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ABSTRACT

The geometric structure of latent representations in large language models (LLMs)
is an active area of research, driven in part by its implications for model trans-
parency and Al safety. Existing literature has focused mainly on general geomet-
ric and topological properties of the learnt representations, but due to a lack of
ground-truth latent geometry, validating the findings of such approaches is chal-
lenging. Emotion processing provides an intriguing testbed for probing represen-
tational geometry, as emotions exhibit both categorical organization and contin-
uous affective dimensions, which are well-established in the psychology litera-
ture. Moreover, understanding such representations carries safety relevance. In
this work, we investigate the latent structure of affective representations in LLMs
using geometric data analysis tools. We present three main findings. First, we
show that LLMs learn coherent latent representations of affective emotions that
align both with widely used valence—arousal models from psychology and patterns
observed in human brainwave data. Second, we find that these representations
exhibit nonlinear geometric structure that can nonetheless be well-approximated
linearly, providing empirical support for the linear representation hypothesis com-
monly assumed in model transparency methods. Third, we demonstrate that the
learned latent representation space can be leveraged to quantify uncertainty in
emotion processing tasks. Our results are based on experiments with the GoE-
motions corpus, which contains ~58,000 text comments with manually annotated
sentiment.

1 INTRODUCTION

Recent advances in mechanistic interpretability have illuminated how large language models
(LLMs) internally represent high-level semantic features such as factual knowledge, syntax, and
sentiment. A growing body of work investigates whether such features are geometrically organized
in semantically plausible, useful ways (Chatterley et al., 2025 Skean et al.,[2024; Tigges et al.,2023;
Lee et al.| 2025).

Emotions provide a particularly compelling domain for studying geometric representations in LLMs
because their semantic organization has been extensively studied in the psychology and neuro-
science literature. Emotions can be described both in terms of discrete categories (e.g., anger, joy,
fear) and along continuous affective dimensions such as valence (positive—negative) and arousal
(calm—excited); in particular, this two-dimensional valence-arousal model (Fig. E]) of emotion has
proved particularly dominant in the psychology literature (Bradley & Lang, [1999; Bliss-Moreau
et al.} 2020; Maleki et al., [2023)). Because these structural models are based in human cognition,
they provide a natural benchmark for probing whether LLMs encode emotional information in com-
parable ways to humans. If LLM latent spaces reproduce aspects of these psychological and neu-
roscientific models, it may not only deepen our understanding of how LLMs internally organize
sentiment but also suggest potential parallels with natural intelligence.

The present study is situated in an affective context. More specifically, the affective computing liter-
ature has explored how computational systems can recognize and interpret human emotions across
modalities such as speech and text (Calvo & D’Mellol 2010; [Huang et al., |2023; Picard, [2000).
Inspired by this body of work, we design text-based emotion classification tasks to probe whether
the LLM’s learnt latent representations recover known categorical clusters and whether continuous
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affective dimensions such as valence and arousal emerge as dominant axes of organization. In other
words, rather than emphasizing the generation of sentiment-bearing text, our analyses center on how
models respond to (and internally structure) sentiment-encoded inputs.

Related Work Our work engages with two prominent theories on the internal geometry of LLM
representations. The first, the linear representation hypothesis, posits that high-level concepts are
encoded as simple linear directions in activation space. This view is supported by studies show-
ing that features like sentiment polarity can be identified with linear probes (Park et al., 2023)) and
manipulated through causal interventions along a linear axis to steer model outputs (Nanda et al.,
2023} [Park et al.| [2023]; Tak & Gratch, [2024; Jin et al., [2024). Conversely, the manifold hypothesis
suggests that representations form more complex, nonlinear structures. For instance, recent anal-
yses show that internal representations of semantic categories can form simplex-like hierarchical
structures (Park et al.| [2024), while other work has broadly identified geometric and manifold-like
structures in neural representations of language (Mamou et al.| [2020; He et al., [2024). By finding
evidence for nonlinear latent structure in line with established psychological models, our work helps
inform the current debate on representation geometry.

Summary of Contributions The main contributions of our work are as follows:

1. Representational similarities with human affective models. We show that Gemma-2-9B and
Mistral-7B develop coherent internal representations of affective emotion. These representations
align with both established valence—arousal models from psychology and similar structure ob-
served in human brainwave (EEG) data.

2. Evidence for nonlinearity. We find that the geometry of LLM emotion representations exhibits
modest nonlinearity (in line with the parabolic curvature of valence-arousal space). While we find
that affective emotion geometry is locally amenable to linear analysis, our evidence for nonlinear
global structure suggests that a purely linear representation hypothesis is insufficient.

3. Applications to uncertainty quantification. We demonstrate that the geometry of these struc-
tured representation spaces can be exploited to quantify predictive uncertainty in emotion recog-
nition tasks, illustrating both practical utility and interpretability gains.

2 BACKGROUND

Constructing Latent Space Representations We will employ two manifold learning methods for
recovering latent space representations of language model embeddings: classical multidimensional
scaling (MDS) and Isometric Feature Mapping (Isomap).

Classical MDS (Torgerson, [1952) takes a dissimilarity matrix D = [d;;] and constructs the doubly
centered squared-distance matrix B = —3JD°%J with J = I — 2117. An eigendecomposition
B = QAQ'" then yields coordinates z; € R* from the top-k eigenpairs, chosen so that pairwise
Euclidean distances in the embedding approximate the original dissimilarities in D. This closed-
form solution provides a linear Euclidean representation of the data.

Isomap (Tenenbaum, [1997) extends MDS to account for nonlinear structure by replacing the raw
Euclidean distances d;; with estimates of geodesic distances along the data manifold. In practice,
this is achieved by constructing a k-nearest neighbor (kNN) graph G over the embeddings and com-
puting approximate geodesic distances d;; as shortest-path distances on G classical MDS is then
applied to the geodesic distance matrix. By incorporating this local neighborhood structure, Isomap
can capture curvature in the embedding space and reveal deviations from purely linear structure.

Valence-Arousal Model of Emotion A widely used framework in psychology and affective sci-
ence conceptualizes emotions along two continuous dimensions: valence, which captures the degree
of pleasantness or unpleasantness, and arousal, which indexes physiological activation or intensity
(Russelll [1980; Bliss-Moreau et al., 2020; Kim et al., 2020; Maleki et al., [2023)). Early work in
this space originally posited circumplex emotion layouts centered around neutral (Russelll |1980).
In recent years, however, psychology literature has increasingly adopted the notion of a parabolic
(i.e., “V”-shaped) geometric layout of emotion (Kim et al., 2020; Maleki et al. [2023), owing to a
general correlation between valence intensity and arousal arising in the typical distribution of hu-
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man emotion. Geometric visualizations of the dual-axis valence-arousal emotion layout are shown
in Figure

3 METHODS

3.1 PRELIMINARIES

To study the organization of emotional representa-

tions in LLMs, we begin by defining a notion of sim- 4
ilarity between embeddings corresponding to dif-
ferent emotions. For each emotion pair (4,75), we
train a pairwise logistic regression classifier with L2
regularization on mean-pooled hidden state activa-
tions (see Section [3.2). We treat the test accuracy
acc;; of this classifier as a proxy for the distance be-
tween emotions ¢ and j, with higher accuracy indi-
cating greater separability. We then define by default
D;; = acc;;. This yields a symmetric dissimilar-
ity matrix that captures inter-emotion relationships
in LLM activation space. We also verified that our
results are robust under alternative definitions of dis- Low Valence High
similarity, such as distances to logistic regression hy-

perplanes or accuracy-to-distance transformations. Figure 1: Parabolic valence—arousal model
of affective space, based on Maleki et al.
3.2 METHODOLOGY (2023).
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The main aim of our exploratory analysis is investi-
gating the following hypothesis:

Do LLMs develop coherent internal representations of emotions that align with
the valence-arousal model?

To test this hypothesis, we conduct an activation-based probing analysis across both the Mistral-7B
and Gemma-2-9B models. In line with affective computing practices, we feed each prompt to the
target LLM and prompt the model to classify the emotion from the randomized list of GoEmotions
choices, subsequently storing activations corresponding to both correct and incorrect classifications.
All inference was performed in zero-shot mode, with no additional fine-tuning on GoEmotions or
related datasets. For each text sample, we extracted mean-pooled hidden state activations from all
transformer layers using forward hooks. Specifically, we collected the raw hidden states from each
of the 32 layers in Mistral-7B and 42 layers in Gemma-2-9B, where each layer produces activations
of dimension [1, sequence_length, hidden_size] since we process one sample at a time. We then
applied mean pooling across the sequence dimension to obtain a single vector representation per
layer for each model. The activation vectors from correctly classified samples were used to train
pairwise classifiers between specific emotions, enabling us to identify how the geometric organiza-
tion of emotional representations changes across depth and to assess where representations are most
discriminative. The incorrect activations were stored for future downstream analysis (see Section [6)).

We focused on binary emotion comparisons rather than multiclass setups. This approach avoids
confounds from highly imbalanced class sizes (per-class correct sample counts range from 101 to
2,212 in Gemma-2-9B and 103 to 1,293 in Mistral-7B), yields clearer and more stable decision
boundaries in activation space, and dovetails with MDS, which operates on pairwise dissimilarities.
For each emotion pairﬂ we balanced the dataset by downsampling the majority class, then trained
a logistic regression classifier with L2 regularization using an 80:20 train-test split. The resulting
classification accuracies were subsequently converted into dissimilarity values D;; as described in
Section[3.1] providing the pairwise distances for downstream MDS analysis.

!To ensure sufficient dataset size, we conducted our analyses on emotion categories with at least 100 correct
LLM classifications across the dataset, resulting in 20 emotions for Gemma-2-9B and 16 emotions for Mistral-
7B (spanning positive, negative, ambiguous, and neutral valences).
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4 EXPLORATORY DATA ANALYSIS

4.1 EXPERIMENTAL SETTING

Models We examine two state-of-the-art transformer-based LLMs: Gemma-2-9B (Team et al.,
2024) and Mistral-7B (Jiang et al.l 2023). Gemma-2-9B is a 9-billion parameter, 42-layer model
developed by Google DeepMind, while Mistral-7B is a 7-billion parameter, 32-layer model from
Mistral Al. Although the exact training mixtures for these models have not been publicly disclosed,
both were trained on large-scale, diverse web corpora that likely included sentiment-laden text,
providing them with natural exposure to affective language. We also experimented with analyses
on LLMs from the Qwen and LLaMA families but found that these models did not satisfy requisite
sentiment recognition baselines necessary for our downstream experiments; further discussion is
included in Apx. [B]

Datasets Our primary dataset is GoEmotions (Demszky et al.,2020), a manually annotated corpus
of 58,009 English Reddit comments labeled for 27 fine-grained emotion categories plus Neutral. The
taxonomy comprises 12 positive, 11 negative, and 4 ambiguous categories, enabling analyses along
both valence-aligned dimensions and discrete categories. Each comment was annotated by 3 or 5
independent raters (82 raters in total). We restrict our analyses to single-label examples exhibiting
multi-rater agreement (~83% of examples). As the largest manually annotated, fine-grained English
emotion dataset to date, GoEmotions is a natural choice for our study.

As a secondary dataset to probe parallels between text-derived and neural emotion representations,
we also run experiments on FACED (Chen et al.,[2023), a large, open EEG resource with recordings
from 123 participants using 32 electrodes (10-20 system). Participants watched 28 emotion-eliciting
video clips spanning nine categories—four positive (amusement, inspiration, joy, tenderness), four
negative (anger, fear, disgust, sadness), and one neutral. We use FACED to test whether the geomet-
ric structure we observe in LLM embeddings also exhibits potential similarities with structure seen
in neural EEG responses, thereby further investigating a potential link between affective artificial
and natural cognition.

4.2 SEMANTIC ANALYSIS OF EMOTION REPRESENTATIONS

In our layer-by-layer activation analyses (see Apx. [A]for further details), we found that mean pair-
wise emotional separability generally rose toward the middle layers while exhibiting a slight drop
at the final layers. Additionally, we found that Gemma-2-9B exhibited significantly higher activa-
tion separability compared to Mistral-7B, with mean test accuracies in the >0.9 range across all
layers compared to ~0.55 to ~0.89 in Mistral-7B. This similarly aligns with Gemma-2-9B’s greater
LLM emotion recognition performance in the initial emotion classification setting, with an estimated
~25.9% correct classification rate in Gemma-2-9B compared to ~17.0% in Mistral-7B.

The latent representations obtained with classical MDS show that LLMs do indeed learn coherent
representations that mirror logical semantic structure. Figure 2| shows the 2D projections of the
classical MDS embeddings for Gemma-2-9B and Mistral-7B, respectively; both models exhibit clear
semantic clustering, with positive emotions (joy, love, gratitude) clustering together in the upper-
right quadrant and negative emotions (sadness, anger, disgust) grouping in the upper-left quadrant.

4.3 COMPARISON WITH VALENCE-AROUSAL MAPS

On a qualitative level, we observe notable similarities between our internal latent space represen-
tations and valence-arousal organization from the psychology literature. We find that the learned
emotion structure (Figure 2 across both LLMs appears to mimic the “V”-shaped parabolic emotion
layout, with neutral emotions positioned approximately at the vertex and positive (and negative)
valences clustering together along a dual “arm” structure. This semantic organization is visible in
virtually all Gemma-2-9B layers and all but the early layers of Mistral—7Bﬂ

These early Mistral-7B layers generally exhibit very low activation space emotion separability (see Apx.
[A), so the lack of semantic geometry here is consistent with the general observation that early Mistral-7B layers
do not yet encode any coherent affective structure.
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Figure 2: 2D classical MDS embeddings of internal latent emotion representations in Gemma-2-9B
(left) and Mistral-7B (right). Layers chosen correspond to peak separability (Gemma-2-9B Layer 20,
Mistral-7B Layer 27) and are representative of overall patterns observed throughout. Both plots are
anchored to fixed orientations with neutral at the origin; colors correspond to the given GoEmotions
taxonomy, with kNN background shading by valence included.

Beyond our qualitative support, we conduct a quantitative statistical test to compare our learned
LLM representations against conventional valence-arousal maps. In particular, we compare the 2D
MDS emotion embedding at each model layer with the map produced by third-party valence-arousal
scores (constructed systematically by independent human raters) from the widely-used ANEW
benchmark database from Bradley & Lang|(1999). (We conduct our analyses using the 17 of the 28
classes in GoEmotions that are simultaneously covered in ANEW.) We then center both the MDS
coordinates and the ANEW valence-arousal coordinates and align the MDS coordinates via scaled
orthogonal Procrustes (single rotation and uniform scale), yielding fitted points corresponding to
the MDS LLM latent representation. The test statistic is the Procrustes R?, which measures the
proportion of variance in the centered target configuration explained by the fitted configuration;
significance is evaluated under a label-permutation null that shuffles the MDS emotion labels, re-
computing the alignment and R? on each of 2,000 permutations. We compute one-sided p-values of
the observed R? relative to this null under emotion label permutation. (This procedure is invariant
to arbitrary MDS orientation/scale and does not assume metric validity of the separability matrix;
inference derives entirely from permutation.)

We find that 36 of 42 layers in Gemma-2-9B and 17 of 32 layers in Mistral-7B (including all of
the final 14 layers in Mistral-7B) exhibit statistically significant alignment with the ANEW valence-
arousal scores, providing additional quantitative evidence that the learned LLM latent representa-
tions exhibit semantically coherent structure.

4.4 COMPARISON WITH NEURAL DATA

To further strengthen our claim of similar structure between human affective processing and LLM
internal representations, we conducted an additional parallel analysis exploring whether similar se-
mantic representations of emotion emerge in human brainwave data. Using affective emotional
data from 123 human subjects across 32 EEG channels (28 individual clips covering nine distinct
emotions) from the FACED dataset (Chen et al., 2023)), we obtained novel findings uncovering the
internal emotional landscape present in human neural data. We employed an experimental design
that closely mirrored our LLM analysis: we trained pairwise logistic regressions on emotional clip
classification and translated statistically significant test discriminatory accuracies into neural dis-
tances. (Statistical significance was computed via label permutation with a 0.05 p-value cutoff to
account for the inherent noise present in neural data.) To address the high dimensionality of human
brainwave data, we binned the neural signals into mean and variance summary statistics correspond-
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ing to conventional neural frequency bands (delta, theta, alpha, beta, and gamma) before performing
pairwise logistic regressions. The resulting distances informed a downstream classical MDS analy-
sis depicting the latent geometry of emotions in affective EEG data.

MDS Visualization of Clip Distances MDS Visualization with KNN Background
Based on frequency Band Features Based on frequency Band Features
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Figure 3: We find that a similar parabolic “V”-shaped emotion layout exists in human brainwave
data, corroborating a link between human cognition and LLM affective emotion processing. Left
panel depicts individual affective samples colored by valence; right panel depicts center of mass
points for each emotion label alongside kNN shading by valence.

As shown in Figure[3] the embedding space exhibits a parabolic, “V”-shaped configuration. Neutral
emotions are positioned near the vertex of the structure, while emotions with positive and negative
valence again diverge along two distinct arms. This parallel suggests that the structural patterns
observed in LLM representations may reflect principles of emotional representation that also char-
acterize human neural activity, offering additional empirical support for the link between human
affective cognition and learned representations in LLMs.

5 EVALUATING GEOMETRIC STRUCTURE

Our analyses in the previous section are based on a linear embedding assumption via classical MDS.
To further probe the intrinsic geometry of LLM emotion representations, we conduct two quantita-
tive analyses. First, we assess the dimensionality of pairwise emotion distances by examining the
eigenspectrum of the classical MDS Gram matrix. Second, we investigate the manifold hypothe-
sis using Isomap (Tenenbaum, [1997)), constructing a k-nearest neighbor graph, estimating geodesic
distances, and embedding them with classical MDS.

Our eigenspectrum analyses, conducted across each individual layer of both Gemma-2-9B and
Mistral-7B, reveal a generally diffuse rather than conclusively low-dimensional geometry. (A rep-
resentative example spectrum is shown in the left panel of Figure f]) Under various monotone
dissimilarity mappings (D;; = acc;; and D;; = max(0,2 - acc;; — 1)), the participation ratio re-
mains high (Gemma-2-9B ~ 17, Mistral-7B ~9-14), indicating that variance appears spread across
many eigenmodeﬂ We do acknowledge, however, that much of our eigenstructure stems from our
pairwise logistic-regression setup, and thus we assess not just large eigenvalues but also attempt
to identify unusually large eigengaps. We do so via a statistical eigengap test where we evaluate
scale-invariant ratios 1, = Ag/Ag+1 between ordered eigenvalues against a permutation-generated
null. This null distribution is generated by shuffling the off-diagonal of D (symmetry preserved),
and we flag eigenvalues where the observed ratio falls in the high tail (py,; < 0.05). In general,
our permutation test results (assessing prominence from the eigenspectrum bulk) appear generally
consistent with a diffuse overall structure and no definitive fixed rank. We do find that Gemma-2-9B
shows a recurring significant first eigengap with 16 out of 42 layers meeting a significance threshold

3We note that as our dissimilarity metric is merely distance-like, we do observe occasional negative eigen-
values in our spectrum; however, only 1-2 negative eigendirections generally appear per layer, and these com-
pose less than 1% of overall variance mass across virtually all layers exhibiting emotional separability.
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Eigenspectrum from Classical MDS: Gemma-2-9B, Peak Layer
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Figure 4: Representative examples of a classical MDS eigenspectrum (left) and an Isomap manifold

visualization (right).
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Figure 5: Isomap (left) unrolls the parabolic structure of the emotion data manifold in the rank-1
setting, resulting in improvements in capturing structure over classical MDS (right). An artificial
y-axis jitter is introduced for label visibility, and we include kNN background shading by valence to
illustrate improved semantic coherence (left) under Isomap.

at k = 1, consistent with a dominant valence-like axis; we note, however, that this gap does not by
itself establish any sort of fixed intrinsic dimension, but rather points to a recurring tendency toward
a prominent individual axis of variation.

Our complementary Isomap evaluations allow us to probe for potential nonlinear manifold structure.
For each layer, we constructed kNNE| graphs over the pairwise separability matrix |d’|, computed
geodesic distances, and compared Isomap against a classical MDS (Euclidean) baseline via two
diagnostics: (i) relative trustworthiness (see Apx. |B|for formal definition) of local neighborhoods,
and (ii) divergence between geodesic and Euclidean distances. On the overall trustworthiness front,
we find generally minimal (i.e., < 0.03) differences in trustworthiness between Isomap and classical
MBDS across ranks and choices of k—with the exception of the rank-1 embedding, for which Isomap
demonstrates a median trustworthiness increase of 0.161 in Gemma-2-9B and 0.127 in Mistral-
7B. We speculate that this rank-1 improvement is due to the aforementioned parabolic “V’’-shaped
structure of the emotion data manifold, which Isomap naturally captures in “unrolled” form in the
1D setting as shown in Figure 5}

In terms of discrepancies between geodesic (Isomap) vs. Euclidean (classical MDS) distances, we
observe evidence consistent with modest nonlinearity. Specifically, distance ratios (i.e., geodesic /

*We select the Isomap k parameter to maximize trustworthiness.
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Euclidean) span from 1.00 to 1.80 from the tenth to ninetieth percentiles in Gemma-2-9B and 0.80 to
1.42 in Mistral—7BEl These results suggest that the LLM emotion spaces are almost Euclidean: high-
rank, diffuse, and lacking strong low-dimensional curvature. The manifold nonlinearities that do
appear in higher rank spaces appear consistent with the natural parabolic bending of valence—arousal
space (e.g., see Figure[d] right panel, in addition to Figure[5); the emotion data manifold appears to
exhibit a natural mode of curvature (due to the correlation between valence intensity and arousal)
that manifests in LLM latent representations. On the whole, however, nonlinear manifold structure
does not appear strong enough to render Euclidean representations ineffective as a basis for analysis.

Table 1: Mean trustworthiness improvement using Isomap over classical MDS per rank d

Model d=1 d=2 d=3 d=14 d=5 d=6 d=7 d=28
Gemma 0.1552 -0.0013 -0.0010 0.0106  0.0127 0.0199 0.0238  0.0223
Mistral ~ 0.0994 -0.0241 -0.0263 -0.0113 -0.0046 0.0005 -0.0036 -0.0070

6 APPLICATIONS IN UNCERTAINTY QUANTIFICATION

During our pairwise logistic regression tests, we also saved activations corresponding to LLM mis-
classifications. Unlike the correct activation setting, where each activation is associated with a sin-
gle emotion, each misclassification is linked to two emotions: the model outputted emotion, and
the ground-truth GoEmotions label. Under a naive assumption of no semantic affective linkages,
one might expect the misclassified activations to lie close in activation space to the “correct” activa-
tions for the LLM-outputted class. However, we instead observe a remarkable phenomenon where
these misclassified activations instead lie in between the two emotions to which they are linke(ﬂ;
that is, the “misclassified” activations hover much closer to the separating hyperplane between the
two emotions (as defined by the corresponding pairwise logistic regression) than the “correct” acti-
vations do. We note that this phenomenon is not tautological, as we only evaluate distances to the
separating hyperplane in terms of correct fest samples and misclassified activations, neither of which
were included in the original logistic regression training data.

We can exploit this observation to generate practical utility by training a second round of pairwise
logistic regression models on per-layer activation-to-hyperplane distances. Our work in this pre-
dictive uncertainty quantification setting is motivated by the potential benefit of detecting LLM
emotion processing misclassifications—the core concept, here, is to use the distance in activation
space associated with an LLM prediction from the separating hyperplane between two classes as a
measure of LLM “confidence” in that prediction. We restrict our analyses to emotion pairs with at
least 25 correct and 25 misclassified samples in the data, resulting in 180 viable binary classification
problems (3,858 correct samples vs. 8,748 misclassified) for Gemma-2-9B and 122 for Mistral-7B
(5,254 correct vs. 15,216 misclassified) under a 60:20:20 train-val-test split. We use validation data
in order to calibrate the logistic regression models, mapping raw hyperplane distances across all
layers to well-calibrated probability estimates of correctness.

Our trained uncertainty models post 77.6% accuracy (0.813 AUC-ROC) on Gemma-2-9B and 85.7%
accuracy (0.871 AUC-ROC) on Mistral-7B. Importantly, post-calibration quality in terms of pre-
dicted correctness probability is strong: we find expected calibration errors of 0.011 (Gemma-2-9B)
and 0.007 (Mistral-7B) on held-out test data. These results show that geometry-informed separating
hyperplane distance—based regressions yield well-calibrated, discriminative uncertainty estimates in
an LLM classification setting.

7 DISCUSSION

Our analyses reveal that LLM emotion representations exhibit coherent geometric structure that
aligns with affective models from psychology and neuroscience. Moreover, we show direct utility

SWe select the embedding dimension d via an elbow-esque method where we identify the first residual
variance drop less than 0.02.

SEarly layers lie slightly closer to the original prompt emotion, and late layers lie slightly closer to the
erroneous outputted emotion (see Apx. EI)
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Figure 6: Upper panels depict activation distance from separating hyperplane, with misclassifica-
tions lying closer to the boundary than correct classifications. Lower panels depict test results of
calibrated uncertainty quantification models, demonstrating robust calibration quality.

in the form of calibrated uncertainty models for LLM emotion processing, which leverage represen-
tation geometry to provide reliable estimates of predictive confidence.

Limitations First, it remains unclear whether the observed patterns may generalize beyond the
tested LLMs. Second, our use of pairwise logistic regressions for tractability purposes (i.e., to avoid
grappling with heavily class-imbalanced high-dimensional activation covariances) in conjunction
with MDS and [somap may not fully capture potential geometric intricacies; advanced geometric and
topological data analysis tools could possibly reveal nuanced relationships in future work. Third,
our primary GoEmotions dataset could have cultural or linguistic biases that may constrain the
generality of our findings.

Broader Impacts The parallels we uncover between LLM and human affective representations
highlight potential convergences between artificial and natural cognition, suggesting that geometric
priors rooted in human psychology may inform future model interpretability frameworks. On the
application side, our uncertainty quantification method illustrates a principled way to identify when
LLMs may be likely to misclassify, with potential downstream relevance to selective prediction,
human-in-the-loop systems, hallucination detection, and other safety-critical applications.

Reproducibility Statement To facilitate replication of our analyses, we provide an anonymized
repository containing code to reproduce all experiments, figures, and statistical tests at this link. De-
tailed descriptions of experiments, preprocessing steps, and statistical analyses are included through-
out the manuscript and in Appendix [B]
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A ADDITIONAL EXPERIMENTAL RESULTS

Figures [7] [8] and [0 depict further results from our pairwise logistic regression and classical MDS
experiments. The mean emotional separability between discrete emotion classes for each layer in
Figure[7)is measured via pairwise logistic regression test accuracies.

Mean Activation Logistic Reg ion Test A : G 2-9B Mean Activation Logistic Reg ion Test A : Mistral-7B
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Figure 7: Mean emotional separability across layers for Gemma-2-9B (left) and Mistral-7B (right).
Separability increases with depth before tapering off in the final layers, with Gemma-2-9B exhibiting
higher separability than Mistral-7B.
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Figure 8: MDS emotion layouts for final layers in Gemma-2-9B (left) and Mistral-7B (right).

Figure 9] depicts results from our statistical alignment test between the classical MDS embeddings
and established valence-arousal scores, showing results (R? and p-values) for two statistically sig-
nificant layers in Gemma-2-9B and Mistral-7B. Figure [I0] depicts layer-by-layer trends from our
pairwise logistic regressions on the out-of-sample misclassified pairs. More specifically, lower (or
more negative) y-axis values signify that activations are closer to the ground truth input emotion,
while higher values signify that activations are closer to the output emotion. Misclassified activa-
tions, as discussed in Section [} lie closer to the separating hyperplane than correct activations; as
shown in Figure [I0} activations trend away from the ground truth input emotion and toward the
model output emotion as model layers progress.

B ADDITIONAL EXPERIMENTAL DETAILS

GoEmotions Data The GoEmotions corpus used in this study contains the following emotion
categories: admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire,
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Figure 9: R? and p-values for the classical MDS LLM latent representations vs. established valence-
arousal scores.
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Figure 10: Layer-by-layer activation distances from output class vs. ground-truth input class. Higher
values signify relatively closer distances to the model output emotion class.

disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love,
nervousness, optimism, pride, realization, relief, remorse, sadness, surprise, and neutral.

For Mistral, the correct sample data distribution included 47 samples of admiration, 1293 of amuse-
ment, 509 of anger, 228 of annoyance, 275 of approval, 31 of caring, 123 of confusion, 312 of
curiosity, 29 of desire, 93 of disappointment, 373 of disapproval, 213 of disgust, 86 of embarrass-
ment, 218 of excitement, 201 of fear, 670 of gratitude, 203 of joy, 1048 of love, 35 of nervousness,
60 of optimism, 36 of pride, 89 of realization, 40 of relief, 744 of sadness, 291 of surprise, and 103
of neutral.

For Gemma, the correct sample counts were 742 for admiration, 1211 for amusement, 455 for
anger, 411 for annoyance, 216 for approval, 95 for caring, 481 for confusion, 675 for curiosity, 88
for desire, 439 for disappointment, 1148 for disapproval, 177 for disgust, 60 for embarrassment, 304
for excitement, 154 for fear, 678 for gratitude, 284 for joy, 300 for love, 37 for nervousness, 208 for
optimism, 36 for pride, 101 for realization, 55 for relief, 58 for remorse, 235 for sadness, 318 for
surprise, and 2212 for neutral.

As mentioned in Section ] we also conducted exploratory experiments with Qwen and LLaMA
models. Specifically, we ran our affective classification workflow on |(Qwen2.5-7B|and LLaMA-2-
7B, but found that neither model produced sufficient correct classifications (i.e., >100 across more
than three individual categories) on the GoEmotions dataset which are requisite for our downstream
analyses.
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Classification Routine We analyze Gemma-2-9B and Mistral-7B using AutoModelForCausalLM
at float16 precision. For single-label predictions, each classification prompt shuffles the vocabulary
of emotions to reduce positional bias. The prompt template is: “Classify this text into exactly one
emotion from this list: ... Text: {text} Emotion:”. The first token generated after the word “Emo-
tion:” is decoded and matched to the enumerated set, with unmatched predictions skipped from
activation saving. To capture internal activations, we register forward hooks on every transformer
block. The hooks extract hidden states, apply mean pooling across the sequence dimension to pro-
duce a single vector per layer, and store outputs as detached tensors. The shuffled emotion order is
reused to maintain consistency between prediction and activation passes.

Balanced pairwise training is carried out by constructing equal-sized datasets for every emotion pair
(es,¢€;). Concatenated data matrices X € R?™*H with binary labelsy € {0, 1} are split in an 80/20
ratio with stratification. Logistic regression models with maximum iterations of 1000 are trained
and evaluated, and we record training and test accuracy, decision margins, per-point correctness,
and sample counts to assist in downstream analyses.

Statistical Alignment Test As discussed in to align model-derived spaces with our external
valence-arousal ratings for our statistical alignment test, we use an orthogonal Procrustes transfor-
mation. Let Y € R™*2 denote the valence-arousal matrix, centered column-wise, and let X denote
the corresponding model embedding. The alignment is defined as

min |aX.R — Y.||%,
RER?%2,RT R=I, acR

where X, and Y, are row-centered. The solution is obtained by singular value decomposition
XY, =UXVT, with R = UV and a = tr(X)/|| X.||%. The alignment coefficient of deter-
mination is reported as
R —1_ |aX.R —Ye|%
pree Vel

2

Significance of alignment is assessed via permutation tests. Row labels of Y are permuted and R,

is recomputed for 7' = 2000 shuffles. With observed value R, the p-value is

obs?

T
1S R 2 RS
o T+1 ’

with reproducibility guaranteed via fixed random seed. After alignment, axis-wise correlations
are calculated between aligned Xy, and Y., with Pearson correlations ry, for valence and 7y, for
arousal; these metrics are shown in Figure[J] These correlations are also subjected to permutation
tests that re-align for each shuffle, ensuring axis assignment does not bias significance.

p

Practical safeguards include mean pooling across sequence length to prevent padding sensitivity, im-
putation of missing similarity values by the global mean to avoid distortions, clamping of negative
eigenvalues from double-centering to zero for stability, and centering of both X and Y prior to Pro-
crustes analysis so that explained variance is measured relative to mean-centered data. Orthogonal
Procrustes rotations may arbitrarily swap or rotate axes, so axis correlations are always computed
post-alignment with refitting under permutation to ensure robustness.

Trustworthiness Definition Trustworthiness (Venna & Kaski, 2001) measures how well local
neighborhoods in the high-dimensional data are preserved in a low-dimensional embedding. It
ranges from O to 1, with 1 indicating perfect preservation of k-nearest neighbors. More specifi-
cally, we compute:

T(H) = 1= gy 2 3 (v k). m

i=1 jeU;
where n is the number of samples, U; = N°¥(i) \ N l,;igh(i) are intrusions (neighbors in the em-

bedding but not in the original space), and r;(j) is the rank of j with respect to 4 in the original
space.
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More on Uncertainty Quantification To make our uncertainty quantification methods more con-
crete, we include a more detailed description of their use case. For a given labeled GoEmotions
prompt, we consider the likelihood that the LLM output is indeed the ground truth against an al-
ternative where the LLM output is instead another erroneous emotion. Our calibrated logistic re-
gression model (trained across hyperplane distances from all activation layers) outputs an estimated
probability that the LLM output matches the ground truth emotion.

Our results (as discussed in Section [6) indicate that the probability produced is not only discrim-
inative of correct versus incorrect classifications, but also well-aligned with empirical frequencies
of correctness. In other words, a sample assigned a predicted probability of 0.8 is correct roughly
80% of the time. This calibration property is quantitatively reflected in the low expected calibration
error (ECE) achieved by our models: 0.011 for Gemma-2-9B and 0.007 for Mistral-7B on held-out
test data. These low ECE values confirm that predicted probabilities can be interpreted directly as
trustworthy uncertainty estimates.

Compute All experiments were conducted using NVIDIA H200 GPUs with PyTorch 2.5.1 and
CUDA 12.1.

LLM Statement Large language models were used to assist in the preparation of this work.
Specifically, they were employed for code generation (via|Cursor) and for light formatting of draft
text. All experimental design decisions, analyses, and interpretations were made by the authors.

Licenses
Model/Dataset - License Notes
Mistral-7B-v0.1 (Jiang et al.,[2023) | Apache License 2.0 | See here for license
Gemma-2-9B (Team et al.| [2024) Gemma License See here for license

GoEmotions (Demszky et al.,2020) | CC BY 4.0 (data) See here for license
FACED (EEG) (Chen et al.L2023) CC BY 4.0 (data) See here for license

Table 2: Licenses for models and datasets used in our experiments.
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