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Abstract

Diffusion models have demonstrated great potential in generating high-quality
content for images, natural language, protein domains, etc. However, how to per-
form user-preferred targeted generation via diffusion models with only black-box
target scores of users remains challenging. To address this issue, we first formu-
late the fine-tuning of the targeted reserve-time stochastic differential equation
(SDE) associated with a pre-trained diffusion model as a sequential black-box
optimization problem. Furthermore, we propose a novel covariance-adaptive se-
quential optimization algorithm to optimize cumulative black-box scores under
unknown transition dynamics. Theoretically, we prove a O( d2

√
T
) convergence

rate for cumulative convex functions without smooth and strongly convex assump-
tions. Empirically, experiments on both numerical test problems and target-guided
3D-molecule generation tasks show the superior performance of our method in
achieving better target scores.

1 Introduction

Diffusion models have shown great success in generating high-quality content in various domains,
such as image generation [Rombach et al., 2022, Ramesh et al., 2022], video generation [Ho et al.,
2022], speech generation [Kim et al., 2022b, Kong et al., 2020], and natural language generation [Hu
et al., 2023, He et al., 2023]. Thanks to the super-promising power of the diffusion models, guided
sampling via diffusion models to achieve desired properties recently emerged and shown fantastic
potential in many applications, e.g., text-to-image generation [Kim et al., 2022a], image-to-image
translation [Tumanyan et al., 2023], protein design [Lee et al., 2023, Gruver et al., 2023].

Despite the popularity and success of diffusion models, how to employ diffusion models to generate
user-preferred content with black-box target scores while avoiding re-training from scratch is still
challenging and unexplored. One direct idea is to treat this problem as a black-box optimization
problem and employ black-box optimization techniques [Audet and Hare, 2017, Alarie et al., 2021,
Doerr and Neumann, 2019] to perform the fine-tuning of a pre-trained diffusion model with only
black-box target scores. However, naively applying black-box optimization methods to optimize
diffusion model parameters faces high-dimensional optimization challenges, which are prohibitive to
achieving a meaningful solution in a feasible time.
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More importantly, current black-box optimization techniques, e.g., Bayesian optimization tech-
niques [Srinivas et al., 2010, Gardner et al., 2017, Nayebi et al., 2019], Evolution strategies (ES) or
stochastic zeroth-order optimization [Back et al., 1991, Hansen, 2006, Wierstra et al., 2014, Lyu and
Tsang, 2021, Liu et al., 2018, Wang et al., 2018] and genetic algorithms [Srinivas and Patnaik, 1994,
Mirjalili and Mirjalili, 2019], are designed for single objective without considering the transition
dynamic nature of sequential functions. As a result, we can not directly apply them to diffusion
models due to ignoring the sequential nature of the generation process of diffusion models.

In this paper, we dig into the transition dynamic of the inference of diffusion models. By leveraging
the relationship between the inference of diffusion models and the reverse-time Stochastic Differential
Equation (SDE) [Song et al., 2020], we propose a novel targeted SDE fine-tuning framework for
targeted generation. To learn the fine-tuning parameter, we further formulate it as a sequential
black-box optimization problem.

To solve the sequential black-box optimization problem, we propose a novel covariance-adaptive
sequential black-box optimization algorithm by explicitly handling the history trajectory dependency
in the cumulative black-box target functions. Our method performs full covariance matrix adaptive
updates that can take advantage of second-order information to deal with ill-conditioned problems.
Theoretically, we prove a O( d2

√
T
) convergence rate for convex functions without smooth and strongly

convex assumptions. Thus, our method can handle non-smooth problems. Our contributions are
listed as follows:

• We propose a novel fine-tuning framework for black-box targeted generation. Our framework
fine-tunes the targeted reverse-time SDE associated with a pre-trained diffusion model, which
is general enough to guide the design of algorithms for particular downstream black-box
targeted generation tasks. Furthermore, we formulate the learning of fine-tuning parameters
as a sequential black-box optimization problem.

• We proposed a novel covariance-adaptive sequential black-box optimization (CASBO)
algorithm. Our CASBO can perform a full covariance matrix update to exploit the second-
order information. Theoretically, we prove a O( d2

√
T
) convergence rate for convex functions

without smooth and strongly convex assumptions. Thus, our theoretical analysis can handle
non-smooth problems. The convergence analysis of full covariance-adaptive black-box
optimization for convex functions without the smooth and strongly convex assumptions is
technically challenging. Technically, we add a γt enlargement term in the gradient update.
This technique enables us to construct feasible solution sets of the adaptive update matrix
during the whole algorithm running process to ensure convergence. To the best of our
knowledge, our CASBO algorithm is the first full covariance matrix adaptive black-box
optimization method that achieves a provable O( d2

√
T
) convergence rate for convex functions

without smooth and strongly convex assumptions.

• Empirically, we can naturally apply our optimization algorithm for diffusion black-box
targeted generation. Experiments on both numerical test problems and target-guided 3D-
molecule generation tasks show the superior performance of our method in achieving better
target scores.

2 Notation and Symbols
Denote ∥ · ∥2 and ∥ · ∥F as the spectral norm and Frobenius norm for matrices, respectively. Define
tr(·) as the trace operation for matrix. Notation ∥ · ∥2 will also denote l2-norm for vectors. Symbol
⟨·, ·⟩ denotes inner product under l2-norm for vectors and inner product under Frobenius norm for
matrices. For a positive semi-definite matrix C, define ∥x∥C :=

√
⟨x, Cx⟩. Denote S+ and as the

set of positive semi-definite matrices. Denote Σ
1
2 as the symmetric positive semi-definite matrix

such that Σ = Σ
1
2Σ

1
2 for Σ ∈ S+. Denote x̄k = [x⊤

1 , · · · ,x⊤
k ]

⊤ ∈ Rkd , where xi ∈ Rd, d denotes
the dimension of the data. Denote µ̄k = [µ⊤

1 , · · · ,µ⊤
k ]

⊤ ∈ Rkd and Σ̄k = diag(Σ1, · · · ,Σk) ∈
Rkd×kd as the mean and diagonal block-wise covariance matrix for Gaussian distribution, respectively.
Denote θ̄k := {µ̄k, Σ̄k} as the parameter of the distribution for candidate sampling in black-box
optimization and θk := {µk,Σk} as its kth component. Denote τ as the time in the diffusion model.
And denote t as the iteration index in optimization. Denote θ̄tk := {µ̄t

k, Σ̄
t
k} as the parameter at tth

iteration.
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3 Approach
3.1 Target SDE Fine-tuning Framework

Consider the forward SDE of the diffusion model as below

dx̂ = f̂(x̂, τ)dτ + g(τ)dw, (1)

where w is the standard Wiener process (Brownian motion), and function f̂(·, τ) : Rd → Rd maps
the input x̂ to a d-dimensional vector. Song et al. [2020] show that the related backward SDE can be
formulated as

dx̂ = [f̂(x̂, τ)− g(τ)2∇x̂ log(pτ (x̂))]dτ + g(τ)dw̄, (2)

where w̄ denotes a standard Wiener process when time flows backwards from K to 0. More details
of the related background can be found in Appendix 10.

We propose a principle framework for fine-tuning the diffusion model SDE to optimize a target
function F (x̂). The proposed fine-tuned SDE for target generation is given as Eq.(3). It modifies the
original reverse-time SDE by learning the function µ(·, τ) and Σ(·, τ) as follows:

dx̂ = [f̂(x̂, τ)− g(τ)2∇x̂ log(pτ (x̂))−µ(∇F (x̂), τ)]dτ +Σ(x̂, τ)dw̄, (3)

where function µ(·, τ) : Rd → Rd maps the input gradient to a target descent direction vector (for
minimization), i.e.,

〈
µ(∇F (x̂), τ),∇F (x̂)

〉
≤ 0. And function Σ(·, τ) : Rd → Rd×d maps the

input x̂ to a positive semi-definite covariance matrix.

Given a fixed discretization schedule of time and absorbing it into index τ for notation simplicity, we
achieve the following discrete update formula for sampling:

x̂τ = x̂τ+1−f̂(x̂τ+1) + g(τ+1)2∇x̂ log(pτ+1(x̂τ+1)) + µτ+1(∇F (x̂τ+1)) + Στ+1(x̂τ+1)zτ+1, (4)

where zτ+1 ∼ N (0, I) and τ ∈ {K − 1, · · · , 0}.

Let x̃k = x̂K−k, and set µ̂ϕ(x̃k−1, k−1) = x̃k−1−f̂(x̃k−1)+g(K−k+1)2∇x̃ log(pK−k+1(x̃k−1)),
we have that

x̃k = µ̂ϕ(x̃k−1, k − 1) + µK−k+1(∇F (x̃k−1)) + ΣK−k+1(x̃k−1)zK−k+1 (5)

for k ∈ {1, · · · ,K}.

The sampling rule for targeted generation can be reparameterized as follows:

x̃k = µ̂ϕ(x̃k−1, k − 1) +N (µK−k+1(∇F (x̃k−1)),ΣK−k+1(x̃k−1)) (6)

for k ∈ {1, · · · ,K}.

In practice, we employ a pre-trained diffusion model µ̂ϕ(x̃k−1, k−1). In our black-box targeted
generation task, the target function to be optimized is black-box, the query efficiency is important.
We thus employ a simple constant function learning scheme, i.e., µK−k+1(∇F (x̃k−1)) = σ̃kµk and
ΣK−k+1(x̃k−1) = σ̃2

kΣk. The transition dynamic of the targeted diffusion inference sampling can be
simplified as follows:

x̃k = µ̂ϕ(x̃k−1, k − 1) + σ̃kN (µk,Σk), (7)

where σ̃k denotes the SDE solver coefficient that depends on the concrete SDE slover type. We leave
more sophisticated learning of function µk(·) and function Σk(·) as future work.

Let xk be sampled from Gaussian distribution N (µk,Σk). From the transition dynamic x̃k =
µ̂ϕ(x̃k−1, k − 1) + σ̃kxk, we know that x̃k is a function depends on the trajectory x̄k :=
[x1,x2, · · · ,xk], i.e., x̃k = x̃k(x̄k). To perform guided sampling from the pre-trained diffusion
model with the black-box target score function F (x̃), we optimize the cumulative target score:

J(θ̄K) := Ex1,··· ,xK

[∑K

k=1
F (x̃k)

]
= Ex̄K∼N (µ̄K ,Σ̄K)

[∑K

k=1
fk(x̄k)

]
, (8)

where θ̄K := {µ̄K , Σ̄K} and fk(x̄k) = F (x̃k(x̄k)).

3



3.2 Closed-form Update Rule for Sequential Black-box Optimization

In this section, we derive the update rule of the parameter to optimize Eq.(8). Without loss of
generality, we assume minimization in this paper.

Given a parameter θ̄tK at tth iteration, we aim to find a new parameter θ̄t+1
K by minimizing the

objective difference as

minθ̄K J(θ̄K)− J(θ̄tK). (9)

However, it is challenging to solve the optimization (9) directly. We thus optimize an approximation
by first-order Taylor expansion. We add a KL-divergence regularization to ensure qθ̄K and qθ̄t

K
close,

thus to keep the approximation accurate. The new optimization problem is given as

min
θ̄K

J(θ̄K)− J(θ̄tK) + KL(qθ̄K ||qθ̄t
K
) =

∑K

k=1
Jk(θ̄k)− Jk(θ̄

t
k) + KL(qθ̄K ||qθ̄t

K
) (10)

≈
∑K

k=1
β
〈
θ̄k − θ̄tk,∇θ̄t

k
Jk(θ̄

t
k)
〉
+ KL(qθ̄K ||qθ̄t

K
), (11)

where qθ̄K := N (µ̄K , Σ̄K) and qθ̄t
K
:= N (µ̄t

K , Σ̄t
K).

Note that the problem (11) is convex w.r.t. θ̄K := {µ̄K , Σ̄K}, by setting the derivative to zero, we
can achieve a closed-form update as

µt+1
k = µt

k − β
∑K

i=k
EN (µ̄i,Σ̄i)[

(
xk − µt

k

)
fi(x̄i)] (12)

Σt+1
k

−1
=Σt

k
−1

+β
∑K

i=k
EN (µ̄i,Σ̄i)[(Σ

t
k
−1(

xk − µt
k

)(
xk − µt

k

)⊤
Σt

k
−1−Σt

k
−1

)fi(x̄i)] (13)

Detailed derivation can be found in Appendix 7.

To compute the update in Eq.(12) and Eq.(13), we perform Monte Carlo sampling by taking N i.i.d.
sequence {xj

1, · · · ,x
j
K} for j ∈ {1, · · · , N}, where xj

k ∼ N (µt
k,Σ

t
k) for k ∈ {1, · · · ,K}. This

leads to unbiased estimators of the RHS of Eq.(12) and Eq.(13) as follows:

µt+1
k = µt

k − β

N

∑K

i=k

∑N

j=1
[
(
xj
k − µt

k

)
fi(x̄

j
i )] (14)

Σt+1
k

−1
=Σt

k
−1

+
β

N

∑K

i=k

∑N

j=1

(
Σt

k
−1(

xj
k − µt

k

)(
xj
k − µt

k

)⊤
Σt

k
−1 −Σt

k
−1
)
fi(x̄

j
i ) (15)

It is equivalent to the following:

µt+1
k = µt

k − β

N

∑N

j=1
[
(
xj
k − µt

k

)
(
∑K

i=k
fi(x̄

j
i ))] (16)

Σt+1
k

−1
=Σt

k
−1

+
β

N

∑N

j=1

(
Σt

k
−1(

xj
k − µt

k

)(
xj
k − µt

k

)⊤
Σt

k
−1−Σt

k
−1
)
(
∑K

i=k
fi(x̄

j
i )) (17)

In practice, to avoid the numerical scale problem, we normalize the cumulative score sjk =∑K
i=k fi(x̄

j
i ) by h(sjk) =

sjk−smin
k

smax
k −smin

k

, where smax
k and smin

k denote maximum and minimum value

among of [s1k, · · · , sNk ]. We thus obtain the following update rule for practical updates.

µt+1
k = µt

k − β

N

∑N

j=1
[
(
xj
k − µt

k

)
(

sjk − smin
k

smax
k − smin

k

)] (18)

Σt+1
k

−1
=(1− κβ)Σt

k
−1

+
β

N

∑N

j=1

(
Σt

k
−1(

xj
k − µt

k

)(
xj
k − µt

k

)⊤
Σt

k
−1
)
(

sjk−smin
k

smax
k −smin

k

) (19)

where κ = 1
N

∑N
j=1(

sjk−smin
k

smax
k −smin

k

), and 0 ≤ κ ≤ 1. The normalization can ensure the covariance

matrix Σt+1
k to be positive semi-definite.

Note that xj
k = µt

k +Σt
k

1
2 zj

k for zj
k ∼ N (0, I), Eq. (19) can be rewritten as

Σt+1
k

−1
=Σt

k
− 1

2 ((1− κβ)I+βHt
k)Σ

t
k
− 1

2 (20)
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Algorithm 1 BDTG
1: Input: Batch Size N , dimension d, step-size α, a pre-trained diffusion model µ̂ϕ(x̃k, k), number

of sampling step K, Number of total iteration T . SDE solver coefficient σ̃k for k ∈ {1, · · · ,K}.
2: Initialization: Initialize µ1

k = 0,Σ1
k = I for k ∈ {1, · · · ,K}.

3: for t = 1, · · · , T do
4: for k = 1, · · · ,K do
5: Take i.i.d. samples x1

k, · · · ,xN
k ∼ N (µt

k,Σ
t
k)

6: Set x̃j
k = µ̂ϕ(x̃

j
k−1, k−1) + σ̃kx

j
k for all j ∈ {1, · · · , N}.

7: Query black-box target function score fk(x̄
1
k), · · · , fk(x̄N

k ).
8: end for
9: Update µt+1

k for all k ∈ {1, · · · ,K} using Eq. (18) with step-size β = α/
√
d.

10: Update Σt+1
k for all k ∈ {1, · · · ,K} using Eq. (19) with step-size β = α/d.

11: end for

where Ht
k is constructed as Eq. (21).

Ht
k =

1

N

∑N

j=1
zj
kz

j
k

⊤
(

sjk − smin
k

smax
k − smin

k

) (21)

Ht
k serves as a pre-conditioning matrix that captures the second-order information, which has a

crucial impact on the convergence speed.

We summarize our algorithm for black-box diffusion target generation (BDTG) into Algorithm 1. In
Algorithm 1, the user preference can be incorporated via the black-box target score. In addition, σ̃k is
the SDE solver coefficient that depends on the concrete SDE solver used.

4 Convergence Analysis
In this section, we provide the convergence analysis of a general sequential black-box optimization
framework. Algorithm 1 is a special case of our framework (Alg. 2) with particular parameter
setting and relaxation. Without loss of generality, we focus on minimizing the following sequential
optimization problem:

F̂ (x̄K) =
∑K

k=1
fk(x̄k) (22)

Remark: The black-box function fk(x̄k) with x̄k = [x⊤
1 , · · · ,x⊤

k ]
⊤ explicitly shows the de-

pendency of the whole history trajectory [x1, · · · ,xk]. The sequential black-box optimization in
Eq.(22) is general enough to include many interesting scenarios as special cases. One particular
interesting problem is fk(x̄k) = F (yk) where yk is obtained by an unknown transition dynamic
yk = Q(yk−1,xk).

Instead of directly optimizing problem (22), we optimize an auxiliary problem (23) as

J(µ̄K , Σ̄K) =
∑K

i=1
Ji(µ̄i, Σ̄i) =

∑K

i=1
Ex̄i∼N (µ̄i,Σ̄i)[fi(x̄i)] (23)

where Ji(µ̄i, Σ̄i) = Ex̄i∼N (µ̄i,Σ̄i)[fi(x̄i)] denotes the ith sub-objective.

Denote gradient estimator ĝtik for the ith sub-objective w.r.t. the kth component µk at tth iteration as

ĝtik =
1

N

∑N

j=1
ĝtjik =

1

N

∑N

j=1
Σt

k
− 1

2 zj
k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i
j)− fi(µ̄

t
i)
)
, (24)

where ĝtjik is the gradient estimator using jth sample:

ĝtjik = Σt
k
− 1

2 zj
k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i
j)− fi(µ̄

t
i)
)
, (25)

where zj
1, · · · , z

j
i ∼ N (0, Id) and z̄i

j = [z⊤
1 , · · · , z⊤

i ]⊤ for i ≥ k.

We show our Covariance-Adaptive Sequential Black-box Optimization algorithm (CASBO) in
Algorithm 2. Our CASBO can perform full matrix updates to take advantage of second-order
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Algorithm 2 CASBO Framework
1: Input: Batch-size N . Parameter βt, αt, γt,and ωt. Number of total iteration T and the step K.
2: Initialization: Initialize µ1

k = 0,Σ1
k = τI for k ∈ {1, · · · ,K}.

3: for t = 1, · · · , T do
4: for k = 1, · · · ,K do
5: Take i.i.d. samples z1

k, · · · , zN
k ∼ N (0, I)

6: Set xj
k = µt

k +Σt
k

1
2 zj

k for j ∈ {1, · · · , N}
7: Query black-box objective function value fk(x̄

1
k), · · · , fk(x̄N

k ).
8: Construct unbiased estimator ĝk1, · · · , ĝkk as Eq. (24).
9: end for

10: for k = 1, · · · ,K do
11: Compute sjk =

∑K
i=k fi(x̄

j
i ) for j ∈ {1, · · · , N}.

12: Compute smax
k and smin

k among of [s1k, · · · , sNk ].

13: Construct Ht
k = c1

1
N

∑N
j=1 z

j
kz

j
k

⊤
(

sjk−smin
k

smax
k −smin

k

)+ c2I with constants c1 > 0, c2 > 0 such

that Ht
k ⪯ 1

αt
(βt+1

βt
− ωt)I + βt+1γt

αt
Σt

k and νI ⪯ Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2

14: Set Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2 .
15: Set µt+1

k = µt
k − βtΣ

t
k

(
γtµ

t
k + (

∑K
i=k ĝik)

)
16: Set Σt+1

k

−1
= ωtΣ

t
k
−1

+ αtĜ
t
k.

17: end for
18: end for

information. Our Algorithm 1 is a special case of our CASBO framework with a particular parameter
setting and relaxes the constraints. Our CASBO framework only requires the unbiased gradient
estimator for µ, while it does not require an unbiased gradient estimator for covariance Σ.

We now list the assumptions employed in our convergence analysis. All the assumptions are common
in the literature. The assumptions are weak because neither smooth assumptions nor strongly convex
assumptions are involved. Thus, our algorithm can handle non-smooth cases. More importantly,
we do not add any additional assumptions of the auxiliary problem (23). This is important for
practical use because we can not check whether the auxiliary problem satisfies the assumptions given
a black-box original problem. To the best of our knowledge, our algorithm is the first full matrix
adaptive black-box optimization algorithm that achieves a provable O(d

2K4
√
T

) convergence for convex
functions without smooth and strongly convex assumptions, and any assumptions of the auxiliary
problems.

Assumption 4.1. f1(x̄1), · · · , fK(x̄K) are all convex functions.

Assumption 4.2. fi(x̄i) is a Li-Lipschitz continuous function for ∀i ∈ {1, · · · ,K}, i.e., |fi(x̄i)−
fi(ȳi)| ≤ Li∥x̄i − ȳi∥2.

Assumption 4.3. The initialization θ̄1K := {µ̄1
K , Σ̄1

K} is bounded, i.e.,
∑K

k=1 ∥µ1
k − µ∗

k∥2Σ1
k
−1 ≤ R

and Σ̄1
K ∈ S+, and νI ⪯ Σ̄1

K ⪯ ν̄I for ν̄ ≥ ν > 0, and
∑K

k=1 ∥µ∗
k∥22 ≤ B.

Theorem 4.4. Suppose the assumptions 4.1 4.2 4.3 holds. Set βt = tβ with β > 0, αt =
√
t+ 1α

with α > 0, and γt =
αν

β
√
t+1

, and ν > 0, and ωt = 1. Initialize Σ1
k such that ∥Σ1

k∥
−1
2 ≥ 5

3αν for
∀k ∈ {1, · · · ,K}. Then, running Algorithm 2 with T -steps, we have

1

T

T∑
t=1

K∑
k=1

fk(µ̄
t
k)−

K∑
k=1

fk(µ̄
∗
k) ≤

∑K
k=1 ∥µ1

k−µ∗
k∥2Σ1

k
−1

2βT
+
2
√
T+1C1

T
+
4(T+1)

1
4C2

T
+

√
T+2C3

T

≤ O(
d2K4

√
T

) (26)

where µ̄t
k = [µt⊤

1 , · · · ,µt⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤. And C1 =
3β

∑K
i=1 KL2

i (id+1)2

2αν and

C2 =
∑K

i=1

√
3idLi√

αν
, C3 = ανB

β .
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Table 1: Objective Function Definition

Rastrigin-10 f(x) := 10d+
∑d

i=1(10
i−1
d−1xi)

2 − 10 cos(2π10
i−1
d−1xi)

L1-Ellipsoid f(x) :=
∑d

i=1 10
6(i−1)
d−1 |xi|

Levy f(x) := sin2(πw1) +
∑d−1

i=1 (wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+ (wd − 1)2

[
1 + sin2(2πwd)

]
,

where wi = 1 + xi−1
4

(a) Cumulative-Rastrigin10 (b) Cumulative-L1-Ellipsoid (c) Cumulative-Levy

Figure 1: Objective Values (Cumulative Target Score, Lower is Better) v.s. Number of Optimization
Steps on Different Test Problems

Detailed proof can be found in Appendix 9. In Theorem 4.4, the error term
√
T+2C3

T in Eq.(26)

is due to the γt-enlargement. Error term 4(T+1)
1
4 C2

T results from the covariance matrix term Σ̄K

in Gaussian-smooth relaxation of the original problem. The first two error terms result from the
stochastic gradient update.

Remark: Note that for convex problems, the optimum {µ̄∗
K , 0} of the auxiliary problem (23) is

also the optimum of the original problem (22), i.e., J(µ̄∗
K , 0) = F̂ (µ̄∗

K). Our algorithm achieve a
O(d

2K4
√
T

) cumulative regret of the original problem (22). In addition, our algorithm can handle non-
smooth problems without expert designing of proximal operators for different types of non-smooth
functions. This can be remarkably interesting when the unknown function involves compositions
of lots of different types of non-smooth functions, in which case human experts can not derive the
operators explicitly.

5 Experiments
5.1 Baseline Methods
We compare our method with the baseline black-box optimization algorithms: CMA-ES [Hansen
and Ostermeier, 2001] and TuRBO [Eriksson et al., 2019]. For CMA-ES, we use the official
implementation on Github [Hansen et al., 2019]. We employ the default hyperparameter settings in
all of our experiments. We set the initial covariance matrix to the identity matrix, which is the same
as our algorithm. For TuRBO, we use the publicly available official implementation on GitHub 1.
We employ the default hyperparameter settings in all experiments, including the number of trust
regions set to n = 5. More details of the related black-box optimization can be found in Appendix 10.
Both CMA-ES and TuRBO do not explicitly consider the sequential inter-dependency of the input
variables x1, · · · ,xK . Thus, we directly optimize the sequential optimization problem with respect
to the concatenated variables x̄K = [x⊤

1 , · · · ,x⊤
K ] ∈ RKd.

5.2 Empirical Study on Numerical Test Problem
We first evaluate our algorithm using the numerical sequential optimization problem F̂ (x̄K) =∑K

k=1 f(xk), where xk ∈ Rd. The black-box transition dynamics are given by xk = Qxk−1 +√
k + 1, where the Q ∈ Rd×d is random rotation matrix. We set the number of transitions K = 10

and dimension d = 100. For our algorithm, we use step size α = 10. For CMA-ES, we leave all
hyper-parameters as default. For TuRBO, we set the parameters bound as ±2 and leave all other
hyper-parameters as default. We test each algorithm on three different types of objective functions as
defined in Table 1. The initial values of xk for k ∈ {1, · · · ,K} are set to zeros, and optimization

1https://github.com/uber-research/TuRBO
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is performed for 100 steps, repeated over 5 independent runs. The details of compute resource are
shown in Appendix 11.

The convergence curves are shown in Figure 1, where the lines represent the average objective
values across the 5 runs, and the shaded areas indicate the range within one standard deviation.
CMA-ES converges the fastest among all algorithms on the Rastrigin10 and L1-Ellipsoid problems
during the initial stages (within the first 20 steps) but shows fluctuations and plateaus afterward.
Additionally, CMA-ES fails to converge on the Levy problem. This behavior could be due to
the greedy optimization strategy of CMA-ES. TuRBO does not converge within the first 5 steps
due to the initialization period of its 5 local Gaussian Process (GP) models. Afterward, TuRBO
converges consistently on all three problems. BDTG (ours) algorithm converges to the lowest
objective value among all algorithms on all three problems. It achieves marginally lower values on
the L1-Ellipsoid problem and significantly lower objectives on the Rastrigin-10 and Levy problems.
The latter problems are considered more challenging due to their high curvature and multi-mode
issues, indicating our algorithm’s superior performance on challenging problems.

5.3 Black-box Diffusion Targeted 3D-molecule Generation
Pre-trained Model: TargetDiff. TargetDiff [Guan et al., 2023] is a diffusion model that can generate
molecules in 3D space conditioned on the target protein. TargetDiff learns the 3D structure-based
molecule representation, which is composed of both categorical atom types and continuous atom
coordinates. The discrete atom types are modeled using the categorical distribution C, and the
continuous atom coordinates are modeled by Gaussian distribution N . During the inference process,
TargetDiff generates the atom types and atom coordinates concurrently in the single neural network.
In our experiment, we use the official implementation on Github 1.

Dataset. The TargetDiff is pre-trained on the CrossDocked2020 [Francoeur et al., 2020] dataset. It
contains 22.5 million poses of ligands docked into multiple similar binding pockets across the Protein
Data Bank. It is further refined by only selecting the poses with a low Root Mean Square Deviation
(RMSD) (<1Å ) and sequence identity less than 30%. Ultimately, 100,000 molecules are used to
train the TargetDiff, and 100 for testing [Guan et al., 2023, Luo et al., 2021]. It is worth noting that
our fine-tuning algorithm does not require the dataset; our learning signal is based solely on the
model-generated samples.

Objective Function: Molecules Binding Affinity. The binding affinity quantification refers to
the strength of the interaction between two bio-molecules. In the drug discovery task, the goal is
to discover the drug molecule (often called ligand) that has a high binding affinity with the target
protein receptor. The binding affinity can be conveniently predicted by using the AutoDock Vina
software [Eberhardt et al., 2021] with the Vina docking score. The Vina docking score is the predicted
free energy of the binding between the drug molecule and its target protein, expressed kcal/mol. The
lower the energy, the higher the binding strength. Thus, we always aimed to minimize the Vina
docking score.

Recall from section 3, we consider a sequential optimization problem, which requires the objective
function to evaluate the "noisy" data point along the diffusion sampling trajectory (ie, F (x̃k) for
k < K). However, directly evaluating the noise data using the Vina docking software can lead to
unstable behavior. Therefore, for any noisy data point, we use the pre-trained model to continue
the sampling process until it reaches the final step and denote the final sample as x̃k→K . Note that
this complementary sampling process is deterministic and not guided by the fine-tuning parameters;
thus, it can be absorbed by the objective function. As a result, we can mathematically write the final
objective function as Fk(x̃k) = F (x̃k→K), which takes a noisy sample as input and performs the
diffusion sampling internally.

Experiment Details. In this experiment, we fine-tune the TargetDiff model to generate optimized
molecules with minimized Vina docking scores. Recall that TargetDiff concurrently generates atom
types and atom coordinates. In our fine-tuning process, we keep the atom types fixed and only
fine-tune the atom coordinates. To determine the atom types for fine-tuning, we first generate 100
molecules using the pre-trained TargetDiff model. We then select the molecule with the lowest Vina
docking score and use its atom types for subsequent fine-tuning steps.

1https://github.com/guanjq/targetdiff
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(a) Receptor-0 (b) Receptor-1 (c) Receptor-2

(d) Receptor-3 (e) Receptor-4 (f) Receptor-5

Figure 2: Objective Values (Cumulative Vina Docking Score, Lower is Better) v.s. Number of
Optimization Steps (Fine-tune Steps) for Different Receptors

To keep the chosen atom types fixed throughout the diffusion sampling process, for each denoising
step, the chosen atom types are fed as the model input, and the denoised atom types from the model
output are simply ignored. This feature is implemented in the official TargetDiff called pose-only
mode.

The original TargetDiff uses DDPM [Ho et al., 2020] sampler, which requires 1000 sampling steps.
We speed up the sampling process by using DPM-Solver++ SDE sampler [Lu et al., 2022a], which
requires only K = 10 sampling steps. By switching to the faster solver, the molecule’s binding
affinity decreases. However, as we will demonstrate later, the fine-tuned TargetDiff is capable of
generating higher binding affinity with the faster sampler than the original model with the slower
sampler. In practice, we fine-tune not only the diffusion trajectory but also the prior distribution.
Specifically, the prior distribution is parameterized by the fine-tuning parameters. Mathematically, for
the first step k = 1 in the Equation 7, we set µ̂ϕ(x̃0, 0) = 0, resulting in the prior x̃1 ∼ N (µ1,Σ1).

We fine-tune the TargetDiff model for T = 300 optimization steps. For all the methods, we use the
same batch size N = 32. For our algorithm, we set step size α = 10. The source code will be made
publicly available upon publication. For CMA-ES, we use the default parameter settings, including
the initial covariance matrix set as identity, which is consistent with our algorithm. For TuRBO, we
set the parameters bound as ±4 and use the default settings for the other hyper-parameters, including
the number of trust regions set to n = 5. The details of compute resources are shown in Appendix 11.

Experimental Results. We compare diffusion fine-tuning using three algorithms on 6 protein receptor
targets (i.e., the 0-th to 5-th from the testing set of the CrossDocked2020 dataset), respectively. We
report the cumulative Vina docking score with respect to the fine-tuning steps in Figure 2.

We compare the fine-tuned scores of each algorithm. CMA-ES can improve rapidly during the initial
stages but fails to converge, exhibiting similar behavior as observed in our numerical experiments.
TuRBO generally converges well, except for receptors 3 and 5, where the objective value spikes were
observed due to the local GP restarts in their official code when the trust region shrinks below the
preset threshold of 2−7. Our BDTG algorithm consistently converges to the lowest score compared
to the other algorithms for all receptors.

As a reference, we also compare our results with the pre-trained TargetDiff model. The average
and minimum (best) Vina scores of the 100 samples generated by the pre-trained TargetDiff model
are shown as horizontal lines in Figure 2. Note that these samples are generated using the default
DDPM sampler, which requires 1000 steps, whereas our fine-tuned samples require only 10 steps.
Our fine-tuned model generates significantly better molecules than the best molecule produced by the

9



pre-trained model. The best molecules generated during the fine-tuning process are demonstrated
in Appendix 13. Additionally, we demonstrate our algorithm in the targeted image generation task
using Stable Diffusion in Appendix 14.

6 Conclusion and Future Work
In this paper, we proposed a novel targeted SDE fine-tuning framework for diffusion black-box
targeted generation. Furthermore, we formulated the targeted fine-tuning as a sequential black-box
optimization problem. We proposed a novel covariance-adaptive sequential black-box optimiza-
tion(CASBO) algorithm to address this problem. Theoretically, we prove a O(d

2K4
√
T

) convergence
rate of CASBO without smooth and strongly convex assumptions. Thus, our theoretical results
hold true for all non-smooth/smooth convex function families that are of great challenge for full
covariance matrix adaptive black-box algorithms to converge. Empirically, our method enables the
fine-tuning of the diffusion model to generate targeted 3D-Molecules with a lower Vina Docking
score. The limitation of this paper is the optimization may decrease the diversity of the generation.
This limitation may be because constant function learning is not sufficient to capture the diversity.
This may be addressed by learning the function µ(·) and Σ(·) instead of the constant function learning
scheme. We leave this function learning approach as future work.
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Appendix

7 Derivation of Update Rule

The minimization can be rewritten as

K∑
k=1

〈
θ̄k − θ̄tk, β∇θ̄t

k
Jk(θ̄

t
k)
〉
+ KL(qθ∥qθt) =

K∑
k=1

βµ̄⊤
k ∇µ̄t

k
Eqθ̄t

k

[fk(x̄k)]+

K∑
k=1

βtr(Σ̄k∇Σ̄t
k
Eqθ̄t

k

[fk(x̄k)])+
1

2

[
tr(Σ̄t

K

−1
Σ̄K) + (µ̄K−µ̄t

K)⊤Σ̄t
K

−1
(µ̄K−µ̄t

K) + log
|Σ̄t

K |
|Σ̄K |

−d
]
,

(27)

where ∇µ̄t
k
Eqθ̄t

k

[fk(x̄k)] and ∇Σ̄t
k
Eqθ̄t

k

[fk(x̄k)] denotes the derivative w.r.t µ̄k and Σ̄k taking at

µ̄k = µ̄t
k and Σ̄k = Σ̄k

k. The above problem is convex with respect to µ̄K = [µ⊤
1 , · · · ,µ⊤

K ]⊤ and
Σ̄K = diag(Σ1, · · · ,ΣK). Taking the derivative w.r.t µ̄K and Σ̄K and setting them to zero, for kth
component , we can obtain that

K∑
i=k

β∇µt
k
Eqθ̄t

i

[fi(x̄i)] +Σt
k
−1

(µk − µt
k) = 0 (28)

K∑
i=k

β∇Σt
k
Eqθ̄t

i

[fi(x̄i)] +
1

2
[Σ−1

k −Σt
k
−1

] = 0. (29)

for k ∈ {1, · · · ,K}.

Set µt+1
k = µk and Σt+1

k

−1
= Σ−1

k in the above equation. We then have the update rule as

µt+1
k = µt

k −
K∑
i=k

βΣt
k∇µt

k
Eqθ̄t

i

[fi(x̄i)] (30)

Σt+1
k

−1
= Σt

k
−1

+

K∑
i=k

2β∇Σt
k
Eqθ̄t

i

[fi(x̄i)]. (31)

for k ∈ {1, · · · ,K}.

In addition, note that the gradient has the following closed-form [Wierstra et al., 2014]

∇µt
k
Eqθ̄t

i

[fi(x̄i)] = Σt
k
−1Eqθ̄t

i

[(xk − µk)fi(x̄i)] (32)

∇Σt
k
Eqθ̄t

i

[fi(x̄i)] =
1

2
Eqθ̄t

i

[
(
Σt

k
−1(

xk − µk

)(
xk − µk

)⊤
Σt

k
−1 −Σt

k
−1
)
(fi(x̄i))] (33)

Then, we have that

µt+1
k = µt

k −
K∑
i=k

βEqθ̄t
i

[(xk − µk)fi(x̄i)] (34)

Σt+1
k

−1
= Σt

k
−1

+

K∑
i=k

βEqθ̄t
i

[
(
Σt

k
−1(

xk − µk

)(
xk − µk

)⊤
Σt

k
−1 −Σt

k
−1
)
(fi(x̄i))]. (35)

8 Technical Lemmas

In this section, we introduce the following technical lemmas for convergence analysis.

Lemma 8.1. Given a positive definite matrix Σ, we have ∥Σ(x+y)∥2Σ−1 ≤ 2(∥Σx∥2Σ−1+∥Σ 1
2y∥22)
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Proof.

∥Σ(x+ y)∥2Σ−1 =
〈
Σ−1Σ(x+ y),Σ(x+ y)

〉
(36)

= ⟨(x+ y),Σ(x+ y)⟩ (37)

= ∥Σ 1
2x+Σ

1
2y∥22 (38)

≤ 2(∥Σ 1
2x∥22 + ∥Σ 1

2y∥22) (39)

Note that ∥Σ 1
2x∥22 =

〈
x,Σx

〉
=
〈
Σ−1Σx,Σx

〉
= ∥Σx∥2Σ−1 , we achieve that

∥Σ(x+ y)∥2Σ−1 ≤ 2(∥Σx∥2Σ−1 + ∥Σ 1
2y∥22) (40)

Lemma 8.2. Suppose the gradient estimator ĝtik for the ith objective w.r.t. the kth component µk at
tth iteration as

ĝtik = Σt
k
− 1

2 zk
(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
, (41)

where z1, · · · , zi ∼ N (0, Id) and z̄i = [z⊤
1 , · · · , z⊤

i ]⊤, i ≥ k. Suppose assumptions 4.2 hold, using

the parameter setting in Theorem 4.4, and the covariance matrix update Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2 are
positive semi-definite matrix that satisfies νI ⪯ Ĝt

k. Apply the update rule Σt+1
k

−1
= ωtΣ

t
k
−1
+αtĜ

t
k,

we have

(a) ĝtik is an unbiased estimator of gtik = ∇µk
Ex̄∼N (µ̄t

i,Σ̄
t
i)
[fi(x̄)].

(b) ∥Σt+1
k ∥2 ≤ 1

∥Σt
k∥

−1
2 +

√
t+1αν

≤ · · · ≤ 3
2αν

1

(t+1)
3
2 + 3

2

≤ 3
2αν

1

(t+1)
3
2

.

(c) E
∑K

k=1 ∥Σt
k(
∑K

i=k ĝik)∥2Σt
k
−1 ≤ 3

∑K
i=1 KL2

i (id+1)2

2t
3
2 αν

For the average of i.i.d. sampled unbiased gradient estimators (each one has the same form as
Eq.(41)), the results (a),(b),(c) still hold true.

Proof. (a). We first show that ĝtik is an unbiased estimator of ∇µk
Ex̄∼N (µ̄t

i,Σ̄
t
i)
[fi(x̄)].

Ez̄i
[ĝtik] = Ez̄i

[Σt
k
− 1

2 zkfi(µ̄
t
i + Σ̄

t 1
2

i z̄i)]− Ez̄i
[Σt

k
− 1

2 zkfi(µ̄
t
i)] (42)

= Ez̄i [Σ
t
k
− 1

2 zkfi(µ̄
t
i + Σ̄

t 1
2

i z̄i)] (43)

= Ex̄∼N (µ̄t
i,Σ̄

t
i)
[Σt

k
−1

(xk − µt
k)fi(x̄)] (44)

Note that Σ̄t
i = diag(Σt

1, · · · ,Σt
i) is a block-wise diagonal matrix, and µ̄i = [µ⊤

1 , · · · ,µ⊤
i ]

⊤,
i ≥ k , we then have that

Ez̄i
[ĝtik] = Ex̄∼N (µ̄t

i,Σ̄
t
i)
[Σt

k
−1

(xk − µt
k)fi(x̄)] = ∇µk

Ex̄∼N (µ̄t
i,Σ̄

t
i)
[fi(x̄)]. (45)

For N i.i.d. sampled unbiased gradient estimator, the average is still an unbiased gradient estimator.

Proof. (b) We now prove the decay of the spectral norm of covariance matrix.

From the update rule of Σt
k, we know that

Σt+1
k

−1
= ωtΣ

t
k
−1

+ αtĜ
t
k (46)

Note that νI ⪯ Ĝt
k, we have that

λmin
(
Σt+1

k

−1)
= λmin

(
ωtΣ

t
k
−1

+ αtĜ
t
k

)
(47)

≥ ωtλmin
(
Σt

k
−1)

+ αtν (48)
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Note that ∥Σt+1
k ∥2 = 1

λmin

(
Σt+1

k

−1
) and αt =

√
t+ 1α, ωt = 1 , we have that

∥Σt+1
k ∥2 ≤ 1

ωtλmin
(
Σt

k
−1)

+ αtν
=

1

∥Σt
k∥

−1
2 +

√
t+ 1αν

(49)

It follows that

λmin
(
Σt+1

k

−1) ≥ λmin
(
Σt

k
−1)

+
√
t+ 1αν (50)

≥ λmin
(
Σt−1

k

−1)
+

√
tαν +

√
t+ 1αν (51)

≥ λmin
(
Σ1

k
−1)

+ (

t∑
i=1

√
i+ 1)αν (52)

≥ λmin
(
Σ1

k
−1)

+
2αν

3
((t+ 1)

3
2 − 1) (53)

Note that the initialization such that λmin
(
Σ1

k
−1)

= ∥Σ1
k∥

−1
2 ≥ 5

3αν, we have that

λmin
(
Σt+1

k

−1) ≥ 2αν

3
(t+ 1)

3
2 + αν =

2αν

3

(
(t+ 1)

3
2 +

3

2

)
(54)

Note that ∥Σt+1
k ∥2 = 1

λmin

(
Σt+1

k

−1
) , we then have that

∥Σt+1
k ∥2 ≤ 3

2αν

1

(t+ 1)
3
2 + 3

2

(55)

Proof. (c). We now prove the upper bound of E
∑K

k=1 ∥Σt
k(
∑K

i=k ĝik)∥2Σt
k
−1 .

Note that ĝtik = Σt
k
− 1

2 zk
(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
, we have that

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 = ∥Σt

kΣ
t
k
− 1

2 zk(

K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
)∥2

Σt
k
−1 (56)

= ∥Σt
k

1
2 zk(

K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
)∥2

Σt
k
−1 (57)

= ∥zk(
K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
)∥22 (58)

=
( K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
))2∥zk∥22 (59)

Note that fi(x̄) is Li-Lipschitz continuous function, we then have that( K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
))2 ≤ (K − k + 1)(

K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)2
) (60)

≤ (K−k+1)(

K∑
i=k

L2
i ∥µ̄t

i + Σ̄
t 1
2

i z̄i − µ̄t
i∥22) (61)

≤ (K−k+1)(

K∑
i=k

L2
i ∥Σ̄

t 1
2

i ∥22∥z̄i∥22) (62)

= (K−k+1)(

K∑
i=k

L2
i ∥Σ̄t

i∥2∥z̄i∥22) (63)
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Plug Eq.(63) into Eq.(59), we have that

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤ (K−k+1)∥zk∥22(

K∑
i=k

L2
i ∥Σ̄t

i∥2∥z̄i∥22) (64)

It follows that

K∑
k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤

K∑
k=1

(K−k+1)∥zk∥22(
K∑
i=k

L2
i ∥Σ̄t

i∥2∥z̄i∥22) (65)

=

K∑
i=1

i∑
k=1

(
(K−k+1)∥zk∥22L2

i ∥Σ̄t
i∥2∥z̄i∥22

)
(66)

=

K∑
i=1

L2
i ∥Σ̄t

i∥2∥z̄i∥22
( i∑

k=1

(K−k+1)∥zk∥22
)

(67)

≤
K∑
i=1

L2
i ∥Σ̄t

i∥2∥z̄i∥22K∥z̄i∥22 (68)

=

K∑
i=1

KL2
i ∥Σ̄t

i∥2∥z̄i∥42 (69)

In addition, note that for z ∼ N (0, σ2), we have E[z4] = 3σ4. It follows that

E∥z̄i∥42 =

id∑
j=1

E[z4j ] +
id∑

j1=1

id∑
j2 ̸=j1

E[z2j1z
2
j2 ] = 3id+ id(id− 1) = i2d2 + 2id (70)

We then have that

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤

K∑
i=1

KL2
i ∥Σ̄t

i∥2E∥z̄i∥42 (71)

≤
K∑
i=1

KL2
i ∥Σ̄t

i∥2(id+ 1)2 (72)

Note that Σ̄t
i = diag(Σt

1, · · · ,Σt
i) is a block-wise diagonal matrix, we have ∥Σ̄t

i∥2 ≤
maxk∈{1,··· ,i} ∥Σt

k∥2. Then we know that

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤

K∑
i=1

KL2
i ∥Σ̄t

i∥2(id+ 1)2 (73)

≤ max
k∈{1,··· ,K}

∥Σt
k∥2

K∑
i=1

KL2
i (id+ 1)2 (74)

From Lemma 8.2 (b), we know that ∥Σt
k∥2 ≤ 3

2αν
1

t
3
2

for ∀k ∈ {1, · · · ,K}. Then, we have

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤ max

k∈{1,··· ,K}
∥Σt

k∥2
K∑
i=1

KL2
i (id+ 1)2 (75)

≤
3
∑K

i=1 KL2
i (id+ 1)2

2t
3
2αν

(76)
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Note that the square norm ∥ · ∥2
Σt

k
−1 is a convex function, then for the average of N i.i.d. sampled

gradient estimator ĝjik, j ∈ {1, · · · , N}, we have

E
K∑

k=1

∥Σt
k(

K∑
i=k

1

N

N∑
j=1

ĝjik)∥
2
Σt

k
−1 ≤ 1

N

N∑
j=1

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝjik)∥
2
Σt

k
−1 (77)

=
N

N
E

K∑
k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 (78)

≤
3
∑K

i=1 KL2
i (id+ 1)2

2t
3
2αν

(79)

Lemma 8.3. Denote Gt
i = ∇Σ̄i=Σ̄t

i
Ji(µ̄

t
i, Σ̄

t
i). Suppose assumption 4.2 holds, using the parameter

setting in Theorem 4.4, and the covariance matrix update Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2 are positive semi-
definite matrix that satisfies νI ⪯ Ĝt

k. Apply the update rule Σt+1
k

−1
= ωtΣ

t
k
−1

+ αtĜ
t
k, for

k ∈ {1, · · · ,K}. Then we have

tr(Gt
iΣ̄

t
i) ≤ |tr(Gt

iΣ̄
t
i)| ≤

Liid

2t
3
4

√
3

αν
(80)

Proof.

tr(Gt
iΣ̄

t
i) = tr(Σ̄t 1

2
i Gt

iΣ̄
t 1
2

i ) (81)

=
1

2
tr
(
Σ̄

t 1
2

i EN (µ̄t
i,Σ̄

t
i)

[
(Σ̄t

i

−1
(x̄i − µ̄t

i)(x̄i − µ̄t
i)

⊤Σ̄t
i

−1 − Σ̄t
i

−1
)fi(x̄i)

]
Σ̄

t 1
2

i

)
(82)

=
1

2
tr
(
EN (µ̄t

i,Σ̄
t
i)

[
(Σ̄t

i

−1
2 (x̄i − µ̄t

i)(x̄i − µ̄t
i)

⊤Σ̄t
i

−1
2 − I)fi(x̄i)

])
(83)

=
1

2
tr
(
Ez̄∼N (0,I)

[
(z̄z̄⊤ − I)fi(µ̄

t
i + Σ̄

t 1
2

i z̄)
])

(84)

=
1

2
tr
(
Ez̄∼N (0,I)

[
(z̄z̄⊤ − I)(fi(µ̄

t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))
])

(85)

=
1

2
Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))(fi(µ̄
t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))
]

(86)

where zj denotes the jth element in z̄.

From Cauchy–Schwarz inequality |E[XY ]| ≤
√
E[X2]E[Y 2], we know that

|tr(Gt
iΣ̄

t
i)| =

1

2
|Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))(fi(µ̄
t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))
]
| (87)

≤ 1

2

√√√√Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))2
]
Ez̄∼N (0,I)

[
(fi(µ̄t

i + Σ̄
t 1
2

i z̄)− fi(µ̄t
i))

2
]

(88)
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We first check the term Ez̄∼N (0,I)

[
(
∑id

j=1(z
2
j − 1))2

]
.

Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))2
]
=

id∑
j=1

E(z2j − 1)2 +

id∑
j1=1

id∑
j2 ̸=j1

E(z2j1 − 1)(z2j2 − 1) (89)

=

id∑
j=1

E(z4j − 2z2j + 1) +

id∑
j1=1

id∑
j2 ̸=j1

E(z2j1 − 1)E(z2j2 − 1) (90)

=

id∑
j=1

E(z4j − 2z2j + 1) =

id∑
j=1

[3− 2 + 1] = 2id (91)

We now check the term Ez̄∼N (0,I)

[
(fi(µ̄

t
i + Σ̄

t 1
2

i z̄) − fi(µ̄
t
i))

2
]
. Note that fi(x) is Li-Lipschitz

continuous function, we then have that

Ez̄∼N (0,I)

[
(fi(µ̄

t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))

2
]
≤ L2

iEz̄∼N (0,I)

[
∥Σ̄t 1

2
i z̄∥22

]
(92)

≤ L2
i ∥Σ̄

t 1
2

i ∥22Ez̄∼N (0,I)∥z̄∥22 (93)

= L2
i ∥Σ̄t

i∥2id (94)

From Lemma 8.2 (b) we know that

∥Σ̄t
i∥2 = max

k∈{1,··· ,i}
∥Σt

k∥2 ≤ 3

2αν

1

t
3
2

(95)

Together with Eq.(94) and Eq.(95 ), we know that

Ez̄∼N (0,I)

[
(fi(µ̄

t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))

2
]
≤ 3L2

i id

2t
3
2αν

(96)

Plug Eq.(96) and Eq.(91) into Eq.(88), we have that

|tr(Gt
iΣ̄

t
i)| ≤

Liid

2t
3
4

√
3

αν
(97)

Lemma 8.4. Given a convex function f(x), for Gaussian distribution with parameters θ := {µ,Σ 1
2 },

let J̄(θ) := Ep(x;θ)[f(x)]. Then J̄(θ) is a convex function with respect to θ.

Proof. For λ ∈ [0, 1], we have

λJ̄(θ1) + (1− λ)J̄(θ2) = λEz∼N (0,I)[f(µ1 +Σ
1
2
1 z)] + (1− λ)Ez∼N (0,I)[f(µ2 +Σ

1
2
2 z)] (98)

= E[λf(µ1 +Σ
1
2
1 z) + (1− λ)f(µ2 +Σ

1
2
2 z)] (99)

≥ E[f
(
λµ1 + (1− λ)µ2 + (λΣ

1
2
1 + (1− λ)Σ

1
2
2 )z

)
] (100)

= J̄(λθ1 + (1− λ)θ2) (101)

Lemma 8.5. Given a convex function f(x), let J(µ,Σ) := Ex∼N (µ,Σ)[f(x)]. Then, we have

f(µ)− f(µ∗) ≤ J(µ,Σ)− J(µ∗,0) (102)

Proof. From the definition of J(µ,Σ), we know that f(µ∗) = J(µ∗,0).

Note that f(x) is a convex function, we have that

f(µ) = f(Ex∼N (µ,Σ)[x]) ≤ Ex∼N (µ,Σ)[f(x)] = J(µ,Σ) (103)

It follows that

f(µ)− f(µ∗) ≤ J(µ,Σ)− J(µ∗,0) (104)
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9 Proof of Theorem 4.4

In this section, we prove our main Theorem 4.4. We decompose the proof into two parts. The proof
of Theorem 9.1 and the proof of Theorem 9.2. Together with Theorem 9.1 and the Theorem 9.2, we
achieve our main Theorem 4.4.

Theorem 9.1. Suppose the assumptions 4.1 4.2 4.3 holds. Set βt = tβ with β > 0, αt =
√
t+ 1α

with α > 0, and γt =
αν

β
√
t+1

, and ν > 0, and ωt = 1. Initialize Σ1
k such that ∥Σ1

k∥
−1
2 ≥ 5

3αν for

∀k ∈ {1, · · · ,K}. Suppose the constraints Ht
k ⪯ 1

αt
(βt+1

βt
− ωt)I + βt+1γt

αt
Σt

k and νI ⪯ Ĝt
k =

Σt
k
− 1

2Ht
kΣ

t
k
− 1

2 always have feasible solutions. Then, running Algorithm 2 with T -steps, we have

1

T

T∑
t=1

K∑
k=1

fk(µ̄
t
k)−

K∑
k=1

fk(µ̄
∗
k) ≤

∑K
k=1 ∥µ1

k−µ∗
k∥2Σ1

k
−1

2βT
+
2
√
T+1C1

T
+
4(T+1)

1
4C2

T
+

√
T+2C3

T

(105)

≤ O(
d2K4

√
T

) (106)

where µ̄t
k = [µt⊤

1 , · · · ,µt⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤. And C1 =
3β

∑K
i=1 KL2

i (id+1)2

2αν and

C2 =
∑K

i=1

√
3idLi√

αν
, C3 = ανB

β

Proof. For ∀k ∈ {1, · · · ,K}, we have

∥µt+1
k − µ∗

k∥2Σt
k
−1

= ∥µt
k − βt Σ

t
k((

K∑
i=k

ĝtik)+γtµ
t
k)− µ∗

k∥2Σt
k
−1 (107)

= ∥µt
k−µ∗

k∥2Σt
k
−1 − 2βt

〈
Σt

k((

K∑
i=k

ĝtik)+γtµ
t
k),µ

t
k−µ∗

k

〉
Σt

k
−1

+ β2
t ∥Σt

k((

K∑
i=k

ĝtik)+γtµ
t
k)∥2Σt

k
−1

(108)

= ∥µt
k−µ∗

k∥2Σt
k
−1 − 2βt

〈
γtµ

t
k+

K∑
i=k

ĝtik,µ
t
k − µ∗

k

〉
+ β2

t ∥Σt
k((

K∑
i=k

ĝtik)+γtµ
t
k)∥2Σt

k
−1 (109)

Note that

γt
〈
µt

k,µ
t
k − µ∗

k

〉
=

γt
2
∥µt

k − µ∗
k∥22 −

γt
2
∥µ∗

k∥22 +
γt
2
∥µt

k∥22 (110)

Plug Eq.(110) into Eq.(109), we have that

∥µt+1
k − µ∗

k∥2Σt
k
−1

= ∥µt
k − µ∗

k∥2Σt
k
−1 −2βt

〈 K∑
i=k

ĝtik,µ
t
k − µ∗

k

〉
− βtγt(∥µt

k−µ∗
k∥22−∥µ∗

k∥22+∥µt
k∥22) + β2

t ∥Σt
k((

K∑
i=k

ĝtik)+γtµ
t
k)∥2Σt

k
−1

(111)

From Lemma 8.1, we then have that

∥µt+1
k − µ∗

k∥2Σt
k
−1 ≤ ∥µt

k − µ∗
k∥2Σt

k
−1 −2βt

〈 K∑
i=k

ĝtik,µ
t
k − µ∗

k

〉
− βtγt(∥µt

k−µ∗
k∥22−∥µ∗

k∥22+∥µt
k∥22)

+ 2β2
t ∥Σt

k((

K∑
i=k

ĝtik)∥2Σt
k
−1 + 2β2

t ∥γtΣt
k

1
2µt

k∥22 (112)
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From Lemma 8.2 (b), we know that ∥Σt
k∥2 ≤ 3

2αν
1

t
√
t+3/2

, together with the setting βt = tβ and
γt =

αν
β
√
t+1

, we know that

−γt∥µt
k∥22 + 2βt∥γtΣt

k

1
2µt

k∥22 = −γt∥µt
k∥22 + 2βtγ

2
t ∥Σt

k

1
2µt

k∥22 (113)

≤ −γt∥µt
k∥22 + 2βtγ

2
t ∥Σt

k

1
2 ∥22∥µt

k∥22 (114)

= −γt∥µt
k∥22 + 2βtγ

2
t ∥Σt

k∥2∥µt
k∥22 (115)

= γt∥µt
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≤ γt∥µt
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We now check the term (−1 + 3t
3
2

√
(t+1)+t

√
t(t+1)

). For t = 1 and t = 2, it is easy to see the term

(−1 + 3t
3
2

√
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√
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) ≤ 0. For t ≥ 3, we have that
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2

√
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It follows that (−1 + 3t
3
2

√
(t+1)+t

√
t(t+1)

) ≤ 0. Thus, we have that

−γt∥µt
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k

1
2µt

k∥22 ≤ 0 (120)

Plug the inequality (120) into inequality (112), we know that
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It follows that
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Then, we have that
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Note that µ̄t
k = [µt⊤

1 , · · · ,µt⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤, together with Lemma 8.2 (a), we
have that
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where gti = ∇µ̄t
i
Ex∼N (µ̄t

i,Σ̄
t
i)
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From Eq. (124) and Eq. (123), we have that
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From Lemma 8.4, we know that for ∀i ∈ {1, · · · ,K}, Ji(µ̄i, Σ̄i) is convex function w.r.t. µ̄i and
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Denote Gt
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= 2
〈
Gt

i, Σ̄
t
i

〉
= 2tr(Gt

iΣ̄
t
i) (128)

Plug Eq.(128) into Eq. (126), we have that
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It follows that
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Plug Eq.(125) into Eq.(130), we have that
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In addition, we have that
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Because of Ht
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⪯ 0 (138)

Plug Eq.(138) into Eq.(133), we know that
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Telescope with Eq.(131), we have that
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We now show the upper bound of term
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Plug Eq.(141) and Eq.(144) into Eq.(140), we have that
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From Lemma 8.5, we then have that
T∑

t=1

(
K∑

k=1

(fk(µ̄
t
k)− fk(µ̄

∗
k))

)
≤

T∑
t=1

K∑
i=1

Ji(µ̄
t
i, Σ̄

t
i)−

T∑
t=1

K∑
i=1

Ji(µ̄
∗
i , 0) (147)
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Finally, divide T on both sides of Eq.(148), we have that
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Theorem 9.2. Set βt = tβ with β > 0, αt =
√
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It is equivalent to show that the inequality (151) always holds true.
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Then, it is equivalent to show that the inequality (152) always holds true.
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We first check the left hand side of the inequality (152).

Note that the setting βt = tβ with β > 0, αt =
√
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We now check the right hand side of the inequality (152).
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1

αt
(
βt+1

βt
− ωt) =

1

αt
(
(t+ 1)β

tβ
− 1) =

1

αtt
> 0 (155)

Thus, the inequality (152) always hold true. As a result, the constraints set always have feasible
solutions.

10 Related Background

10.1 Diffusion Model Sampling with SDE solver

The sampling phase of the diffusion model from noise to image can be implemented by solving the
stochastic differential equation (SDE) [Song et al., 2020, Kingma et al., 2021] as in Eq.(156):

dx̂τ = [f̂(τ)x̂τ +
g(τ)2

στ
ϵϕ(x̂τ , τ)]dτ + g(τ)dw̄τ (156)

where w̄τ is the reverse-time Wiener process, τ denotes time changing from K to 0, ϵϕ(x̃τ , τ)
denotes the diffusion model noise prediction with input x̂τ and time τ . And στ denotes the standard
deviation of the diffusion noise scheme at time τ . And f̂(τ) := d logατ

dτ , where ατ denotes the scaling

parameter scheme in the diffusion model. And g(τ)2 :=
dσ2

τ

dτ − 2f̂(τ)σ2
τ [Kingma et al., 2021].

Recently, Lu et al. [2022a,b] proposed a DPM solver for solving the diffusion SDE with a small
number of samples. The first-order SDE DPM solver is given in Eq.(157).

x̂τ =
ατ

ατ ′
x̂τ ′ − 2στ (e

h − 1)ϵϕ(x̂τ ′ , τ ′) + στ

√
e2h − 1z (157)

where z ∼N (0, I), h= λτ −λτ ′ , and λτ = log(ατ/στ ) and λτ ′ = log(ατ ′/στ ′). And ατ , ατ ′

denote the scaling parameter at step τ and τ ′ in diffusion model, respectively.

The second-order DPM solver is provided in Eq.(158):

x̂τ =
ατ

ατ ′
x̂τ ′ − 2στ (e

h−1)ϵϕ(x̂τ ′ , τ ′)− στ (e
h−1)

ϵϕ(x̂r, r)− ϵϕ(x̂τ ′ , τ ′)

r1
+ στ

√
e2h − 1z

(158)

where r1 = λr−λτ′
h and λr, λτ ′ denotes the parameter represents the log signal-to-noise-ratio.

Diffusion models can be applied to perform guided sampling for a wide range of applications [Dhari-
wal and Nichol, 2021, Rombach et al., 2022, Ramesh et al., 2022, Tumanyan et al., 2023]. Typically,
guided sampling relies on a conditional diffusion model ϵ̂ϕ(xτ , τ, c), and can be categorized as
classifier guidance sampling and classifier-free sampling model based on whether they require a
classifier model. However, these methods are not designed for black-box targeted generation and
usually rely on joint training for the conditional model from scratch, which may be prohibitively
expensive due to the re-training for each query batch update.

10.2 Black-box optimization

Given a proper function f(x) : Rd → R such that f(x) > −∞, black-box optimization is to
minimize f(x) by using function queries only. Instead of optimizing the original problem directly,
ES or stochastic zeroth-order optimization methods optimize a relaxation of the problem J(θ) :=
Ep(x;θ)[f(x)] w.r.t. the parameter θ of the sampling distribution of the relaxed problem.

Evolution strategies [Rechenberg and Eigen, 1973, Nesterov and Spokoiny, 2017, Liu et al., 2018]
employ a Gaussian distribution N (µ, σ2I) with a fixed variance for candidate sampling. The
approximate gradient descent update is given as

µt+1 = µt −
β

Nσ

N∑
i=1

ϵif(µt + σϵi), (159)
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where ϵi ∼ N (0, I) and β denotes the step-size, and µt denotes the mean parameter of the Gaussian
distribution for candidate sampling at tth black-box optimization iteration.

The ES methods only perform the first-order approximate gradient update, the convergence speed is
limited. Wierstra et al. [2014] proposed the natural evolution strategies (NES), which perform the
approximate natural gradient update, in which A Gaussian distribution N (µ,Σ) is employed for
sampling. Besides the updating of parameter µ, the covariance matrix Σ) is also updated. Lyu and
Tsang [2021] proposed an implicit natural gradient optimizer (INGO) for black-box optimization,
which provides an alternative way to compute the natural gradient update. In INGO update rule,
the inverse covariance matrix Σ−1 is updated instead of the covariance matrix Σ. Moreover, the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen and Ostermeier, 2001, Hansen,
2006] optimizes the objective function by adaptively fitting a multivariate Gaussian distribution,
guiding the search for the optimum based on the covariance matrix. CMAES [Hansen, 2006] provides
a more sophisticated update rule and performs well on a wide range of black-box optimization
problems. The update scheme combines several update rules, including heuristic updates, that are
challenging to analyze the convergence theoretically. Lyu [2023] proposed to employ local GP with
closed-form fast rank-1 lattice targeted sampling to accelerate the convergence of INGO. YE et al.
[2023] study the black-box multi-objective optimization by Gaussian sampling with the diagonal
covariance matrix assumption. Despite the success of these methods, all these methods ignore the
dynamic transition of the target function.

Bayesian Optimization (BO) usually builds a global Gaussian Process (GP) model as a surrogate
and provides queries by optimizing some acquisition functions [Snoek et al., 2012]. Although
BO achieves good query efficiency for low-dimensional problems, it often fails to handle high-
dimensional problems with large sample budgets [Eriksson et al., 2019]. The computation of GP
with a large number of samples itself is expensive, and the internal optimization of the acquisition
functions is challenging. The Trust Region Bayesian Optimization (TuRBO) [Eriksson et al., 2019]
extends traditional Bayesian optimization to solve global optimization problems by simultaneously
running multiple independent local Gaussian processes. Recently, Müller et al. [2021], Nguyen et al.
[2022] builds a GP model for both the function value and the gradient and performs local Bayesian
optimization. Although these methods improve the scalability of global BO, they usually cannot scale
up to five hundred dimensional complex problems. This may be because the learned gradient heavily
depends on the accuracy of the GP model. However, achieving an accurate GP model is challenging
for high-dimensional problems. A slightly misspecified GP model may lead to a wrong estimated
gradient due to the highly nonlinear acquisition functions.

The recent work [Krishnamoorthy et al., 2023] introduces Denoising Diffusion Optimization Models
(DDOM) for solving offline black-box optimization tasks using diffusion models. This method can
also be naturally extended to black-box targeted generation tasks. The DDOM relies on an offline
conditional model trained with reweighted data sampling. The generation is performed conditioned
on a high target score. The pre-collected data set has a crucial influence on DDOM generation.

11 Experiments Compute Resources

All experiments were conducted on a computer equipped with an AMD Ryzen Threadripper 3960X
(24-Core) CPU, 260GB RAM, and 4 Nvidia RTX A6000 GPUs. For the diffusion fine-tuning
experiment, we use AWS Lambda to parallelize the batch computation of the Vina docking score.
The memory allocation for AWS Lambda was set at 1536 MB on the x86_64 architecture1, and each
function evaluation took approximately 800ms. The numerical experiments required less than 30
minutes per run, whereas the fine-tuning experiments (300 steps) required about 300 minutes per run.

12 Broader Impacts

The proposed Covariance-adaptive sequential black-box optimization algorithm is a foundational
research focused on black-box optimization and theoretical convergence analysis. This part may
not have a direct social impact. The proposed targeted SDE fine-tuning framework for diffusion
black-box targeted generation is one of the downstream real-world tasks that can be optimized by

1https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
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our optimization algorithm. This part may have a potential social impact. The proposed diffusion
black-box targeted generation method may be used in 3D-molecule targeted generation for drug
discovery, new material design for superconducting, etc.

13 Demonstration of the Generated 3D-molecule

(a) Pre-train Best (Score = -11.082) (b) Before finetune (Score = -8.092)

(c) BDTG (ours) (Score = -12.431) (d) TuRBO (Score = -10.653) (e) CMAES (Score = -10.210)

Figure 3: Demonstration of the Generated 3D-molecule on Receptor-0
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(a) Pre-train Best (Score = -8.834) (b) Before finetune (Score = -10.230)

(c) BDTG (ours) (Score = -12.740) (d) TuRBO (Score = -11.203) (e) CMAES (Score = -10.192)

Figure 4: Demonstration of the Generated 3D-molecule on Receptor-1

(a) Pre-train Best (Score = -10.445) (b) Before finetune (Score = -11.080)

(c) BDTG (ours) (Score = -12.999) (d) TuRBO (Score = -12.688) (e) CMAES (Score = -10.579)

Figure 5: Demonstration of the Generated 3D-molecule on Receptor-2
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(a) Pre-train Best (Score = -9.494) (b) Before finetune (Score = -9.136)

(c) BDTG (ours) (Score = -12.291) (d) TuRBO (Score = -8.121) (e) CMAES (Score = -9.838)

Figure 6: Demonstration of the Generated 3D-molecule on Receptor-3

(a) Pre-train Best (Score = -15.998) (b) Before finetune (Score = -16.460)

(c) BDTG (ours) (Score = -18.908) (d) TuRBO (Score = -16.390) (e) CMAES (Score = -14.734)

Figure 7: Demonstration of the Generated 3D-molecule on Receptor-4
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(a) Pre-train Best (Score = -6.410) (b) Before finetune (Score = -5.677)

(c) BDTG (ours) (Score = -9.589) (d) TuRBO (Score = -8.400) (e) CMAES (Score = -6.440)

Figure 8: Demonstration of the Generated 3D-molecule on Receptor-5
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14 Demonstration of Fine-Tuned Stable Diffusion for Targeted Image
Generation

Pre-trained Model. We employ the Stable Diffusion v2.1 [Rombach et al., 2021]
(stable-diffusion-2-1-base) as our pre-trained diffusion model for targeted image genera-
tion, with DPM-Solver++ as the SDE solver. All parameters are kept as their default settings,
including the number of inference steps K = 50. We randomly generate 32 images using text
prompt a white puppy with golden wings, as shown in Figure 9. We can observe that the
generated images are not semantically accurate; the puppy does not have wings. This demonstrates
the limitation of the pre-trained diffusion model in generating unseen data.

Objective. We use OpenCLIP [Ilharco et al., 2021, Cherti et al., 2023, Radford et al., 2021, Schuh-
mann et al., 2022] (ViT-B-32) model as our objective function. The CLIP model embeds text and
images into a common space, allowing us to measure the cosine distance between the text and the
images. In our experiment, we compute the cosine distance between the preset text prompt and the
generated image as our CLIP score. Our goal is to generate images with high CLIP scores.

To conserve computational resources, we avoid computing the xk→K as described in 5.3. Instead, we
evaluate the CLIP score only on the final generated images and use this score for the intermediate
sampling steps. This is equivalent as to setting f(xi) := f(xK) for i ∈ {0, · · · ,K − 1} in our
formulation.

Fine-Tuning. The fine-tuning process is identical to our molecules generation experiment in 5.3 with
the batch size N = 32, learning rate α = 50, and fine-tune for T = 300 optimization steps.

Results. We randomly sample 32 images at the fine-tuning steps T = {100, 200, 300} and show the
generated images in Figure 10, 11, 12, respectively. We observe that the fine-tuned model begins to
generate images with accurate visual appearances at the 100-th step (with most dogs having golden
wings). By 300 steps, the images consistently show accurate visual appearances (with every dog
having golden wings).

This experiment demonstrates that our method is generalizable and can be applied to various domains.

Figure 9: Original Pre-trained Stable Diffusion, Average CLIP Score (Higher is Better) = 0.3084
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Figure 10: Fine-tuned Stable Diffusion (Steps = 100), Average CLIP Score (Higher is Better) =
0.4037

Figure 11: Fine-tuned Stable Diffusion (Steps = 200), Average CLIP Score (Higher is Better) =
0.4224
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Figure 12: Fine-tuned Stable Diffusion (Steps = 300), Average CLIP Score (Higher is Better) =
0.4274
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