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Abstract

Discrete visual tokenizers transform images into a sequence
of tokens, enabling token-based visual generation akin to
language models. However, this process is inherently chal-
lenging, as it requires both compressing visual signals into
a compact representation and discretizing them into a fixed
set of codes. Traditional discrete tokenizers typically learn
the two tasks jointly, often leading to unstable training,
low codebook utilization, and limited reconstruction qual-
ity. In this paper, we introduce CODA (COntinuous-to-
Discrete Adaptation), a framework that decouples compres-
sion and discretization. Instead of training discrete tok-
enizers from scratch, CODA adapts off-the-shelf continuous
VAEs—already optimized for perceptual compression—into
discrete tokenizers via a carefully designed discretization
process. By primarily focusing on discretization, CODA en-
sures stable and efficient training while retaining the strong
visual fidelity of continuous VAEs. Empirically, with 6×
less training budget than standard VQGAN, our approach
achieves a remarkable codebook utilization of 100% and
notable reconstruction FID (rFID) of 0.43 and 1.34 for 8×
and 16× compression on ImageNet 256× 256 benchmark.

1. Introduction
The field of AI-generated content (AIGC) has witnessed sig-
nificant progress in recent years. In natural language process-
ing, text generation has been mainly unified by the paradigm
of next discrete token prediction [1, 6, 35, 45]. This contrasts
with developments in computer vision, where the debate be-
tween continuous and discrete generation paradigms has yet
to reach a conclusion. While continuous diffusion models
dominate the field [5, 31, 32, 37], discrete token-based ap-
proaches [7, 8, 29, 41, 42] are increasingly gaining interest
due to their computational efficiency [28, 30, 42] and promis-
ing potential for unifying tasks across language modeling
and multimodal understanding [47, 50, 52, 53].
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Figure 1. (a) Conventional discrete VQ tokenizers learn to com-
press and discretize inherently continuous visual signals into codes
simultaneously. This lead to multiple challenges in training and the
corresponding unsatisfactory latent space poses a bottleneck that
limit the performance of discrete token-based generation models.
(b) Our proposed CODA tokenizer leverages continuous VAEs
for compression, directly discretizing the latent space. (c) Quan-
titative comparisons between VQGAN [11] and our proposed
CODA tokenizer.

One defining characteristic of discrete methods is the
need for a discrete tokenizer, which converts visual signals
into a discrete format akin to language tokens. This pro-
cess, however, is non-trivial, as it requires simultaneously
compressing visual signals and discretizing them into a set
of codes. In contrast, continuous VAEs focus solely on
mapping visual signals into a compressed continuous latent
space, avoiding this added complexity. Previous research
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has identified various problems in standard VQ-based dis-
crete tokenizers, including unstable training [3, 54, 61], low
codebook utilization [12, 16, 60], and limited performance
even under extensive training [11, 49]. For example, while
VAE used in state-of-the-art diffusion models [5] achieves
0.17 reconstruction FID (rFID) on ImageNet [9], the stan-
dard VQGAN [11] tokenizer achieves only 4.98 rFID. In
response to these challenges, recent research has explored
many advanced techniques for discrete tokenization, such
as embedding-free tokenization [25, 26, 49, 55], rotation
trick [12], and 1D tokenization [13, 57].

Despite these recent advances, discrete tokenizers are still
required to learn compression and discretization concurrently
and are often regarded as mutually exclusive from continuous
VAEs. In this paper, we challenge this dichotomy and pro-
pose a novel CODA (COntinuous-to-Discrete Adaptation)
framework that decouples compression and discretization.
Instead of training a discrete tokenizer to handle compression
and discretization in tandem, we demonstrate that off-the-
shelf continuous VAEs, which are already highly optimized
for perceptual compression, can be directly adapted into dis-
crete tokenizers through a carefully designed discretization
process (see Tab. 1 and Figure 2). In this way, CODA re-
tains the strong visual fidelity of continuous VAEs while
enabling discrete representation through a secondary trans-
formation. Moreover, by focusing primarily on discretiza-
tion, our method ensures more stable and efficient training,
leading to significantly higher codebook utilization and im-
proved reconstruction performance.

Building upon this conceptual framework, we craft a set
of CODA tokenizers, instantiated through systematic adap-
tations on the 16× compression MAR [21] and 8× com-
pression FLUX [5] VAEs. Quantitative evaluations demon-
strate that CODA achieves competitive performance of 1.34
and 0.43 rFID on the ImageNet dataset, respectively, while
maintaining full codebook utilization. Moreover, our pro-
posed disentangling leads to high computational efficiency
in training, enabling a reduction of 6× in training compute
compared to representative prior VQGAN training settings.
Empirical results also demonstrate that, when integrated with
the CODA tokenizer, representative discrete token-based
generation methods, i.e. MaskGIT [7] can be significantly
improved to achieve overall competitive performance against
main stream continuous and discrete generation paradigms.

Our main contributions can be summarized as follows:

1. We challenge the conventional dichotomy of continu-
ous VAEs and discrete tokenizers, and present a novel
prospective to designing discrete tokenizers by leveraging
continuous VAEs for compression while learning solely
effective discretization.

2. Motivated by this approach, we craft a series of CODA
tokenizers, reaching competitive reconstruction quality
while requiring only a fraction of training time compared

to standard settings.
3. Combining with MaskGIT, we demonstrate that our

CODA tokenizer unlocks enhanced and competitive per-
formance in discrete token-based image synthesis.

2. Related Work

2.1. Continuous and Discrete Image Synthesis
Continuous approaches to image synthesis, i.e. latent diffu-
sion models [5, 31, 32, 37] operate on a latent space sampled
from a Variational Autoencoder (VAE) [18]. Images are first
mapped from pixel space into this compressed representa-
tion and then subjected to iterative denoising via diffusion
models. At each step, a trained neural network refines the
latent by removing noise and rebuilding semantic structure
and fine details. Once denoising is complete, the latents are
decoded back into pixel space to generate the final image.
This approach has been proven highly successful, enabling
the generation of high-quality, photorealistic images.
Discrete approaches to image synthesis utilize discrete token
representations as means for generative modeling. Images
in pixel space are first transformed using image tokenizers
[11, 44] into discrete tokens. Multiple paradigms build upon
this discrete space and iteratively generate the predicted to-
ken combination, after which the tokens are decoded back
to pixel space. Autoregressive [19, 41, 56] models draw
inspiration from language modeling, treating images as a
sequence of discrete tokens and generating them by itera-
tively predicting the next token in the sequence. MaskGITs
[7, 8, 29] models leverage the bi-directional nature of images
by enabling parallel decoding. These models simultaneously
unmask a combination of discrete tokens at each forward
step, improving the efficiency and speed of the generation
process. Visual autoregressive [42] models are inspired by
the coarse-to-fine approach in image synthesis and adopt
next-scale prediction to predict a combination of discrete to-
kens from the same scale at each step. Discrete token-based
generation is gradually gaining popularity and becoming a
promising approach to visual synthesis, as it is more effi-
cient in terms of inference speed, aligns and adapts to similar
paradigms in natural language processing [33, 34, 43], multi-
modal understanding [22, 47, 53] and Embodied AI [51].

2.2. Discrete Image Tokenizers
Image tokenizers play a foundational role in discrete visual
generation. Extensive works have been dedicated to improv-
ing performance, training stability, compressive representa-
tion and scalability. The foundational work of VQVAE [44]
and VQVAE2 [36] introduced the paradigm of neural dis-
crete representation learning, employing straight-through
estimators to train quantized models in an end-to-end frame-
work. Building upon this, VQGAN [11] refines the training
recipe of VQVAE, improving the fidelity of detailed image
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reconstruction and enabling high-resolution image genera-
tion. RQ-VAE [19] further proposes residual quantization
to reduce quantization error caused by discrete tokeniza-
tion. FSQ [26] and LFQ [25, 55] investigate the impact of
embedding-free tokenization and scaling codebook size to
at most 218. VQGAN-LC [60] addresses the challenges in
scaling codebook sizes by incorporating both pretrained vi-
sion features as codebook entries and training projectors to
mitigate low utilization rates and mode collapse. IBQ [39]
introduces joint optimization of all codebook entries during
each forward-backward pass, further enhancing performance
with large codebook sizes. In a parallel research trajectory,
SEED [13] and TiTok [57] explore 1D tokenization, which
facilitate high compression ratios.

3. Preliminaries of Discrete Vector Quantiza-
tion

In this section, we give a preliminary overview of discrete
vector quantization. Vector quantization is a classical method
which aims to project and compress visual signals into a dis-
crete latent token space formulated by a fixed codebook
C ∈ Rn×d, where n and d are the size and dimension, re-
spectively. A typical vector quantized tokenizer consists of
three modules: an encoder E , decoder D and quantizer Q.
For a given image I ∈ R3×H×W , it is first encoded by the
encoder E into a compressed feature map f ∈ Rh×w×d, then
projected by Q into z in the discrete latent space spanned by
C. Finally, z is decoded back to pixel space using D.

As the key component for discretization, the vector quan-
tizer Q typically assigns features to codes by selecting the
nearest neighbor z based on Euclidean distance in Rd space.

z = Ck ∈ Rd, k = argmin
c∈C

∥f − c∥ (1)

During training, the non-differentiable argmin operator
poses a challenge in estimating gradients. To circumvent this,
the straight-through estimator (STE) [4] is employed to back-
propagate the gradients back to the encoder, ensuring that
the encoder and selected code are updated simultaneously.

zquant = f + sg[z − f ] (2)

where sg[] is the stop-gradient operation.
This basic quantization approach has several limitations:

Simultaneously updating the encoder, decoder, and quantizer
leads to unstable training and makes the model highly sensi-
tive to hyper-parameters and restart schemes, as the encoder,
decoder and codebook must adapt to each other’s evolving
distributions [3, 54, 61]. Assigning codes based solely on Eu-
clidean distance can cause codebook collapse and inefficient
code utilization as the codebook size increases [12, 16, 60].
Furthermore, the training process requires considerable time
and is slow to converge [49].

Method Quant. Err↓ rFID↓ PSNR↑ SSIM↑ Util.↑

Continuous VAE [21] - 0.69 24.9 0.716 -

Vector Quant. 0.181 41.52 18.9 0.461 49%
+ Residual Quant. 0.094 14.23 20.6 0.533 51%
+ Attention-based Quant. 0.065 7.06 21.4 0.571 100%
+ Adapt VAE 0.001 1.34 22.2 0.602 100%

Table 1. Summary of our main ablation results in building
the CODA tokenizer. We start from an off-the-shelf continuous
VAE [21] (marked in gray) and progressively introduce design
components for effective tokenization. The codebook size is fixed
to 65536. Quant: quantization. Util: utilization of codebook.

4. CODA Tokenizer

Given a continuous VAE, a straightforward solution for con-
verting it into a discrete tokenizer is to directly employ well-
established quantization methods, e.g. vector quantization
(VQ) to its latent space. Specifically, as discussed in Sec-
tion 3, a set of codebook embeddings can be initialized and
optimized to approximate the continuous latents at their best.
However, this naive approximation incurs significant perfor-
mance drop compared to the original continuous VAE, as
shown in Tab. 1. In this section, we carefully inspect the
difficulties in discretizing a continuous VAE, and present
corresponding solutions step by step.
Problem I: insufficient representational capacity. To an-
alyze the reason behind the performance drop, we first vi-
sualize the continuous latent space of the pretrained VAE
and the discretized space after applying vector quantization
in Figure 3 (a) and (b). Results indicate a substantial infor-
mation loss during the VQ approximation process. More
specifically, continuous features span across large domains
in the latent space, covering not only high-density areas in
the center but also marginal regions that are less populated.
In contrast, discrete features quantized by VQ occupy only
sparse points in the latent space. This outcome is not surpris-
ing, though, as the number of features that VQ can represent
is inherently limited by the number of code embeddings in
codebook. Though we have already employed an extensive
codebook size of 65536, exceeding that of many represen-
tative VQ tokenizers [11, 41, 49, 54], the representational
capacity still remains far from sufficient to capture the full
diversity of the densely populated continuous latent space.
Solution: residual quantization. To overcome the represen-
tational limitations inherent in vector quantization, we draw
inspiration from similar tasks that approximate continuous
functions in numerical analysis. A common strategy to en-
hance the representational capacity of estimations involves
decomposing the target function into the combination of
multiple basis functions. For instance, k-th spline interpola-
tion decomposes a continuous function f(x) and represent it
using k + 1 discrete coefficients, where increasing the level
k corresponds to enhanced representation capacity, allowing
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Figure 2. Illustration of our CODA tokenizer. (a) a residual quantization process of L levels iteratively refines the approximation of
a continuous VAE vector f through a composite of multiple quantization layers, thus progressively minimizing the quantization error.
Meanwhile, as the continuous VAE vector is approximated by a combination of L discrete codes, the representational capacity is significantly
enlarged. (b) the attention-based quantization process frames discretization as a retrieval task. Continuous features and codebook embeddings
are projected and normalized onto a normed hypersphere, where the softmax attention matrix is computed to determine the confidence of
code selection. As codes compete within the softmax attention framework, this approach ensures a sparse and unambiguous assignment.

(a) Continuous Latent Space

(b) Approximate by Vector Quantization

(c) Approximate by Residual Quantization

Figure 3. Visualization of latent space approximation: (a) the
original latent space of the continuous VAE, (b) latent space approx-
imated by vector quantization and (c) latent space approximated by
residual quantization.

for more precise approximations of the original function:

fi(x) ≈
k∑

l=0

zi,l(x− ti)
l, x ∈ [ti, ti+1] (3)

Inspired by this, we employ a conceptually similar tech-
nique, namely residual quantization [19] in place of vector
quantization. Residual quantization progressively refines
the approximation of a continuous VAE vector f through a
composite of multiple quantization layers, with each layer
building upon the residual of the previous one:

εl+1 = εl − z(l) (4)

where εl and z(l) represents the approximation error and dis-
crete code values at the l-th layer. In this way, quantization
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Figure 4. Effect of residual quantization levels on tokenizer per-
formance. With more levels of residual quantization, quantization
error is consistently minimized, and the reconstruction performance
(measured by rFID) steadily improves.

error can be iteratively minimized. At the same time, since
the continuous vector is now represented by a combination
of discrete tokens at L levels:

f ≈
L∑

l=1

z(l) (5)

the number of possible combinations grows exponentially
with more quantization levels, thus providing a significantly
larger representational capacity.

We explore the effect of residual quantization on approxi-
mating a continuous latent manifold. As shown in Figure 3,
the latent space generated by residual quantization closely
resembles that of continuous latent spaces, suggesting an
increased representational capacity. As shown in Figure 4,
the quantization process progressively refines at each level,
leading to a consistent reduction in quantization error, which
corresponds to a similar decrease in rFID. Finally, when
the number of quantization levels reaches 10, the quantiza-
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(a) Assignment confidence heatmap for vector quantization

Discrete Code

Co
nt

in
uo

us
 Fe

at
ur

e

0.0

0.1

0.2

0.3

0.4

0.5

As
sig

nm
en

t C
on

fid
en

ce

(b) Assignment confidence heatmap for attention quantization

Figure 5. Visualization of top assignment confidence scores
for 16 randomly selected continuous VAE features. For vector
quantization, we visualize the distance of codes to the continuous
feature, with lower distance representing higher confidence.

tion error drops from 0.181 to 0.094, while rFID improves
significantly from 41.52 to 14.23, as reported in Tab. 1.
Problem II: ambiguous code assignment. Although resid-
ual quantization has significantly improved the precision of
latent space approximation, thereby enhancing reconstruc-
tion performance, we find that codebook utilization remains
insufficient. As shown in Tab. 1, nearly half of the codes
remain unused during quantization. To further investigate
this, we randomly select 16 continuous VAE features and
for each, we visualize the Euclidean distance of its near-
est 50 neighbors from left to right. Results reveal a clear
pattern of ambiguity in code assignment. Specifically, for
some features, the assignment choice has minimal impact, as
these features are similarly related to multiple code vectors,
leading to effective approximation regardless of assignment.
Conversely, other features are far from all codes, resulting
in high quantization error irrespective of assignment choice.
Consequently, the imbalance in code distribution contributes
to insufficient utilization of the codebook.
Solution: attention-based quantization. We hypothesize
that this ambiguity arises from the lack of sparsity in the
quantization process: Ideally, sparse assignment schemes
ensure that a continuous feature is strongly associated with a
single discrete code with high confidence, while remaining
weakly associated to all other codes with low confidence.
However, in VQ based approaches, assignments are not
sparse, as features are often closely related to multiple codes
in Euclidean space. This lack of sparsity makes the assign-
ment highly sensitive to small variations in distance, result-
ing in ambiguous assignment. During training, the selected
codebook indices are simply pulled toward their respective
clustering centroids. However, due to the lack of sparsity,

(a) Vector Quantization

(b) Attention-based Quantization

Figure 6. Visualization of training dynamics. In attention quanti-
zation, codes are pushed to fully occupy the latent space, whereas
vector quantization shows limited coverage of latent space.

multiple codes may be drawn toward the same centroid, re-
sulting in under-utilization of the codebook. As a result,
codes tend to converge around limited centers, rather than
adequately covering the entire latent space. Visualization
of vector quantization training dynamics, shown in Figure 6
(a), confirms this process, where only a few codes are spread
across the latent space while others form a single clique.

Motivated by these observations, we propose a novel
quantization mechanism that promotes sparse assignment,
and further reduces quantization errors at each quantization
level. Drawing inspiration from the enhanced sparsity ob-
served in softmax attention schemes, we design a learnable
attention-based assignment strategy, as illustrated in Figure 2
(b). Given an encoded feature F and codebook C, the quan-
tizer maps them to a distance space using weights Wq and
Wk, respectively. The projected weights are then normal-
ized using RMSNorm [58], which projects the features and
clusters onto a normed hypersphere [23], and multiplied to
compute the distance matrix A using softmax attention.

Q = rms norm(FWq) K = rms norm(CWk) (6)

A = softmax(
QKT

√
d

) (7)

where d is the hidden dimension. Feature at each position is
assigned to the index with largest attention (i.e. similarity or
distance) in normed space. The assignment is propagated to
the codebook weights mapped by projection Wv:

F̂ = one hot(A)T (CWv) (8)

This design introduces a learnable mechanism for assign-
ing features to discrete codes with enhanced sparsity and
improved training dynamics. Attention-based quantization
frames discretization as a retrieval task, where the quantizer
learns to retrieve the most appropriate index from a large
codebook. Under this framework, different codes compete
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and suppress each other when calculating softmax attention
scores, enforcing sparse assignment. This is confirmed by
the visualization of confidence in Figure 5b (b). Addition-
ally, this approach delivers a push effect along with pull
during training: the chosen code index is pulled towards the
clustering centroids, reducing quantization error, while irrel-
evant codes are pushed away to other regions of the latent
space. This new dynamic ensures more effective codebook
usage and comprehensive coverage of the latent space, as
visualization of training dynamics in Figure 6 (b) illustrate.
Quantitative results in Tab. 1 shows that our the attention-
based assignment achieves a remarkable 100% codebook
utilization, and significantly improves the reconstruction
FID from 14.23 to 7.06.
Adapting VAE to the learned discrete space. Beyond ap-
proximating the continuous latent space with discrete codes,
we find that slightly adjusting the original VAE parameters to
accommodate the distribution shift induced by discretization
is also beneficial. Specifically, we incorporate LoRA [14]
parameters into the continuous VAE, allowing it to evolve in
tandem with the learning of the discretized latent space. As
shown in Tab. 4a, this adaptation reduces quantization error
to 0.001 and enhances the reconstruction quality, measured
by rFID, to 1.34. This significantly bridges the gap with the
original continuous VAE, which achieves an rFID of 0.69.
Implementation details. We follow the standard VQ-
GAN [11] design and train our tokenizer with a mixed com-
bination of losses:

L = Lrec + λpLp + λqLq + λadvLadv + λeLe (9)

where Lrec is the pixel-wise reconstruction loss, Lp is the
LPIPS [59] perceptual loss, Ladv is an adversarial GAN loss
passed through a StyleGAN-T discriminator [38], Le is an
regularization entropy penalty for encouraging codebook
usage. Lq is a combination of soft and hard commitment
and quantization loss proposed by [39]:

Lq =∥sg[zhard]− f∥2 + β∥zhard − sg[f ]∥2 (10)

+∥zsoft − f∥2 (11)

We calculate the quantization loss Lq and entropy loss Le at
each level, encouraging codes at each level to minimize the
quantization error and boosting codebook utilization.
Token-based generation. To verify the effectiveness of
our improved tokenizer, we integrate it with the representa-
tive token-based visual generation framework MaskGIT [7].
MaskGIT operates on a sequence of tokens z compressed
by a quantized autoencoder. During training, MaskGIT ran-
domly mask out a set of tokens using the special mask token
[MASK]. Based on the unmasked set M̄, the model predicts
the logits for masked token set M, then optimizes a BERT-
style [17] Masked Language Modeling (MLM) Loss

LMLM = −
∑

i∈[1,N ],mi=1

log p(zi|zM̄) (12)

where p(zi|zM̄) is the predicted logits of token index zi
based on the unmasked token set M̄ .

During inference, MaskGIT start from a fully masked se-
quence and decodes iteratively. During each step, the model
predicts logits for all masked positions and samples a portion
of most confident tokens to be unmasked according to a pre-
defined schedule. The final fully unmasked sequence is then
decoded back to pixel space using the tokenizer decoder.

5. Experiments
5.1. Experiment Setup
Datasets and evaluation metrics. We conduct our exper-
iments on the ImageNet dataset [9], specifically utilizing
images at a resolution of 256 × 256. Our study involves
both training our tokenizer and evaluating generative models
using this dataset. To assess the reconstruction quality of our
approach, we employ multiple evaluation metrics, includ-
ing reconstruction FID (rFID), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index Measure (SSIM).
These metrics provide a comprehensive evaluation of both
perceptual and pixel-level reconstruction accuracy.
Tokenizer training. Leveraging the continuous latent space
of pretrained VAEs, we utilize and freeze the encoder-
decoder weights from two standard continuous VAE: a 16×
MAR [21] VAE and a 8× FLUX VAE [5]. To adapt the con-
tinuous encoder-decoder to discrete codes, we implement
LoRA [14] modules exclusively on the convolution blocks
and finetune the added modules along with the quantizer
during training. In practice, we adopt a LoRA rank of 32
for both encoder and decoder. We follow a main stream
implementation of residual quantization introduced in [42]
and set the quantization level to 10. All models are trained
with an accumulated batch size of 512 for 10 epochs on the
ImageNet 256× 256 dataset with a 5e− 4 learning rate.
Generative model training. MaskGIT models are trained
for 500K steps with an accumulated batch size of 2048 on
the ImageNet 256 × 256 dataset with 4e − 4 learning rate.
In addition to training on the standard tokenized representa-
tion, we introduce learnable positional embeddings specific
to each quantization level. This modification enhances the
model’s ability to differentiate between tokens from differ-
ent levels of the residual quantization hierarchy, ultimately
improving the decoding process.

5.2. Main Results
Tokenizer performance. We present the reconstruction re-
sults in Tab. 2. There are three key observations from our
findings: First, our CODA tokenizer achieves competitive
performance with 0.43 and 1.34 rFID in 8× and 16× re-
duction settings, respectively, significantly outperforming
corresponding baselines in terms of reconstruction quality
and fidelity. Second, our tokenizer achieves a high utilization
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Method Ratio Codebook Size rFID ↓ PSNR ↑ SSIM ↑ Utilization (%) Training (iter)

VQGAN [11] 16 1024 7.94 19.4 0.500 44 300K
VQGAN [11] 16 16384 4.98 19.9 0.510 5.9 300K
DF-VQGAN [27] 16 12288 5.16 - - - -
DQVAE [15] 16 1024 4.08 - - - 250K
DiVAE [40] 16 16384 4.07 - - - -
VQGAN-LC [60] 16 16384 3.01 23.2 0.564 99 100K
VQGAN-LC [60] 16 100000 2.62 23.8 0.589 99 100K
LlamaGen [41] 16 16384 2.19 20.8 0.675 97 200K
RQVAE [19] - 16384 2.69 - - - 250K
BAE [48] 16 65536 3.32 - - - 2000K
MaskBit [49] 16 16384 1.61 - - - 1350K

CODA MAR 16 16384 1.43 22.0 0.594 100 50K
CODA MAR 16 65536 1.34 22.2 0.602 100 50K
MAR [21] VAE 16 - 0.69 24.9 0.716 - -

VQGAN† [11] 8 16384 1.14 23.4 0.670 5.4 -
ViT-VQGAN [54] 8 8192 1.28 - - - -
DF-VQGAN [27] 8 8192 1.38 - - - -
DiVAE [40] 8 16384 1.28 - - - -
OmniTokenizer† [46] 8 8192 1.11 24.0 0.752 100 -

CODA FLUX 8 65536 0.43 25.9 0.771 100 50K
FLUX [5] VAE 8 - 0.17 31.1 0.903 - -

Table 2. Quantitative reconstruction results on ImageNet 256× 256. Training iterations are uniformly converted and measured under
global batch size of 256 following [49]. Ratio represents compression rate between image and latent resolution. Results from referenced
continuous VAEs are marked in gray. † denotes training enhanced by additional web-scale data other than ImageNet.

rate of 100% with a large codebook of 65536, compared to
VQGAN’s utilization rate of 5.9% with 16384 codes. This
demonstrates that the combined approach of training in a
pretrained continuous latent space and employing attention-
based sparse quantization mechanisms prevents codebook
collapse and encourages high utilization, providing the poten-
tial for scaling to even larger scopes. Finally, our approach
requires substantially less training computation than all base-
line methods, achieving a 6× speedup compared to the rep-
resentative VQGAN training recipe. Additional qualitative
visualizations and comparisons are provided in Figure 7 (a).

Image generation. In Tab. 3, We compare our approach with
leading image generation paradigms, including continuous
diffusion-based methods, discrete MaskGIT, autoregressive
models, and visual autoregressive models. Our key observa-
tions are as follows: 1) Compared to other MaskGIT-based
models, our approach achieves a lower FID of 3.17, com-
pared to 4.92 for MaskGIT and 4.53 for MaskGIT-FSQ,
demonstrating enhanced generation quality delivered by a
more effective tokenization strategy. 2) Our model demon-
strates strong overall performance relative to other main
stream generation paradigms, with an FID of 2.66 compared
to 3.60 for LDM and 3.07 for LlamaGen. 3) Our approach
achieves high-quality generation results comparable to con-
tinuous methods while maintaining the superior efficiency of
discrete models, requiring fewer sampling steps. Additional

Method Type #Params Steps FID↓

ADM [10] Diff. 554M 250 10.94
LDM-4-G [37] Diff. 400M 250 3.60
DiT-L/2 [31] Diff. 458M 250 5.02
UViT-L/2 [2] Diff. 287M 50 3.40
LDM-4-G† [37] Diff. 400M 8 4.56
DiT-XL/2† [31] Diff. 675M 8 5.18
RQVAE-GPT [19] AR 480M 256 15.7
VQGAN-LC-GPT [60] AR 404M 256 15.4
ViT-VQGAN-GPT [54] AR 650M 1024 8.81
RQ-Transformer [19] AR 3.8B 64 7.55
LlamaGen-L-384 [41] AR 343M 576 3.07
VAR [42] VAR 310M 10 3.30
MaskGIT [7] Mask. 227M 12 4.92
MaskGIT-FSQ [26] Mask. 225M 12 4.53
MAGE [20] Mask. 230M 20 6.93
ENAT [28] Mask. 219M 8 3.53

CODA MaskGIT-L Mask. 195M 8 3.17
CODA MaskGIT-L Mask. 195M 32 2.66

Table 3. Quantitative generation results on ImageNet 256×256.
”-384” denotes images generated at 384 resolution and resized back
to 256 during evaluation. † denotes diffusion schedule augmented
by DPM-Solver [24].

quantitative text-to-image generation results and qualitative
results of generated images from our approach are demon-
strated in Tab. 5 and Figure 7 (b) respectively.
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Figure 7. Visualization of samples on ImageNet 256× 256. (a) Reconstruction results by CODA tokenizer. Compared with VQGAN,
CODA showcases higher fidelity and effectively preserves rich details. (b) Generated samples by combining CODA with MaskGIT.

Enc. Dec. rFID↓ PSNR↑ SSIM↑

✗ ✗ 7.06 21.4 0.571
✓ ✗ 5.75 21.3 0.551
✗ ✓ 1.59 22.1 0.604
✓ ✓ 1.34 22.2 0.602

(a) Comparison on effect of tuned weights.

Codebook Size rFID↓ PSNR↑ SSIM↑

1024 2.07 21.2 0.561
4096 1.76 21.7 0.582
16384 1.43 22.0 0.594
65536 1.34 22.2 0.602

(b) Comparison on effect of codebook size.

Norm rFID↓ PSNR↑ SSIM↑

w/o 1.87 21.51 0.570
LayerNorm 1.37 22.1 0.600
RMSNorm 1.34 22.2 0.602

(c) Comparison on effect of normalization.

Table 4. Ablation studies. We use CODA-MAR tokenizer and mark our default setting in gray
Method VQ-Diffusion U-Net U-ViT-S CODA MaskGIT-S
FID↓ 13.86 7.32 5.95 5.44

Table 5. Text-to-image generation on MS-COCO.

5.3. Ablation Studies

In this section, we present more ablation studies to justify
the effectiveness of our approach.

VAE parameters. We investigate the impact of fine-tuning
the encoder and decoder LoRA weights when adapting a
continuous VAE into a discrete tokenizer. To this end, we
implement tokenizer training with different configurations:
freezing both the encoder and decoder, training LoRA mod-
ules exclusively on the encoder, training LoRA modules
exclusively on the decoder, and training LoRA modules on
both the encoder and decoder. The results are presented in
Table 4a. Interestingly, we observe that adapting the encoder
and decoder affect performance differently. Specifically,
training a small number of parameters on the decoder leads
to noteworthy improvements, whereas training on the en-
coder yields only marginal gains. This observed asymmetry
in training modules align with our motivation that approx-
imating the discrete model closely to the continuous latent
space is sufficient to achieve competitive performance.

Effect of scaling codebook size. Results in Tab. 4b demon-
strate that our approach enables stable scaling of the code-
book size from 1024 to 65536, leading to a consistent im-

provement in tokenizer performance, with rFID steadily de-
creasing from 2.07 to 1.34. This highlights the effectiveness
of our method in fully utilizing an expanded codebook to re-
fine discrete representations without encountering common
issues such as codebook collapse or under-utilization.

Effect of normalization. We argue that normalization used
in the attention quantization modules play a positive role in
better assignment, leading to improved reconstruction results.
As results in Tab. 4c demonstrate, projecting the query-key
pairs into a normed space improves rFID from 1.87 to 1.34.
Other types of normalization, e.g. LayerNorm is also capable
of achieving similar results compared to using RMSNorm.

6. Conclusion

In this work, we present CODA tokenizers, a novel approach
for training discrete tokenizers by leveraging the pretrained
space of continuous VAEs for compression, while optimizing
discretization through principled adaptations. Through a se-
ries of carefully designed discretization mechanisms, CODA
is able to approximate continuous latent space using discrete
tokens. Experiments on ImageNet demonstrate that CODA
enables improved high fidelity reconstruction performance
with effective codebook utilization, while requiring only
minimal training. Additional experiments reveal that CODA
unlocks new potential for enhanced discrete generation.
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