
Published as a conference paper at ICLR 2023

ON EXPLAINING NEURAL NETWORK ROBUSTNESS
WITH ACTIVATION PATH

Ziping Jiang ∗

School of Computing and Communications, Lancaster University
{z.jiang7}@lancaster.ac.uk

ABSTRACT

Despite their verified performance, neural networks are prone to be misled by
maliciously designed adversarial examples. This work investigates the robustness
of neural networks from the activation pattern perspective. We find that despite
the complex structure of the deep neural network, most of the neurons provide
locally stable contributions to the output, while the minority, which we refer to as
float neurons, can greatly affect the prediction. We decompose the computational
graph of the neural network into the fixed paths and float paths and investigate their
role in generating adversarial examples. Based on our analysis, we categorize the
vulnerable examples into Lipschitz vulnerability and float neuron vulnerability.
We show that the boost of robust accuracy from randomized smoothing is the
result of correcting the latter. We then propose an SC-RFP (smoothed classifier
with repressed float path) to further reduce the instability of the float neurons and
show that our result can provide a higher certified radius as well as accuracy.

1 INTRODUCTION

Despite their verified performance, neural networks are prone to be misled by maliciously designed
adversarial examples. In response to this issue, many studies focus on defensive algorithms that
aim to increase the robustness of deep neural networks. One of the emerging topics in this field is
certifiable methods that aim to construct a guaranteed region, within which classifiers are able to
provide stable results regardless of the perturbation. The certifiable methods appear in two different
forms: verifiable training and randomized smoothing.

This work introduces an SC-RFP (smoothed classifier with repressed float path) which builds on
randomized smoothing algorithms and is able to further improve their robustness accuracy. We
decompose the local mapping function into fixed paths and float paths according to the stability of
neurons on the path. The fixed paths have a stable mapping relationship between input and output,
while the float paths can result in a sudden change of the mapping function and alter the result.
We categorize the adversarial examples into Lipschitz vulnerable and float neuron vulnerable. With
respect to the ability of randomized classifiers in correcting misclassified data, we conclude that
the essence of the smoothed classifier is to average the contribution of the float path and achieve a
locally stable result. Based on this, we further repress the float paths of the network and show that
such a classifier can achieve better performance.

The theoretical basis of this work is developed from the analysis of the activation region that was ini-
tially proposed for explaining the performance of neural network with a piecewise linear activation
function. The input domain of such a neural networkN is separated into many regions, within which
the mapping of N is piecewise linear. Previous investigation of this field includes the expressivity,
sensitivity, and potential issues of the network. However, due to the complexity of neural network,
the theoretical investigation only provides insights into the neural network but has yet to be deployed
downstream. In this work, we use the theory to explain the model robustness and introduce a novel
way to apply the complex theory to practical.

The contributions of this work are: (1) we introduce a complete framework to describe and decom-
pose the neural network according to the activation status of each neuron; (2) we provide an explana-

∗Ziping Jiang is with the LIRA Center, Lancaster University.

1

Published as a conference paper at ICLR 2023

tion of adversarial examples and discuss the role of smoothed classifiers as well as their contribution
in correcting misclassified example; (3) we introduce SC-RFP that achieves better performance in
certifying the network.

2 RELATED WORKS

The adversarial examples are malicious inputs that are formed by applying an imperceptible pertur-
bation to the original inputs but result in misclassification of a well-trained network (Biggio et al.
(2013); Szegedy et al. (2013)). To explain the existence of adversarial example, previous works
presented several hypotheses, such as linearity hypothesis (Szegedy et al. (2013); Luo et al. (2015))
and Evolutionary stalling (Rozsa et al. (2016)). Early works on increasing the robustness of neuron
networks focused on adversarial training methods (Goodfellow et al. (2014); Wong et al. (2020);
Tramèr et al. (2017); Dong et al. (2018); Kurakin et al. (2016)), while recent investigation shows
adversarial training methods can be broken by more advanced attacks.

To address the issue, certifiable training and randomized smoothing methods aim to provide a cer-
tified region, within which the input data are free from attack. By viewing the training as a convex
optimization problem, dual relaxation approaches apply duality to provide a solid bound for train-
ing as well as verify the network (Wong & Kolter (2018); Wong et al. (2018)). An alternative is
to estimate the Lipschitz boundary of the network and introduce constraints on either objective loss
(Tsuzuku et al. (2018)) or forward propagation (Lee et al. (2020); Weng et al. (2018); Zhang et al.
(2019); Huang et al. (2021)). As verifiable training methods often come with a compromise of
performance, recent works focus on bridging the gap between adversarial and verifiable training to
address the scalability and accuracy issue (Xiao et al. (2018); Balunović & Vechev (2020); De Palma
et al. (2022)).

On the other hand, randomized smoothing introduces a smoothed classifier to the base classifier,
therefore has a limited effect on the performance of standard models. Cao & Gong (2017) first
propose to ensemble the information around input data to smooth the prediction, but fail to provide
a theoretical guarantee on the result. Lecuyer et al. (2019) certify the result of the smoothed classifier
with differential privacy. Cohen et al. (2019) provides a theoretical analysis of the certifiable with
Monte Carlo, followed by Levine et al. (2019); Li et al. (2019). Jeong & Shin (2020) introduces a
regularized to improve the prediction constantly over noise, Jeong et al. (2021) trains the model on
a convex combination of samples and Salman et al. (2019) employs PGD attack with randomized
smoothing to further increases the robustness accuracy.

Another related topic is the explainability of neuron networks. Lin et al. (2017), Hornik et al.
(1989) and Park et al. (2020) investigate how deep models approximate an objective function. An
inspiring observation is that the network is a piecewise function when the activation function is
piecewise linear (Pascanu et al. (2013)). The number of linear regions is then adopted as a proxy
of network complexity (Montufar et al. (2014); Hanin & Rolnick (2019a;b)). Novak et al. (2018)
studies the network sensitivity by countering the transition density of trajectory in the input space.
Jiang et al. (2022) compares the similarity of activation patterns globally to study the limitation
of deep neural network. Inspired by the theoretical investigation, Jordan et al. (2019) introduces
an algorithm named GeoCert that computes the lp bound of the network with a piecewise linear
activation function. Zhang et al. (2022) proposes an algorithm that systematically searches the
adversarial example based on the activation space of ReLU network.

3 PRELIMINARIES

3.1 NOTATIONS

Let N be a d block feedforward neural network for classification task with measure zero parameter
set θ with respect to Lebesgue measure. Each of the block hi consists of a linear affine ϕi, an
optional batch-normalization layer ψi, and piecewise linear activation function σi, while the last
block hd omits the activation function. Consider D as the distribution of a classification problem
with c classes from Rn0 to Y = {1, 2, . . . , c}, network N computes a function f : Rn0 → Rc,
where f is a composition of d blocks f = hn ◦ hd−1 · · · ◦ h1.

2

Published as a conference paper at ICLR 2023

For every (x, y) ∼ D, the network computes a probability for each class f(x) ∈ Rc and predicts the
label of x as the class with the highest probability: ŷ = argmaxm∈Y fm(x), where fm(x) is the m-
th element of the network output vector. We use xi(x; θ), yi(x; θ) and zi(x; θ) to denote the input,
output, and pre-activation value of block i for data x. Tuple pair (i, j) and set I = ∪d−1

i=1 {(i, j)|j ∈
{1, . . . , ni}} denote the j-th neuron of layer i and all the neurons in intermediate layers respectively,
where ni is the output size of layer i.

3.2 RANDOMIZED CERTIFIABLE CLASSIFIER

The research on certifiable training aims to provide a guaranteed region for its input x, within which
a classifier always provide stationary result. To be specific, a classifier is regarded as robust for an
input x for perturbation of size r if:

argmax
m∈Y

fm(x′) = argmax
m

fm(x),∀x′ ∈ Bp(x, r) (1)

where Bp(x, r) := {x′ : ∥x′−x∥p ≤ r} is the sphere with radius r measured by the metric induced
by p-norm. By taking the standard performance of the classifier into account, the robust accuracy of
f with radius r is then defined as:

R(f) = E(x,y)∼D

[
argmax

m∈Y
fm(x′) = y,∀x′ ∈ Bp(x, r)

]
. (2)

However, robust models often incur increased stableness and impaired expressivity. As a concession
for that, randomized algorithms are proposed to verify the network with a sound theoretical bound
at the cost of slight additional computation other than model performance.

Let g be a randomized algorithm constructed based on classifier f . Given a data (x, y) ∼ D, g
employs a certain degree of randomness during the induction of f . For instance, smoothed classifier
g computes the probability of f(x+ ϵ) belongs to class i given ϵ ∈ N (0, σ2I)(Cohen et al. (2019)):

gi(x) = P(argmax
m∈Y

fm(x+ ϵ) = i), ϵ ∼ N (0, σ2I), (3)

With certain confidence level α, the lower bound of pA of random variable gy(x) and the upper
bound pB of the probability of second possible class maxm ∈ Y gy(x) can be computed. This
induces a certified radius of classifier g(x):

r =
σ

2

(
Φ−1

(
pA)− Φ−1

(
pB)

)
. (4)

For every x′ ∈ B2(x, r), if argmaxm∈Y gm(x) = Y , then argmaxm∈Y gm(x′) = y. In other
words, with confidence level α, every x′ within the radius can be correctly classifier by the smoothed
classifier. The smoothed classifier can also appear in other forms depends on the randomness and
training algorithm (Levine et al. (2019); Salman et al. (2019); Jeong & Shin (2020)).

3.3 ACTIVATION PATTERN AND COMPUTATIONAL PATH

The input space is partitioned into small linear regions by a neural network with piecewise linear
activation function. Each of the regions is initially referred to as an activation region. Previous
works mostly focused on the general properties of linear regions in investigating the expressivity and
limitation of neural network. As our objective is to study the unit-wise reaction towards perturbation,
introducing additional notations to describe the neurons is necessary for our analysis.

Definition 1 (Generalized Activation Pattern / Region). Let N be a network defined as Section 3.1.
Denote Γ = {γ1, γ2, . . . , γq} as a set of breakpoints that separates the domain of activation function
into q + 1 intervals U = {U0, U1, . . . , Uq}. A generalized activation pattern of N is an assignment
to each neuron of a label:

A := {aij |aij ∈ {0, 1, . . . , q}, (i, j) ∈ I}.

Given an activation pattern A, the activation region of A is defined as:

R(A; θ, σ,Γ) := {x ∈ Rin|zij(x; θ) ∈ Uaij , aij ∈ A}.1 (5)

3

Published as a conference paper at ICLR 2023

Activation Region Operator. The generalized activation pattern describes the activation status of
each unit at the intermediate layers. Given an activation pattern A and fixed dependencies, R(A)
can be viewed as an operator that finds the region, such that, for every x ∈ R(A), the pre-activation
value of each neuron zij(x; θ) locates within the interval Uaij

that determined by its pattern aij ∈
{0, 1, . . . , q}. However, as the scale of the network grows, the mean volume of a single activation
region decreases exponentially and can hardly provide insights into model robustness. Therefore, it
is necessary to generalize our investigation from single region to its neighbor.

From Single Region to its Neighbor.1 Equation 5 suggests that the essence of operator R(·) is
to find all the x that satisfies a certain constraint determined by the activation pattern. It can be
expressed as the intersection of a sequence of subspaces:

R(A) =
⋂
∀i,j

{x ∈ Rin|zij(x) ∈ Uaij
}. (6)

Given a subset of indexes, removing the intersection operations on those neurons defines a larger
region that contains R(A). This implies that adjacent activation regions can be merged into one by
releasing constraints on certain neurons. We described it with an incomplete activation pattern:
Definition 2. LetN be a network defined as Section 3.1. Given an activation patternA and a subset
of the index set Ic ∈ I, we denote AIc ⊂ A is an incomplete activation pattern of A:

AIc := {aij |aij ∈ A, (i, j) ∈ IC}.

The merged activation region of AIc is denoted as:

R(AIc) =
⋂

(i,j)∈Ic

{x ∈ Rin|zij(x) ∈ Uaij
}.

In the following section, we delve into such merged region to investigate model robustness.

4 FROM FLOAT PATH TO MODEL ROBUSTNESS

4.1 FLOAT NEURON AND PATH

Merged activation regions are irregularly shaped as it is defined by the post-activation of neurons,
while a regular subspace, such as sphere B(x, r), is preferred in analyzing the properties of a net-
work. Definition 3 introduces float neurons and fixed neurons to describe the status of neurons in a
regular subspace, followed by Lemma 1 which builds a connection between Definitions 2 and 3.
Definition 3 (Float and Fixed Neuron). Let N be a network defined as Section 3.1. For any space
R ⊂ Rn0 , if a neuron z has the same pattern for any x ∈ R, we refer it as a fixed neuron of R,
otherwise it is a float neuron. We denote the collection of fixed neurons and float neurons in region
R as IX(R) and IT (R), respectively:

IX(R) ={(i, j) | ∃x1, x2 ∈ R, aij(x1) ̸= aij(x2)}
IT (R) ={(i, j) | ∀x1, x2 ∈ R, aij(x1) = aij(x2)}.

The following lemma shows that: (1) the fixed and float neurons are complementary sets in I and
(2) any subset R ∈ Rn0 can be covered by a merged region defined by the fixed neurons of R.
Lemma 1. Let N be a neural network defined as Section 3.1. Given R ⊂ Rn0 , denote IX and IT
are the set of float neuron and fixed neuron in R. Then:

1. IX(R)
⋃
IT (R) = I, 2. R ⊂ R(AIX).

Now that we have described the status of neurons and illustrated their geometric relationship, we
introduce following definitions with the goal of decomposing the computational graph of N .2

1Appendix A provides additional discussion regarding activation pattern and geometric intuition.
2Appendix B explains the computational graph of network with more details.

4

Published as a conference paper at ICLR 2023

Definition 4 (Path). Let N be a network defined as Section 3.1. A path of N is a set of neurons:

ζ := {(i, ζi)|i = 0, 1, . . . , d}, ζi ∈ {1, 2, ..., ni}, (7)

where ni is the number of neurons in layer i. The value of a path is defined as:

ζ(x,A) := xζ0

i∏
m=1

dam,ζm
W

′(m)
(ζm,ζm−1)

, x ∈ R, (8)

where xζj is the ζj-th element of input, W ′(i) is the equivalent matrix linear transformation ψi ◦ ϕi,
am,ζm is the activation pattern of neuron (m, ζm) and dam,ζm

is the slope of activation σ within
am,ζm -th interval.

Definition 5 (Float Path and Fixed Path). Let N be a neural network defined as Section 3.1. Given
a subspace R ∈ Rn0 , a path ζ of N is a float path in R if there exist a neuron (i, ζi) ∈ ζ is a float
neuron, otherwise it is a fixed path:

float path in R := {ζ|∃ζi ∈ ζ, (i, ζi) /∈ II(R)}
fixed path in R := {ζ|∀ζi ∈ ζ, (i, ζi) ∈ II(R)}.

(9)

The value of float paths and float paths in R are denoted as:

ZT (x,A;R) =
∑

float path in R

ζ(x,A), ZT (x,A;R) =
∑

float path in R

ζ(x,A).

Figure 1 illustrate the proposed concepts with a simple network with 2D input, 4D output and 1
hidden layer. Neuron (1, 4) is the only float neuron in region B(x, r). As all the other neurons are
fixed, the only non-linearity is provided by neuron (1, 4). The computational graph of N can be
decomposed into float paths and fixed paths according to whether (1, 4) is on the path.

Figure 1: An illustration of the fixed (float) path and neuron of a neural network with 2D input, 4D
output, and 1 hidden layer. (1) The 2D input space; (2) A sphere centered at x; (3) A float neuron
with index (1,4) in the network.

By removing the constraint of neuron (1, 4) in Equation 6, an incomplete activation pattern AIc

defines a merged activation region R(AIX) from green and pink, where Ic = I/{(1, 4)} is subset
of neurons without neuron (1, 4). As Lemma 1 suggests, regionR(AIX) coversB(x, r). Moreover,
according to Definition 5, the activation pattern of neurons on fixed paths remains unchanged for
every x ∈ R(AIX). Therefore, given x, x′ ∈ B(x, r) with different activation patterns, the value
of their fixed paths is linear according to Equation 8. The following theorem generalizes the above
discussion by aggregating the value of all fixed and float paths with Definition 5.

Theorem 1. Let N be a neural network defined as Section 3. Given R ⊂ Rn0 , the following
statements hold for any x, x′ ∈ R with activation pattern A and A′:

1. f(x) = ZI(x,A;R) + ZT (x,A;R)

5

Published as a conference paper at ICLR 2023

2. f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)−ZT (x′,A′;R)

where J(x) is the Jacobian matrix of f at x.

Statement 1 decomposes the computational graph of f(x) into a linear function ZI(x,A;R) and an
unstable function ZT (x,A;R) with high non-linearity. Given x, x′ ∈ R, f(x)− f(x′) can also be
written as the sum of a fixed part and a float part by substitution with Statement 1. We rearrange the
equation so that the fixed part can be represented by the Jacobian matrix at x, while the float part
can be viewed as a general instability caused by float neurons.

4.2 FLOAT PATH AND NETWORK ROBUSTNESS

Now that we have stated the motivation and properties of proposed concepts, the remaining question
is how float and fixed paths affect the model robustness and randomized smoothing algorithms.

Lipschitz Vulnerable. We start with investigating the fixed part J(x)(x− x′), which is determined
by both local Lipschitz constant and the scale of perturbation. Intuitively, given sphere B(x, r), if
the Lipschitz constant is larger enough, the fixed part in f(x′)− f(x) itself can alter the prediction
of x. The threshold of ∥J(x)∥ is determined by the sum of prediction margin M(f(x), y) :=
miny′ ̸=y|f(x)y − f(x)′y| and upper bound of float path ZT (x′,A;B(x, r))−ZT (x′,A′;B(x, r)).
We refer such an x′ as a Lipschitz vulnerable data. In particular, taking expectation on above sum,
we have the following theorem.

Theorem 2. Let f be the base classifier. Given (x, y) ∼ D with f(x) = y, If

∥J(x)∥ > M(f(x), y) + E[M(ZT (x,A;R), y)]
r

,

then for any smoothed classifier g defined as above, there exist x′ ∈ B(x, r) such that g(x′) ̸= y.

∥ZI(x′) + ZT (x′)(1− η)− f(x)∥ Lipschitz Accuracy
η 0.05 0.10 0.15 0.20 0.25 Constant f(x) f(xadv) ZI(xadv)

Clean 19.28 19.28 19.28 19.28 19.29 17.06 93.05 0.00 85.08
σ = 0.12 17.14 16.84 16.57 16.33 16.12 4.99 86.25 12.54 65.90
σ = 0.25 3.74 3.63 3.53 3.45 3.39 2.88 73.59 19.53 50.98

Table 1: Experiment results for VGG16 trained on CIFAR10 with noise at different scales.

The above theorem suggests that randomized smoothing fails to correct misclassified data x if x has
an extremely large Lipschitz constant. Empirically, randomized smoothing cannot provide a certified
radius for models trained with clean data, while can achieve minor accuracy on models trained with
slightly perturbed data. The second set in Table 1 suggests that training models with noised sample
can compress the Lipschitz constant therefore enables the effect of smoothed classifier.

Float Neuron Vulnerable. On the other hand, the float part contributes to f(x′)− f(x) differently.
The last set in Table 1 presents the accuracy of FGSM (Goodfellow et al. (2014)) examples xadv
with ϵ = 8/255 under l∞ norm and the accuracy of sum of fixed paths ZI(xadv) between {x′, x}.
It shows that by removing the float paths between x and x′, a significant accuracy boost can be
achieved. This suggests that the unstable part of the network can greatly affect the prediction of
network. We refer x′ as a float neuron vulnerable data if argmaxZI(x′) = y while f(x′) is
misclassified. Given x′ is float vulnerable, if the smoothed classifier corrected the prediction of x′,
then the majority of the neighbor of x′ are voting for the correct label. In other word, the instability
caused by float paths is smoothed by additional samples around x′.

SC-RFP. Above discussion suggests that smoothed classifier fails to boost the performance of Lips-
chitz vulnerable example, but is able to correct float neuron vulnerable data by smoothing the sudden
change of float path in a region. Moreover, sampling more data shows that, the better smoothing is
performed, the higher certified radius and accuracy can be achieved (Cohen et al. (2019)). In other
words, randomized smoothing provides robustness by restricting the instability the network locally.

6

Published as a conference paper at ICLR 2023

Based on this insight, SC-RFP introduces a manual repression on the local instability caused by
float path into the smoothing classifier. The first set of Table 1 shows the averaged l1 norm of
difference between expectation of repressed prediction E[ZI(x′)+(1−η)ZT (x′)] and f(x), where
x′ is perturbed by ϵ ∼ N(0, 0.25) with g(x′) = y. At each x′, we sample 2550 samples around x′
and compute the averaged distance to f(x). We find that: (1) the clean model has high Lipschitz
constant while repressing the instability from float path cannot reduce the prediction gap, and (2) for
other models, repressing the instability drives the prediction of smoothed classifier towards original
prediction f(x). The results support above discussion. Algorithm 1 describes SC-RFP in details3.

At each block, we first compute the pre-activation value of x and x + ϵ. Prior to passes to the
activation function, we compare the activation pattern between zi(x) and zi(x+ ϵ) according to the
separation Γ, and use a repression factor η to reduce the value of float path.

Algorithm 1 Smoothed Classifier with Repressed Float Path
Inputs: Network N with parameter θ, randomized algorithm g, input x, repress ratio η.
Outputs: Predicted label ŷ

while g sample noise ϵ do
for Block i in Block 1, 2, . . . , d− 1 do
ITi ← A(zi(x)) ̸= A(zi(x+ ϵ))
zi(x+ ϵ)← zi(x+ ϵ)− zi(x+ ϵ)× ITi × η
xi+1(x+ ϵ)← σ(zi(x+ ϵ))

end for
counts← ϕd(xd(x+ ϵ))

end while
ĉA, ĉB ← top two indices in counts
n̂A, n̂B ← counts[ĉA], counts[ĉB]
if BinomPV alue(nA, nA + nB , 0.5) ≤ α then return ĉA else return Abstain
end if

Intuitively, manipulating the computational graph can greatly change the prediction result, while we
show that there are only a small proportion of path are affected by our method. Figure 2 present the
proportion of fixed neuron between x and x + ϵ of VGG16 network trained on CIFAR10. It shows
that models trained with noised sample have relatively more stable activation pattern, as the ratio
of fixed neurons are lower. In particular, the model trained with clean data has average fixed ratio
around 72%, while after adding a minimum scale of noise σ = 0.05, it increases to around 90%.

(a) ϵ ∼ N(0, 0.1) (b) ϵ ∼ N(0, 0.25)

Figure 2: Proportion of fixed neuron between x and x + ϵ for VGG16 models trained on CIFAR10
with noised data at different scales: clean data, σ = 0.05, σ = 0.10 and σ = 0.25. Figure 2(a) and
2(b) show the ratio given ϵ ∼ N(0, 0.1) and ϵ ∼ N(0, 0.25).

At the end of this section, we present Theorem 3 to link the certifiable boundary of proposed algo-
rithm with previous works.

3Code is provided at: https://github.com/OrangeBai/APCT-master

7

Published as a conference paper at ICLR 2023

Theorem 3. LetN be a network defined as Section 3.1. Let g be a smoothed classifier that samples
noise from distribution Dnoise and g′ is the SC-RFP built on g. Given ϵ ∼ Dnoise, assume that the
direction of ϵ is uniformly distributed:

∀∥η1∥ = ∥η2∥ = 1, P (
ϵ

∥ϵ∥
= η1) = P (

ϵ

∥ϵ∥
= η2). (10)

If argmaxm∈Y fy(x) = y, then
p′A > pA, pB

′ < pB , (11)
where p′A, pA are the lower bound of g′y(x) and gy(x), pB ′, pB are the upper bound of g′m ̸=y(x) and
g′m̸=y(x). Moreover, if argmaxm∈Y g(x) = y, g′(x) has certified radius no less than R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)). (12)

Notice that in the above theorem, we do not specify the randomized classifier g but introduce a
constraint of the randomness of g. This means that the theorem holds for not only the naive smoothed
classifier, but also its variants. However, it does not hold for the classifiers that sample directed noise.

5 EXPERIMENTS

(a) ϵ ∼ N(0, 0.1)

Figure 3: Certified Accuracy of base meth-
ods and SC-RFP (η = 0.1) with different
level of noise on CIFAR10. The solid and
dashed lines represent benchmark and SC-
RFP.

As SC-RFP is built on a base smoothed classi-
fier, we measure the method on different model
structures and randomized smoothing algorithms.
The experiments are performed on CIFAR10 and
ImageNet datasets. For the CIFAR10 dataset, we
compare our method with the benchmark classi-
fier proposed by Cohen et al. (2019) with VGG16
network to show the effectiveness of our method.
For the ImageNet dataset, we choose ResNet50
as model architecture and add the adversarial
smoothed classifier Salman et al. (2019) as the
base model. We also compare our model with
recent works (Jeong & Shin (2020); Jeong et al.
(2021)) to obtain a general evaluation. In line with
previous works, we use certifiable accuracy at dif-
ferent radius computed by Cohen et al. (2019) as
the metric.

CIFAR10. We train the VGG16 network with dif-
ferent scales of noisy samples. Each of the models
is trained for 200 epochs with SGD optimizer and
an initial learning rate of 0.1, which decays after
60, 120, and 160 epochs with a rate of 0.2. Table 2 compares the robust accuracy of SC-RFP and
benchmark. Generally, our SC-RFP increases have an increasingly robust accuracy between 6% to
10% compared with the benchmark. We notice that by repressing the float path, SC-RFP is able to
improve the accuracy of clean data, which supports our analysis that the float neuron vulnerability is
one of the causes of misclassification. Figure 3 present the robust accuracy at different noise scale.
We find that the performance boost from SC-RFP increases as the radius increases for all the models.

Method 0.25 0.5 0.75 1.0 1.25 1.5 2.0 2.5 Clean

Cohen et al. (2019) 66.0 50.2 44.2 25.4 19.5 19.5 6.9 4.5 75.3
+ SC-RFP 69.4 58.3 52.7 34.9 29.5 29.5 12.9 9.5 77.2

Table 2: Certified robust accuracy for Benchmark and SC-RFP (η = 0.1) on CIFAR10.

Experiments on ImageNet. We train ResNet50 using the benchmark model (Cohen et al. (2019))
and SmoothAdv (Salman et al. (2019)) on ImageNet-2012 for 80 epochs with same training sched-
uler and optimizers as the original work. Each of the model are certified with same level of noise as
they were trained.

8

Published as a conference paper at ICLR 2023

(a) σ = 0.25 (b) σ = 0.5 (c) σ = 1.0

Figure 4: Certified Accuracy of base methods and SC-RFP on ImageNet. Model are trained and
tested with (a) σ = 0.25, (b) σ = 0.5 and (c) σ = 1.0. The solid and dashed lines represent
benchmark and SC-RFP with different repression factor.

Table 3 compares the certified robust accuracy of different models at different radius on ImageNet.
It shows that when deployed on the PGD+noise training (Salman et al. (2019)), the SC-RFP has the
highest robust accuracy at all the radius. Moreover, an increasing boost in the robust accuracy is
observed as the radius increase, which is consistent with our previous analysis of CIFAR10 result.

Figure 4 provides more details on our experiments. For a noise level of σ = 0.25, SmoothAdv and
SmoothAdv + SC-RFP has neglectable difference, while in Figure 4(c), the SC-RFP (σ = 0.25)
increases the robust accuracy by around 5%. By introducing SC-RFP (σ = 0.1) to the benchmark
classifier, it achieves comparable results with other state-of-art models when l2 radius is around 1.5.

l2 radius 0.25 0.5 0.75 1.0 1.5 2.0 Clean

Jeong & Shin (2020) 59.8 49.8 44.7 39.3 28.1 22.6 -
Jeong et al. (2021) 46.7 38.2 30.3 26.8 15.7 12.1 -
Cohen et al. (2019) 57.9 46.4 41.9 32.6 22.8 15.6 66.1

+ SC-RFP (ours) 59.4 50.3 41.5 35.6 26.1 20.2 65.8
Salman et al. (2019) 59.2 54.1 51.5 39.6 26.2 20.1 63.6

+ SC-RFP (ours) 59.8 55.4 53.6 42.0 29.6 25.2 63.9

Table 3: Certified robust accuracy for models with different methods on ImageNet

We find two insightful observations from the above results. First, introducing the repression factor
to the float path has a minimum negative effect on the standard accuracy, while can greatly boost
the robust accuracy. This supports our discussion that float neuron vulnerable examples are caused
by the float path, and can be cured by reducing their contribution. Second, we find that as the radius
grows, the boost from our method increases. This is consistent with the theoretical basis of SC-RFP
as well as the result from CIFAR10 dataset. When size of the perturbation grows, the uncertainty of
the randomized algorithm increases along with the number of float paths as Figure 2 suggests. This
results in a higher abstain rate and a higher possibility of misclassification. By repressing the value
of the float path, the deviation of g(x + ϵ) from f(x) is reduced, therefore a more stable result can
be achieved.

6 CONCLUSION

In this work, we introduce SC-RFP algorithm that can improve the performance of a randomized
smoothing classifier. We first introduce a framework for describing the local activation status of
neurons and show that most of the neurons are locally stable, while the others can greatly affect the
model prediction. By decomposing the computational graph of the network, we find that the boost of
robust accuracy provided by the smoothed classifier is averaging the deviation of float paths. Based
on this, we suggest further repressing the value of float paths with SC-RFP method. The experiments
show that our method can improve the performance of smoothing models.

9

Published as a conference paper at ICLR 2023

REFERENCES

Mislav Balunović and Martin Vechev. Adversarial training and provable defenses: Bridging the gap.
In 8th International Conference on Learning Representations (ICLR 2020)(virtual). International
Conference on Learning Representations, 2020.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating evasion attacks to deep neural networks via
region-based classification. In Proceedings of the 33rd Annual Computer Security Applications
Conference, pp. 278–287, 2017.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M Pawan Kumar, and Robert Stan-
forth. Ibp regularization for verified adversarial robustness via branch-and-bound. arXiv e-prints,
pp. arXiv–2206, 2022.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9185–9193, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pp. 2596–2604, 2019a.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns. In
Advances in Neural Information Processing Systems, pp. 361–370, 2019b.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Yujia Huang, Huan Zhang, Yuanyuan Shi, J Zico Kolter, and Anima Anandkumar. Training certifi-
ably robust neural networks with efficient local lipschitz bounds. Advances in Neural Information
Processing Systems, 34:22745–22757, 2021.

Jongheon Jeong and Jinwoo Shin. Consistency regularization for certified robustness of smoothed
classifiers. Advances in Neural Information Processing Systems, 33:10558–10570, 2020.

Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Do-Guk Kim, and Jinwoo Shin.
Smoothmix: Training confidence-calibrated smoothed classifiers for certified robustness. Ad-
vances in Neural Information Processing Systems, 34:30153–30168, 2021.

Ziping Jiang, Yunpeng Wang, Chang-Tsun Li, Plamen Angelov, and Richard Jiang. Delve into
activations: Towards understanding dying neuron. IEEE Transactions on Artificial Intelligence,
2022.

Matt Jordan, Justin Lewis, and Alexandros G Dimakis. Provable certificates for adversarial exam-
ples: Fitting a ball in the union of polytopes. Advances in neural information processing systems,
32, 2019.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the physical world,
2016.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 656–672. IEEE, 2019.

10

Published as a conference paper at ICLR 2023

Sungyoon Lee, Jaewook Lee, and Saerom Park. Lipschitz-certifiable training with a tight outer
bound. Advances in Neural Information Processing Systems, 33:16891–16902, 2020.

Alexander Levine, Sahil Singla, and Soheil Feizi. Certifiably robust interpretation in deep learning.
arXiv preprint arXiv:1905.12105, 2019.

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness with
additive noise. Advances in neural information processing systems, 32, 2019.

Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work so well?
Journal of Statistical Physics, 168(6):1223–1247, 2017.

Yan Luo, Xavier Boix, Gemma Roig, Tomaso Poggio, and Qi Zhao. Foveation-based mechanisms
alleviate adversarial examples. arXiv preprint arXiv:1511.06292, 2015.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Minimum width for universal approximation.
arXiv preprint arXiv:2006.08859, 2020.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep
feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098, 2013.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

Andras Rozsa, Manuel Gunther, and Terrance E Boult. Towards robust deep neural networks with
bang. arXiv preprint arXiv:1612.00138, 2016.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: scalable certifica-
tion of perturbation invariance for deep neural networks. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 6542–6551, 2018.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
International Conference on Machine Learning, pp. 5276–5285. PMLR, 2018.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pp. 5286–5295. PMLR,
2018.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. Advances in Neural Information Processing Systems, 31, 2018.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

11

Published as a conference paper at ICLR 2023

Kai Y Xiao, Vincent Tjeng, Nur Muhammad Mahi Shafiullah, and Aleksander Madry. Training for
faster adversarial robustness verification via inducing relu stability. In International Conference
on Learning Representations, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks.
arXiv preprint arXiv:1906.06316, 2019.

Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. A
branch and bound framework for stronger adversarial attacks of relu networks. In International
Conference on Machine Learning, pp. 26591–26604. PMLR, 2022.

APPENDIX

The Appendix contains four sections. Section A further discusses the geometric intuition following
Section 3.3. Section B provides proofs of the decomposition of computational graph following
Section 4. Section C further invesitgates the properties of proposed SC-RFP algorithm. At last,
Section D provide supplementary experiment results for Section 5

A GEOMETRIC ILLUSTRATION

This section provides geometric illustration of the proposed framework. For the completeness of
definition of activation region, we discuss the case that pre-activation value zij(x) locates within
none of the intervals. In other words, we consider the case that zij(x; θ) ∈ {γ1, γ2, . . . , γq}.
Definition 1 (Generalized Activation Pattern / Region (Restate)). Let N be a network defined as in
Section 3.1. Denote

Γ = {γ1, γ2, . . . , γq}
as a set of breakpoints that separates the domain of activation function into q + 1 intervals

U = {U0, U1, . . . , Uq}.
An activation pattern of N is defined as an indexed family that assigns each neuron a sign to repre-
sent the status of its pre-activation in U :

A := {aij |aij ∈ {0, 1, . . . , q}, (i, j) ∈ I}.
Given an activation pattern A, the activation region of A is defined as:

R(A; θ, σ,Γ) := {x ∈ Rin|zij(x; θ) ∈ Uaij
, aij ∈ A} (13)

Conversely, given x ∈ Rin, we denote the activation pattern of neuron (i, j) at x as:

âij(x; θ, σ,Γ) =

{
i, zij(x; θ) ∈ Ui,

abstain, zij(x; θ) ∈ {γ1, γ2, . . . , γq}
(14)

The activation pattern of x is the collection of the all the pattern of neurons:

Â(x; θ, σ,Γ) = {âij(x)|(i, j) ∈ I} (15)

Inverse of activation region operator. The generalized activation pattern describes the activation
status of each unit at the intermediate layers. Given an activation pattern,R(·) finds the region, such
that, for every x ∈ R(A; θ, σ,Γ), the pre-activation value of each neuron zij(x; θ) locates within the
interval Uaij

that determined by its pattern aij ∈ {0, 1, . . . , q}. However, the activation pattern of x
given zij(x) ∈ {γ1, γ2, . . . , γq} cannot be determined under previous definition as well as previous
works(Hanin & Rolnick (2019b)Raghu et al. (2017)). Therefore, we introduce an inverse operator
Â(x; θ, σ,Γ) that computes the activation pattern of an input x ∈ Rn0 in Definition 1. This allows
us to fill the completeness with the framework.

Next, we consider the set {x|zij(x) ∈ {γ1, γ2, . . . , γq}}. Under trivial assumption that the proba-
bility distribution of parameter set {θ} has no atom:

P(θ = θ0) = 0,∀θ0 ∈ R, θ ∈ {theta}.

12

Published as a conference paper at ICLR 2023

The Lebesgue measure of {x|zij(x) ∈ {γ1, γ2, . . . , γq}} is 0 inRn0− dimension. From a geometric
point of view, the collection of those x partition the input space Rn0 into numerous regions by a set
of hyperplanes {Hijk(θ)}, where:

Hijk(θ) := {x ∈ U |zij(x; θ) = γk},

is determined by neuron (i, j) and breakpoint γk. Each of the region, as Definition 1, is an activation
region. The following figure presents a geometric illustration similar to that in the Section 4, but
with the description of bent-hyperplanes.

Figure 5: An illustration of the fixed (float) path and neuron of a neural network with 2D input, 4D
output, and 1 hidden layer. (1) The 2D input space; (3) A sphere centered at x; (4) A float neuron
with index (1,4) in the network.; (4) A bent-hyperplane defined by H = x|z1,4(x) = 0;

Figure 5 presents an illustration of the key concepts of this work. Consider N as a neural network
with 2D input, 4D output and 1 hidden layer with 4 neurons. Assume that N has ReLU activation
function. The input space is partitioned into several regions by a set of hyperplanes. Each of the
region is referred as an activation region that marked in a unique color, within which the mapping
function is linear.

For example, the pink and green region are divided by the bent-hpyerplane H = x|z1,4(x) = 0,
where z1,4 is the pre-activation value of 4-th neuron in the 1st layer. Now we consider a sphere
B(x, r) centered at x with radius r. B(x, r) is covered by the union of pink and green region. Since
the two regions can be merged into one by removing the hyperplane, then the incomplete activation
pattern of the merged region is I\{(1, 4)}. Therefore, (1, 4) is the only float neuron inB(x, r). This
means that for every x ∈ B(x, r), all the neuron has same activation pattern expect for the neuron
(1, 4).

Now we consider the computational path of x ∈ B(x, r). Given a path ζ, if neuron (1, 4) is not on
this path, then ζ is a fixed path, which are the black lines in the figure. This means that for every
x ∈ B(x, r), the value of those fixed path are linear function with respect to x. On the other hand, all
the non-linearity of function f(x) for x ∈ B(x, r) are contributed by the float path (Orange lines).

With the illustration above, we proof Lemma 1 as follows.

Lemma 1 (Restated). Let N be a neural network defined as Section 3.1. Given R ⊂ Rn0 , denote
IX and IT are the set of float neuron and fixed neuron in R. Then:

1. IX(R)
⋃
IT (R) = I 2. R ⊂ R(AIX)

Proof. Given a neuron (i, j) and a region R ∈ Rn0 . For any x ∈ R, we use âij(x). Since
zij(x) ∈ (−∞,∞), the pattern of x is either an index k of the region when zij(x) ∈ Uk or -1 when
zij(x) locate on the bent-hyperplane Hijk := {x|zij(x) = k}.
This means every neuron has a pattern for x ∈ R. If for every x ∈ Rn0 , the pattern of neuron (i, j)
remains the same, then (i, j) is a fixed neuron. Otherwise, it is a float neuron. In other words, a
neuron is either fixed or float in R. This implies that IX(R)

⋃
IT (R) = I.

13

Published as a conference paper at ICLR 2023

Now we consider statement 2. For any x1, x2 ∈ R, and an index of neuron (i, j). If âij(x1) =
âij(x2), (i, j) is a fixed neuron in R: (i, j) ∈ IX . Denote the pattern aij. Then for all x1 ∈ R,
zij;x1,θ = zij;x2,θ. Therefore, x1 ∈ R(AX).

B DECOMPOSING THE NETWORK

Before we delve into details, we have to restate the definition of path and introduce definition of
sub-path. This enables us to take the bias, the computational graph of which starts at middle of the
network instead of the beginning, into account. We start with introducing a sub-path of network N .

Definition 6 (Sub-path). A sub-path of a path consists of several consecutive elements of γ:

ζ(i,j) = {ζj , ζj+1 . . . , ζi} ⊆ ζ (16)

We use ζ(i,j)(x) to represent the computation graph from (j, ζj) to (i, ζi):

ζi(x) = ζ(i,j) ◦ ζj,0(x) (17)

Definition 4 (Path (Restate)). Let N be a network defined as Section 3.1. A path of N is a set of
neurons:

ζ := {(i, ζi)|i = 0, 1, . . . , d}, ζi ∈ {1, 2, ..., ni}, (18)

where ni is the number of neurons in layer i. The value of a path is defined as:

ζ(i,j)(v,A) := v

i∏
m=j+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

, (19)

where xζj is the ζj-th element of input, W ′(i) is the equivalent matrix linear transformation ψi ◦ ϕi,
am,ζm is the activation pattern of neuron (m, ζm) and dam,ζm

is the slope of activation σ within
am,ζm -th interval.

Next, we consider the mapping from v, which can be either from x or a bias at intermediate layers,
to output of i-th layer yi.

Lemma 2. Let N be a neural network defined as Section 3.1. Given activation pattern A, for any
x ∈ R(A; θ, σ,Γ). The k-th component of output vector of layer i can be represented as:

yik(x) =
∑

∀ζi=k

xj,ζj

i∏
m=j+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

+

i−1∑
o=j

∑
∀ζi=k

β
(o)
ζo

i∏
m=o+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

(20)

where xj,ζj is the ζj-th element of input in layer j, W ′(i) and β(i) are the equivalent matrix and bias
of linear transformation ψi ◦ϕi,Am,ζm is the activation pattern of ζm-th component of layerm and
dAm,ζm

is the slope of pattern Am,ζm : dAm,ζm
:= σ′(t), t ∈ UAm,ζm

.

Proof (Lemma 2). We first show that the pre-activation transformation can be represented by a
matrix. As ϕi is a linear affine, we denote ϕi(x) = Wixi. Combing with batch normalization layer,
the mapping from input xi to pre-activation is:

zi = γi
ϕi(x)− µ̂

σ̂
+ βi =

γ

σ̂
ϕi(x)−

γµ̂

σ̂
+ βi = Di(

γ

σ̂
)Wix−

γµ̂

σ̂
+ βi (21)

where Di(·) is the diagonal operator, µ̂ and σ̂ are the mean and variance parameter of the ψi.
Denote W ′(i) = Di(

γ
σ̂)Wi, β′

i = (βi − γµ̂
σ̂)/ni. We proof this byh deduction. For i = 1:

zi =

n0∑
j=0

W
′(1)
ij dA1,i

x0j + n1 × β′(1)
i .

where A1,i is the activation pattern of z1i. Since all the path in layer i ends at i are
{(1, i), (2, i), . . . , (n0, i)}. Equation 20 holds.

14

Published as a conference paper at ICLR 2023

Now we assume equation holds for i = p.

zpi =

ni∑
j=0

W ′(i)xij + ni × β′(i)
j

=

ni∑
j=0

W ′(i)zi−1,j + ni × β′(i)
j

=

ni∑
j=0

W ′(i)dAi,jzi−1,j + ni × β′(i)
j

=

ni∑
j=0

W ′(i)dAi,j(
∑
∀ζi=j

xj,ζj

i∏
m=p

dAm,ζm
W

′(m)
(ζm,ζm−1)

+

i−1∑
o=p−1

∑
∀ζi=k

β
(o)
ζo

i∏
m=o+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

) + β
′(i)
j

=
∑

∀ζp=k

xj,ζj

p∏
m=j+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

+

p−1∑
o=j

∑
∀ζp=k

β
(o)
ζo

i∏
m=o+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

(22)

Lemma 2 decomposes the computational graph of networkN , while Theorem 1 categorize the paths
of f(x) into fixed part and float part. Moreover, it describes the model robustness with by divide the
variant of f into a linear part as well as a non-linear part.
Theorem 1 (Restate). Let N be a neural network defined as 3. Given R ⊂ X , for any x, x′ ∈ R
with activation pattern A and A′, we have :

1. f(x) = ZI(x,A;R) + ZT (x,A;R)

2. f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)−ZT (x′,A′;R)

where ZI(x,A;R) =
∑

ζ∈ZI(R) ζ(x,A),ZT (x,A;R) =
∑

ζ∈ZT (R) ζ(x,A) are the sum of fixed
path and float path given the regionR, J(x) is the Jacobian matrix of f at x.

Before we proof above Theorem, we use the following Lemma to show that every fixed path in a
region is linear regardless of the activation pattern.
Lemma 3. Let N be a network defined as Section 3.3. Let ζ be a fixed path in R ⊂ Rn0 . Then
for any x, x′ ∈ R with activation pattern A,A′, ζ(x′,A) = ζ(x′,A′). Moreover, ZI(x′,A;R) =
ZI(x′,A′;R).
Proof (Lemma 3). Given x ∈ R with activation pattern A,

ζ(x,A) := v

d∏
m=1

dAm,ζm
W

′(m)
(ζm,ζm−1)

.

Since ζ is a fixed path in R, then every neuron alone ζ is fixed neuron, the activation pattern of
(m, ζm) is same regardless of input x. Therefore, dAm,ζm

is constant for any x ∈ R. Then ζ(x,A)
is a linear function of x : ζ(x,A) = ζ(x). In other words, the change of activation pattern does not
affect the neurons on ζ, therefore the slope of this path does not change. ζ(x) is dependent on x in
region R. This means that ζ(x′,A) = ζ(x′,A′) for any x, x′ ∈ R with activation pattern A,A′

ZI(x′,A;R) is the aggregation of all the fixed path above. Since the summation of linear function
is still linear, we have:

ZI(x′,A;R) = ZI(x′,A′;R)
Proof (Theorem 1). From Lemma 1, every neuron is either fixed neuron or float neuron. For the
neurons in path ζ, if there exists a float neuron, then the path is float path. Otherwise, it is a fixed
path. The float path and fixed path are complementary set on the set of all paths.

Lemma 2 decomposes the f(x) into summation of paths. As each path is either float or fixed, we
have

f(x) = ZI(x,A;R) + ZT (x,A;R).

15

Published as a conference paper at ICLR 2023

For statement 2, we have:
f(x)− f(x′) =

(
ZI(x,A;R) + ZT (x,A;R)

)
−

(
(ZI(x′,A′;R) + ZT (x′,A′;R)

)
=
(
ZI(x,A;R) + ZT (x,A;R)−ZI(x′,A;R)−ZT (x′,A;R)

)
+

ZT (x′,A;R)−ZT (x′,A;R)
(23)

Notice that, ZI(x′,A;R) is the collection of all fixed path, therefore is unrelated with the change
of A. We have ZI(x′,A;R) = ZI(x′,A′;R). The former part of above equation is equals to
J(x)(x− x′), which reaches to statement 4.

C MODEL ROBUSTNESS

C.1 LIPSCHITZ VULNERABLE AND FLOAT NEURON VULNERABLE

In Section 4.2 we discuss two kinds of vulnerable data and discuss our motivation of SC-RFP. In
this section, we present formally statements of the proposed idea.

Before we move to Theorem 2, we need the following two lemmas. Lemma 5 suggests that, given
a fixed path ζ, the expectation for the randomized algorithm g(ζ(x)) is equal to the ζ(x) when g
satisfies certain conditions. In fact, the condition here just assume that the randomly sampled noise
has equal probability at each direction, which is a natural assumption for most sampling procedure.
Lemma 4. Denote N as a neural network as Definition 3 with mapping function f , ζ is a fixed
path in B2(x, p). Assume g is a randomized algorithm that applies noise ϵ from certain distribution
Dnoise on the computation path of ζ:

g(ζ(x)) = ζd,i(ζi,0(x) + ϵ), i ∈ {0, 1, . . . , d− 1}, ϵ ∼ Dnoise (24)
If the direction of ϵ is uniformly distributed, then the expectation of g(ζ(x)) is equals to ζ(x), that
is:

∀∥η1∥ = ∥η2∥ = 1, P (
ϵ

∥ϵ∥
= η1) = P (

ϵ

∥ϵ∥
= η2)⇒ E[g(ζ(x))] = ζ(x), (25)

where ϵ is the noise generated for randomized algorithm g.
Proof. Assume that g samples noise at layer k. Then for any g, ζ(k, 0) = g(ζk,0), which we denote
as xk. Since the activation function is piecewise linear, the mapping of ζd,k(·) is linear. We have:

nk∑
i

∂2yj
∂z2kj

= 0. (26)

ζd,k is harmonic. Therefore, given any B(x, r) with radius r > 0:

ζd,k(x) =
1

nωnrn−1

∫
∂B(x,r)

ζdσ, (27)

where ωn is the volume of the unit ball in n dimensions, σ is the (n − 1) dimensional surface
measure. Now we consider the expectation of g(x):

E(g(x)) =
∫
p(ϵ)ζd,k(xk + ϵ)dµ

=

∫ ∫
∥ϵ∥=r

p(ϵ)ζd,k(xk + ϵ)dµdr,
(28)

where µ is the probability measure of ϵ Dnoise. As the noise sampling is assumed to be direction
irrelevant, the measure of p(ϵ|∥ϵ∥2 = r) is uniformly distributed given radius r. Therefore:∫

∥ϵ∥=r

p(ϵ)ζd,kdµ = P (∥ϵ∥2 = r)ζd,k. (29)

Equation 28 then equals:

E(g(x)) =
∫
p(ϵ)ζd,k(xk + ϵ)dµ

=

∫
P (∥ϵ∥2 = r)ζd,kdr

= ζd,k(x)

(30)

16

Published as a conference paper at ICLR 2023

Lemma 5. Let f and g be the mapping function and randomized classifier defined as above. Given
radius r such that, almost surely, ZT (B(x, r)) = ∅,∀(x, y) ∼ D, then the accuracy of base classi-
fier and the naive smoothed classifier are same, that is:

E(x,y)∼D

[
argmax

m∈Y
gm(x) = y

]
= E(x,y)∼D

[
argmax

m∈Y
fm(x) = y

]
Lemma 5 is the achieved by directly applying Lemma 4 on the all the computational graph of the
network. It shows that if all the neurons have locally stable activation pattern with respect to the
distribution of dataset, the smoothed classifier provides identical accuracy with the base classifier.

Next, we present the proof of Theorem 2.

Theorem 2. Let f be the base classifier. Given (x, y) ∼ D with f(x) = y, denote M(f(x), y) :=
miny′ ̸=y|f(x)y − f(x)′y| as the margin operator of prediction vector. If

∥J(x)∥ > M(f(x), y) + E[M(ZT (x,A;R), y)]
r

,

then for any smoothed classifier g defined as above, there exist x′ ∈ B(x, r) such that g(x′) ̸= y.

Proof. Statement 4 of 1 suggests:

f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)−ZT (x′,A′;R) (31)

As ∥J(x)∥ > M(f(x),y)+M(E[ZT (x,A;R)],y)
r , there exist x′ and i such that:

fi(x
′) > fy(x

′) + E[ZT
y (x,A;R)− ZT

i (x,A;R)] (32)

Therefore,
gi(x)− gi(x′) > gy(x)− gy(x′) +M(f(x), y),

gi(x
′) > gy

(33)

Next, we consider the case that x is an adversarial example that mislead f but correctly classified
by g, which we referred to as a float neuron vulnerable example. The following theorem suggests
that, the float path at x are the cause of the altered prediction. In other words, the network is locally
correct around x, while there are sudden change from the float path that causes the misclassification.

Theorem 4. Let f and g be the base and smoothed classifier defined above. Given (x, y) ∼ D,
denote x′ ∈ B(x, r) as an adversarial example that mislead the base classifier but corrected by g
without abstain:

argmax
m∈Y

fm(x) = i, argmax
m∈Y

gm(x) = y, i ̸= y (34)

then loss of float path is higher than that of g:

CE(ZT (x′,A;R), onehot(y)) > CE(g(ZT (x′,A;R)), onehot(y)) (35)

where CE(·, ·) is the cross entropy loss, onehot(y) is the one hot embedding of label y.

Proof (Theorem 4). Since argmaxm∈Y fm(x) ̸= y, argmaxm∈Y gm(x) = y, there exist i ∈
{1, . . . , c}:

gy(x) >fy(x)

gi(x) <fi(x)
(36)

Then we have:
gy(x)− gi(x) ≥ fy(x)− fi(x) (37)

Introducing Statement 4 of Lemma 1 and Lemma 5:

gi(Z
T (x,A;R))− gy(ZT (x,A;R)) < ZT

i (x,A;R)− ZT
y (x,A;R). (38)

Moreover, since the prediction is not abstained.

E[gy(x)]− fy(x) > E[gj(x)] > fj(x),∀j ̸= i, y (39)

This directly leads us to the result.

17

Published as a conference paper at ICLR 2023

(a) Prediction Surface (b) Float Computation
-

(c) SC-RFP Surface

Figure 6: The value of first element of prediction vector from VGG16 model trained on CIFAR10
given a 2D slice centered at a random data from test set. (a) The wireframe represents the prediction
f(x) while the surface is the sum of fixed path ZI(x,A;R), respectively. (b) The sum of float path
ZT (x,A;R) = f(x) − ZI(x,A;R). (c) The wireframe and surface are prediction of SC-RFP:
ZI(x,A;R) + ηZT (x,A;R) with η < 1 and sum of fixed path same as (a).

Theorem 2 and Theorem 4 show that a smoothed classifier is not able to boost the performance of
fixed path, while it is applied to reduce the sudden change of float path in a region. To be specific,
if x′ can be corrected by g, it is resulted from the sudden change provided by the float path. A
higher confidence score of g(x′) can be achieved by reducing the weight of float path during the
computation path. On the other hand, if x′ is Lipschitz vulnerable, then regardless of the form of
smoothed classifier, it cannot be fixed. This lead us to the theoretical basis of SC-RFP algorithm.

Figure 6 illustrates the SC-RFP by showing the prediction, fixed path and float path. We first present
the prediction and the fixed path value in Figure 6(a). The float path value is then computed as
ZT (x,A;R) = f(x) − ZI(x,A;R) in Figure 6(b). At last, by repressing the float value, we
achieve a locally stable prediction from SC-RFP.

C.2 VERIFIABLE RADIUS

At the end of section 4.2, we propose Theorem 3 to describe the upper and lower bound of SC-RFP
as well as the certified radius. We present the proof of Theorem 3 below.

Theorem 3. Let N be a network defined as Section 3.1. Let g be a smoothed classifier that samples
noise from distribution Dnoise and g′ is the SC-RFP built on g. Assume that the direction of ϵ is
uniformly distributed.

∀∥η1∥ = ∥η2∥ = 1, P (
ϵ

∥ϵ∥
= η1) = P (

ϵ

∥ϵ∥
= η2), ϵ ∼ D (40)

If argmaxm∈Y fy(x) = y, then
p′A > pA, p′B < pB , (41)

where p′A, pA are the lower bound of g′y(x) and gy(x), p′B , pB are the upper bound of g′m ̸=y(x),
g′m̸=y(x). Moreover, argmaxm∈Y g

′(x) = y for all ∥ϵ∥ ≤ R,

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (42)

Proof. The proof of Theorem 3 can be divided into three steps. First, we show that given ϵ ∼ Dnoise,
the expectation of fixed paths for the any E(ZX(x+ ϵ)) = ZX(x). Consider ζ is a fixed path on a
region R, then from Lemma 4

E[g(ζ(x))] = ζ(x). (43)

Notice that, since the SC-RFP does not affect the sample of noise, then above equation holds for
both g and g′:

E[g′(ζ(x))] = ζ(x). (44)

18

Published as a conference paper at ICLR 2023

By applying randomized smoothing on statement 1 of Lemma 1, we have:

E(g(x)) = E(g(ZI(x,A;R))) + E(g(ZT (x,A;R))),
E(g′(x)) = E(g′(ZI(x,A;R))) + E(g′(ZT (x,A;R))),

(45)

where we use g′(ZT (x,A;R)) to denote applying smoothing algorithm g on deterministic function
ZI(x,A;R). Since ZI(x,A;R) is the aggregation of all the fixed path, with Equation 43 and 44,
we have :

E(g′(ZI(x,A;R))) = E(g(ZI(x,A;R))) = ZI(x,A;R) (46)

This means that the difference between E(g(x)) and E(g(x)) is same with that of g(ZT (x,A;R))
and g′(ZT (x,A;R)).
Next, we discuss how the float path affect the prediction of g(ZT (x,A;R)) and g′(ZT (x,A;R)).
Given ϵ ∼ Dnoise, we denote P1 as the event that fy(x + ϵ) > fy(x). Since we have excluded
the fixed path, P1 holds means that the float path boosts the probability of fy(x + ϵ). However, as
argmaxm ∈ Y fy(x) = y, repressing the float path does not alter the prediction of fy(x′). On
the other hand, we denote P2 as the event that fy(x + ϵ) < fy(x). This means that the float path
ZT (x + ϵ,A;R) < 0 and negatively contributes to the prediction. Then repressing the float path
means that can increase the probability of y.

In other words, for any x+ ϵ, repressing the float path between x and x′ can increase the predicted
fy(x + ϵ). We assume that P1 and P2 happens with probability p1 and p2, then given a certain
number of sampling,

E(g′y(x)) > E(g′y(x)), V ar(g
′
y(x)) < V ar(gy(x))

By applying Chebyshev Inequality, we have p′A > pA. Similarly, we also have p′B < pB . Therefore,
we conclude the lower bound p′A is larger than that of pA, and similar to p′B .

Computing the certified radius of x then is same with that of Cohen et al. (2019). Since both g and g′
are random function that sample noise from same distribution, the Neyman-Pearson theorem holds
for both g and g′. Therefore, the certified radius remains unchanged.

D EXTRA TABLES AND FIGURES

This section present the complete experiment results. Table 4 shows the certified accuracy at differ-
ent l2 radius level.

Table 5 presents the experiment result of our model certified with different repression rate. Among
the different repression rate, we find that when η = 0.25 SC-RFP provides the best performance on
increasing the model robust accuracy for perturbation with large size, while the standard accuracy
and are slightly damaged. This is also observed on previous works.

σ Method 0.25 0.5 0.75 1.0 1.25 1.5 2.0 2.5 Clean

0.25 Cohen et al. (2019) 66.0 50.2 44.2 0.0 0.0 0.0 0.0 0.0 75.3
+ SC-RFP 69.4 58.3 52.7 0.0 0.0 0.0 0.0 0.0 77.2

0.50 Cohen et al. (2019) 53.4 44.7 34.0 25.4 19.5 19.5 0.0 0.0 60.3
+ SC-RFP 57.3 50.5 42.4 34.9 29.5 29.5 0.0 0.0 62.7

1.00 Cohen et al. (2019) 31.2 27.1 23.2 19.3 15.3 11.9 6.9 4.5 34.7
+ SC-RFP 36.0 32.6 29.4 25.9 22.2 18.4 12.9 9.5 39.1

Table 4: Certified robust accuracy for models with different methods on CIFAR10 dataset.

Figure 7 present the model trained with σ = 0.05 and σ = 0.25, but under different level of noise.
We find the model trained with slightly noised sample can provide effective robustness.

19

Published as a conference paper at ICLR 2023

σ l2 radius 0.25 0.5 0.75 1.0 1.5 2.0 Clean

0.25 Jeong & Shin (2020) 59.8 49.8 -
Jeong et al. (2021) 46.7 38.2 -
Cohen et al. (2019) 57.9 46.4 66.1
+ SC-RFP (ours) 59.4 50.3 65.8

Salman et al. (2019) 59.2 54.1 63.6
+ SC-RFP (ours η = 0.05) 59.6 54.5 63.8
+ SC-RFP (ours η = 0.10) 59.5 54.8 63.9
+ SC-RFP (ours η = 0.25) 59.8 55.4 63.6

0.50 Jeong & Shin (2020) 53.7 49.9 44.7 39.3 -
Jeong et al. (2021) 39.1 34.9 30.3 26.8 -
Cohen et al. (2019) 51.3 46.1 39.9 32.6 56.5
+ SC-RFP (ours) 51.1 47.3 41.5 35.6 55.9

Salman et al. (2019) 52.6 48.7 44.0 39.6 56.0
+ SC-RFP (ours η = 0.05) 52.7 49.1 45.2 40.5 56.4
+ SC-RFP (ours η = 0.10) 52.9 49.4 45.4 40.8 56.2
+ SC-RFP (ours η = 0.25) 52.8 49.6 46.0 42.0 55.2

1.00 Jeong & Shin (2020) 40.0 38.5 35.4 32.6 28.1 22.6 -
Jeong et al. (2021) 29.7 26.2 23.0 20.6 15.7 12.1 -
Cohen et al. (2019) 39.1 36.1 32.5 29.1 22.8 15.6 42.4

+ SC-RFP (ours) 39.9 36.5 33.9 31.5 25.6 19.9 42.9
Salman et al. (2019) 39.5 37.1 34.7 31.8 26.2 20.1 42.0

+ SC-RFP (ours η = 0.05) 40.2 37.5 35.2 33.3 28.0 21.8 42.2
+ SC-RFP (ours η = 0.10) 39.9 38.1 35.7 33.4 28.9 23. 41.9
+ SC-RFP (ours η = 0.25) 39.7 37.8 35.9 34.2 29.6 25.2 41.6

Table 5: Certified robust accuracy for models with different methods on ImageNet dataset

(a) ϵ ∼ N(0, 0.1) (b) ϵ ∼ N(0, 0.1)

Figure 7: Certified Accuracy of base methods and SCRFP (η = 0.1) with different level of noise
on CIFAR10. The solid and dashed lines represent benchmark and SC-RFP. The models are tested
under different level of noise.

20

	Introduction
	Related Works
	Preliminaries
	Notations
	Randomized Certifiable Classifier
	Activation Pattern and Computational Path

	From Float Path to Model Robustness
	Float Neuron and Path
	Float Path and Network Robustness

	Experiments
	Conclusion
	Geometric Illustration
	Decomposing the Network
	Model Robustness
	Lipschitz vulnerable and float neuron vulnerable
	Verifiable Radius

	Extra Tables and Figures

