
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOCAL REINFORCEMENT LEARNING WITH ACTION-
CONDITIONED ROOT MEAN SQUARED Q-FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Forward-Forward (FF) Algorithm is a recently proposed learning procedure
for neural networks that employs two forward passes instead of the traditional
forward and backward passes used in backpropagation. However, FF remains
largely confined to supervised settings, leaving a gap at domains where learning
signals can be yielded more naturally such as RL. In this work, inspired by FF’s
goodness function using layer activity statistics, we introduce Action-conditioned
Root mean squared Q-Functions (ARQ), a novel value estimation method that
applies a goodness function and action conditioning for local RL using temporal
difference learning. Despite its simplicity and biological grounding, our approach
achieves superior performance compared to state-of-the-art local backprop-free
RL methods in the MinAtar and the DeepMind Control Suite benchmarks, while
also outperforming algorithms trained with backpropagation on most tasks.

1 INTRODUCTION

The success of deep learning has relied on backpropagation (Rumelhart et al., 1986), a procedure
that has significant limitations in terms of biological plausibility as it requires synchronous com-
putations and weight symmetry. Many works have provided backprop-free alternatives for training
deep neural networks (Lillicrap et al., 2016; Nøkland, 2016; Nøkland & Eidnes, 2019). Notably,
Hinton (2022) proposed the Forward-Forward algorithm (FF), a new approach that performs lay-
erwise contrastive learning between positive and negative samples. This algorithm is lightweight
and entirely eliminates the need for backpropagation, thereby addressing some of the biological
plausibility concerns.

However, most studies on backprop-free methods are focused on the search for a biologically plau-
sible mechanism for performing gradient updates on supervised tasks. Could a biologically plausi-
ble source of learning signals be equally meaningful? Reward-centric environments and temporal-
difference (TD) methods (Sutton, 1988) serve as natural candidates for filling this gap. Biological
brains have evolved through a series of reward-guided evolution, while ample evidence has shown
that our brains could be implementing TD (Schultz et al., 1997a; O’Doherty et al., 2003; Watabe-
Uchida et al., 2017; Amo et al., 2022). Since the goodness score in FF models the “compatibility”
between the inputs and labels, this local learning paradigm can be readily adapted to a reinforcement
learning (RL) setting where we model the value of an input state and an action from each layer’s
activities. See Figure 1 for a comparison between the supervised learning and RL setups of the
forward-forward learning paradigm.

Towards integrating local methods and RL, Guan et al. (2024) recently proposed Artificial Dopamine
(AD) that incorporates top-down and temporal connections in an Q-learning framework. Since the
local Q-Function estimation needs to be explicitly predicted, Guan et al. (2024) uses a dot-product
between two sets of mappings from the inputs that produces the value estimate for each action.
This design, while backprop-free, makes the architecture more flexible modeling complex inputs.
However, AD still relies on the output of the dot-product to be the same dimension as the action
space, limiting the performance of the method.

Inspired by FF’s local goodness function from using layer statistics, we propose Action-conditioned
Root mean squared Q-Function (ARQ), a simple vector-based alternative to traditional scalar-based
Q-value predictors designed for local RL. ARQ is composed of two key ingredients: a goodness
function that extracts value predictions from a vector of arbitrary size, and action conditioning by

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

agentic
learning
ai lab

𝑥

𝑦“5”

𝐺! 𝐺" 𝐺#

𝑥

𝑎“Left”

𝑄! 𝑄" 𝑄#

a) Local Supervised Learning b) Action-Conditioned
Local Reinforcement Learning

… …

Figure 1: Local learning paradigms inspired by the Forward-Forward (FF) algorithm (Hinton, 2022).
a) The original FF is designed for supervised learning, where each layer models the “goodness”
between image x and label y. Information is carried forward only through bottom-up and optionally
top-down connections without backpropagation. b) We extend FF local learning for reinforcement
learning—each layer takes a state observation x and an action candidate a as input, and estimates
the Q value by taking the root mean squared function of the hidden vector.

inserting an action candidate at the model input. ARQ significantly improves the expressivity of a
local cell by allowing more neurons at the output layer without sacrificing the backprop-free prop-
erty. By applying action conditioning, we further unleash the capacity of the network to produce
representation specific to each state-action pair. Moreover, ARQ can be readily implemented on AD
and take full advantage of their non-linearity and attention-like mechanisms.

We evaluate our method on the MinAtar benchmark (Young & Tian, 2019) and the DeepMind Con-
trol Suite, challenging suites designed to test RL algorithms in low-dimensional settings where local
methods remain viable. Our results show that our method consistently outperforms current local
RL methods and surpasses conventional backprop-based value-learning methods in most games,
demonstrating strong decision-making capabilities without relying on backpropagation. Through
this contribution, we seek to encourage further exploration of the intersection between RL and bio-
logically plausible learning methods.

2 RELATED WORKS

Backprop-free learning methods & FF: In recent years, several backprop-free training algorithms
have been proposed to address the limitations of traditional backpropagation in neural networks
(Lillicrap et al., 2016; Nøkland, 2016; Nøkland & Eidnes, 2019; Belilovsky et al., 2019; Baydin
et al., 2022; Ren et al., 2023; Fournier et al., 2023; Singhal et al., 2023; Innocenti et al., 2025). One
notable method is the Forward-Forward Algorithm (FF) (Hinton, 2022), which offers a biologically
plausible, energy-efficient alternative to backpropagation. To extend the capabilities of FF, Ororbia
& Mali (2023) proposed the Predictive Forward-Forward Algorithm, showing that a top-down gen-
erative circuit can be trained jointly with FF. Tosato et al. (2023) found that models trained with FF
objectives generate highly sparse representations. This pattern closely resembles the observations
of neuronal ensembles in cortical sensory areas, suggesting FF may be a suitable candidate for mod-
eling biological learning. Recently, Sun et al. (2025) proposed DeeperForward, integrating residual
connections (He et al., 2016), the mean goodness function, and a channel-wise cross-entropy based
objective function (Papachristodoulou et al., 2024) into FF. DeeperForward yields 87% on CIFAR-
10 with a 17-layer deep architecture.

Value Estimation in Deep Neural Networks: TD methods for value estimation have been partic-
ularly useful in the recent decade as the rise of deep neural networks offers a powerful function
approximator. Mnih et al. (2013) introduced DQN, where a deep neural network is applied to ap-
proximate the Q-Function. They showed that this method significantly outperformed earlier meth-
ods on the Atari 2600 games, initiating a family of methods built upon this architecture (Van Hasselt
et al., 2016; Wang et al., 2016; Dabney et al., 2018b; Hessel et al., 2018; Fortunato et al., 2017; Dab-
ney et al., 2018a; Hausknecht & Stone, 2015). In actor-critic architectures, it is also common to use
a deep neural network for value and advantage estimation (Schulman et al., 2017; 2015a;b; Lillicrap
et al., 2015; Mnih et al., 2016; Haarnoja et al., 2018b;a; Fujimoto et al., 2018; Gruslys et al., 2017;
Abdolmaleki et al., 2018; Kostrikov et al., 2020; Yarats et al., 2021). For planning-based methods

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

using either Monte Carlo tree search (MCTS) or a learned model, value estimation is also significant
in driving the planning process (Schrittwieser et al., 2020; Silver et al., 2016; 2017; Hansen et al.,
2023; Sacks et al., 2024; Ye et al., 2021; Hafner et al., 2023; 2020; 2019a;b) Yet, few works have
investigated the capability of local learning on value estimation.

Action Conditioning of Value Estimators: An important design choice in value estimation is
whether the network is conditioned on the action. Early neural value estimation methods Riedmiller
(2005) incorporated action conditioning by incorporating both state and action as model inputs.
With the advent of deep neural network approaches such as DQN, practices began to diverge. Purely
value-based methods like DQN are typically only state-conditioned, with action-specific predictions
produced at the output layer by indexing over action values. This design is computationally effi-
cient and well-suited for discrete tasks with low-dimensional action spaces. In contrast, actor–critic
methods developed for high-dimensional continuous control tasks Lillicrap et al. (2015); Haarnoja
et al. (2018a) condition on both state and action at the input of their critic networks. Although this
distinction is largely arbitrary in backpropagation-based architectures and can be adapted to the task,
we show that action conditioning at model inputs is strictly preferable for local RL.

Local and Decentralized Reinforcement Learning: The concept of decentralized RL can be dated
back to the dawn of RL. Klopf (1982) introduced the idea of the hedonistic neuron, which hypoth-
esized that each of our neurons may be guided by their independent rewards. Instead of being a
miniscule part of a large operating neural system, each neuron may be an RL agent itself. In mod-
ern RL literature, the localized formulation of RL methods can be related to the multi-agent RL
(MARL) setup, where multiple independent agents can be designed to cooperate well toward max-
imizing their joint rewards (Tan, 1993; Foerster et al., 2017; Palmer et al., 2017; Su et al., 2022;
Lauer & Riedmiller, 2000; Jiang & Lu, 2023; De Witt et al., 2020; Su & Lu, 2022; Su & Lu; Arslan
& Yüksel, 2016; Jin et al., 2021). Conveniently, we can frame the problem of training RL using lo-
cal objectives as a MARL problem where each agent represents different modules within a network.
Recently, Seyde et al. (2022) has explored a similar approach for the continuous control problem,
showing that using a separate critics network for each fixed action after action discretization works
surprisingly well. Guan et al. (2024) builds upon the FF architecture, showing that a network with
nonlinear local operations, decentralized objectives, and top-down connections across the temporal
dimension can exceed state-of-the-art methods trained end-to-end. We extend upon this literature of
decentralized methods for value estimation.

3 BACKGROUND

Forward-Forward (FF): The FF Algorithm (Hinton, 2022), as its name denotes, uses two forward
passes instead of one forward pass and one backward pass used in backpropagation. The first for-
ward pass carries the positive data, or real data, while the second pass carries the negative data, or
fake data either manually defined or synthetically generated by the network. The network is then
trained by maximizing the goodness of each layer in the positive pass, while minimizing the good-
ness of each layer in the negative pass. The definition of goodness based on a hidden vector z is as
follows:

Gz =
∑
zi∈z

z2i . (1)

In layman’s terms, this equation represents the sum of squares of all activations over L, a measure
of the magnitude and orientation of the activation vector. By training its layers greedily, FF is
biologically plausible and could serve as a model for our future discovery of the inner mechanisms
of the human brain.

Value Estimation in Deep RL: Estimation of the value function is core to RL. In layman’s terms,
the value function measures the expected sum of future rewards after discounting given a current
state. A similar formulation can be constructed when we are interested in the goodness of a state-
action pair, which is usually termed the Q-Function. Formally,

Qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣St = s,At = a

]
. (2)

A widely used class of methods for value estimation is temporal difference (TD) learning (Sutton,
1988), which bootstraps value estimates by blending immediate rewards with future predictions,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

agentic
learning
ai lab

𝔼(⋅)𝟐

Artificial Dopamine (AD) (Guan et al., 2024) ARQ (Ours)

Cell Cell

..

𝑥"

ℎ#$%,"

ℎ#'%,"

ℎ#$%

ℎ#'%ℎ#,"'% ℎ#,"'%

𝑥"

𝑎(

𝑎% 𝑎) 𝑎* 𝑎+

Figure 2: High-level computation diagram between Guan et al. (2024) and ARQ. Key implemen-
tations of ARQ are highlighted in red. AD cells take activations (highlighted in blue, darker color
means earlier layer) and the state observation as input and produces a vector of size na, each indi-
cating the value prediction of an action candidate. Our ARQ takes activations, the state observation,
and the action candidate as input, and produces a hidden vector of arbitrary size, before passing it
through a root mean squared function to yield a scalar prediction.

allowing for online, incremental updates. This method paved the way for the development of many
subsequent approaches, particularly Q-learning. Take a Q-Function Q(s, a). To update the function
given an experience (St, a, r, St+1), Q-learning makes the following iterative update

Q(i+1)(St, At) = Q(i)(St, At) + α(Rt + γmax
a′

Q(i)(St+1, a
′)−Q(i)(St, At)), (3)

where γ is a discounting factor, α is a pre-determined learning rate, and a′ represents any possible
actions in the next step.

Recently, the rise of neural networks pushed q-learning to new heights. Mnih et al. (2013) proposed
DQN, approximating Q-values using a deep neural network. Based on the Bellman equation, DQN
constructs a mean squared error function as the objective, namely

Lθ =
(
Rt + γmax

a′
Qθ(St+1, a

′)−Qθ(St, At)
)2

. (4)

Mnih et al. (2013) tested their agents on the Atari 2600 environment, and show that a convolutional
neural network trained in this fashion is able to achieve near-human performance level from raw
pixel inputs, a feat previously considered far-fetched.

Artificial Dopamine (AD): AD (Guan et al., 2024) trains a local RL agent using Q-learning. An
AD network is consisted of multiple AD cells, each of which makes an independent estimation
of Q(St, At). To yield a scalar estimation, each AD cell adopts an attention-like mechanism to
compute a weighted sum of its hidden activations using weights from a separate linear projection,
effectively incorporating nonlinearity while maintaining backprop-free. Additionally, each AD cell
takes inputs from the layer below, the layer above, and also the raw state observation, enabling skip
connections, top-down connections, and information flow throughout the temporal dimension in an
RL environment. Mathematically, an AD cell at depth l conducts the following operations,

X = concat(st, h
l−1
t , hl+1

t−1), (5)

hl
t = ReLU(WhX), (6)

Q(st, at) = tanh(XTWT
att2Watt1X)hl

t, (7)

where hl
t represents the activation of the AD cell at time t and depth l. While this attention-like

mechanism brings exciting nonlinearity to a single AD cell without the need for backpropagation,
the scalar nature of Q(st, at) implies that the dimensionality of Watt must be limited by the size of
the action space. We aim to remove this constraint.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 ARQ: ACTION-CONDITIONED ROOT MEAN SQUARED Q-FUNCTION

In the context of FF, the goodness function measures the likelihood of the observation to come from
the postive distribution. In the context of RL, the concept of value measures the expected sum of
future rewards for the trajectories starting from a given state. We observe a connection—both denote
a measure of the current input’s desirability to an agent. Could the association between goodness
and value be exploited to unleash the capacity of local RL networks? In this section, we introduce
a novel vector-based training mechanism for local value estimation that can be used out-of-the-box.
We term it the Action-conditioned Root mean squared Q-Function (ARQ).

4.1 ARQ

Take a state s and an action a. Based on the Bellman equation, we are interested in finding

Q∗(s, a) = Eπ

[
Rt + γmax

a′
Q∗(St+1, a

′)
∣∣St = s,At = a

]
. (8)

Inspired by the association between the concept of goodness from FF and the concept of value in RL,
we directly approximate Q(s, a) using the goodness function. Given a hidden vector z, which can
be either an intermediate action or an output embedding from a neural network. Instead of taking
the sum of each vector unit squared, we make a small modification and take the root mean squared
(RMS) function of the vector after mean subtraction to prevent its goodness values from exploding
as we scale up the number of units. This is equivalent to the standard deviation of the hidden vector.
In mathematical terms, we compute the estimated value of applying action a on state s using

µy = E
yi∈y

yi, Qθ(s, a) =
√

E
yi∈y

(yi − µy)2, (9)

where θ denotes the parameters of the network and z denotes a hidden vector produced by the
network.

To train this network, we update our weights using the same mean squared objective function as
previous Q-learning methods (Mnih et al., 2013). Namely,

Lθ =
(
Rt + γmax

a′
Qθ(St+1, a

′)−Qθ(St, At)
)2

. (10)

Note that it is possible to sample positive and negative data in order to train in the same contrastive
fashion as the original FF algorithm, particularly when our method is used with a training mechanism
that maintains a replay buffer. We leave this for future investigations to keep our method versatile.

ARQ can be implemented out-of-the-box in place of the standard Q-learning formulation. Given any
intermediate vector produced by an arbitrary neural network architecture, ARQ can extract scalar
statistics that serve as a prediction for the estimated value without any parameters. This property
allows architectures designed for local RL to enjoy greater flexibility.

Action Conditioning: Due to the nature of goodness functions to produce scalar values, it is natural
to implement ARQ with action conditioning at the model input. Concretely, to estimate Qθ(s, a),
the neural network θ takes both the state vector s and the action vector a as inputs and outputs a
single scalar prediction. This contrasts with implementations such as Mnih et al. (2013) and Guan
et al. (2024), where the model receives only the state vector s and produces an output of dimension
na, with each entry corresponding to the value of a discrete action. We demonstrate in Section 5 that
this minor design decision is critical to the performance of local RL methods. For tasks with discrete
action spaces, we use a one-hot vector to represent an action candidate. For tasks with continuous
action spaces, we apply bang-bang discretization on the action space following Seyde et al. (2021)
and condition the network on the binary action vector.

4.2 IMPLEMENTATION

To evaluate our method against state-of-the-art local RL architectures, we implement AR on top of
Guan et al. (2024).

Our implementation is consisted of multiple cells stacked together, each of which takes inputs from
the layer below, the layer above, the input observation, and an action candidate at to make an
estimation of Q(st, at). Each cell adopts a similar attention-like mechanism as Guan et al. (2024).
After the attention mechanism, we apply the goodness function on the intermediate vector after the
attention computation. Specifically, a cell at depth l conducts the following operations,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

X = concat(st, h
l−1
t , hl+1

t−1, at), (11)

hl
t = ReLU(WhX), (12)

ylt = tanh(XTWT
att2Watt1X)hl

t, (13)

µy = E
yi∈yl

t

yi, Q(st, at) =
√

E
yi∈yl

t

(yi − µy)2, (14)

Gradients are passed only within each cell to ensure the architecture is backprop-free.

Pseudocode for AD and ARQ is provided in Figure 3. In both architectures, the intermediate quan-
tities Z1, Z2, and hl

t play roles analogous to the query, key, and value vectors in self-attention. The
computation of ZT

2 Z1 (Line 8, Algorithm 2) produces a dimension-wise interaction map that de-
termines how information is redistributed across latent dimensions, similar in spirit to an attention
mechanism but applied over feature dimensions rather than token positions. The key distinction in
ARQ is that Z2 is not restricted to have width na; instead, its dimensionality can be chosen freely.
This flexibility allows ARQ to learn richer state–action interactions than AD, whose dimensionality
is constrained by the cardinality of the action space.

Algorithm 1 AD (Guan et al., 2024)

1: X ← [st, h
l−1
t , hl+1

t−1]

2: hl
t ← LayerNorm(ReLU(WhX))

3: ▷ Dimension: d
4: Z1 ←Watt1X ▷ Dimension: na × d
5: Z2 ←Watt2X ▷ Dimension: datt× na

6: W ← Z⊤
2 Z1 ▷ Dimension: na×d

7: W ← LayerNorm(tanh(W))
8: Q←Whl

t ▷ Dimension: na

Algorithm 2 ARQ (Ours)

1: X ← [st, h
l−1
t , hl+1

t−1]

2: hl
t ← LayerNorm(ReLU(WhX))

3: ▷ Dimension: d
4: Repeat X along batch dim na times
5: X ← [X, at] ▷ Action conditioning
6: Z1 ←Watt1X ▷ Dimension: datt × d
7: Z2 ←Watt2X ▷ Dimension: datt× d
8: W ← Z⊤

2 Z1 ▷ Dimension: d× d
9: W ← LayerNorm(tanh(W))

10: y ←Whl
t ▷ Dimension: d

11: Q← RMSQ(y)

Figure 3: Comparison of AD and ARQ implemented on top of AD. For ARQ, action conditioning
is applied as part of the input (Line 5,6, Algorithm 2). Note that ARQ allows Z2 and y to have
dimension d (red), which can be arbitrary, while AD fixes it at na (blue), one for each action output.

Why ARQ benefits local Q-learning? As demonstrated in Figure 3, ARQ allows the hidden output
to have arbitrary dimensions. We conjecture that ARQ’s flexibility to account for arbitrary hidden
dimensions allows it to take full advantage of non-linearity within each AD cell. Furthermore, ARQ
applies action conditioning at the model input, rather than using vector indices at the output layer
as conditioning. We conjecture that this allows the entire module to produce representation specific
to each state-action pair, rather than action-agnostic information based on only the observation.
Combining these two properties, ARQ exploits the full capacity of the attention-like mechanism
that modern local RL methods operates on, allowing greater expressivity of each state-action pair.

5 EXPERIMENTS

Benchmarks: We test ARQ on the MinAtar benchmark (Young & Tian, 2019) and the DeepMind
Control (DMC) Suite (Tassa et al., 2018) following Guan et al. (2024). MinAtar is a miniaturized
version of the Atari 2600 games, using 10x10 grids instead of 210x160 frames as inputs. The DMC
Suite is a benchmark for continuous control tasks featuring low-level observations and actions, de-
signed to evaluate the performance of RL methods in physics-based environments. Both benchmarks
involve low-dimensional inputs and outputs instead of high-dimensional raw sensory inputs, mak-
ing them appropriate testbeds for evaluating the decision-making ability of local methods in simple
environments.

Baselines: For comparisons with cutting-edge local RL methods, we compare our results with AD
for both benchmarks. To evaluate our methods against backprop-based algorithms, we also com-
pare our method against DQN for MinAtar. DQN is a widely used baseline that trains deep neural

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

agentic
learning
ai lab

Figure 4: Training performance on the MinAtar games, compared between DQN (blue), AD (red),
and ARQ (green). The x-axis denotes the number of training steps (in millions), and the y-axis
indicates average episodic returns. Shaded regions represent 95% confidence intervals across 5
seeds. We find that ARQ consistently outperforms AD in all MinAtar games, while outperforming
DQN in some games.

networks to directly compute scalar Q-values through backpropagation. We follow the DQN imple-
mentation used by Guan et al. (2024).

Implementation Details: Following Guan et al. (2024), we use a three-layer fully-connected net-
work, with hidden dimensions being 400, 200, and 200 for MinAtar. We use a three-layer network
with hidden dimensions 128, 96, and 96 for DMC tasks. We use a replay buffer and a target network
for stability. We incorporate skip connections from the input and top-down connections from the
layer above. For all experiments, we use an epsilon-greedy policy with linear decay from 1 to 0.01
using an exploration fraction of 0.1. We run our experiments for 4 million steps, where the model
starts learning from step 50,000. Learning rate is set fixed at 1e-4. A batch size of 512 is used. For
MinAtar, we condition on action candidates by passing them as one-hot vectors into the network.
For DMC tasks, we discretize our action space and condition action vectors as model inputs.

Main Results: As presented in Figure 4, we run each experiment with five different random seeds
and plot their average returns over 100-episode windows along with their 95% confidence intervals
in shadows. We also calculated the average returns of the last 100 episodes of each training run to
obtain a quantitative measure of the final performance of our method, which can be found in Table
1. As demonstrated, ARQ consistently outperforms AD in all MinAtar games. Surprisingly, ARQ
also outperforms DQN in all games. In DMC Suite tasks, ARQ achieves superior returns compared
to AD, while also exceeding back-prop based methods in most games. A possible explanation is that
ARQ benefits from localized TD updates, reduced gradient path length, and the variance reduction
effect of layerwise averaging, which together can lead to more stable and efficient learning than fully
backpropagated networks.

Game Analysis: We note that ARQ outperforms DQN by a wide margin on Breakout and SpaceIn-
vaders. Both of these games operate on similar mechanisms: players aim to remove targets by
controlling projectile interactions of objects. To yield higher scores, players need to perform com-
bos of actions to yield higher scores, for instance moving to a sweet spot then waiting for the target to
arrive before firing a bullet. We argue that top-down connections in AD provide temporal coherence,
which allows our agents to perform sequences of actions smoothly. Additionally, we note that while
AD fails to match DQN on Seaquest, ARQ surpasses DQN. Seaquest is a game involving firing
bullets to remove enemies, with an additional rule that players need to manage an oxygen tank by
surfacing above water to refill their tank. This represents that the policy distribution can be bi-modal
such that attacking enemies and refilling tanks are both locally optimal policies. We hypothesize
that by applying action conditioning, ARQ can capture these policy structures more effectively than
AD, which is only state-conditioned.

Effect of Action Conditioning at Input: How does action conditioning affect the performance of
local RL methods? To investigate, we conduct ablation experiments on two games from MinAtar,
Breakout and SpaceInvaders, using both AD and ARQ. The results can be found in Figure 5. We find
a significant improvement when actions are conditioned at the input instead of at the output. To fur-
ther understand this difference, we analyzed the hidden activations using PCA and compared them
against predicted Q-values as presented in Figure 6. Without action conditioning, activations cluster
almost entirely by action identity and show no meaningful correlation with Q-values, indicating that
action-related variance dominates the representation space. With action conditioning, representa-
tions become more state-driven and exhibit a mild positive relationship with Q-values, suggesting
that the model can allocate capacity toward value-relevant structure rather than implicitly inferring

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of previous methods and ARQ on MinAtar and DeepMind Control (DMC)
tasks. Reported as mean ± 95% confidence intervals across 5 random seeds.

MinAtar Freeway Breakout SpaceInvaders Seaquest Asterix

w/ back-prop
DQN 55.86 ± 0.64 27.09 ± 11.48 188.03 ± 31.62 37.96 ± 18.56 13.60 ± 2.16

w/o back-prop
AD 57.12 ± 2.70 63.76 ± 17.70 363.49 ± 36.92 27.83 ± 10.97 22.01 ± 10.26
ARQ (Ours) 60.74 ± 0.54 87.84 ± 11.10 544.99 ± 88.10 96.45 ± 21.44 35.32 ± 5.33

DMC Walker Walk Walker Run Hopper Hop Cheetah Run Reacher Hard

w/ back-prop
TD-MPC2 958.80 ± 2.58 834.07 ± 20.26 348.55 ± 53.30 808.46 ± 184.20 934.84 ± 13.72
SAC 980.43 ± 3.26 895.02 ± 92.70 319.46 ± 62.42 917.40 ± 4.90 980.01 ± 2.38

w/o back-prop
AD 975.30 ± 2.10 762.51 ± 4.86 470.95 ± 78.14 831.57 ± 31.80 955.93 ± 18.36
ARQ (Ours) 976.33 ± 1.04 771.15 ± 5.08 516.23 ± 34.72 880.61 ± 24.04 973.66 ± 9.98

agentic
learning
ai lab

Figure 5: Ablation on action conditioning for AD and ARQ. Action conditioning substantially im-
proves performance. Shaded regions represent 95% confidence intervals. Note that this improve-
ment is particularly significant for ARQ, with average returns of∼85 vs. ∼55, a 50% improvement.
This indicates that the combination of the RMS function and action conditioning makes ARQ effec-
tive.

action identity. Interestingly, this design choice provides only a slight improvement for AD, while
yielding a significant increase in performance for ARQ. We conjecture this is due to the increase in
the capacity of each cell to capture the granularity within each specific state–action pair, while AD
saturates with action-agnostic information.

Table 2: Our method Using Different Nonlinear-
ities Compared in MinAtar Breakout. ‘MS’ is
short for the mean squared function and ‘Var’ is
short for variance. Default ARQ uses the root
mean squared (RMS) function. Reported as mean
± 95% confidence intervals.

Nonlinearity Breakout SpaceInvaders
Ours-ARQ 87.84±11.10 544.99±88.10
Ours-Mean 79.84±26.46 500.13±95.56
Ours-MS 82.10±6.56 434.88±28.74
Ours-Var 81.34± 0.78 416.46± 133.2
AD 67.40 ± 8.02 369.96 ± 46.92

Effect of Goodness Nonlinearities: One ques-
tion that naturally arises is the choice of the
goodness function. Does the RMS function
perform superiorly compared to other func-
tions? We ablate on this design choice and
conduct experiments on two games from Mi-
nAtar, Breakout and SpaceInvaders. As shown
in Table 2, we find that using the RMS good-
ness functions yields superior performance, fol-
lowed by the mean and the mean squared func-
tion. Beyond performance, our analysis sug-
gests that RMS maintains healthier activation
magnitudes throughout training, whereas us-
ing mean squared function produces extremely
large early goodness values that later suppress
activation norms (see Figure 7). This stabiliza-
tion effect likely preserves a richer and more expressive representation space, contributing to RMS’s
empirical advantage. However, we note that all functions perform superiorly compared with AD,
which demonstrates the versatility of our method.

Is it because ARQ has more hidden units? Compared with AD, ARQ employs a larger number of
parameters since ARQ allows an arbitrary dimension for its hidden vectors. Could ARQ, however,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

agentic
learning
ai lab

Figure 6: Representation analysis of ARQ with and without action conditioning. We train two
agents—ARQ with and without action conditioning (AC)—on MinAtar Breakout, then randomly
sample 200 states from each trained policy. For each state–action pair, we extract the hidden acti-
vations from Layer 0 and visualize them using 2-component PCA. The top row shows how mPCA
components cluster across different actions. Without AC, activations form tight clusters determined
almost entirely by action identity, indicating that the agent must implicitly encode action informa-
tion inside the representation. With AC, the activations are more entangled and state-driven. The
bottom row plots the first PCA component against the predicted Q-values. With AC, ARQ exhibits
a mild positive correlation between latent structure and Q-values, while the non-AC model shows
no meaningful correlation and remains dominated by action-specific clustering.

simply achieve the same improvement with mere scaling? We conduct experiments on AD and
ARQ with the same number of total parameters to answer this question. Across different ratios of
total parameters (compared with the original AD as a baseline), we run both AD and ARQ on the
MinAtar Breakout game with two different random seeds. As shown in Table 3, ARQ consistently
outperforms AD across all scales. This verifies the effectiveness of our method beyond scale.

Table 3: AD vs. ARQ Across Multiple Scales for
MinAtar Breakout. Reported as mean ± 95% con-
fidence intervals.

Scale Ratio AD ARQ

0.5× 66.34 ± 5.15 68.12 ± 5.65
1× 64.20 ± 1.90 86.26 ± 0.66

1.5× 56.63 ± 5.39 70.40 ± 3.98
2× 59.79 ± 4.77 83.26 ± 2.32

Neurons Are Sensitive to Different Scenar-
ios: How does our method learn through a
goodness function? We investigate its inner
mechanism by visualizing the activations at
each layer under different states. As illustrated
in Figure 8, we find that the hidden activations
tend to show larger magnitudes under ”correct”
state-action pairs. For instance, in scenarios
where the agent should move right to accurately
catch the incoming ball, neurons in the hidden
activations show the largest magnitude when
the action input matches correspondingly. In-
terestingly, we observe that different neurons are, in general, activated to different degrees for vari-
ous action candidates. This implies our objective function could be encouraging specialized neurons,
each of which is responsible for recognizing certain categories of positive signals.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

agentic
learning
ai lab

Figure 7: Analysis of ARQ (RMS goodness) vs. ARQ-MS (mean-squared goodness) on Mi-
nAtar–Breakout. We evaluate hidden activations and goodness values of both agents over 200 ran-
domly sampled states at both the start and end of training. Top row: Distribution of L2 norms of
hidden activations. Early in training, ARQ-MS exhibits extremely large goodness values and com-
pressed activation magnitudes, while ARQ maintains broader, more expressive activation scales. By
the end of training, ARQ continues to support significantly larger activation norms, whereas ARQ-
MS activations remain narrowly concentrated. Bottom row: Distribution of scalar goodness values
derived from each hidden vector. ARQ produces moderate, stable goodness magnitudes throughout
training, while ARQ-MS shows large initial spikes followed by sharply reduced variability.

6 DISCUSSION

Previous studies on biologically plausible learning have largely focused on the search for a biologi-
cally plausible mechanism for performing gradient updates. As we approach the era of experience,
we argue that a biologically plausible paradigm for learning can be equally meaningful to guide us
towards the mystery behind how biological brains learn. Reward-centric environments provide a bi-
ologically grounded paradigm, aligning with the evolutionary role of survival signals and behavioral
shaping through positive or negative reinforcement. The structure of such environments mirrors the
ecological settings in which animals adaptively refine behavior through trial-and-error interactions,
suggesting that learning systems shaped by rewards may naturally emerge in both artificial and bio-
logical agents. Additionally, temporal difference methods are an ideal candidate. It has been shown
that biological neurons learn through temporal difference, with hormones conveying the prediction
error as a source of learning signal to independent neurons (Schultz et al., 1997b; Bayer & Glimcher,
2005). On the other hand, reinforcement learning has largely focused on learning through interac-
tions with an agent’s surrounding environment, and maximizing its rewards through centralized
value estimation. Yet, increasing neuroscientific evidence has shown that neurons make decentral-
ized, independent value estimations (Tsutsui et al., 2016; Knutson et al., 2005). Few work in the RL
community has investigated whether this biological phenomenon has practical implications. ARQ
is an effort towards this direction as each cell in our network can be seen as a decentralized value
estimator.

7 CONCLUSION

This work proposes Action-conditioned Root mean squared Q-Function (ARQ), a vector-based al-
ternative to scalar Q-learning for backprop-free local learning. ARQ enables arbitrary hidden di-
mensions and improved expressivity by extracting value predictions from hidden activations and
applying action conditioning at the model input. We show that, when applied on RL environments,
ARQ performs superiorly compared to current local methods, while also outperforming backprop-
based methods on some games. Whereas current biologically plausible algorithms are mostly based
on the supervised setting, our study suggests that exploring local learning within reinforcement
learning may provide a promising avenue for future research in both domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

LLMs were used in this work to refine certain textual phrasing and to generate minor code elements
related to visualization and checkpointing.

REPRODUCIBILITY STATEMENT

We provide training code for all experiments as supplementary material. All hyperparameters, ran-
dom seeds, and implementation details are described in Section 5. Our experiments were run on
single NVIDIA A4000 GPUs or NVIDIA L40S GPUs with training times ranging from 8-72 hours
depending on the task. We used only publicly available benchmarks (MinAtar and DeepMind Con-
trol Suite). Together, these resources should enable full reproduction of our results.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Ryunosuke Amo, Sara Matias, Akihiro Yamanaka, Kenji F Tanaka, Naoshige Uchida, and Mitsuko
Watabe-Uchida. A gradual temporal shift of dopamine responses mirrors the progression of tem-
poral difference error in machine learning. Nature neuroscience, 25(8):1082–1092, 2022.

Gürdal Arslan and Serdar Yüksel. Decentralized q-learning for stochastic teams and games. IEEE
Transactions on Automatic Control, 62(4):1545–1558, 2016.

Atilim Günes Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and Philip H. S. Torr. Gradi-
ents without backpropagation. CoRR, abs/2202.08587, 2022.

Hannah M Bayer and Paul W Glimcher. Midbrain dopamine neurons encode a quantitative reward
prediction error signal. Neuron, 47(1):129–141, 2005.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In Proceedings of the 36th International Conference on Machine Learning, ICML,
2019.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018b.

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr, Pushmeet
Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent reinforcement
learning. In International conference on machine learning, pp. 1146–1155. PMLR, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon.
Can forward gradient match backpropagation? In International Conference on Machine Learning,
pp. 10249–10264. PMLR, 2023.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Audrunas Gruslys, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot, Marc Bellemare, and
Remi Munos. The reactor: A fast and sample-efficient actor-critic agent for reinforcement learn-
ing. arXiv preprint arXiv:1704.04651, 2017.

Jonas Guan, Shon Verch, Claas Voelcker, Ethan Jackson, Nicolas Papernot, and William Cunning-
ham. Temporal-difference learning using distributed error signals. Advances in Neural Informa-
tion Processing Systems, 37:108710–108734, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2023. URL https://arxiv. org/abs/2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Matthew J Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
AAAI fall symposia, volume 45, pp. 141, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2(3):5, 2022.

Francesco Innocenti, El Mehdi Achour, and Christopher L Buckley. µpc: Scaling predictive coding
to 100+ layer networks. arXiv preprint arXiv:2505.13124, 2025.

Jiechuan Jiang and Zongqing Lu. Best possible q-learning. arXiv preprint arXiv:2302.01188, 2023.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentral-
ized algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

A. Harry Klopf. The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence. Wash-
ington : Hemisphere Pub. Corp., 1982.

Brian Knutson, Jonathan Taylor, Matthew Kaufman, Richard Peterson, and Gary Glover. Distributed
neural representation of expected value. Journal of Neuroscience, 25(19):4806–4812, 2005.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Martin Lauer and Martin A Riedmiller. An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. In Proceedings of the seventeenth international conference on
machine learning, pp. 535–542, 2000.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Inter-
national conference on machine learning, pp. 4839–4850. PMLR, 2019.

John P O’Doherty, Peter Dayan, Karl Friston, Hugo Critchley, and Raymond J Dolan. Temporal
difference models and reward-related learning in the human brain. Neuron, 38(2):329–337, 2003.

Alexander Ororbia and Ankur Mali. The predictive forward-forward algorithm. arXiv preprint
arXiv:2301.01452, 2023.

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient multi-agent deep rein-
forcement learning. arXiv preprint arXiv:1707.04402, 2017.

Andreas Papachristodoulou, Christos Kyrkou, Stelios Timotheou, and Theocharis Theocharides.
Convolutional channel-wise competitive learning for the forward-forward algorithm. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 14536–14544, 2024.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. In ICLR, 2023.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European conference on machine learning, pp. 317–328. Springer,
2005.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Jacob Sacks, Rwik Rana, Kevin Huang, Alex Spitzer, Guanya Shi, and Byron Boots. Deep model
predictive optimization. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 16945–16953. IEEE, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
Science, 275(5306):1593–1599, 1997a.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
Science, 275(5306):1593–1599, 1997b.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. Advances in Neural Information Processing Systems, 34:27209–27221, 2021.

Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela
Rus, and Markus Wulfmeier. Solving continuous control via q-learning. arXiv preprint
arXiv:2210.12566, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Utkarsh Singhal, Brian Cheung, Kartik Chandra, Jonathan Ragan-Kelley, Joshua B Tenenbaum,
Tomaso A Poggio, and Stella X Yu. How to guess a gradient. arXiv preprint arXiv:2312.04709,
2023.

Kefan Su and Zongqing Lu. f -divergence policy optimization in fully decentralized cooperative
marl.

Kefan Su and Zongqing Lu. Decentralized policy optimization. arXiv preprint arXiv:2211.03032,
2022.

Kefan Su, Siyuan Zhou, Jiechuan Jiang, Chuang Gan, Xiangjun Wang, and Zongqing Lu. Ma2ql:
A minimalist approach to fully decentralized multi-agent reinforcement learning. arXiv preprint
arXiv:2209.08244, 2022.

Liang Sun, Yang Zhang, Weizhao He, Jiajun Wen, Linlin Shen, and Weicheng Xie. Deeperforward:
Enhanced forward-forward training for deeper and better performance. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=kOYnXVQCtA.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988.

Ming Tan. Multi-agent reinforcement learning: independent versus cooperative agents. In ICML’93:
Proceedings of the Tenth International Conference on International Conference on Machine
Learning, pp. 330–337, 1993.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Niccolò Tosato, Lorenzo Basile, Emanuele Ballarin, Giuseppe de Alteriis, Alberto Cazzaniga, and
Alessio Ansuini. Emergent representations in networks trained with the forward-forward algo-
rithm, 2023.

Ken-Ichiro Tsutsui, Fabian Grabenhorst, Shunsuke Kobayashi, and Wolfram Schultz. A dynamic
code for economic object valuation in prefrontal cortex neurons. Nature communications, 7(1):
12554, 2016.

14

https://openreview.net/forum?id=kOYnXVQCtA
https://openreview.net/forum?id=kOYnXVQCtA

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Mitsuko Watabe-Uchida, Neir Eshel, and Naoshige Uchida. Neural circuitry of reward prediction
error. Annu. Rev. Neurosci., 40:373–394, 2017.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

Kenny Young and Tian Tian. MinAtar: An Atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A VISUALIZATION OF ARQ ACTIVATIONS

Figure 8 provides the full activation visualizations referenced in the main text, illustrating how
neuron responses vary across different state–action scenarios in Breakout.

Figure 8: Visualization of Neurons in Layer 0 under Different Scenarios in Breakout Game. 20
neurons w/ highest average activities are visualized. Top Left: When the ball is approaching towards
the left side of the brick, neurons show larger magnitude when the action candidate is to “move left”,
prompting the agent to move towards the ball. Bottom Left: When the ball approaches the right
side of the brick, neurons show larger magnitude when the action candidate is to ”move right”.
Right: The average root mean squared (RMS) activations of 20 top neurons across 100 states is
collected. Note that top neurons exhibit significantly larger RMS activations than the average RMS
activation, implying that these neurons are ”dominant” neurons. While most neurons demonstrate
similar magnitude between both actions, some neurons appear to be more specialized.

B HYPERPARAMETERS

We summarize all hyperparameters used for MinAtar and DeepMind Control Suite experiments in
Table 4, consolidating the network architectures, training settings, and optimization details for full
reproducibility.

Hyperparameter MinAtar DMC Suite

Network Architecture 3-layer MLP 3-layer MLP
Hidden Dimensions 400-200-200 128-96-96
Optimizer Adam Adam
Discount Factor (γ) 0.99 0.99
Learning Rate 1× 10−4 1× 10−4

Batch Size 512 512
Replay Buffer Size 4M transitions 4M transitions
Target Network Yes Yes
Exploration Strategy ϵ-greedy ϵ-greedy (on discretized actions)
ϵ Schedule Linear: 1.0 → 0.05 Linear: 1.0 → 0.05
Exploration Fraction 0.1 0.1
Learning Starts 50,000 steps 50,000 steps
Training Steps 4M 4M
Action Representation One-hot Bang-bang discretization
Random Seeds 5 5

Table 4: Consolidated hyperparameters for MinAtar and DeepMind Control (DMC) experiments.
All settings follow the implementation described in Section 5 of the paper, with Adam optimization,
a shared replay buffer of 4M transitions, and identical training schedules. Action conditioning is
applied for ARQ by default.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C DETAILED COMPUTATIONAL DIAGRAM

In this section, we provide a detailed visualization of the computation flow in both AD and ARQ,
illustrating how information propagates across layers and how each cell locally estimates Q-values.

agentic
learning
ai lab

𝑥, ℎ!"#; ℎ!$#; 𝑎%

⋅

𝑊&%% 𝑊'

relu

𝑤
ℎ!

𝔼(⋅)𝟐

𝑠%; ℎ!"#

ℎ!$#

𝑎%

𝑥; ℎ!"#; ℎ!$#

-𝑄!(𝑠)

⋅

tanh

𝑊&%% 𝑊'

relu

𝑤
ℎ!

𝑥; ℎ!"#

ℎ!$#

𝑛&

tanh

[𝑛&]

[𝑑, 𝑛&] [𝑑]

[𝑑, 𝑑]
[𝑑]

[1]

b) Original Artificial Dopamine (AD)

𝑑

c) AD-MSQ (Ours)

-𝑄!(𝑠% , 𝑎%)

…

𝑡 = 3

𝑥

…

𝑡 = 2

𝑥

…

𝑡 = 1

ℎ%(##

ℎ%(#)

ℎ%(#*

ℎ%(#!

ℎ%()#

ℎ%())

ℎ%()*

ℎ%()!

ℎ%(*#

ℎ%(*)

ℎ%(**

ℎ%(*!

Artificial Dopamine (AD) (Guan et al., 2024)

ARQ (Ours)

…

𝑦[𝑑]

Figure 9: Detailed computation diagram. Key implementations of ARQ are highlighted in red. Left:
Overall information processing across layers. Each cell receives input from the raw observation, the
layer below, and the layer above, and its activations are passed forward to the next temporal step.
Top Right: Cell Computation in Artificial Dopamine (AD); na Q-value estimates are produced
by dot-products between the attentional weights and the hidden states. Bottom Right: Our ARQ
implements root mean squared functions for value estimation along with action-conditioned inputs.

D DEEPMIND CONTROL SUITE EXPERIMENTAL FIGURES

Figure 10 presents the full training curves for all DeepMind Control Suite environments.
ARQ consistently outperforms AD across tasks and achieves performance comparable to strong
backpropagation-based methods such as TD-MPC2 and SAC.

agentic
learning
ai lab

Figure 10: Training performance on the DeepMind Control Suite, compared between AD (red),
ARQ (green), TD-MPC2 (blue), and SAC (gray). The x-axis shows training steps (in millions), and
the y-axis denotes average episodic returns. Shaded regions indicate 95% confidence intervals across
5 seeds. Across all environments, ARQ consistently improves over AD and achieves performance
competitive with backpropagation-based methods.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E NONLINEARITY ABLATION FIGURES

Figure 11 presents the per-environment learning curves comparing different nonlinear goodness
functions used to extract scalar values from hidden vectors. The default ARQ, which uses the root
mean squared function, outperforms all other choices. Notably, all variants outperform AD in both
settings.

agentic
learning
ai lab

Figure 11: Comparison of different nonlinear goodness functions that may be used to collect scalar
statistics from hidden vectors. ‘MS’ is short for the mean squared function and ‘Var’ is short for
variance. Default ARQ uses the root mean squared (RMS) function. Shaded regions represent 95%
confidence intervals.

18

	Introduction
	Related Works
	Background
	ARQ: Action-conditioned Root mean squared Q-Function
	ARQ
	Implementation

	Experiments
	Discussion
	Conclusion
	Visualization of ARQ Activations
	Hyperparameters
	Detailed Computational Diagram
	DeepMind Control Suite Experimental Figures
	Nonlinearity Ablation Figures

