMON: (1) replacing the masked represen-493

tation with speech-text mixup representation (Zhou494

Variant BLEU HomoP BR

Baseline 30.1 39.2 67.1
AmbigST 30.6 40.2 67.8
Representation (Default: masked speech)
Mixup 30.2 39.1 67.4

Mask Strategy (Default: homophone)
Random 30.2 39.9 67.4

Table 4: BLEU, homophone accuracy and BLEURT on
En-De tst-COMMON under different setups.

Extra Task BLEU HomoP BR

Baseline 30.1 39.2 67.1
+ T2T Task 29.9 39.7 67.3
+ U2T Task 29.8 39.5 67.5
+ CoLaCTC Task 30.0 39.5 67.5
AmbigST 30.6 40.2 67.8

Table 5: BLEU, homophone accuracy and BLEURT on
En-De tst-COMMON under different auxiliary tasks.

et al., 2023; Fang et al., 2022) and (2) substituting 495

a homophone mask with a random mask. 496

Mixup Representation We replace the segment 497

of speech representation corresponding with the 498

word embedding of the homophone. The experi- 499

mental results, as depicted in Table 4, demonstrate 500

that while the “Mixup” brings a slight improve- 501

ment in model performance, “AmbigST” is supe- 502

rior. Compared with the mixup strategy, our ap- 503

proach further improves the performance on all 504

metrics, proving that the homophone-aware mask 505

may be a more promising strategy for addressing 506

speech sense ambiguity. 507

Random Strategy We randomly mask the 508

speech representation with a 10% probability and 509

conduct a three-level contrastive learning method. 510

The results in Table 4 reveal that our homophone- 511

aware masking strategy consistently surpasses the 512

random masking approach. The improvement ex- 513

hibited by the “Random” model over the “Baseline” 514

further highlights the effectiveness of our three- 515

level contrastive learning method, which enhances 516

representation even in the absence of homophone- 517
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Model Noun Verb Adj. Adv. Conj. Pron. Det. All
165 39 22 13 10 5 5 259

Baseline 35.4 23.5 36.0 50.9 49.6 48.3 41.1 39.2
AmbigST 36.1 24.5 35.5 52.3 51.0 50.0 41.5 40.2

Table 6: Homophone accuracy according to different
parts of speech on the EN-DE tst-COMMON set. Most
of the homophone words appearing are nouns.

aware masking. In conclusion, while three-level518

contrastive learning forms an effective base, the519

incorporation of homophone-aware masking signif-520

icantly bolsters overall performance.521

6.2 Auxiliary Textual Translation Task522

We conducted a comprehensive comparison with523

methods that indirectly address homophone am-524

biguity. Specifically, we evaluated our approach525

against models utilizing cross-modal multi-task526

learning techniques, including text-to-text (T2T)527

(Ouyang et al., 2022), unit-to-text (U2T) (Kim528

et al., 2023; Zhang et al., 2023b), and coarse la-529

beling for CTC (CoLaCTC) tasks (Zhang et al.,530

2023a). As shown in Table 5, the inclusion of aux-531

iliary T2T and U2T tasks resulted in slight improve-532

ments in homophone accuracy and BLEURT score,533

albeit with a marginal reduction in BLEU score.534

This observation can be attributed to the highly op-535

timized fusion of speech and text achieved through536

robust unified pretraining. Despite the assertion by537

Zhang et al. (2023a) that the CoLaCTC loss encour-538

ages the encoder to consider contextual clues, our539

direct strategy exhibits clear advantages. AmbigST540

effectively harnesses the intrinsic homophone prop-541

erties within the ST model, thereby substantiating542

its efficacy in mitigating speech sense ambiguity.543

6.3 Effect of Homophone Type544

To examine the impact of homophone type, we cat-545

egorized the ambiguous words that appeared in the546

En-De tst-COMMON set according to their part547

of speech. Subsequently, we analyze the count of548

ambiguous words in each category according to549

part of speech and assess their homophone accu-550

racy respectively. As illustrated in Table 6, our551

approach proficiently disambiguates homophones552

across nearly all parts of speech except adjectives.553

AmbigST demonstrates an average enhancement of554

1.7 in the homophone accuracy of conjunctions and555

pronouns. Furthermore, our analysis reveals that556

most homophones in our dataset comprise nouns557

(165 words) and verbs (39 words), predominantly558

utilized in daily discourse. Our method achieves559

low-freq high-freqmid-freq
Frequency

50

55

60

65

70

F-
m

ea
s

Baseline
AmbigST

<10 >=60[10,60)
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17

19

21

23

25
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EU

Figure 3: Word frequency and sentence length analysis.

substantial improvements in these domains, regis- 560

tering an average increase of 0.8 in the accuracy 561

of homophone translation. This confirms that our 562

method is effectively tuned to the requirements of 563

daily oral communication. 564

6.4 How Does AmbigST Enhance SSD? 565

To elucidate how AmbigST improves translation 566

quality, we employ compare-mt (Neubig et al., 567

2019) for a comparative analysis with a base- 568

line model, focusing on word frequency and sen- 569

tence length. Our findings, illustrated in Figure 3, 570

reveal that AmbigST demonstrates enhanced re- 571

silience to low (less than 10) and mid-frequency 572

(10-1,000) words, which often include a high inci- 573

dence of homophones, underscoring our method’s 574

effectiveness on SSD. Moreover, AmbigST fa- 575

vors shorter sentences, particularly those under 60 576

words. Shorter sentences might lack explicit con- 577

textual clues; however, our method enables the 578

model to grasp fine-grained information more ef- 579

fectively. Consequently, it achieves stronger trans- 580

lation performance, even when the text contains 581

limited contextual information. 582

7 Conclusion 583

To mitigate speech sense ambiguity in ST mod- 584

els, this paper represents a pioneering effort that 585

involves the construction of comprehensive ho- 586

mophone dictionaries for En, Fr, De, Es and six 587

language pair-annotated datasets that include per- 588

tinent homophone information. In the wake of 589

these advancements, we introduce AmbigST, a 590

novel homophone-aware contrastive learning ap- 591

proach that incorporates a homophone-aware mask- 592

ing strategy operating at the token, sentence, and 593

model levels. Experimental results on the MuST- 594

C and CoVoST benchmark demonstrate that our 595

proposed AmbigST approach can leverage speech 596

sense disambiguation efficiently. 597
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Limitations598

While the proposed AmbigST can effectively allevi-599

ate speech sense ambiguity, it still has the following600

limitations:601

• Word Sense Ambiguity Not Addressed Our602

research primarily tackles homophones to ex-603

plore speech sense ambiguity in end-to-end604

ST systems. However, we do not delve into605

“word sense” in this research. Future efforts606

will aim to investigate word sense ambiguity607

through our three-level contrastive method to608

validate the effectiveness of our method.609

• Challenges in Low-Resource Languages610

While our methodology is intended to be611

language-agnostic, its efficacy may diminish612

in low-resource environments where transcrip-613

tion quality is suboptimal. Such conditions614

may impede the training of precise acous-615

tic models with tools such as MFA, leading616

to potential inaccuracies in both the homo-617

phone dictionary and the annotated dataset,618

and thereby constraining model performance.619

• System Performance Variability Due to620

regional differences and dialect variations,621

there is a diverse understanding of ambigu-622

ity. This necessitates training acoustic models623

on speech tailored to specific phonetic prefer-624

ences to construct a dictionary of ambiguous625

words. For convenience, this work uses a stan-626

dard pronunciation acoustic model from MFA,627

which may disadvantage those with varying628

pronunciation preferences.629

• Performance in Specific Contexts As de-630

tailed in Section 6.4, the efficacy of our631

methodology appears diminished when ap-632

plied to long sentences. This observation may633

stem from the intrinsic abundance of contex-634

tual cues within such sentences, which inher-635

ently diminishes the necessity and impact of636

our approach.637

Ethics Statement638

Our research rigorously adheres to ethical consid-639

erations in line with the ACL Ethics Policy. We640

employ the publicly accessible MuST-C dataset641

and the pre-trained SpeechUT model, both sanc-642

tioned for research use. Our study aims to address643

homophone ambiguity in end-to-end speech trans- 644

lation, for which we develop a homophone dictio- 645

nary and a detailed homophone-annotated dataset. 646

In accordance with the original license, we release 647

the annotated dataset under the Creative Commons 648

Attribution-NonCommercial-NoDerivatives 4.0 In- 649

ternational License (CC BY NC ND 4.0). For re- 650

producibility, we offer both datasets and code to 651

fellow researchers upon request, ensuring the ob- 652

jective and precise presentation of our results. 653
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A Appendix1155

A.1 Statistic of Homophone Dictionary and1156

Annotated Dataset1157

Source Low Mid High Total

En 808 535 77 1,420
De 408 301 42 751
Fr 15,077 5525 36 20,638
Es 914 521 16 1,451

Table 7: Statistics of Homophone Dictionary.

Dataset En-De En-Es En-Fr Total

MuSTC 189,890 221,974 226,912 638,776

Dataset De-En Es-En Fr-En Total

CoVoST 118,844 71,317 184,544 374,205

Table 8: Statistics of Annotated Data.

We develop homophone dictionaries for English,1158

German, Spanish and French, categorizing homo-1159

phones into three levels based on word frequency1160

appearing in training dataset: low-frequency (less1161

than 10), mid-frequency (10-1000), and high-1162

frequency (more than 1000). The results are de-1163

tailed in Table 7. Our analysis reveals a predomi-1164

nance of low-frequency words among homophones,1165

with a particularly notable concentration in the1166

French language. This is attributed to the char-1167

acteristic of many French words ending in “s” that1168

are not pronounced. This finding is consistent with1169

the research presented by Mohebbi et al. (2023),1170

which underscores the widespread occurrence of1171

homophones in French.1172

We employed the constructed homophone dic-1173

tionary to systematically annotate the MuST-C and1174

CoVoST datasets, which cover En-{De, Fr, Es} and1175

{De, En, Fr}-En language pairs, respectively. This1176

annotation process included the word-level align-1177

ment between speech and its corresponding source1178

transcription text, alongside the identification and1179

indexing of homophones. The quantity of all an-1180

notated datasets is detailed in Table 8, with a total1181

of 639k instances annotated in the MuST-C dataset1182

and 374k in the CoVoST dataset.1183
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