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ABSTRACT

Non-autoregressive text to speech (TTS) models such as FastSpeech (Ren et al.,
2019) can synthesize speech significantly faster than previous autoregressive mod-
els with comparable quality. The training of FastSpeech model relies on an au-
toregressive teacher model for duration prediction (to provide more information
as input) and knowledge distillation (to simplify the data distribution in out-
put), which can ease the one-to-many mapping problem (i.e., multiple speech
variations correspond to the same text) in TTS. However, FastSpeech has sev-
eral disadvantages: 1) the teacher-student distillation pipeline is complicated and
time-consuming, 2) the duration extracted from the teacher model is not accu-
rate enough, and the target mel-spectrograms distilled from teacher model suf-
fer from information loss due to data simplification, both of which limit the
voice quality. In this paper, we propose FastSpeech 2, which addresses the is-
sues in FastSpeech and better solves the one-to-many mapping problem in TTS
by 1) directly training the model with ground-truth target instead of the simpli-
fied output from teacher, and 2) introducing more variation information of speech
(e.g., pitch, energy and more accurate duration) as conditional inputs. Specifi-
cally, we extract duration, pitch and energy from speech waveform and directly
take them as conditional inputs in training and use predicted values in inference.
We further design FastSpeech 2s, which is the first attempt to directly generate
speech waveform from text in parallel, enjoying the benefit of fully end-to-end
inference. Experimental results show that 1) FastSpeech 2 achieves a 3x train-
ing speed-up over FastSpeech, and FastSpeech 2s enjoys even faster inference
speed; 2) FastSpeech 2 and 2s outperform FastSpeech in voice quality, and Fast-
Speech 2 can even surpass autoregressive models. Audio samples are available at
https://speechresearch.github.io/fastspeech2/.

1 INTRODUCTION

Neural network based text to speech (TTS) has made rapid progress and attracted a lot of attention
in the machine learning and speech community in recent years (Wang et al., 2017; Shen et al.,
2018; Ming et al., 2016; Arik et al., 2017; Ping et al., 2018; Ren et al., 2019; Li et al., 2019).
Previous neural TTS models (Wang et al., 2017; Shen et al., 2018; Ping et al., 2018; Li et al.,
2019) first generate mel-spectrograms autoregressively from text and then synthesize speech from
the generated mel-spectrograms using a separately trained vocoder (Van Den Oord et al., 2016;
Oord et al., 2017; Prenger et al., 2019; Kim et al., 2018; Yamamoto et al., 2020; Kumar et al.,
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2019). They usually suffer from slow inference speed and robustness (word skipping and repeating)
issues (Ren et al., 2019; Chen et al., 2020). In recent years, non-autoregressive TTS models (Ren
et al., 2019; Łańcucki, 2020; Kim et al., 2020; Lim et al., 2020; Miao et al., 2020; Peng et al., 2019)
are designed to address these issues, which generate mel-spectrograms with extremely fast speed
and avoid robustness issues, while achieving comparable voice quality with previous autoregressive
models.

Among those non-autoregressive TTS methods, FastSpeech (Ren et al., 2019) is one of the most
successful models. FastSpeech designs two ways to alleviate the one-to-many mapping problem:
1) Reducing data variance in the target side by using the generated mel-spectrogram from an au-
toregressive teacher model as the training target (i.e., knowledge distillation). 2) Introducing the
duration information (extracted from the attention map of the teacher model) to expand the text se-
quence to match the length of the mel-spectrogram sequence. While these designs in FastSpeech
ease the learning of the one-to-many mapping problem (see Section 2.1) in TTS, they also bring
several disadvantages: 1) The two-stage teacher-student training pipeline makes the training process
complicated. 2) The target mel-spectrograms generated from the teacher model have some informa-
tion loss1 compared with the ground-truth ones, since the quality of the audio synthesized from the
generated mel-spectrograms is usually worse than that from the ground-truth ones. 3) The duration
extracted from the attention map of teacher model is not accurate enough.

In this work, we propose FastSpeech 2 to address the issues in FastSpeech and better handle the
one-to-many mapping problem in non-autoregressive TTS. To simplify the training pipeline and
avoid the information loss due to data simplification in teacher-student distillation, we directly train
the FastSpeech 2 model with ground-truth target instead of the simplified output from a teacher.
To reduce the information gap (input does not contain all the information to predict the target) be-
tween the input (text sequence) and target output (mel-spectrograms) and alleviate the one-to-many
mapping problem for non-autoregressive TTS model training, we introduce some variation infor-
mation of speech including pitch, energy and more accurate duration into FastSpeech: in training,
we extract duration, pitch and energy from the target speech waveform and directly take them as
conditional inputs; in inference, we use values predicted by the predictors that are jointly trained
with the FastSpeech 2 model. Considering the pitch is important for the prosody of speech and
is also difficult to predict due to the large fluctuations along time, we convert the pitch contour
into pitch spectrogram using continuous wavelet transform (Tuteur, 1988; Grossmann & Morlet,
1984) and predict the pitch in the frequency domain, which can improve the accuracy of predicted
pitch. To further simplify the speech synthesis pipeline, we introduce FastSpeech 2s, which does
not use mel-spectrograms as intermediate output and directly generates speech waveform from
text in inference, enjoying low latency in inference. Experiments on the LJSpeech (Ito, 2017)
dataset show that 1) FastSpeech 2 enjoys much simpler training pipeline (3x training time reduc-
tion) than FastSpeech while inherits its advantages of fast, robust and controllable (even more
controllable in pitch and energy) speech synthesis, and FastSpeech 2s enjoys even faster infer-
ence speed; 2) FastSpeech 2 and 2s outperform FastSpeech in voice quality, and FastSpeech 2 can
even surpass autoregressive models. We attach audio samples generated by FastSpeech 2 and 2s at
https://speechresearch.github.io/fastspeech2/.

The main contributions of this work are summarized as follows:

• FastSpeech 2 achieves a 3x training speed-up over FastSpeech by simplifying the training
pipeline.

• FastSpeech 2 alleviates the one-to-many mapping problem in TTS and achieves better voice qual-
ity.

• FastSpeech 2s further simplifies the inference pipeline for speech synthesis while maintaining
high voice quality, by directly generating speech waveform from text.

2 FASTSPEECH 2 AND 2S

In this section, we first describe the motivation of the design in FastSpeech 2, and then introduce
the architecture of FastSpeech 2, which aims to improve FastSpeech to better handle the one-to-

1The speech generated by the teacher model loses some variation information about pitch, energy, prosody,
etc., and is much simpler and less diverse than the original recording in the training data.
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(d) Waveform decoder

Figure 1: The overall architecture for FastSpeech 2 and 2s. LR in subfigure (b) denotes the length
regulator proposed in FastSpeech. LN in subfigure (c) denotes layer normalization.

many mapping problem, with simpler training pipeline and higher voice quality. At last, we extend
FastSpeech 2 to FastSpeech 2s for fully end-to-end text-to-waveform synthesis2.

2.1 MOTIVATION

TTS is a typical one-to-many mapping problem (Wang et al., 2017; Zhu et al., 2017; Jayne et al.,
2012; Gadermayr et al., 2020; Chen et al., 2021), since multiple possible speech sequences can
correspond to a text sequence due to variations in speech, such as pitch, duration, sound volume and
prosody. In non-autoregressive TTS, the only input information is text which is not enough to fully
predict the variance in speech. In this case, the model is prone to overfit to the variations of the
target speech in the training set, resulting in poor generalization ability. As mentioned in Section
1, although FastSpeech designs two ways to alleviate the one-to-many mapping problem, they also
bring about several issues including 1) the complicated training pipeline; 2) information loss of
target mel-spectrogram as analyzed in Table 1; and 3) not accurate enough ground-truth duration as
shown in Table 5a. In the following subsection, we introduce the detailed design of FastSpeech 2
which aims to address these issues.

2.2 MODEL OVERVIEW

The overall model architecture of FastSpeech 2 is shown in Figure 1a. The encoder converts the
phoneme embedding sequence into the phoneme hidden sequence, and then the variance adaptor
adds different variance information such as duration, pitch and energy into the hidden sequence,
finally the mel-spectrogram decoder converts the adapted hidden sequence into mel-spectrogram
sequence in parallel. We use the feed-forward Transformer block, which is a stack of self-
attention (Vaswani et al., 2017) layer and 1D-convolution as in FastSpeech (Ren et al., 2019), as
the basic structure for the encoder and mel-spectrogram decoder. Different from FastSpeech that re-
lies on a teacher-student distillation pipeline and the phoneme duration from a teacher model, Fast-
Speech 2 makes several improvements. First, we remove the teacher-student distillation pipeline,
and directly use ground-truth mel-spectrograms as target for model training, which can avoid the
information loss in distilled mel-spectrograms and increase the upper bound of the voice quality.
Second, our variance adaptor consists of not only duration predictor but also pitch and energy
predictors, where 1) the duration predictor uses the phoneme duration obtained by forced align-
ment (McAuliffe et al., 2017) as training target, which is more accurate than that extracted from the
attention map of autoregressive teacher model as verified experimentally in Section 3.2.2; and 2) the

2In this work, text-to-waveform refers to phoneme-to-waveform, while our method can also be appied to
character-level sequence directly.
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additional pitch and energy predictors can provide more variance information, which is important
to ease the one-to-many mapping problem in TTS. Third, to further simplify the training pipeline
and push it towards a fully end-to-end system, we propose FastSpeech 2s, which directly generates
waveform from text, without cascaded mel-spectrogram generation (acoustic model) and waveform
generation (vocoder). In the following subsections, we describe detailed designs of the variance
adaptor and direct waveform generation in our method.

2.3 VARIANCE ADAPTOR

The variance adaptor aims to add variance information (e.g., duration, pitch, energy, etc.) to the
phoneme hidden sequence, which can provide enough information to predict variant speech for the
one-to-many mapping problem in TTS. We briefly introduce the variance information as follows:
1) phoneme duration, which represents how long the speech voice sounds; 2) pitch, which is a key
feature to convey emotions and greatly affects the speech prosody; 3) energy, which indicates frame-
level magnitude of mel-spectrograms and directly affects the volume and prosody of speech. More
variance information can be added in the variance adaptor, such as emotion, style and speaker, and
we leave it for future work. Correspondingly, the variance adaptor consists of 1) a duration predictor
(i.e., the length regulator, as used in FastSpeech), 2) a pitch predictor, and 3) an energy predictor,
as shown in Figure 1b. In training, we take the ground-truth value of duration, pitch and energy
extracted from the recordings as input into the hidden sequence to predict the target speech. At
the same time, we use the ground-truth duration, pitch and energy as targets to train the duration,
pitch and energy predictors, which are used in inference to synthesize target speech. As shown
in Figure 1c, the duration, pitch and energy predictors share similar model structure (but different
model parameters), which consists of a 2-layer 1D-convolutional network with ReLU activation,
each followed by the layer normalization and the dropout layer, and an extra linear layer to project
the hidden states into the output sequence. In the following paragraphs, we describe the details of
the three predictors respectively.

Duration Predictor The duration predictor takes the phoneme hidden sequence as input and pre-
dicts the duration of each phoneme, which represents how many mel frames correspond to this
phoneme, and is converted into logarithmic domain for ease of prediction. The duration predic-
tor is optimized with mean square error (MSE) loss, taking the extracted duration as training tar-
get. Instead of extracting the phoneme duration using a pre-trained autoregressive TTS model in
FastSpeech, we use Montreal forced alignment (MFA) (McAuliffe et al., 2017) tool3 to extract the
phoneme duration, in order to improve the alignment accuracy and thus reduce the information gap
between the model input and output.

Pitch Predictor Previous neural network based TTS systems with pitch prediction (Arik et al.,
2017; Gibiansky et al., 2017) often predict pitch contour directly. However, due to high variations
of ground-truth pitch, the distribution of predicted pitch values is very different from ground-truth
distribution, as analyzed in Section 3.2.2. To better predict the variations in pitch contour, we use
continuous wavelet transform (CWT) to decompose the continuous pitch series into pitch spectro-
gram (Suni et al., 2013; Hirose & Tao, 2015) and take the pitch spectrogram as the training target
for the pitch predictor which is optimized with MSE loss. In inference, the pitch predictor predicts
the pitch spectrogram, which is further converted back into pitch contour using inverse continuous
wavelet transform (iCWT). We describe the details of pitch extraction, CWT, iCWT and pitch pre-
dictor architecture in Appendix D. To take the pitch contour as input in both training and inference,
we quantize pitch F0 (ground-truth/predicted value for train/inference respectively) of each frame
to 256 possible values in log-scale and further convert it into pitch embedding vector p and add it to
the expanded hidden sequence.

Energy Predictor We compute L2-norm of the amplitude of each short-time Fourier transform
(STFT) frame as the energy. Then we quantize energy of each frame to 256 possible values uni-
formly, encoded it into energy embedding e and add it to the expanded hidden sequence similarly to

3MFA is an open-source system for speech-text alignment with good performance, which can be trained on
paired text-audio corpus without any manual alignment annotations. We train MFA on our training set only
without other external dataset. We will work on non-autoregressive TTS without external alignment models in
the future.
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pitch. We use an energy predictor to predict the original values of energy instead of the quantized
values and optimize the energy predictor with MSE loss4.

2.4 FASTSPEECH 2S

To enable fully end-to-end text-to-waveform generation, in this subsection, we extend FastSpeech 2
to FastSpeech 2s, which directly generates waveform from text, without cascaded mel-spectrogram
generation (acoustic model) and waveform generation (vocoder). As shown in Figure 1a, FastSpeech
2s generates waveform conditioning on intermediate hidden, which makes it more compact in infer-
ence by discarding mel-spectrogram decoder and achieve comparable performance with a cascaded
system. We first discuss the challenges in non-autoregressive text-to-waveform generation, then
describe details of FastSpeech 2s, including model structure and training and inference processes.

Challenges in Text-to-Waveform Generation When pushing TTS pipeline towards fully end-
to-end framework, there are several challenges: 1) Since the waveform contains more variance
information (e.g., phase) than mel-spectrograms, the information gap between the input and output
is larger than that in text-to-spectrogram generation. 2) It is difficult to train on the audio clip
that corresponds to the full text sequence due to the extremely long waveform samples and limited
GPU memory. As a result, we can only train on a short audio clip that corresponds to a partial text
sequence which makes it hard for the model to capture the relationship among phonemes in different
partial text sequences and thus harms the text feature extraction.

Our Method To tackle the challenges above, we make several designs in the waveform decoder: 1)
Considering that the phase information is difficult to predict using a variance predictor (Engel et al.,
2020), we introduce adversarial training in the waveform decoder to force it to implicitly recover the
phase information by itself (Yamamoto et al., 2020). 2) We leverage the mel-spectrogram decoder
of FastSpeech 2, which is trained on the full text sequence to help on the text feature extraction.
As shown in Figure 1d, the waveform decoder is based on the structure of WaveNet (Van Den Oord
et al., 2016) including non-causal convolutions and gated activation (Van den Oord et al., 2016). The
waveform decoder takes a sliced hidden sequence corresponding to a short audio clip as input and
upsamples it with transposed 1D-convolution to match the length of audio clip. The discriminator
in the adversarial training adopts the same structure in Parallel WaveGAN (Yamamoto et al., 2020)
which consists of ten layers of non-causal dilated 1-D convolutions with leaky ReLU activation
function. The waveform decoder is optimized by the multi-resolution STFT loss and the LSGAN
discriminator loss following Parallel WaveGAN. In inference, we discard the mel-spectrogram de-
coder and only use the waveform decoder to synthesize speech audio.

2.5 DISCUSSIONS

In this subsection, we discuss how FastSpeech 2 and 2s differentiate from previous and concurrent
works.

Compared with Deep Voice (Arik et al., 2017), Deep Voice 2 (Gibiansky et al., 2017) and other
methods Fan et al. (2014); Ze et al. (2013) which generate waveform autoregressively and also pre-
dict variance information such as duration and pitch, Fastspeech 2 and 2s adopt self-attention based
feed-forward network to generate mel-spectrograms or waveform in parallel. While some existing
non-autoregressive acoustic models (Zeng et al., 2020; Lim et al., 2020; Kim et al., 2020) mostly
focus on improving the duration accuracy, FastSpeech 2 and 2s provide more variation information
(duration, pitch and energy) as inputs to reduce the information gap between the input and output. A
concurrent work (Łańcucki, 2020) employs pitch prediction in phoneme level, while FastSpeech 2
and 2s predict more fine-grained pitch contour in frame level. In addition, to improve the prosody in
synthesized speech, FastSpeech 2 and 2s further introduce continuous wavelet transform to model
the variations in pitch.

While some text-to-waveform models such as ClariNet (Ping et al., 2019) jointly train an autore-
gressive acoustic model and a non-autoregressive vocoder, FastSpeech 2s embraces the fully non-
autoregressive architecture for fast inference. A concurrent work called EATS (Donahue et al., 2020)

4We do not transform energy using CWT since energy is not as highly variable as pitch on LJSpeech dataset,
and we do not observe gains when using it.
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also employs non-autoregressive architecture and adversarial training to convert text to waveform
directly and mainly focuses on predicting the duration of each phoneme end-to-end using a differen-
tiable monotonic interpolation scheme. Compared with EATS, FastSpeech 2s additionally provides
more variation information to ease the one-to-many mapping problem in TTS.

Previous non-autoregressive vocoders (Oord et al., 2017; Prenger et al., 2019; Yamamoto et al.,
2020; Kumar et al., 2019) are not complete text-to-speech systems, since they convert time aligned
linguistic features to waveforms, and require a separate linguistic model to convert input text
to linguistic features or an acoustic model to convert input text to acoustic features (e.g., mel-
spectrograms). FastSpeech 2s is the first attempt to directly generate waveform from phoneme
sequence fully in parallel, instead of linguistic features or mel-spectrograms.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

Datasets We evaluate FastSpeech 2 and 2s on LJSpeech dataset (Ito, 2017). LJSpeech contains
13,100 English audio clips (about 24 hours) and corresponding text transcripts. We split the dataset
into three sets: 12,228 samples for training, 349 samples (with document title LJ003) for validation
and 523 samples (with document title LJ001 and LJ002) for testing. For subjective evaluation, we
randomly choose 100 samples in test set. To alleviate the mispronunciation problem, we convert the
text sequence into the phoneme sequence (Arik et al., 2017; Wang et al., 2017; Shen et al., 2018;
Sun et al., 2019) with an open-source grapheme-to-phoneme tool5. We transform the raw waveform
into mel-spectrograms following Shen et al. (2018) and set frame size and hop size to 1024 and 256
with respect to the sample rate 22050.

Model Configuration Our FastSpeech 2 consists of 4 feed-forward Transformer (FFT)
blocks (Ren et al., 2019) in the encoder and the mel-spectrogram decoder. The output linear layer
in the decoder converts the hidden states into 80-dimensional mel-spectrograms and our model is
optimized with mean absolute error (MAE). We add more detailed configurations of FastSpeech 2
and 2s used in our experiments in Appendix A. The details of training and inference are added in
Appendix B.

3.2 RESULTS

Method MOS

GT 4.30 ± 0.07
GT (Mel + PWG) 3.92 ± 0.08

Tacotron 2 (Shen et al., 2018) (Mel + PWG) 3.70 ± 0.08
Transformer TTS (Li et al., 2019) (Mel + PWG) 3.72 ± 0.07

FastSpeech (Ren et al., 2019) (Mel + PWG) 3.68 ± 0.09

FastSpeech 2 (Mel + PWG) 3.83 ± 0.08
FastSpeech 2s 3.71 ± 0.09

(a) The MOS with 95% confidence intervals.

Method CMOS

FastSpeech 2 0.000

FastSpeech -0.885
Transformer TTS -0.235

(b) CMOS comparison.

Table 1: Audio quality comparison.

In this section, we first evaluate the audio quality, training and inference speedup of FastSpeech 2
and 2s. Then we conduct analyses and ablation studies of our method6.

3.2.1 MODEL PERFORMANCE

Audio Quality To evaluate the perceptual quality, we perform mean opinion score (MOS) (Chu
& Peng, 2006) evaluation on the test set. Twenty native English speakers are asked to make quality

5https://github.com/Kyubyong/g2p
6We put some audio samples in the supplementary materials and https://speechresearch.

github.io/fastspeech2/.
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Method Training Time (h) Inference Speed (RTF) Inference Speedup

Transformer TTS (Li et al., 2019) 38.64 9.32× 10−1 /
FastSpeech (Ren et al., 2019) 53.12 1.92× 10−2 48.5×
FastSpeech 2 17.02 1.95× 10−2 47.8×
FastSpeech 2s 92.18 1.80× 10−2 51.8×

Table 2: The comparison of training time and inference latency in waveform synthesis. The training
time of FastSpeech includes teacher and student training. RTF denotes the real-time factor, that
is the time (in seconds) required for the system to synthesize one second waveform. The training
and inference latency tests are conducted on a server with 36 Intel Xeon CPUs, 256GB memory, 1
NVIDIA V100 GPU and batch size of 48 for training and 1 for inference. Besides, we do not include
the time of GPU memory garbage collection and transferring input and output data between the CPU
and the GPU. The speedup in waveform synthesis for FastSpeech is larger than that reported in Ren
et al. (2019) since we use Parallel WaveGAN as the vocoder which is much faster than WaveGlow.

judgments about the synthesized speech samples. The text content keeps consistent among different
systems so that all testers only examine the audio quality without other interference factors. We
compare the MOS of the audio samples generated by FastSpeech 2 and FastSpeech 2s with other
systems, including 1) GT, the ground-truth recordings; 2) GT (Mel + PWG), where we first con-
vert the ground-truth audio into mel-spectrograms, and then convert the mel-spectrograms back to
audio using Parallel WaveGAN (Yamamoto et al., 2020) (PWG); 3) Tacotron 2 (Shen et al., 2018)
(Mel + PWG); 4) Transformer TTS (Li et al., 2019) (Mel + PWG); 5) FastSpeech (Ren et al., 2019)
(Mel + PWG). All the systems in 3), 4) and 5) use Parallel WaveGAN as the vocoder for a fair
comparison. The results are shown in Table 1. It can be seen that FastSpeech 2 can surpass and
FastSpeech 2s can match the voice quality of autoregressive models Transformer TTS and Tacotron
2. Importantly, FastSpeech 2 outperforms FastSpeech, which demonstrates the effectiveness of pro-
viding variance information such as pitch, energy and more accurate duration and directly taking
ground-truth speech as training target without using teacher-student distillation pipeline.

Training and Inference Speedup FastSpeech 2 simplifies the training pipeline of FastSpeech by
removing the teacher-student distillation process, and thus reduces the training time. We list the
total training time of Transformer TTS (the autoregressive teacher model), FastSpeech (including
the training of Transformer TTS teacher model and FastSpeech student model) and FastSpeech 2 in
Table 2. It can be seen that FastSpeech 2 reduces the total training time by 3.12× compared with
FastSpeech. Note that training time here only includes acoustic model training, without considering
the vocoder training. Therefore, we do not compare the training time of FastSpeech 2s here. We then
evaluate the inference latency of FastSpeech 2 and 2s compared with the autoregressive Transformer
TTS model, which has the similar number of model parameters with FastSpeech 2 and 2s. We show
the inference speedup for waveform generation in Table 2. It can be seen that compared with the
Transformer TTS model, FastSpeech 2 and 2s speeds up the audio generation by 47.8× and 51.8×
respectively in waveform synthesis. We can also see that FastSpeech 2s is faster than FastSpeech 2
due to fully end-to-end generation.

3.2.2 ANALYSES ON VARIANCE INFORMATION

Method σ γ K DTW

GT 54.4 0.836 0.977 /

Tacotron 2 44.1 1.28 1.311 26.32
TransformerTTS 40.8 0.703 1.419 24.40

FastSpeech 50.8 0.724 -0.041 24.89
FastSpeech 2 54.1 0.881 0.996 24.39
FastSpeech 2 - CWT 42.3 0.771 1.115 25.13
FastSpeech 2s 53.9 0.872 0.998 24.37

Table 3: Standard deviation (σ), skewness (γ), kurtosis (K) and average DTW distances (DTW) of
pitch in ground-truth and synthesized audio.
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More Accurate Variance Information in Synthesized Speech In the paragraph, we measure if
providing more variance information (e.g., pitch and energy) as input in FastSpeech 2 and 2s can
indeed synthesize speech with more accurate pitch and energy.

For pitch, we compute the moments (standard deviation (σ), skewness (γ) and kurtosis (K)) (An-
dreeva et al., 2014; Niebuhr & Skarnitzl, 2019) and average dynamic time warping (DTW) Müller
(2007) distance of the pitch distribution for the ground-truth speech and synthesized speech. The
results are shown in Table 3. It can be seen that compared with FastSpeech, the moments (σ, γ
and K) of generated audio of FastSpeech 2/2s are more close to the ground-truth audio and the av-
erage DTW distances to the ground-truth pitch are smaller than other methods, demonstrating that
FastSpeech 2/2s can generate speech with more natural pitch contour (which can result in better
prosody) than FastSpeech. We also conduct a case study on generated pitch contours in Appendix
D.

Method FastSpeech FastSpeech 2 FastSpeech 2s

MAE 0.142 0.131 0.133

Table 4: The mean absolute error (MAE) of the energy in synthesized speech audio.

For energy, we compute the mean absolute error (MAE) between the frame-wise energy extracted
from the generated waveform and the ground-truth speech. To ensure that the numbers of frames in
the synthesized and ground-truth speech are the same, we use the ground-truth duration extracted
by MFA in both FastSpeech and FastSpeech 2. The results are shown in Table 4. We can see that
the MAE of the energy for FastSpeech 2/2s are smaller than that for FastSpeech, indicating that they
both synthesize speech audio with more similar energy to the ground-truth audio.

More Accurate Duration for Model Training We then analyze the accuracy of the provided
duration information to train the duration predictor and the effectiveness of more accurate duration
for better voice quality based on FastSpeech. We manually align 50 audio generated by the teacher
model and the corresponding text in phoneme level and get the ground-truth phoneme-level duration.
We compute the average of absolute phoneme boundary differences (McAuliffe et al., 2017) using
the duration from the teacher model of FastSpeech and from MFA as used in this paper respectively.
The results are shown in Table 5a. We can see that MFA can generate more accurate duration than
the teacher model of FastSpeech. Next, we replace the duration used in FastSpeech (from teacher
model) with that extracted by MFA, and conduct the CMOS (Loizou, 2011) test to compare the voice
quality between the two FastSpeech models trained with different durations7. The results are listed
in Table 5b and it can be seen that more accurate duration information improves the voice quality of
FastSpeech, which verifies the effectiveness of our improved duration from MFA.

Method ∆ (ms)

Duration from teacher model 19.68
Duration from MFA 12.47

(a) Alignment accuracy comparison.

Setting CMOS

FastSpeech + Duration from teacher 0
FastSpeech + Duration from MFA +0.195

(b) CMOS comparison.

Table 5: The comparison of the duration from teacher model and MFA. ∆ means the average of
absolute boundary differences.

3.2.3 ABLATION STUDY

Pitch and Energy Input We conduct ablation studies to demonstrate the effectiveness of several
variance information of FastSpeech 2 and 2s, including pitch and energy8. We conduct CMOS eval-
uation for these ablation studies. The results are shown in Table 6. We find that removing the energy
(Row 3 in both subtables) in FastSpeech 2 and 2s results in performance drop in terms of voice
quality (-0.040 and -0.160 CMOS respectively), indicating that energy is effective for FastSpeech 2
in improving the voice quality, and more effective for FastSpeech 2s. We also find that removing the

7Both models are trained with mel-spectrograms generated by the teacher model.
8We do not study duration information since duration is a necessary for FastSpeech and FastSpeech 2.

Besides, we have already analyzed the effectiveness of our improved duration in the last paragraph.
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pitch (Row 4 in both subtables) in FastSpeech 2 and 2s results in -0.245 and -1.130 CMOS respec-
tively, which demonstrates the effectiveness of pitch. When we remove both pitch and energy (the
last row in both subtables), the voice quality further drops, indicating that both pitch and energy can
help improve the performance of FastSpeech 2 and 2s.

Predicting Pitch in Frequency Domain To study the effectiveness of predicting pitch in fre-
quency domain using continuous wavelet transform (CWT) as described in Section 2.3, we directly
fit the pitch contour with mean square error like energy in FastSpeech 2 and 2s. We conduct CMOS
evaluation and get CMOS drops of 0.185 and 0.201 for FastSpeech 2 and 2s respectively. We also
compute the moments of pitch and average DTW distance to the ground-truth pitch as shown in row
6 (denoeted as FastSpeech 2 - CWT) in Table 3. The results demonstrate that CWT can help model
the pitch better and improve the prosody of synthesized speech, and thus obtaining better CMOS
score.

Mel-Spectrogram Decoder in FastSpeech 2s To verify the effectiveness of the mel-spectrogram
decoder in FastSpeech 2s on text feature extraction as described in Section 2.4, we remove the
mel-spectrogram decoder and conduct CMOS evaluation. It causes a 0.285 CMOS drop, which
demonstrates that the mel-spectrogram decoder is essential to high-quality waveform generation.

Setting CMOS

FastSpeech 2 0

FastSpeech 2 - energy -0.040
FastSpeech 2 - pitch -0.245
FastSpeech 2 - pitch - energy -0.370

(a) CMOS comparison for FastSpeech 2.

Setting CMOS

FastSpeech 2s 0

FastSpeech 2s - energy -0.160
FastSpeech 2s - pitch -1.130
FastSpeech 2s - pitch - energy -1.355

(b) CMOS comparison for FastSpeech 2s.

Table 6: CMOS comparison in the ablation studies.

4 CONCLUSION

In this work, we proposed FastSpeech 2, a fast and high-quality end-to-end TTS system, to address
the issues in FastSpeech and ease the one-to-many mapping problem: 1) we directly train the model
with ground-truth mel-spectrograms to simplify the training pipeline and also avoid information
loss compared with FastSpeech; and 2) we improve the duration accuracy and introduce more vari-
ance information including pitch and energy to ease the one-to-many mapping problem, and improve
pitch prediction by introducing continuous wavelet transform. Moreover, based on FastSpeech 2, we
further developed FastSpeech 2s, a non-autoregressive text-to-waveform generation model, which
enjoys the benefit of fully end-to-end inference and achieves faster inference speed. Our experi-
mental results show that FastSpeech 2 and 2s outperform FastSpeech, and FastSpeech 2 can even
surpass autoregressive models in terms of voice quality, with much simpler training pipeline while
inheriting the advantages of fast, robust and controllable speech synthesis of FastSpeech.

High quality, fast and fully end-to-end training without any external libraries is definitely the ulti-
mate goal of neural TTS and also a very challenging problem. To ensure high quality of FastSpeech
2, we use an external high-performance alignment tool and pitch extraction tools, which may seem
a little complicated, but are very helpful for high-quality and fast speech synthesis. We believe there
will be more simpler solutions to achieve this goal in the future and we will certainly work on fully
end-to-end TTS without external alignment models and tools. We will also consider more variance
information (Zhang et al., 2021) to further improve the voice quality and speed up the inference with
more light-weight model (Luo et al., 2021).
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A MODEL CONFIGURATION

Our FastSpeech 2 consists of 4 feed-forward Transformer (FFT) blocks (Ren et al., 2019) in the en-
coder and the mel-spectrogram decoder. In each FFT block, the dimension of phoneme embeddings
and the hidden size of the self-attention are set to 256. The number of attention heads is set to 2 and
the kernel sizes of the 1D-convolution in the 2-layer convolutional network after the self-attention
layer are set to 9 and 1, with input/output size of 256/1024 for the first layer and 1024/256 in the
second layer. The size of the phoneme vocabulary is 76, including punctuations. In the variance
predictor, the kernel sizes of the 1D-convolution are set to 3, with input/output sizes of 256/256 for
both layers and the dropout rate is set to 0.5. Our waveform decoder consists of 1-layer transposed
1D-convolution with filter size 64 and 30 dilated residual convolution blocks, whose skip channel
size and kernel size of 1D-convolution are set to 64 and 3. The configurations of the discriminator in
FastSpeech 2s are the same as Parallel WaveGAN (Yamamoto et al., 2020). We list hyperparameters
and configurations of all models used in our experiments in Table 7.

Hyperparameter Transformer TTS FastSpeech/FastSpeech 2/2s
Phoneme Embedding Dimension 256 256
Pre-net Layers 3 /
Pre-net Hidden 256 /
Encoder Layers 4 4
Encoder Hidden 256 256
Encoder Conv1D Kernel 9 9
Encoder Conv1D Filter Size 1024 1024
Encoder Attention Heads 2 2
Mel-Spectrogram Decoder Layers 4 4
Mel-Spectrogram Decoder Hidden 256 256
Mel-Spectrogram Decoder Conv1D Kernel 9 9
Mel-Spectrogram Decoder Conv1D Filter Size 1024 1024
Mel-Spectrogram Decoder Attention Headers 2 2
Encoder/Decoder Dropout 0.1 0.1
Variance Predictor Conv1D Kernel / 3
Variance Predictor Conv1D Filter Size / 256
Variance Predictor Dropout / 0.5
Waveform Decoder Convolution Blocks / 30
Waveform Decoder Dilated Conv1D Kernel size / 3
Waveform Decoder Transposed Conv1D Filter Size / 64
Waveform Decoder Skip Channlel Size / 64
Batch Size 48 48/48/12
Total Number of Parameters 24M 23M/27M/28M

Table 7: Hyperparameters of Transformer TTS, FastSpeech and FastSpeech 2/2s.

B TRAINING AND INFERENCE

We train FastSpeech 2 on 1 NVIDIA V100 GPU, with batchsize of 48 sentences. We use the Adam
optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.98, ε = 10−9 and follow the same learning
rate schedule in Vaswani et al. (2017). It takes 160k steps for training until convergence. In the
inference process, the output mel-spectrograms of our FastSpeech 2 are transformed into audio
samples using pre-trained Parallel WaveGAN (Yamamoto et al., 2020)9. For FastSpeech 2s, we train
the model on 2 NVIDIA V100 GPUs, with batchsize of 6 sentences on each GPU. The waveform
decoder takes the sliced hidden states corresponding to 20,480 waveform sample clips as input. The
optimizer and learning rate schedule for FastSpeech 2s are the same as FastSpeech 2. The details of
the adversarial training follow Parallel WaveGAN (Yamamoto et al., 2020). It takes 600k steps for
training until convergence for FastSpeech 2s.

9https://github.com/kan-bayashi/ParallelWaveGAN
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C MODELING PITCH WITH CONTINUOUS WAVELET TRANSFORM

C.1 CONTINUOUS WAVELET TRANSFORM

Given a continous pitch contour function F0, we can convert it to pitch spectrogram W (τ, t) using
continuous wavelet transform (Tuteur, 1988; Grossmann & Morlet, 1984):

W (τ, t) = τ−1/2
∫ +∞

−∞
F0(x)ψ(

x− t
τ

)dx

where ψ is the Mexican hat mother wavelet (Ryan, 1994), F0(x) is the pitch value in position x, τ
and t are scale and position of wavelet respectively. The original pitch contour F0 can be recovered
from the wavelet representation W (τ, t) by inverse continuous wavelet transform (iCWT) using the
following formula:

F0(t) =

∫ +∞

−∞

∫ +∞

0

W (τ, t) τ−5/2ψ

(
x− t
τ

)
dxdτ

Suppose that we decompose the pitch contour F0 into 10 scales (Ming et al., 2016), F0 can be
represented by 10 separate components given by:

Wi(t) = W (2i+1τ0, t)(i+ 2.5)−5/2 (1)

where i = 1, ..., 10 and τ0 = 5ms, which is originally proposed in Suni et al. (2013). Given 10
wavelet components Ŵi(t), we can recompose pitch contour F̂0 by the following formula (Ming
et al., 2016):

F̂0(t) =

10∑
i=1

Ŵi(t)(i+ 2.5)−5/2 (2)

C.2 IMPLEMENTATION DETAILS

Pitch Predictor

Pitch Contour

Pitch Spectrogram,
Mean/Var

iCWTCWT

Figure 2: Details in
pitch predictor. CWT
and iCWT denote con-
tinuous wavelet trans-
form and inverse contin-
uous wavelet transform
respectively.

First we extract the pitch contour using PyWorldVocoder10. Since CWT
is very sensitive to discontinuous signals, we preprocess the pitch con-
tour as follows: 1) we use linear interpolation to fill the unvoiced frame
in pitch contour; 2) we transform the resulting pitch contour to loga-
rithmic scale; 3) we normalize it to zero mean and unit variance for each
utterance, and we have to save the original utterance-level mean and vari-
ance for pitch contour reconstruction; and 4) we convert the normalized
pitch contour to pitch spectrogram using continuous wavelet transform
following Equation 1.

As shown in Figure 2, pitch predictor consists of a 2-layer 1D-
convolutional network with ReLU activation, each followed by the
layer normalization and the dropout layer, and an extra linear layer to
project the hidden states into the pitch spectrogram. To predict the
mean/variance of recovered pitch contour for each utterance, we average
the hidden states output by the 1D-convolutional network on the time
dimension to a global vector and project it to mean and variance using a
linear layer.

We train the pitch predictor with ground-truth pitch spectrogram and
the mean/variance of pitch contour and optimize it with mean square
error. During inference, we predict the pitch spectrogram and the
mean/variance of recovered pitch contour using pitch predictor, inverse
the pitch spectrogram to pitch contour with inverse continuous wavelet
transform (iCWT) following Equation 2, and finally denormalize it with
the predicted mean/variance.

10https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
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D CASE STUDY ON PITCH CONTOUR

In this section, we conduct the case study on pitch contours of the audios generated by different
methods. We randomly choose 1 utterance from the test set and plot the pitch countor of ground-
truth audio samples and that generated by FastSpeech, FastSpeech 2, FastSpeech 2s in Figure 3. We
can see that FastSpeech 2 and 2s can capture the variations in pitch better than FastSpeech thanks to
taking pitch information as input.
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(d) FastSpeech 2s

Figure 3: Pitch contours extracted from generated and ground-truth audio samples. We only plot the
voiced part of pitch contour. The input text is “The worst, which perhaps was the English, was a
terrible falling-off from the work of the earlier presses”.

E VARIANCE CONTROL

FastSpeech 2 and 2s introduce several variance information to ease the one-to-many mapping prob-
lem in TTS. As a byproduct, they also make the synthesized speech more controllable and can be
used to manually control pitch, duration and energy (volume) of synthesized audio. As a demon-
stration, we manipulate pitch input to control the pitch of synthesized speech in this subsubsection.
We show the mel-spectrograms before and after the pitch manipulation in Figure 4. From the sam-
ples, we can see that FastSpeech 2 generates high-quality mel-spectrograms after adjusting the F̂0

from 0.75 to 1.50 times. Such manipulation can also be applied to FastSpeech 2s and the results
are put in the supplementary materials. We also put the audio samples controlled by other variance
information in supplementary materials.

(a) F̂0 = F0 (b) F̂0 = 0.75F0 (c) F̂0 = 1.50F0

Figure 4: The mel-spectrograms of the voice with different F̂0. F0 is the fundamental frequency of
original audio. The red curves denote F̂0 contours. The input text is “They discarded this for a more
completely Roman and far less beautiful letter.”
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