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Abstract

Recent advancements with video generators, language aligned robotics models and
tool-augmented design frameworks suggest that large language models (LLMs) may
soon no longer struggle with 3D spatial reasoning. To bring these developments into
the material sciences, we present AtomWorld, a data generator and benchmark that
evaluates LLMs on atomic-level operations (e.g. insert, move, rotate atoms) in CIF
files. This benchmark was tested across major chat models, finding these models to
generally take an algorithmic approach - which yielded successful completion of
simple tasks such as adding and moving atoms, but struggled with more complex
tasks such as rotating around an atom. LLM inaptitude with spatial reasoning
limits their usefulness in crystallography - addressing this problem is a necessary
first step towards enabling higher level tasks such as seeing motifs, symmetries,
repairing or validating complex structures, and proposing novel structures.

1 Introduction

A Crystallographic Information File (CIF) [1]] is the standard format for storing crystallographic
structural data. Suppose that there are three stages for an LLM to reason with CIF files: motor
skills, perceptual skills and cognitive skills. Motor skills are about the mechanics of geometry —
being able to add, move, rotate, or insert atoms consistently within a structure. Perceptual skills are
about recognising patterns — seeing motifs like octahedra, channels, or layered frameworks, and
detecting symmetry or connectivity. Cognitive skills are about reasoning and creativity — engaging
in hypothesis-driven modifications and proposing novel structures.

LLMs for crystallography would primarily benefit researchers at the cognitive stage, however chal-
lenges such as hypothesis-driven modification require LLMs to also be strong at the motor and
perceptual stages. In current literature, perceptual skills have been tested through question-answer
(QA) style benchmarks e.g. LLM4Mat-Bench [2]], but less attention has been given to testing motor
skills. To address this gap, our research question asks: how can we measure and improve LLM
“crystallographic motor skills”, i.e. ability to manipulate atoms in crystal structures? We present the
following contributions:

1. AtomWorld Playground: A scalable data generator and benchmark that evaluates LLMs on
atomic-level operations (e.g. add, move, rotate, insert atoms) in CIF files.

2. Obtained benchmark results across several frontier chat models. We found these models
to generally take an algorithmic approach - which yielded successful completion of simple
tasks such as adding and moving atoms, but struggled with more complex tasks such as
rotating around an atom.

To the best of our knowledge, we are the first benchmark to evaluate LLM motor skills in crys-
tallography. While these tasks are trivially solved via software or packages such as Ovito[3]] and
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Atomic Simulation Environment(ASE)[4], installing this capability in LLMs can help unlock the more
valuable downstream cognitive skills. Traditionally, LLMs have struggled with spacial reasoning
tasks - but this may soon change with rapid advancements in tool-augmented design [5], diffusion
LLMs [6l (7], and as language aligned video generation [8} 9] and robotics [10] models become
increasingly capable. We hope that our AtomWorld playground can play a foundational role in testing
the understanding of 3D CIF environments in tomorrow’s LLMs.

2 Related Work

LLMs for crystallography. LLMs have been primarily explored for their capabilities in CIF gener-
ation and QA. LL.Ms have been demonstrated to hold an innate ability to generate crystal structures
when pretrained on millions of CIF files [[11]. This process may be further reinforced through
evolutionary search frameworks [[12]. However, as LLMs are pattern predictors, the search space is
fundamentally limited by the scope of the pretraining data. LLMs can also be instruction fine-tuned
to predict crystal properties or provide general QA responses from CIF, e.g. AlchemBERT][13],
NatureLM|[14]], Darwin 1.5 [15]], etc[16}17]. Crystallography QA is well benchmarked, with the
most comprehensive being LLM4Mat-Bench [2], consisting of approximately 2 million composition-
structure-description pairs. Tool-augmented LLMs such as OSDA Agent [5] improve structure
generation through coupling computational chemistry tools to LLMs. These tool-augmented design
frameworks are able to address the lack of in-depth chemistry knowledge of LLMs without expen-
sive (and not always effective) fine-tuning. LLMs may be able to reliably handle geometric CIF
modification through tool-augmentation.

Multimodal reasoning. Approaches such as multimodal chain-of-thought (Multimodal-CoT) [18]],
visualization-of-thought (VoT) [19]] add image modalities to the reasoning trace rather than pure
textual chain-of-thought. In particular, Multimodal-CoT with under 1 billion parameters achieved state
of the art in state-of-the-art performance on the ScienceQA benchmark, outperforming larger models
like GPT-3.5. As CIF describes a 3D challenge, these results suggest that multimodal reasoning
approaches can be highly applicable to improving LLM ability on CIF geometry tasks, as well as
reasoning-intensive QA and structure generation/modification tasks. Approaches to multimodal
representation may also be influenced from developments in video generation and robotics, where
models such as Genie 3 [9] and V-JEPA 2 [10] are increasingly capable of understanding real-world
physics and integrating this with natural language input/output. Finally, with the training objective of
diffusion LLMs [6} [7] to be noise reversal, they have an advantage in understanding structural text
compared to autoregressive LLMs - with LLaDA [6] surpassing GPT-40 in a reversal poem completion
task. This also suggests diffusion LLMs may be inherently capable of differentiating between valid
and invalid modifications to CIF - important for geometric modification tasks. Developments in
multimodal reasoning and diffusion suggest that LLMs may be on the cusp of being able to grasp the
3D CIF environment, making it important to benchmark this progress.

3 Playground Design: AtomWorld

At its core, AtomWorld is designed as a scalable data generator which can be used for both bench-
marking and training LLMs. The data generated follows a three-part structure: two CIF files of
“before” and “after” states, and an action prompt describing the change - with the goal of the LLM to
yield the “after” state, given the “before” state and action. A flowchart of the benchmarking workflow
is presented in Figure|l. Detailed descriptions and examples of all supported actions prompts are
found in Appendix

4 Experiments & Discussion

We benchmarked a selection of state-of-the-art LLMs, including variants from Gemini, GPT, Qwen,
Deepseek, and LLaMA families. The results are summarized in Figure 2a and b. According
to the evaluation metrics, it is evident that LLMs exhibit varying levels of performance across
tasks. Simpler operations such as add are performed more consistently, whereas more spatially
demanding manipulations, particularly rotate around, remain highly challenging. Overall, the
relative task difficulty can be ordered as: add < move < move_towards < insert_between <
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Figure 1: AtomWorld benchmark flowchart. The AtomWorld generator follows a structured data flow:
the random sampler selects a structure from a predefined structure pool (in this work, a subset of CIF
files from the Materials Project database[20]); the random initializer parametrizes the chosen action
template by assigning atom indices and/or positions; the structure operator applies the instantiated
action to the original structure to obtain the target structure; and the prompter generates a natural
language description aligned with the action. The resulting (input structure, action prompt) pairs
are then fed into the LLM agent system, whose generated structure is compared against the target

structure using the StructureMatcher from pymatgen[lﬂl] to compute the evaluation metric (see
Appendix [A.2).
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Figure 2: Evaluation results. a and b demonstrate the error rate and mean max_dist metrics for
different actions. ¢ and d demonstrate the change in performance with model sizes, tested using the
Qwen3 series.

rotate_around. Gemini 2.5 Pro achieves the strongest performance across the evaluated tasks,

showing particularly low error rates and displacement values in the move, move_towards, and
insert_between tasks.

Geometric operation difficulty. To measure the inherent difficulty of each geometric operation,
we tested Gemini 2.5 Pro and Deepseek V3-0324 on simplified point-based tasks, with results listed
in Table [TI. The models were given a set of points in three-dimensional space, expressed in raw
coordinate format like “[[z1,y1, 21], [%2, Y2, 22]]”. The models were then asked to apply similar
geometric operations directly on these points and return the transformed coordinates. This setting
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removes the complexities of CIF files and serves as a controlled test of whether the LLM can
handle spatial transformations at all. The results from this setting reflects the task difficulty found
in AtomWorld benchmark results, observing that models perform well on simple actions like move,
move_towards, and insert_between, but found the rotate_around action is significantly more
difficult. The former could be solved with straightforward numerical calculations (e.g., addition
or weighted averaging), which LLMs can handle reliably. In contrast, models often attempted to
compute a rotation matrix for the rotate_around action and failed to apply it consistently, leading
to high mean max_dist.

Table 1: Model performances on simplified point-based tasks. Error rate indicates the ratio of
unreadable outputs from LLMs. Mean max_dist is calculated by the maximum distance between
generated and target points after Hungarian sort.

Gemini 2.5 Pro (50 frames) Deepseek V3-0324 (250 frames)
Action Error rate (%) mean max_dist (A) Error rate mean max_dist
move 0.00 0.0000 0.00 0.0000
move_towards 2.00 0.0045 0.00 0.3172
insert_between 0.00 0.0051 21.2 0.0642
rotate_around 2.00 16.168 0.00 14.058

Paramater scaling. Qwen3-32B ranks second overall and is especially notable for its efficiency:
despite having only 32B parameters, it outperforms or matches larger models (e.g., GPT 03, LLaMA3-
70B) on several tasks. Figure 2c and d illustrate how parameter scaling of the Qwen3 series affects
accuracy across tasks. In general, larger models tend to achieve lower error rates and smaller
displacements, confirming that scaling improves spatial reasoning capabilities. This pattern is further
supported by the Chemical Competence Score (CCS)[22], which increases with model size and
highlights Qwen3-32B outperforming LLaMA3-70B. (See Appendix [B.3)) Nonetheless, the marginal
benefits decrease with increasing model size, and for the rotate_around task, the improvements
remain limited. These observations suggest that architectural design and training strategies play an
equally important role as model scale in enabling atomic-level reasoning.

Solution approaches. Chat models generally approached these geometric challenges through
generating the necessary linear algebra algorithms to solve. Failures across most CIF actions could
be attributed to context-rot, as the chat models lost their train of thought across large reasoning traces.
In Table[T] we found an interesting case where the Deepseek V3 model has an abnormally high error
rate in the simplified insert_between tasks. A closer look at the wrong responses reveals that
Deepseek often attempted to write a Python script to compute the coordinates, rather than directly
performing the calculation.

5 Future Work & Conclusion

In this paper we presented AtomWorld as the first benchmark that evaluates LLM motor skills in
crystallography. In general, we found that chat models took an algorithmic approach to solving the
geometric tasks of our benchmark. With this approach, simpler operations such as add could be
performed more consistently, whereas more spatially demanding manipulations, particularly rotations,
remain highly challenging. These tasks are solved trivially via crystallography software, but for
LLMs are an important first stage to enabling higher level tasks such as seeing motifs, symmetries,
repairing or validating complex structures, and proposing novel structures.

In future work, we would like to increase the depth of our evaluation beyond frontier chat models. A
stronger conclusion may be drawn about LLM capabilities through also evaluating specialised LLMs
for material science, and tool-augmented LLMs. Future versions of the AtomWorld playground would
likely see an expanded set of actions, prompt templates and evaluation metrics. A richer structure of
modalities may also be included - e.g. graphs or visual depictions for input into multimodal LLMs.

LLM:s have traditionally struggled with spacial reasoning tasks, however this may be soon to change
with recent developments in tool-augmented design, diffusion, video generation and language aligned
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robotics models [5} 7,9, [10]]. We hope that our AtomWorld playground can play a foundational role
in helping researchers of tomorrow test LLM understanding of 3D CIF environments.
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