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Abstract

A fundamental problem in differential privacy is to release privatized answers to
a class of linear queries with small error. This problem has been well studied
in the static case. In this paper, we consider the fully dynamic setting where
items may be inserted into or deleted from the dataset over time, and we need
to continually release query answers at every time instance. We present efficient
black-box constructions of such dynamic differentially private mechanisms from
static ones with only a polylogarithmic degradation in the utility.

1 Introduction

In the data streaming model, a stream consists of a pair of possibly infinitely long vectors (S, &).
It defines a dynamically changing dataset D,, which is a multiset of elements from a universe A’
Initially, Dy = (. Attime ¢ € N, (s, x;) arrives, where s; € {4+, —, L} indicates the operation
and z; € & is the relevant element. Then D; is defined inductively as follows:

o If s; =+, then D; := D;_; W {x:}, i.e., one copy of ; is inserted into the dataset.

o If s; = —, then D; := D;_1 — {x}, i.e., one copy of z; is deleted from the dataset (it is
required that at least one copy of x; exists in Dy_1).

o If St = J_, then Dt = thl.

Two variants of the streaming model have been considered in the literature [25,15]: The model above
is referred to as the fully dynamic setting (a.k.a. the trurnstile model), while the case where s; can
only be 4 or _L is called the insertion-only setting (a.k.a. the cash register model).

A fundamental problem in differential privacy (DP) is how to answer a class of linear queries
on a given dataset D privately and accurately. In particular, the private multiplicative weights
mechanism (PMW) [[15} [17] can answer a set of arbitrary linear queries with maximum CI‘I‘OIEI
O(4/|D)]). Better error bounds can be achieved if the class of queries exhibit good structures. For

instance, d-dimensional half-space queries can be answered with error O(| D]z~ 24) [26]]; please
see Appendix |A| for a review of results on various query classes. Note that, since there can be
many queries in the class, these algorithms do not return the query answers explicitly; instead, a
privatized data structure (e.g., a histogram in the case of PMW) is often returned, and a data analyst
can subsequently extract the answer of any query from the data structure.

Combining the query-answering problem and the data streaming model naturally gives rise to the
problem of differential privacy under continual observation, first studied in the foundational work of
Dwork et al. [9]]. Here, the goal is to continually release privatized query answers under the following
requirements:

"The O notation suppresses dependencies on the privacy parameter € and polylogarithmic terms.
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» Online: For any ¢, we must release a data structure M *) (Dy) before (8411, x¢41) arrives.
* Private: All released data structures (M) (Dy), M) (Dy), .. .) jointly satisfy DP.

* Accurate: For every ¢, all queries on D; can be answered from (M) (Dy), ..., M®)(Dy))
with small error, ideally matching the error in the static case, i.e., as if all queries were
answered on D; one-shot.

* Efficient: The mechanism should run efficiently.

The pioneer work [9, 4] has only studied the basic counting problem, i.e., the query just asks for
|D;|, under the insertion-only streaming model. However, we observe that their algorithms are
actually black-boxed, and can be instantiated with any static mechanism for some other query class,
as long as the queries are union-preserving, with a polylogarithmic-factor increase in the error bound.
Formally, a query f is called union-preserving if f(D() w D) = f(DM) 4+ f(D®) for any
datasets D), D(?)| where & denotes the multiset union. For example, by plugging in PMW, any
class of linear queries on D; can be answered with error O(y/|D;|) for every t. Perhaps not realizing
this, [6] presented a white-box version of PMW for the insertion-only streaming model, but the error
is O(|Dy|?/*). They also showed a black-box solution, but the error is O(|D;|?/%) when instantiated
with PMW.

A standard approach to dealing with the fully-dynamic case is to divide the stream into two insertion-
only steams: one only containing insertions and one only containing deletions but treating these
deletions as insertions. Let D;" = Wi<t.s,=+{x; } be all items inserted up to time ¢, and D] :=
Wi<t:s;=— {2} all items deleted up to time ¢, then D, = D} — Dj . For any union-preserving query
f,wehave f(D;) = f(D}) — f(D; ), so we can run two separate instances of the insertion-only
mechanism, and use their difference to answer f on D;. However, the worst-case error of this solution
is very bad. Suppose we instantiate the insertion-only algorithm of [9 4] with PMW. Then f (D;F )

and f(D;) can be answered with error O <\ /| D} |) and O <\/ |Dy |> , respectively, which means

that the error for f(D;) is O (\/ \Df| + | Dy |) This can be arbitrarily worse than the optimal error
of O(+/|Dy|) in the static case: D;” and D; may both be very large but D; = ().

Our Contributions. In this paper, we present a black-box algorithm for fully-dynamic streams
that can answer any class of union-preserving queries with error matching that in the static case,
up to polylogarithmic factors. For instance, when instantiated with PMW, our algorithm achieves
an error of O(/|D;|) for every t. Furthermore, its total running time up to time ¢ is also just a
polylogarithmic factor higher than that of the static mechanism run on all the stream elements up to
time ¢.

2 Preliminaries

2.1 Differential Privacy

Let X be the universe of items. A static dataset is a multiset of items D € N*. Two static datasets
D, D' € N* are neighbors, denoted D ~ D', if there exists an item 2 € X, such that D = D' & {z}
or vise versa. Differential privacy (DP) [8] is defined as follows.

Definition 1 (Differential Privacy [8]]). A randomized mechanism M : N — Y satisfies (¢, 9)-DP
if for any neighboring datasets D ~ D' and any subset of outputs Y C ),

PrM(D) e Y] <e€® -Pr[M(D") € Y] +3. (1)

In the streaming setting, two streams are neighbors if one has one more update, which can be
either an insertion or a deletion, than the other [9] Formally, two streams (8, Z) and (.§” ')
are neighbors, if 3i € N7 such that (s;,z;) = ) for any j # i, and either s; or s} is L.
Plugging this neighboring relationship into Deﬁmtlon i 1| yields the DP definition for the streaming
model. More precisely, M (D) and M(D’) in (T) are replaced by (M) (D), M3 (D,),...) and
(MO (D)), MP)(D}),...) respectively, where D, and D; are the datasets induced by any two
neighboring streams at time 4.



An important property used in designing DP mechanisms is composition, which comes in two
settings:

Theorem 2 (Sequential Composition [8]]). Let M; : N4 — Y); each be an (g;,;)-DP mechanism.
Then the composed mechanism M(D) = (M1(D), ..., My(D)) is (Zf;l €, Zle d;)-DP.

Note that there are many “advanced” versions of sequential composition [10} 21} 2]] with better
dependencies on k. Nevertheless, as k is logarithmic in all of our algorithms, those advanced versions
do not offer better bounds for the problem studied in this paper.

Theorem 3 (Parallel Composition [24]]). LetUd = Uy U - - - U U}, be a partitioning of the univers&ﬂ
U, and M; : N¥ — Y each be an (g;,6;)-DP mechanism. Then the composed mechanism
M(D) = (M1(DNU),..., Mp(DNU)) is (maxt_, e;, maxF_, §;)-DP.

2.2 Linear Queries

A linear query is specified by a function f : X — [0, 1]. The result of evaluating f on D is defined
as f(D) :=>_,cp f(x). A fundamental problem in differential privacy is the following: Given a set
of linear queries 7 = {f1,..., f|r|}, design a DP mechanism M that, on any given D, outputs a

data structure M (D), from which an approximate f(D) can be extracted for any f € F. We say
that M has error o with probability 1 — 3, if

Pr [r;lea;c (D) - £(D)| > a} <4

for any D, where the probability is taken over the internal randomness of M. Clearly, « is a function
of the privacy parameters (e, §) and the failure probability 8. For most mechanisms, it also depends
on the data size | D|, number of queries |F|, and domain size |X’|. To simplify notation, we often
omit some of these parameters from the full list a(e, 6, 3, | D|, | F|, | X|) if they are clear from the
context. Similarly, we denote the running time of the mechanism by time(|D|, -), which depends on
the data size | D| and possibly other parameters.

There is extensive work [30} (154117, 291114} [1} 22} 23] 26| on the best achievable « for various families
of linear queries. This paper takes a black-box approach, i.e., we present dynamic algorithms that
can work with any M that has been designed for queries JF on a static dataset D. The error for the
dynamic algorithm will be stated in terms of the « function of the mechanism M that is plugged
into the black box. Nevertheless, we often derive the explicit bounds for the following two most
interesting and extreme cases:

Basic counting. If F consists of a single query f(-) = 1, which simply returns f(D) = | D], then
the “data structure” M (D) consists of just one number, which is a noise-masked f (D). The most
popular choice of the noise is a random variable drawn from the Laplace distribution Lap(%). Its

error function « is given by arap(e, 5) = O (é log %) Alternatively, one can add a Gaussian

noise, which is (g, )-DP for § > 0 and yields agauss(€, 6, 3) = O (%, /log  log %) The two error
bounds are generally incomparable, but the former is usually better since § < ( in common parameter
regimes. Both the Laplace and the Gaussian mechanism have time(|D|) = O(|D]).

Arbitrary queries. If F is a set of arbitrary linear queries, then the private multiplicative weights
(PMW) [15} 7] mechanism achieves apyw = O(+/]D]) for § > 0 and O(| D|?/?) for § = 0. These

error bounds are optimal for | F| sufficiently large. The running time of PMW is O(|D| + |X| - | F| -
ID[?/a?).

There are many possibilities between the two extreme cases, and the achievable error bound «
intricately depends on the discrepancy of the query set F [16, 26]. We include a brief review in
Appendix [A] which is not necessary for the understanding of this paper. We make a reasonable
assumption that o does not depend on any of its parameters exponentially, which allows us to ignore
the constant coefficients in the parameters, e.g., a(O(e)) is asymptotically the same as «(e). This
assumption holds for most existing mechanisms for linear queries.

’Note that the “universe” I above is not necessarily the same as the universe X’ of stream items. In fact,
in our algorithms, we often take I/ as the time domain, and parallel composition then implies that running an
(e, 6)-DP mechanism in each disjoint time interval satisfies (¢, §)-DP over the entire stream.



2.3 Differential Privacy for Insertion-only Streams

The insertion-only algorithms, as well as our fully dynamic algorithm, work by decomposing
D =DM w...w D® for some k, so f(D) = f(DM) +--- 4 f(D®) by the union-preserving
property. Thus, if the error of each f(D®) is a(-, 3), the error of f(D) is at most k - a(-, 5/k) by a
union bound. Further, if the estimates of f(D(*)) are unbiased with good concentration properties,
this bound can be tightened. For example, for the basic counting query f(D) = |D|, if we use the

Laplace mechanism to estimate each f(D(*)), then the error for f(D) is O (é (, /klog % + log %) ) ,

which is better than k- o ap (-, 5/k) = O (f log %) . We derive this result, as well as the error bounds

of some other mechanisms under such a disjoint union, in Appendix [B] In the main text, for generality
we will use o) to denote this error bound. Note that a*) is also a function of |D|, ¢, 6, 3, | F|, |X|,
but we may omit these parameters when the context is clear. Using this notation, the result of existing
insertion-only algorithms can be restated as follows.

Lemma 4 ([4]). For a set of union-preserving queries F, let M : N* — Y be an (¢, 6)-DP static
mechanism whose error is a(e, 8, 8, |D|, |F|,|X|) on any D, with running time time(|D|). Then
there is an (e, §)-DP mechanism M r ;s for insertion-only streams, so that at any time t, it answers
queries F on Dy with error

€ )

t;€,0, 8, |Dyl,|F, | X]) = alloe®) [ — —
’7(583 767‘ t|v| |7| D « logt’logt

B, |Dt,f|,|2c|) |

The total running timeﬂ of Mz ins up to time t is O(logt) - time(|Dy|).

Our algorithm will also use a special case of Lemma[d when F is the basic counting query. Plugging
in our bound on ag;)p
better than that in [4]].

Corollary 1. There is an -DP mechanism M cny ins that at any time t, answers the counting query
f(Dy) = |Dy| on an insertion-only stream with error

1.5

(log t) € log™ >t 1  logt 1
cn t; ’ = 1 = 1 T —1 T .
Yent (i€, 8) = app <1ogt ﬂ) O( 5 v/ ogﬁ + 5 ogﬁ

3 Differential Privacy on Fully Dynamic Streams

in Appendix |B|leads to the following explicit error bound, which is slightly

In this section, we describe our algorithm for answering a set of union-preserving queries on a
possibly infinite fully dynamic stream under differential privacy. We use n; := | D;| to denote the
size of the dataset at time ¢, and N; to denote the total number of updates up to time ¢. Note that for
an insertion-only stream we have n, = NNy, but on a fully dynamic stream n, may be much smaller
than N;. Our goal is to achieve an error bound that depends on n;.

We will treat a fully dynamic stream as a set of labeled time intervals. An interval [z, j) labeled with
item x € X represents that a copy of x is inserted at time ¢ and deleted at time j. It is possible that
j = oo, if the item is never deleted. Note that this interval representation of a stream is not unique,
e.g., when many copies of the same item are inserted and then deleted. Any representation can be
used; in fact, our algorithm does not use this interval representation, only the analysis does.

Using the interval representation, D; consists of all items whose intervals are stabbed by ¢, i.e., all
intervals [i,j) > t. We will make use of the inferval tree [[7] to organize all the intervals. In an
interval tree, each D, is decomposed into a logarithmic number of subsets, each of which consists
of one-sided intervals, which will allow us to use the insertion-only mechanism. However, there
are two technical difficulties in implementing such a plan. First, the intervals are given in an online
fashion, i.e., at time ¢, we only see the endpoints of the intervals prior to . When we see the left
endpoint of an interval, we do not know where in the interval tree to put this interval, yet, we need to
immediately release privatized information about this interval. Second, the interval tree on an infinite
stream is also infinitely large, so we have to build it incrementally, while allocating the privacy budget
appropriately.

3For running time, it is often assumed that no-ops in the stream can be skipped at no cost.



We describe how to overcome the difficulties above in Section[3.1} In Section[3.2} we introduce a
DP mechanism running at each node of the new tree structure to support querying at any time with
respect to intervals stored in the tree. The output of the whole mechanism is obtained by combining
the individual mechanisms at the tree nodes, which is summarized in Section[3.3]

3.1 Online Interval Tree

We first build a binary tree 7 over the timestamps, where each timestamp corresponds to a tree node.
Figure [I| shows an (offline) interval tree built on the first 8 timestamps. It is clear that the tree on
timestamps {1, ..., ¢} has ¢ nodes and O(log t) height. In the online setting, 7 will grow from left
to right. We order the nodes using an in-order traversal of 7: vy, v, ..., and we will release the
information about v; right after time 4.

Ignoring differential privacy for now, let us first focus on how to answer a stabbing query using an
interval tree, i.e., report all items (intervals) in the dataset D, at query time ¢. In a standard interval
tree, an interval is stored at the highest node v; such that its timestamp ¢ stabs the interval. Denote by
D(v) the set of labeled intervals stored at v. For example, D(v4) = {a,b, ¢} in Figure[l] Given a
query at time g, we follow the root-to-node path to v, in 7. For each left node v; on the path where
I < g, we find all intervals [4, j) in D(v;) such that j > g; for each right node v, on the path where
r > ¢, we find all intervals [¢, j) in D(v,) such that ¢ < ¢. Standard analysis on the interval tree
shows that these subsets form a disjoint union of all intervals stabbed by q.

Example 1 (Interval Tree Query). Given the interval tree in Figure[l| assume a query is issued at
time ¢ = 6. We follow the path (vg, v4, Vs, . .. ). Along the path, v4 is on the left, where a, c € D(vy)
are deleted after ¢ = 6; vs is on the right, where d € D(vg) begins at (or before) ¢ = 6. Thus we
report Dg = {a, c,d}, which are exactly the elements present in the dataset at the query time.

{d} {d}

Figure 1: A standard interval tree. Figure 2: An online interval tree.

In an online setting, however, we do not know which node is the highest to put an interval in, since we
do not know the deletion time when an item is inserted. Consider timestamp 3 in Figure[T} where item
cis inserted into Dy = {a, b}. If ¢ were to be deleted at timestamp 4, then v3 becomes the highest
node that stabs it, which by definition should store c. However, if c is deleted at some timestamp
among {5, 6,7}, then vy is the highest node. Other possible candidates are vg, vy, - . .. One idea
is to put a copy of the interval into every node where the interval might be placed into. But there
are infinitely many such nodes, therefore we do so lazily. More formally, we design a novel online
interval tree that is capable of handling an infinite stream.

Definition 5 (Online Interval Tree). In an online interval tree T, a tree node v, stores an interval
[i,7) if and only if both A) i < t < j; and B) v; is in the subtree rooted at v;.

Compared with the standard offline interval tree, an online interval tree may store an interval [¢, j) at
multiple nodes. Nevertheless, condition B) implies that all these nodes lie on the root-to-node path to
v;, s0 at each level, there is at most one node that stores [z, j), which is the key property we will need.
We use Figureto illustrate. Interval a is stored at vy, vo, v4, Which are ancestors of vy. It is not
stored in vg since condition A) is violated: intuitively, by timestamp 8, a is already deleted, so there
is no need to store a at vg. On the other hand, a needs to be stored in all v1, v2, v4 (in the standard
interval tree, it is only stored at v4), because by timestamp 1 or 2, we still do not know the deletion
time of a. Similarly, interval d is stored in both vg and vsg.



3.1.1 Building the Online Interval Tree

This online interval tree can be incrementally constructed easily. After observing the update at
timestamp ¢, we first compute the dataset D; at time ¢. These are exactly the elements that satisfy
condition A). Then we construct the dataset D(v;) for the node v; out of elements in D;, keeping only
those that also satisfy condition B). These will be the intervals whose insertion-time node v; = v
or lies in the left-subtree of v;. For any node on the left-most path of 7 (where ¢ is a power of 2),
D(v:) = D simply contains all elements in the current dataset. Otherwise, D(v;) C D; will only
contain items inserted after its closest left-ancestor.

Example 2 (Online Interval Tree Construction). In Figure[2| we construct D(vy) = Dy = {a, b, c}
att = 4. To construct D(vg), we first compute Dg = {a,c,d}. But we only consider items whose
insertion-time is in the left-subtree (namely {vs, vg}, therefore D(vg) = {d} will only include d from
Dg. The intuition is that a and c have already been covered by v,.

Note that when D(v;) is first constructed, we do not have the deletion times of the items in D(v;),
which will be added when these items are actually deleted later. For example, in Figure[2} D(vq) =
{a, b} is constructed at timestamp 2 but neither item is associated with a deletion time. After
timestamp 5, we add the deletion time of b, augmenting D(vs3) to {a, (b, 5)}; after timestamp 8, it
becomes {(a, 8), (b,5)}. Note that there is no need to associate the left endpoints (i.e., insertion
times) to the items as in the standard interval tree, and we will see why below.

3.1.2 Querying the Online Interval Tree

Now we show how to answer a stabbing query using the online interval tree. Since the online interval
tree includes multiple copies of an item, the standard interval tree query algorithm will not work,
as it may report duplicates. For the stabbing problem itself, duplicates are not an issue as they can
be easily removed if they have been reported already. However, for answering linear queries, we
actually need to cover all stabbed intervals by a disjoint union of subsets. To achieve it, we modify
the stabbing query process as follows. Given a query at time g. We follow the root-to-node path to v,
in 7, and only consider left nodes v; on the path where | < ¢. For each v;, we report all intervals
[i,7) in D(v;) where j > q.

Example 3 (Online Interval Tree Query). Again consider a query at ¢ = 6 in Figure 2| on the
root-to-node path, nodes vy and vg satisfy | < q. We visit them and report {a, c} and {d} respectively,
which jointly form the dataset Dg.

Unlike in the standard interval tree, we do not query those right ancestors (e.g. vg). It turns out that
the items stored in the right ancestors are exactly compensated by the extra copies of items stored in
the left ancestors of v,4. The following lemma formalizes this guarantee.

Lemma 6. The query procedure described above reports each stabbed interval exactly once.

ONodes v} storing [¢, §)

, . .
O Nodes v, queried at timestamp ¢

Figure 3: Querying a stabbed interval.

Proof. Given a query at time ¢, consider any item inserted at time ¢ and deleted at time j, represented
by interval [4, j). We first prove that this item will not be reported if it is not in the dataset Dy,
i.e. interval [¢, §) is not stabbed by g. This happens when: (1) the item has been deleted at query time
(7 £ q). As we only report an item whose deletion time j > ¢, the interval is filtered out; (2) the item



has not arrived by query time (z > ¢). As we only visit left nodes v; where [ < g, it follows that
! < g < i. By definition, v; can store an item only if [ > i, so this item is not stored by v;.

The final case is when ¢ < ¢ < 7, and the interval is supposed to be reported by exactly one node.
This is shown in Figure[3] For the trivial case that ¢ = 4, the newly constructed node v; is the only
node reporting this interval. Otherwise, consider the minimum subtree containing both v; and v,
and assume it is rooted at v;. We must have v; in its left subtree and v, in its right subtree by the
minimum property, with the only exception that one of them can be v itself, i.e., ¢ < < ¢q. We can
argue that v is the only node that reports the interval: any node v} # v; that stores [i, 5) is either in
the left subtree of v;, or an ancestor of v; that is on the right side of v;; any node v/, # v; queried at
q is either in the right subtree of v;, or an ancestor of v; that is on the left side of v;. Thus the only
node that can possibly report this interval is v;. Since v; is queried and 7 > g, this stabbing interval is
reported exactly once by v;. O

3.2 Deletion-only Mechanism at Each Node

We have shown that the online interval tree can be incrementally constructed, such that at any time ¢,
we can obtain the current dataset D, by a disjoint union of O(logt) subsets, each from v; or a left
ancestor of v; in the interval tree. Consider each queried node v; (i < t) where D;(v;) denotes the
set of items that node v; stores at time ¢. This implies that a linear query f(D;) can be answered by
computing the sum ), f(D;(v;)) over queried nodes v;, as specified in Section Answering
queries F on items stored by v; at time ¢t is a deletion-only problem: when D(v;) 1s first constructed
at timestamp ¢, it has size n(v;) < n; and no element is associated with deletion time. Then, items in
D(v;) get deleted as time goes by.

Now we focus on the deletion-only problem at node v;. To distinguish, we use D(v;) to denote the
initial state of node v; when it first gets constructed at timestamp ¢, and use D;(v;) to denote the
remaining items in node v; at time t. Conceptually, we also consider a dynamic dataset D; (v;),
which consists of all the deleted elements from node v;. Their sizes will be denoted as n(v;), n:(v;)
and n; (v;) respectively. For example, D(v2) = {a,b} when constructed at time 2, whereas
Ds(ve) = {a} and Dj (ve) = {b}. Clearly at any time ¢, D;(v;) W Dy (v;) = D(v;) and therefore
ne(vi) + n; (v;) = n(v;). We then have n:(v;) < ny and nt(v;) < n(v;) < n;, but there is no
relationship between n; and n;.

A simple solution for this deletion-only problem is to first release a privatized f(D(v;)) when
initialized, and then run an insertion-only mechanism over the conceptual dataset D; (v;) so that
f(D7 (v;)) can be obtained at any time. Using their difference, f(D;(v;)) can be answered. The
problem here is that given a static mechanism M with error function (| D], -), the initial f(D(v;))
is answered with error a(n(v;), -). Although n(v;) is bounded by n;, it has no relationship with the
current data size n; at query time. In particular, the initial data size n(v;) can be arbitrarily larger
than its current size n(v;), which fails to achieve our target error bound a(ny, -).

To fix the problem, we ensure that no more than n(v;)/2 items should be deleted so that at any time
we can guarantee n(v;) = O(n;). When half the items have been deleted from D(v; ), we restart the
process on a new D(v;) that consists of the remaining items with fresh privacy budgets.

There are still a few privacy-related issues with the above idea. First, we cannot restart when exactly
half the items have been deleted, which would violate DP. Instead, we run a basic counting mechanism
M nt,ins Over the conceptual dataset for deletions to approximately keep track of the number of
deletions; we show that such an approximation will only contribute an additive polylogarithmic error.
Second, since we restart the process above multiple times, we need to allocate the privacy budget
carefully using sequential composition. But the privacy degradation is only polylogarithmic since
we have only O(logn(v;)) = O(logt) restarts with high probability. Finally, as the decision of
restarting the process depends on random noises, the total number of restarts can not be fixed in
advance. Since we must guarantee differential privacy for any possible instantiation, we need to
allocate the privacy budget through a convergent sequence. Similar to [4], we allocate the privacy
budgets proportional to 7~ (1*) in round r for a small constant 77 > 0. The total privacy is then
bounded regardless of the number of actual rounds, as Zfil () < % + 1. This incurs another

logarithmic-factor degradation. Algorithm [T] details the steps we run at each node v in the online



interval tree. We present in Lemmal7]its accuracy guarantee, assuming each node is allocated with
(e,0)-DP.

Algorithm 1: (¢, §)-DP Algorithm at node v = v;

Input: Fully-dynamic stream (.. ., (s¢, x¢), . .. ), constant 7, privacy budget (&, ¢), probability 3,
static (M z) and insertion-only (M £ ;,s) mechanisms for queries F, continual counting
mechanism Mt ins

Output: F(D¢(v;)) at any time ¢ > ¢

10« 1177 r«1,(e1,01) < ( €3 ) B1 5; // Initialize
2 D(v;) + Allitems in D; inserted after the closest left-ancestor of v; in online interval tree;

3 D« D(v;);

4 1< |D|+ Lap(1/e1);

s Release M (D) under (¢1, d1)-DP to answer F(D;(v;));

6 Initiate M £ ;,,s under (g1, d1)-DP and M, ins under €1-DP;

7 foreacht i+ 1,9+ 2,... do

8 if update (s, ;) = (—, x) where x € D(v;) then
Augment the deletion time of x to (x, t);

10 Feed an update (4, x) to M £ ;ns and Mcpt inss

11 else
12 | Feed an update (L, z) to Mz ins and Meny,ins

13 1~ < Approximate number of deletions from Mt ins;

14 ~ < Error bound vyt (¢; €, B;-) in Corollaryl

15 | ifn~ > n/2+ 2y then // Restart
16 ré—Tr4 ]., (Er7 67-) — (4»,,104»1)67 brac=n ) 67’ 67\?+nﬁ;

17 D « Dy(v;);

18 n < |D|+ Lap(1/e,);

19 if n < 2~ then // Terminate
20 | Halt by answering 0 to all future F(Dy(v;));

21 Release a new Mz (D) under (&, §,)-DP to answer F(D;(v;));

22 Restart Mz ;s under (&, §,)-DP and M p¢ ins under e,.-DP;

23 else

24 F(D) + Query the current M x(D);

25 F(D™) < Query the current M r ;,,5;

26 | Answer F(Dy(v;)) < F(D) — F(Dy );

Lemma 7. For each node v;, Algorithm is (€,0)-DP. Suppose there is a static mechanism Mz
for answering query class F is equipped with error function o) (e, 5 B,|DI,|F|, |X]|). Then at any

time t, Algorlthmanswers F(Dy(v;)) with error a1°g?) ( B,n: +O(1), | F|, |X|)

o)’ 0(1)’

Proof. We use some extra notation in the proof for simplicity. As we focus on the deletion-only
problem at node v;, we denote D = Dy, (v;), D™ = D—Dy(v;),n = ny, (v;) and n™ = n—ny(v;),
where ¢ is the query time and ? is the beginning time of the current round. -y is the public error bound
of basic counting on infinite streams given in Corollary [T| which only depends on parameters in the
round 7 and the time .

Privacy. Algorithm|T|uses four black-box mechanisms. In each round, 72 is released using the Laplace
mechanism and F (D) is released using static mechanism M. In addition, two insertion-only
mechanisms M r ;s and M .p¢ ins are used to track F and the basic counting query over the deletions
D~. In any round r, the composition of these four mechanisms is (4¢,,26,) = (e, =56)-
DP. As we restart these mechanisms, they are sequentially composed which guarantees the whole
mechanism at node v, is (¢, )-DP, since 00 | %~ + 1) = 1. Note that the privacy

guarantee holds regardless of the number of restarts.

1+17(



Accuracy. Let random variable R denote the number of restarts before the mechanism terminates, we
first bound R as follows. When a restart happens, we have n~ > n/2 + 2~, where v = O(1). With
probability 1 — 2/3,., both n~ and 72/2 have error at most «. Conditioned on this happening, we get
n~ > n/2: at least half of the remaining items have been deleted from D. As v; was initialized with
n(v;) < n; < N; < N, items, with high probability this can happen at most O(log N;) times before
there are only n.(v;) < « items left. Still conditioned on the noise being small, linebecomes
true and the algorithm halts by answering 0, which has error at most O(+y) for any linear query. To
conclude, conditioned on the events that in each round, the noises in counting are smaller than the
bound ~, which happens with probability 1 — >~>7 | 23, > 1 — 3/3, there can only be O(log N;)
rounds at time ¢, where [V, is the number of updates up till time .

We next bound the error of F(D;(v;)) in any round r < R, as a function of r and with probability
1 —2//3. If the algorithm decides to restart at time ¢, an up-to-date dataset D;(v;) is computed and
a fresh F(D;(v;)) is obtained from the static mechanism M z with privacy budget (.., d,-), whose
error is (gm 5028y (1), ) — a(er, b,, B, s, -) with probability 1 — 2,3/3. Otherwise (line ,

with probability 1 — 23, we have the actual number of deletions n~ < n/2+ 4~. Namely the current
data size is at least n(v;) = n — n~ > n/2 — 4. Conditioned on this, we calculate F(D;(v;))
from the difference of F (D) and F (D). Note that with probability 1 — 3/6, the error for 7 (D)

from Mz is « (sh or, %7 n, ) by definition; also with probability 1 — /3/6, the error for F(D™)

from Mz ips is allogt) (lgg 7 1§f§ 7 %, n-, ) by LemmaH But now both terms can be bounded by

allog?) (hfét, lc‘fﬁ,ﬁmt + 7, ) with high probability, as n~ < n < 2n4(v;) + 8y = O(nt + 7).
This means their difference, F(D;(v;)) has error a!l°8?) (%, hfj, Byme + 7, ) with probability
atleast 1 — 253, —23/6 > 1—23/3.

Finally we condition on the event that there are only » = O(log N;) rounds to get rid of the
dependency on r, which happens with all but 3/3 probability. By Corollary [1} the counting error

in round 7 at time ¢ is y(t;&,, B,) = O (logsﬁ, [log 5~ + l‘z%t -log BL) =0 (biﬁ -log BL)
Therefore the error for F(Dy(v;)) is (with probability 1 — ()

14+n 1.5
) (e gy (BT Loy (ETL) 7 )
(log" ™" Ny)logt (log" ™ N;)logt € B

O

3.3 Full Algorithm

Lemma [7] assumes each node is under (&, §)-DP, which we cannot afford since we have an online
interval tree of depth log ¢. Since the tree size grows with ¢ and can be infinite, we allocate (£(v), §(v))
proportional to 1/¢17" to a node v at level / in the online interval tree, so that the composition of
mechanisms at all the nodes still satisfies (¢, §)-DP at any time ¢. Since each item will only affect
one single node in each level, nodes at the same level enjoy parallel composition. The error of the
final sum is then decomposed into log ¢ online interval tree nodes, where the error of each node is
given by Lemma [7]but under (¢(v), §(v))-DP.

To provide an error guarantee to the final results, note that it is the disjoint union of (log2 1) static
mechanisms. This is because each of the (log t) queried online interval tree nodes runs an insertion-
only mechanism to support querying the deleted elements, the error of each one is from the error
of (logt) static mechanisms. We are left with analyzing the error of each building block: the static
mechanisms. Their error depends on the privacy budgets (¢, §’) allocated to it. In our construction,
it has a polylogarithmic degradation compared to the (g, ¢) for the whole mechanism. In particular,
there are 3 factors that accounts for the allocation of privacy budgets.

1. We have an online interval tree of height (log¢). While nodes on the same level enjoy
parallel composition, it is possible that the change of one timestamp affects multiple tree
nodes on the root-to-node path corresponding to this timestamp. Therefore, we must allocate
privacy budget with sequential composition. Moreover, the tree can grow infinitely. So



instead of an even allocation, we apply a convergent sequence to divide the budgets, which
causes a 1og1+" t overhead to the worst building block at time ¢.

2. At each online interval tree node, we restart the 4 mechanisms several times. Since this may
repeatedly reveal information of the same entry, we also need to divide the privacy budget
accordingly. Again, we allocate the budgets in each round using a convergent sequence
again to make the DP guarantee independent of the number of restarts. With high probability,
no queried node will restart more than log IV, times, so the minimum privacy budget in any
round is a 1/(log' " N,) fraction of the budget allocated to the node.

3. Finally, in each round of each node, the insertion-only mechanisms My ins and Mz iy,
are built from static mechanisms, each receiving a 1/(log t) fraction of the budget.

Putting things together, we arrive at the main result of this paper. For the running time, observe that
the mechanism run at each node of 7 is dominated by the insertion-only mechanism from Lemma 4]
that tracks the deletions. Since there can be O(log t) restarts, and the total running time over all nodes
in the same level is O(logt) - time(N;). Summing over all O(logt) levels, we obtain the running
time stated.

Theorem 8. [f there is a static DP mechanism with error function o\¥) (¢, 6, 8,|D|,|F|,|X|) for a
set of union-preserving queries F, then there is an (&, )-DP mechanism M g, for fully-dynamic
streams, so that at any time t, it answers queries F on D, with error

3.5+42n
) _ (log?t) € ) log t logt
<(ta575757nt7|-7:|7|X|)_a (1Og3+2nt710g3+2nt7/37nt+ c log /8 7|f|7|X‘ b)

for any constant 1 > 0. The running time of M ayn up to time t is O(log? t) - time(Vy).

Plugging in PMW as the static DP mechanism, we obtain a fully dynamic algorithm for answering a
set of arbitrary linear queries with the following error bounds:

Corollary 2. Given a set of linear queries F, there is an (g, §)-DP mechanism M r 4y, that at any
time t, answers any query f € F on a fully-dynamic stream with error

; 5 - O(ynr), 6>0
tie,8, 8,ne, | F, | X _OL(O“))(f —— B.n +01,]-",X)_ o Vors ’
Crltsed B, |FLIXD = oSl 5 gy Pome+ OWHFLIAT) =4 500 52
Our mechanism only has a polynomial dependency on the data size n; at time ¢, matching results in
the static setting, whereas a straightforward extension of insertion-only mechanisms [9} 4] will have a
polynomial dependency on the number of updates N; > n,.

4 Limitations

While polylogarithmic factors are often neglected in theoretical studies, they still present significant
overhead in practice, which limits the practicality of the algorithms proposed in this paper. How
to reduce this overhead remains an interesting problem for further investigation. A possible future
direction is to consider white-box mechanisms that improve the accuracy (though they can only
reduce the polylogarithmic factors) while being practical. It is also interesting to study how to answer
non-union-preserving queries (e.g. distinct count) accurately under the streaming DP setting.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In both the abstract and the introduction, we stated that this paper presents
black-box algorithms for DP queries on fully-dynamic streams with a polylogarithmic
degradation in the utility compared to static ones.

Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
e The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations in Section 4]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We stated the assumptions in Section 2} and presented our results with proofs
in Section

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper confirms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper studies DP query answering from a theoretical perspective, which
should not have a societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: This paper poses no such risks since it does not involve specific data or model.

Guidelines:
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12.

13.

14.

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA|
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in the research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A DP Mechanisms for Linear Queries: A Review

In this section, we present some important DP mechanisms for linear queries and their error bounds.
The analysis is similar to that in in [30], but we clarify the dependency on 3, which will be needed
for analyzing the simultaneous error in the streaming setting. Note that a linear query has sensitivity
1 by definition.

Laplace Mechanism. When 7 = {f} is a single query, the Laplace mechanism that outputs
Muap(D) = f(D) + Lap(1) has error apap(s, ) = £1n % When F contains multiple queries,

we may add Lap(*=+ Ll ) noise to each query result and apply basic composition to guarantee e-DP of
the whole mechanism. To translate it into an error bound, we bound the failure probability of each
noise by %, so that a union bound will bring the total failure probability to 5. A similar argument

can be made using advanced composition. To conclude, answering a set of queries F using Laplace
mechanism achieves error (for § > 0)

0 <f| log |JT> 5 < o7
€ B
O‘Lap(gvévﬁv |~F|) = F lo 1
\/1F] log
0 ||€510g|;| 6> e OUFD

Gaussian Mechanism. Similar to the Laplace mechanism, the Gaussian mechanism protects (¢, §)-
DP of query f by outputting M gauss(D) = f(D) + N (O, 522 In L 2‘)) Its error is agauss(€, 9, 8) =
2 1.25

1 |

€

2. When composing multiple Gaussian mechanisms that each answers a query from

F, zCDP composition [2]] can be applied, which shows adding A/ (O (0] (lﬂ log %)) noise to each

query suffices to protect (g, d)-DP of the whole mechanism. Therefore answering a set of queries F
using Gaussian mechanism achieves error (for § > 0)

\/ |~7:| log 5 ]3'
aGaus%(E 6 B, |‘F| |

Private Multiplicative Weights. When there are many queries |F| = Q(|D|), composing individual
mechanisms has error polynomial in |F|, thus also in |D|. The Private Multiplicative Weights
mechanism [[15} [17] performs better in this case. The following error bound is presented in [[17, 18]

o <(|D|210g|xuog<|f/ﬂ)>§> 50

€

ApMW =

o <|D| 1ogX|log<1/6>log(lfl/ﬂ))é ,6>0.

Apart from mechanisms mentioned above, there are other private mechanisms for linear queries.
For example, the optimal composition [21]] can be used in place of basic or advanced composition
to provide a better allocation of privacy budget, yet computing it is costly. The log |F| factor is
removable for Laplace mechanism [29]] and almost removable for Gaussian mechanism [14]. Under
pure-DP, SmallDB [1]] has asymptotically the same error as PMW, but its running time is prohibitive.
The Matrix mechanism [22| 23] exploits structural properties within the query set F and works well
in practice. But it does not have a closed-form error bound for general queries, and finding an optimal
querying strategy is time-consuming.

In general, the best mechanism is related to the hereditary discrepancy [16,|26] of the set of queries.
For example, for d-dimensional halfspace counting queries, [26] has error O(|D|2~24). In this paper
we use « as a function of ¢, §, 8, and possibly | D|, | F|, | X| to denote the error of any mechanism
answering linear queries on static datasets, without detailing the best mechanism under a specific
setting and choice of the parameters. Since our paper takes a black-box approach, all these algorithms
can be plugged into our framework so as to support dynamic data, while incurring a polylogarithmic-
factor degradation.
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B Error Bounds under Disjoint Union

Note that a(¥) denotes the error of the sum of k mechanisms, each of which having error  under
the same parameter settings. It always holds that o*) (-, 3) < k - (-, %) by union bound. In this

section, we show cases where a(*) can be tightened for specific mechanisms. As our running example,
consider arap(e, 8) = £ In 5. The union bound reduction above gives

o | 7=

off) (6,8) < = In

| =

to bound the error of summing & Laplace noises Lap(%). Next we show how this can be tightened.

B.1 Unbiasedness

If a mechanism M is unbiased with error o, naturally the error only scales with v/%. To see why this
is true, we can argue that with all but g probability, individual mechanisms have their errors bounded
by a(, %) simultaneously. Conditioned on this happening, apply Hoeffding’s inequality with the
remaining g probability, we get

/ 4 B
a%ﬁ?biase(i('7ﬂ) S 2k In B T ('7 2k‘) .

This can be applied to the Laplace mechanism to get

k k
ai’;)p(aﬁ) =0 ([ log % log 5) .

B.2 Concentration Bounds
For specific distributions like Laplace (sub-exponential) and Gaussian (sub-gaussian), the concentra-

tion bounds are usually tighter than using unbiasedness only. It helps save the log k factor from union
bound. Consider the Laplace mechanism, note that the Lap( %) random variable is sub-exponential

with norm ||Lap(1)|w, = 2. We can then apply Bernstein’s inequality [31].

B
Lemma 9 (Bernstein’s inequality). Let X1,..., X} be i.i.d. zero-mean sub-exponential random
variables with norm Vq. There is an absolute constant c so that for any t > 0,

>t <2e —cmin i i
==X K020, [

We therefore conclude the Laplace mechanism has error function

o (c.8) = 0 W (i-+1s) m;) | )

As another example, for the Gaussian mechanism, the sum of k£ Gaussian noises is still a Gaussian
noise with its variance scaled up by k, thus the disjoint union of k£ Gaussian mechanisms has error

1 1 1
agizuss(5757 B) = O (€M) .
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For the PMW mechanism, the union bound remains the best we know, that is

o (k (|D|210g|/'\?llog(k|}"/ﬁ)>;’> 50

€
P
ApMw =

ole. <|D| logX|log(51/5)10g(k|}—/5))% ,6>0.

O@wDﬁ),ézm

O@wpﬁ),5>u

C Related Work for DP under Continual Observation

In the Binary Tree mechanism [9]], each timestamp is treated as a leaf node in the binary tree, and
the mechanism privately releases the count of each tree node. If the stream has bounded length
T, then each node receives a ToaT - fraction of the privacy budget, and the final count consists of
counts from O(log t) tree nodes. Us1ng our notation, the mechanism has error a£2§ 2 (e B) for
basic counting. Chan et al. [4] first showed that allocating the privacy budget through a convergent
sequence will allow the Binary Tree mechanism to also work for infinite streams, where the error

. o log
is worse by a logarithmic factor as aé;)lg) )(bg%”,

(logt)( €
Lap logt?

B) for constant y > 0. They further proposed a

hybrid mechanism to show that o B) can be achieved by separately releasing the counts

for [1,2),[2,4),[4,8),.... Using the aéap function in Equation (Z) above, we obtain the error

1.5
(log t) € _ log™°t 1 logt 1
A ap (logt’ﬂ,) —O( . lo gﬁ+— logg .

for continual counting, which was presented in Corollary [I] as our building block. Note that this
is a per-query bound: with constant probability, a query at any time ¢ can be answered with error
ot log® t).

Alternatively, if we replace 8 with 8/T where T is an upper bound on ¢, we obtain a bound that holds
simultaneously for all queries 1 < ¢ < T": with constant probability, any query can be answered with
error O(1 log® T). The simultaneous bound given in [9]] was oL log®® T') using unbiasedness but

not concentration, which was corrected in [[I1]]. In [4]], Chan et al. presented the a¥) function as
ai?p(& B) =0 (@ log %), and thus

1.5
(log t) 10g i 1
aLap <1 gt’ﬁ) ( c IOgB .

While the per-query bound is the same, for the simultaneous bound, this only gives O(é log®?® T),

whereas our tighter bound gives O(% 1og2 T'). The same simultaneous bound was presented in [13}[18]]
with improved constants using the Matrix Mechanism [22, [23]] as building block. For sparse finite

streams, [11]] achieves O(log "Nt Jog 4 3+ Llog %) per-query error for basic counting, which has an
asymptotic improvement when N; = (1),

We briefly mention some other work under similar settings but are less related. [3] studies the DP
histogram problem in the streaming setting, which is a special case of linear queries. Their main
contribution is when the universe X or the sensitivity of the queries are unbounded. Otherwise,
the algorithm is equivalent to Corollary |1} [19] studies the DP distinct counting problem under
the turnstile (fully-dynamic) model. Distinct counting queries are known to be non-linear and not
union-preserving, which is separate from the interest of this paper. There are also existing work that
study graph queries under the continual observation model of differential privacy, e.g. [28} 12,20} [27].
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