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Abstract

Recent advancements with video generators, language aligned robotics models and1

tool-augmented design frameworks suggest that large language models (LLMs) may2

soon no longer struggle with 3D spatial reasoning. To bring these developments into3

the material sciences, we present AtomWorld, a data generator and benchmark that4

evaluates LLMs on atomic-level operations (e.g. insert, move, rotate atoms) in CIF5

files. This benchmark was tested across major chat models, finding these models to6

generally take an algorithmic approach - which yielded successful completion of7

simple tasks such as adding and moving atoms, but struggled with more complex8

tasks such as rotating around an atom. LLM inaptitude with spatial reasoning9

limits their usefulness in crystallography - addressing this problem is a necessary10

first step towards enabling higher level tasks such as seeing motifs, symmetries,11

repairing or validating complex structures, and proposing novel structures.12

1 Introduction13

A Crystallographic Information File (CIF) [1] is the standard format for storing crystallographic14

structural data. Suppose that there are three stages for an LLM to reason with CIF files: motor15

skills, perceptual skills and cognitive skills. Motor skills are about the mechanics of geometry —16

being able to add, move, rotate, or insert atoms consistently within a structure. Perceptual skills are17

about recognising patterns — seeing motifs like octahedra, channels, or layered frameworks, and18

detecting symmetry or connectivity. Cognitive skills are about reasoning and creativity — engaging19

in hypothesis-driven modifications and proposing novel structures.20

LLMs for crystallography would primarily benefit researchers at the cognitive stage, however chal-21

lenges such as hypothesis-driven modification require LLMs to also be strong at the motor and22

perceptual stages. In current literature, perceptual skills have been tested through question-answer23

(QA) style benchmarks e.g. LLM4Mat-Bench [2], but less attention has been given to testing motor24

skills. To address this gap, our research question asks: how can we measure and improve LLM25

“crystallographic motor skills”, i.e. ability to manipulate atoms in crystal structures? We present the26

following contributions:27

1. AtomWorld Playground: A scalable data generator and benchmark that evaluates LLMs on28

atomic-level operations (e.g. add, move, rotate, insert atoms) in CIF files.29

2. Obtained benchmark results across several frontier chat models. We found these models30

to generally take an algorithmic approach - which yielded successful completion of simple31

tasks such as adding and moving atoms, but struggled with more complex tasks such as32

rotating around an atom.33

To the best of our knowledge, we are the first benchmark to evaluate LLM motor skills in crys-34

tallography. While these tasks are trivially solved via software or packages such as Ovito[3] and35
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Atomic Simulation Environment(ASE)[4], installing this capability in LLMs can help unlock the more36

valuable downstream cognitive skills. Traditionally, LLMs have struggled with spacial reasoning37

tasks - but this may soon change with rapid advancements in tool-augmented design [5], diffusion38

LLMs [6, 7], and as language aligned video generation [8, 9] and robotics [10] models become39

increasingly capable. We hope that our AtomWorld playground can play a foundational role in testing40

the understanding of 3D CIF environments in tomorrow’s LLMs.41

2 Related Work42

LLMs for crystallography. LLMs have been primarily explored for their capabilities in CIF gener-43

ation and QA. LLMs have been demonstrated to hold an innate ability to generate crystal structures44

when pretrained on millions of CIF files [11]. This process may be further reinforced through45

evolutionary search frameworks [12]. However, as LLMs are pattern predictors, the search space is46

fundamentally limited by the scope of the pretraining data. LLMs can also be instruction fine-tuned47

to predict crystal properties or provide general QA responses from CIF, e.g. AlchemBERT[13],48

NatureLM[14], Darwin 1.5 [15], etc[16, 17]. Crystallography QA is well benchmarked, with the49

most comprehensive being LLM4Mat-Bench [2], consisting of approximately 2 million composition-50

structure-description pairs. Tool-augmented LLMs such as OSDA Agent [5] improve structure51

generation through coupling computational chemistry tools to LLMs. These tool-augmented design52

frameworks are able to address the lack of in-depth chemistry knowledge of LLMs without expen-53

sive (and not always effective) fine-tuning. LLMs may be able to reliably handle geometric CIF54

modification through tool-augmentation.55

Multimodal reasoning. Approaches such as multimodal chain-of-thought (Multimodal-CoT) [18],56

visualization-of-thought (VoT) [19] add image modalities to the reasoning trace rather than pure57

textual chain-of-thought. In particular, Multimodal-CoT with under 1 billion parameters achieved state58

of the art in state-of-the-art performance on the ScienceQA benchmark, outperforming larger models59

like GPT-3.5. As CIF describes a 3D challenge, these results suggest that multimodal reasoning60

approaches can be highly applicable to improving LLM ability on CIF geometry tasks, as well as61

reasoning-intensive QA and structure generation/modification tasks. Approaches to multimodal62

representation may also be influenced from developments in video generation and robotics, where63

models such as Genie 3 [9] and V-JEPA 2 [10] are increasingly capable of understanding real-world64

physics and integrating this with natural language input/output. Finally, with the training objective of65

diffusion LLMs [6, 7] to be noise reversal, they have an advantage in understanding structural text66

compared to autoregressive LLMs - with LLaDA [6] surpassing GPT-4o in a reversal poem completion67

task. This also suggests diffusion LLMs may be inherently capable of differentiating between valid68

and invalid modifications to CIF - important for geometric modification tasks. Developments in69

multimodal reasoning and diffusion suggest that LLMs may be on the cusp of being able to grasp the70

3D CIF environment, making it important to benchmark this progress.71

3 Playground Design: AtomWorld72

At its core, AtomWorld is designed as a scalable data generator which can be used for both bench-73

marking and training LLMs. The data generated follows a three-part structure: two CIF files of74

“before” and “after” states, and an action prompt describing the change - with the goal of the LLM to75

yield the “after” state, given the “before” state and action. A flowchart of the benchmarking workflow76

is presented in Figure 1. Detailed descriptions and examples of all supported actions prompts are77

found in Appendix A.1.78

4 Experiments & Discussion79

We benchmarked a selection of state-of-the-art LLMs, including variants from Gemini, GPT, Qwen,80

Deepseek, and LLaMA families. The results are summarized in Figure 2a and b. According81

to the evaluation metrics, it is evident that LLMs exhibit varying levels of performance across82

tasks. Simpler operations such as add are performed more consistently, whereas more spatially83

demanding manipulations, particularly rotate around, remain highly challenging. Overall, the84

relative task difficulty can be ordered as: add < move < move_towards < insert_between <85
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Figure 1: AtomWorld benchmark flowchart. The AtomWorld generator follows a structured data flow:
the random sampler selects a structure from a predefined structure pool (in this work, a subset of CIF
files from the Materials Project database[20]); the random initializer parametrizes the chosen action
template by assigning atom indices and/or positions; the structure operator applies the instantiated
action to the original structure to obtain the target structure; and the prompter generates a natural
language description aligned with the action. The resulting (input structure, action prompt) pairs
are then fed into the LLM agent system, whose generated structure is compared against the target
structure using the StructureMatcher from pymatgen[21] to compute the evaluation metric (see
Appendix A.2).
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Figure 2: Evaluation results. a and b demonstrate the error rate and mean max_dist metrics for
different actions. c and d demonstrate the change in performance with model sizes, tested using the
Qwen3 series.

rotate_around. Gemini 2.5 Pro achieves the strongest performance across the evaluated tasks,86

showing particularly low error rates and displacement values in the move, move_towards, and87

insert_between tasks.88

Geometric operation difficulty. To measure the inherent difficulty of each geometric operation,89

we tested Gemini 2.5 Pro and Deepseek V3-0324 on simplified point-based tasks, with results listed90

in Table 1. The models were given a set of points in three-dimensional space, expressed in raw91

coordinate format like “[[x1, y1, z1], [x2, y2, z2]]”. The models were then asked to apply similar92

geometric operations directly on these points and return the transformed coordinates. This setting93
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removes the complexities of CIF files and serves as a controlled test of whether the LLM can94

handle spatial transformations at all. The results from this setting reflects the task difficulty found95

in AtomWorld benchmark results, observing that models perform well on simple actions like move,96

move_towards, and insert_between, but found the rotate_around action is significantly more97

difficult. The former could be solved with straightforward numerical calculations (e.g., addition98

or weighted averaging), which LLMs can handle reliably. In contrast, models often attempted to99

compute a rotation matrix for the rotate_around action and failed to apply it consistently, leading100

to high mean max_dist.101

Table 1: Model performances on simplified point-based tasks. Error rate indicates the ratio of
unreadable outputs from LLMs. Mean max_dist is calculated by the maximum distance between
generated and target points after Hungarian sort.

Gemini 2.5 Pro (50 frames) Deepseek V3-0324 (250 frames)

Action Error rate (%) mean max_dist (Å) Error rate mean max_dist

move 0.00 0.0000 0.00 0.0000
move_towards 2.00 0.0045 0.00 0.3172
insert_between 0.00 0.0051 21.2 0.0642
rotate_around 2.00 16.168 0.00 14.058

Paramater scaling. Qwen3-32B ranks second overall and is especially notable for its efficiency:102

despite having only 32B parameters, it outperforms or matches larger models (e.g., GPT o3, LLaMA3-103

70B) on several tasks. Figure 2c and d illustrate how parameter scaling of the Qwen3 series affects104

accuracy across tasks. In general, larger models tend to achieve lower error rates and smaller105

displacements, confirming that scaling improves spatial reasoning capabilities. This pattern is further106

supported by the Chemical Competence Score (CCS)[22], which increases with model size and107

highlights Qwen3-32B outperforming LLaMA3-70B. (See Appendix B.3) Nonetheless, the marginal108

benefits decrease with increasing model size, and for the rotate_around task, the improvements109

remain limited. These observations suggest that architectural design and training strategies play an110

equally important role as model scale in enabling atomic-level reasoning.111

Solution approaches. Chat models generally approached these geometric challenges through112

generating the necessary linear algebra algorithms to solve. Failures across most CIF actions could113

be attributed to context-rot, as the chat models lost their train of thought across large reasoning traces.114

In Table 1, we found an interesting case where the Deepseek V3 model has an abnormally high error115

rate in the simplified insert_between tasks. A closer look at the wrong responses reveals that116

Deepseek often attempted to write a Python script to compute the coordinates, rather than directly117

performing the calculation.118

5 Future Work & Conclusion119

In this paper we presented AtomWorld as the first benchmark that evaluates LLM motor skills in120

crystallography. In general, we found that chat models took an algorithmic approach to solving the121

geometric tasks of our benchmark. With this approach, simpler operations such as add could be122

performed more consistently, whereas more spatially demanding manipulations, particularly rotations,123

remain highly challenging. These tasks are solved trivially via crystallography software, but for124

LLMs are an important first stage to enabling higher level tasks such as seeing motifs, symmetries,125

repairing or validating complex structures, and proposing novel structures.126

In future work, we would like to increase the depth of our evaluation beyond frontier chat models. A127

stronger conclusion may be drawn about LLM capabilities through also evaluating specialised LLMs128

for material science, and tool-augmented LLMs. Future versions of the AtomWorld playground would129

likely see an expanded set of actions, prompt templates and evaluation metrics. A richer structure of130

modalities may also be included - e.g. graphs or visual depictions for input into multimodal LLMs.131

LLMs have traditionally struggled with spacial reasoning tasks, however this may be soon to change132

with recent developments in tool-augmented design, diffusion, video generation and language aligned133
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robotics models [5, 7, 9, 10]. We hope that our AtomWorld playground can play a foundational role134

in helping researchers of tomorrow test LLM understanding of 3D CIF environments.135
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