DistMLIP: A Distributed Inference Platform for
Machine Learning Interatomic Potentials

Kevin Han Bowen Deng *
Carnegie Mellon University UC Berkeley, LBNL
kxh@andrew.cmu.edu bowendeng@berkeley.edu
Amir Barati Farimani Gerbrand Ceder
Carnegie Mellon University UC Berkeley, LBNL
barati@cmu.edu gceder@berkeley.edu
Abstract

Large-scale atomistic simulations are essential to bridge computational materials
and chemistry to realistic materials and drug discovery applications. In the past few
years, rapid developments of machine learning interatomic potentials (MLIPs) have
offered a solution to scale up quantum mechanical calculations. Parallelizing these
interatomic potentials across multiple devices poses a challenging, but promising
approach to further extending simulation scales to real-world applications. In this
work, we present DistMLIP, an efficient distributed inference platform for MLIPs
based on zero-redundancy, graph-level parallelization. In contrast to conventional
spatial partitioning parallelization, DistMLIP enables efficient MLIP parallelization
through graph partitioning, allowing multi-device inference on flexible MLIP model
architectures like multi-layer graph neural networks. DistMLIP presents an easy-
to-use, flexible, plug-in interface that enables distributed inference of pre-existing
MLIPs. We demonstrate DistMLIP on four widely used and state-of-the-art MLIPs:
CHGNet, MACE, TensorNet, and eSEN. We show that DistMLIP can simulate
atomic systems 3.4x larger and up to 8x faster compared to previous multi-GPU
methods. We show that existing foundation potentials can perform near-million-
atom calculations at the scale of a few seconds on 8 GPUs with DistMLIP.

Atomistic simulation has been the workhorse in computational materials and drug discovery over the
recent years [Merchant et al.,[2023| [Jain et al.} 2013} De Vivo et al., 2016]. The chemical properties
and behavior of a material are essentially determined by the interactions in the given set of atomic
arrangements. In the most simplified framework, one can formulate this problem as solving the
function that determines the potential energy surface (PES) of a set of atoms given by E = ¢(7;, C;),
where E is the energy, 7; and C; are the positions and chemical identities of the atoms.

To study the material’s properties, multiple fundamentally different methods have been developed
to obtain or construct the function ¢. Classical force fields (FF) like embedded atom methods
[Daw and Baskes| [1984], CHARMM [[Vanommeslaeghe et al., [2010]], and Amber [Wang et al.,
2004] qualitatively predict the PES and the bond energy between atoms. These classical FFs are
cheap, intuitive, and explainable, but are often not accurate enough and have been constructed
and applied to narrow chemical domains and a few elements. Fundamentally, the interactions in
¢ are determined by the electronic structure of a material and can be solved in first principles by
quantum mechanics. Quantum chemical simulation methods, such as Density Functional Theory
(DFT) [Perdew et al.,[1996] and coupled cluster (CC) methods [Raghavachari et al.,|1989], enabled
the ab initio calculations of atomic behavior that are much more accurate than empirical methods.

*Correspondence to Bowen Deng <bowendeng @berkeley.edu>

Published in the Al for Science workshop (NeurIPS 2025).

However, their computational complexity limits the practical use of quantum chemical simulation
methods for many realistic applications. DFT, the most widely used ab initio simulation method,
scales cubically O(NN2) with the number of electrons and is therefore limited to simulating only a
few hundred atoms [Beck, 2000]. Prohibitively high computational cost makes DFT only useful in
describing materials properties that can be learned from a small simulation cell [Wang et al., [2024].

Machine learning approaches such as machine learning interatomic potentials (MLIPs) open the
possibility to increase simulation scale while retaining quantum chemical accuracy by building
ML surrogate models trained on DFT and CC data [Bartok et al., 2010l [Zhang et al., [2018| [Wang
et al., 2024, |Gasteiger et al., 2021} |Deng et al., [2023| |Batzner et al., 2022| Musaelian et al.| 2023
Fu et al., 2025]]. Compared to feature-based classical FFs, deep-learning-based MLIPs enable
improved learnability to better model the PES data. Graph neural networks (GNNs), especially, have
demonstrated extraordinary computational efficiency and accuracy by learning both long-range and
high-order atomic interactions through message passing. By design, the computation time of MLIPs
scales linearly with the number of atoms O(N), enabling simulations with tens of thousands of atoms
at nano-second time scale.

Many materials engineering problems involve finite-sized effects like protein folding [Jumper et al.|
2021], interfacial reactions [Du et al., 2023]], particle-size effects [Shi et al.| 2020]], and formation of
nano-domains [Holstun et al., 2025]. Such systems require meso-scale simulations with upwards of
millions of atoms, necessitating the ability to further scale the capacity of MLIP simulations. One
promising solution is to expand MLIP inference from single-device to multi-device inference. Simu-
lation packages such as LAMMPS provide ad hoc solutions for multi-GPU simulation [Thompson
et al., [2022]. Multi-device simulations are realized by dividing the total simulation cell into multiple,
mutually exclusive, small cells for each device. Each small cell is then padded with additional atoms
beyond the cell boundary in order to properly calculate the energy and forces within the small cell.
This method, known as spatial partitioning, is based on the fundamental assumption that the force
field only contains short-range interactions [Plimptonl [1995].

Since most MLIPs are designed to be relatively long-ranged, expanding the number of utilized GPUs
during inference time is a nontrivial task due to the necessity to distribute the large system cell across
multiple devices. Currently, there exists no native multi-GPU support for GNN-based MLIPs as most
MLIPs have been implemented for only single-device inference. In order to support fast, accurate,
and parallelizable atomistic simulations, we hereby present a distributed MLIP inference platform,
DistMLIP, that enables efficient multi-device inference without the need for a modified architecture
or additional training. Our highlighted contributions are as follows:

» DistMLIP features a simple, efficient, general, and versatile parallel inference platform for
MLIP inference. By design, most popular MLIPs can be supported with a minimal amount
of adaptation. In this work, we include benchmarking results of 4 widely used MLIPs:
MACE, TensorNet, CHGNet, and eSEN.

* DistMLIP leverages graph-level partitioning that allows node and edge information to
transfer between GPUs at each layer of the forward pass while still maintaining the in-
termediates required to perform backpropagation. This allows efficient parallelization of
long-range GNN-based MLIPs, which is standard for most MLIPs today. Compared to
spatial partitioning, graph partitioning has zero redundancy, meaning that no redundant
computation is thrown away during parallel inference.

* We implemented the distribution of both the atom graph and the augmented three-body line
graph, a common graph structure used in MLIPs to encode three-body atomic interactions.

* To allow flexible usage, DistMLIP does not depend on a 3rd party distributed simulation
library such as LAMMPS. As a result, DistMLIP supports plug-in usage of any MLIP
workflow.

* We show that the simple-yet-effective partitioning technique DistMLIP utilizes performs
MBD up to 8x faster compared with the more standard graph partitioning techniques.

1 Related Work

1.1 Machine Learning Interatomic Potentials

The most common MLIP architecture today is GNN, where nodes in the atom graph represent
atoms and edges in the atom graph represent the pair-wise distances between atoms that are within a
pre-defined cutoff distance [Batzner et al., 2022, |Simeon and De Fabritiis} 2023 |Passaro and Zitnick}
2023 (Gasteiger et al., 2021} |Schiitt et al., 2021}, 2018} Smith et al., 2017]. GNN computation scales
linearly with the number of atoms, as the amount of computation is associated with the neighbors
within the receptive field of each atom. Some MLIPs also pass messages on top of higher-order
graphs, such as threebody bond graphs, that encode angles as pairwise information between bonds
[Choudhary and DeCost, 2021, [Deng et al., 2023 |Yang et al., |2024]. MLIPs built on top of the
transformer architecture have also been introduced, where "tokens" represent individual nodes and
full self-attention is performed over all tokens [Liao et al., [2024] Vaswani et al.,2017]]. Recently,
a class of foundation potentials (FPs) have been shown to generalize across diverse chemistries
by pretraining on massive datasets [Chen and Ong| 2022| [Deng et al., 2023| |Chanussot* et al.,
2021}, Barroso-Luque et al., 2024} [Yang et al.| 2024, [Merchant et al., [2023| |[Kaplan et al., [2025]].
These pretrained FPs substantially reduce the need for target-system training, and their open-sourced
pretrained checkpoints serve as ready-to-use universal MLIPs.

1.2 Spatial Partitioning

LAMMPS implements multi-GPU inference via a spatial partitioning approach where the simulation
space is split into mutually exclusive partitions. For each mutually exclusive partition, LAMMPS
creates a second, larger partition that includes all atoms up to the interaction radius of the FF,
commonly known as border or ghost nodes. This is required as the energy and force calculation of
the atoms within each mutually exclusive partition requires the atomic information from all nodes
within the model’s interaction radius. This leads to highly redundant calculations as the computation
performed on the ghost nodes is thrown away after each time step. By estimate, a 64-molecule
water system calculated with a 6-layer GNN that has a 6 angstrom cutoff distance would require
the computation of 20,834 ghost atoms when using spatial partitioning [Musaelian et al., [2023]].
Furthermore, unlike classical FFs, most MLIPs do not have a mature interface with LAMMPS,
making spatial partitioning practically infeasible for the majority of MLIPs that have been developed.

DeepMD is a short-range MLIP that has been applied to the simulation of 100 million atoms of
water by 27,360 NVIDIA V100 GPUs on the Summit supercomputer, utilizing the spatial partitioning
features within LAMMPS [Jia et al.,[2020]. The atomic system size was further extended to 10 billion
atoms after further optimization of model tabulation, kernel fusion, and redundancy removal of the
Deep Potential architecture [Guo et al., [2022]].

Allegro has been developed as a strictly local, E(3)-equivariant interatomic potential that features
efficient parallelization through spatial partitioning due to its short-range design [Musaelian et al.|
2023|]. Because of this strict locality, Allegro demonstrated good scaling on large atomic systems —
Kozinsky et al.|[2023]] used Allegro and LAMMPS to simulate a bulk Ag model with 100 million
atoms, achieving 0.003 microseconds/atom-timestep using 128 NVIDIA-A100-80GBs.

However, strictly local models experience key limitations. The need for efficient parallelization
restricts their interaction range to only a few angstroms, preventing their use on systems that require
the modeling of long-range interactions [Zhou et al., 2023 Song et al., 2024} |Gong et al., 2025,
Cheng|, |2025| |Anstine and Isayev, [2023]]. Furthermore, the short-range design prevents the MLIP’s
application from simultaneously learning diverse chemical environments. As the short-range MLIP’s
cutoff is often determined by the radial distribution function of one targeted material system, it is
infeasible to determine a universal cutoff that efficiently works for many materials, which is becoming
a common scenario with the increased interest in FPs. These problems raise the need for a simple,
unified, and versatile API to parallelize MLIPs.

SevenNet, derived from the Nequip architecture [Batzner et al., [2022]], is one of the first MLIPs
that support graph-parallel inference [Park et al., |2024]]. A simulation of 112,000 atoms SizN,
was demonstrated by distributing the 0.84 million parameter SevenNet-0 on 8 A100-80GB GPUs.
However, its graph parallel algorithm is not easily transferable to other MLIP architectures and relies
on the combination of TorchScript and LAMMPS, making it unapplicable to simulation tasks and

workflows that are not built upon LAMMPS [Larsen et al.| 2017, [Ganose et all, 2025, Barroso-Luque]
let all 2022, Ko et al.,[20235]|.

In addition, graph-parallelization has been previously explored for training large GNN models
[2022]. In comparison, the parallelization in MLIP inference poses a fundamentally different
challenge compared to training. During training, the samples are almost always restricted to very
small-scale chemical systems due to the computational complexity of acquiring labels. In training,
the goal of graph-parallelization is to increase MLIP model sizes and batch sizes. During inference,
graph parallelization is applied for the simulation of a single large chemical system. As a result, the
application of graph-parallelization in large-scale MLIP simulations remains an open challenge.

2 Methods

Figure[I|(a) denotes an overview of DistMLIP. Public MLIP models can be easily adapted to perform
distributed large simulations with DistMLIP. The core infrastructure of DistMLIP is in the construction
of graphs, subgraphs, and communication-related metadata.

(a) . (b) | . (c) o

[]
e ® o .\ 1 ./ .\ 2
Q ° e MCFheAm'\ls(Rry = o, O~~e” l O~
— ~ : '._. @ @
P Oy g ®
DnpEnonEnn
. Partition 1 . o 'y 0|1]|]2|3|4|5|6|7|8]|9
DistMLIP =1 T—1]
. ‘\././.—o
’ » Edge Table
U U s, e
Distributed Large Simulation S ,/‘\o—'-". Edge IDs
(e) / Layer 1 \ 4 Layer 2 I (d) Atom Graph ‘
e~z ||~ ., Bl ~—
4 \'\.’!_ l -—/' — o ’L .._.'._. —o J \‘\.]'— ! \-1q / \ /

PR S P —
~ | e, | | e, - o - —
CPU/MEM IS— e~ S~ e CPU/MEM - PN o.

'\ s e ><\ P e i Y .' O r— ./ \.

N AN / S ¢ =

Figure 1: An overview of DistMLIP. (a) DistMLIP takes public MLIP models and performs large-
scale, distributed simulations. (b) Partition the atom graph using a vertical spatial partitioning scheme,
and construct subgraphs containing the 1-hop neighbors and 2-hop neighbors of the original partition,
which are later used to calculate the distributed bond graphs. (¢) Take the 2-hop atom graph and
create an edge table backbone mapping node IDs (black) to edge IDs (orange) that contain the node
ID as a source node. (d) Recursively traverse the edge table to construct the atom graph and bond
graph. (e) Data transfer in a simple 2-layer graph neural network with both atom graph and bond
graph.

2.1 Graph-Parallel Message Passing

After the material system is converted into a graph using a neighbor list construction algorithm,
the graph can be partitioned into subgraphs for each device, as illustrated in Fig. [I(b). At each
graph convolution, each node’s features are updated according to the edge and node features of its
incoming neighbors. We can partition the nodes of the graph G into p disjoint sets, constructing
graphs G'; ... G\, where p is the number of partitions. Each of the graph partitions are distributed to
its own GPU. To accurately calculate the features after one graph convolution, we expand G; into
G, where G/, consists of all nodes v € G such that there exists an edge (v,u) € E withu € G;.
Formally,
Gi={veV|JueqG;(vu) €E},

where V' and E are the set of nodes and edges of the graph G, respectively. This ensures that all
incoming information necessary for computing the convolution is included within G. Let H; denote

Algorithm 1 Atom Subgraph Creation

Input: Atomic system nodes and edges
Output: Partitioned subgraph with mappings
1. Create a partition rule based on the longest cell dimension (vertical walls)
2. Assign atoms to buckets (PURE/TO/FROM) using algorithm 3]
3. Create node array and corresponding marker array for each partition:
for each starting partition p; (creating marker arrays) do
initialize markers array
markers[0] = 0
markers[1] = len(PURE)
marker_index = 0
for each destination partition p; do
concatenate TO[p;] to p; node array
markers[marker_index] = markers[marker_index - 1] + len(TO[p,])
marker_index = marker_index + 1
end for
for each source partition py do
concatenate FROM[p;] to p; node array
markers[marker_index] = markers[marker_index - 1] + len(FROM|py])
marker_index = marker_index + 1
end for
end for

the set of all 1-hop nodes that were added to G; to create G. Formally,
H ={veV\G,|JueqG,(v,u) € E}.

This represents the set of nodes in V' that are not in GG; but have an outgoing edge into GG;. We refer to
these nodes as border nodes. Let E denote the set of edges not in G, that point to the border nodes.
Formally,

E!={(u,v) € E|v € H; and (u,v) ¢ G}}.
We refer to these edges as border edges, which we use extensively when distributing the bond graph.

After each graph convolution, we transfer the border node and border edge features to and from each
partition, as shown in Fig. [T[d). After this transfer process, each GPU has the most updated node and
edge feature to begin the next convolution. This implementation is completely model-agnostic and
can be applied to both conservative and direct force prediction MLIPs.

2.2 Distributing Atom Graphs

In order to distribute the atom graph, we first partition the graph spatially using vertical wall partitions.
Once these partitions are created, we specify algorithm [3|to identify the border nodes that each
partition requires as well as the border nodes within each partition that other partitions require. For
each partition, we create TO, FROM, and PURE arrays of node ids. We denote TO; ;] as the bucket
of node ids associated with G} required to be used in G;. Similarly, we denote FROM;[i] as the
node ids associated with G’; required to be used in Gj. As a result, TO;[j] and FROM;[i] should
be the same array. The PURE bucket specifies the nodes that are not required in the data transfer
process. Furthermore, each edge drawn from a border node to a pure node is assigned to the partition
responsible for the pure node.

For each partition, we concatenate each of the arrays while maintaining a marker array containing the
indices of the spans of each bucket. The marker array is used to efficiently index the spans of each of
the features for data transfer between GPUs. The entire atom graph creation algorithm can be found
in algorithm T}

2.3 Distributing Higher-Order Graphs

Higher-order graphs, sometimes referred to as line graphs or bond graphs (for the three-body case),
are frequently used in MLIPs to featurize higher-order interactions [[Choudhary and DeCost, 2021,

Deng et al., |2023| |[Zhang et al, 2025]]. Distributing the bond graph involves selecting all 1-hop
and 2-hop neighbors of the pure atom graph nodes assigned to a partition. We then create an edge
table mapping from node ids to edges originating from the node id pointing to a different node. By
recursively traversing the table, we are able to create the bond graph for each partition in parallel.
Border nodes within the bond graph are associated with the 1-hop edge neighbors of border edges
within the atom graph — hence necessitating the inclusion of 2-hop neighbors. The parallel bond
graphs thus contain the 1-hop neighbors of each pure bond graph node assigned to the partition. The
complete procedure is found in algorithm [2] of the appendix.

DistMLIP graph creation runs purely on CPU memory, written in high-performance C. It is a
standalone library that does not depend on external libraries such as LAMMPS, Pytorch, JAX, or
Pytorch Geometric, and can be, in principle, applied to any MLIP that includes an atom graph and/or
three-body graph.

2.4 Currently Supported MLIPs

Currently, we have implemented four widely used models in DistMLIP: 1) CHGNet [Deng et al.,
2023|], an invariant MLIP that features both an atom graph as well as a bond graph, 2) TensorNet
[Simeon and De Fabritiis| 2023}, Ko et al., [2025], an atom graph-only, computationally-efficient,
equivariant MLIP with performance on par with Nequip, 3) MACE [Batatia et al., 2023, an atom
graph-only equivariant MLIP that directly models many body interactions between atoms, and 4)
eSEN [Fu et al., 2025]], an atom graph-only, smooth and equivariant MLIP. Specific architecture
details and usage are found in appendix [C|and appendix

3 Results

In this section, we benchmark DistMLIP with the 4 FPs loaded with their public pretrained check-
points: MACE-MP-0b-small-3.8M, CHGNet-2.7M, TensorNet-0.8M, and eSEN-3.2M. The details
of the models and checkpoints can be found in appendix [C]

For all scaling timing-related benchmarks, model inference is performed 20 times, with the average
of the final 10 trials reported. This is to allow GPUs to warm up before performing calculations. We
use crystalline a-quartz SiO, supercells for each timing benchmark, unless stated otherwise. The
benchmarks are performed with a GPU cluster with 8 xXNVIDIA-A100-80GB-PCle.

(@ (b)_ () _
T 8 —e— MACE-3.8M 1 E 1.0 -§ 5
.g TensorNet-0.8M = =
© —o— CHGNet-2.7M £ 0.8 £4
E6 o csEN-32M H 5
2 --- Ideal scaling -~ £ 3
z . > 0.6 o3
24 & £ E
g %04 Se
S2 o Kl
x Qo2 Q1
g © =
0 =00 I
1 2 4 8 1 2 4 8 1 2 4 8
Number of GPUs Number of GPUs Number of GPUs

Figure 2: Performance scaling of DistMLIP inference with 4 pretrained MLIPs: MACE-3.8M,
TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M. All results are averaged over 10 inferences on
a Si0, supercell. (a) Maximum capacity (number of simulatable atoms) vs. the number of GPUs.
Values are normalized by the 1-GPU capacity. (b) Strong scaling of MLIP inference on DistMLIP,
where the total number of atoms in the supercell is held constant while the number of GPUs increases.
(c) Weak scaling behavior of MLIP inference on DistMLIP, where the number of atoms on each GPU
device is held constant while the number of GPUs increases.

3.1 Maximum Capacity

A key performance metric is the maximum number of atoms that can be simulated by extending to
multi-GPU inference. The maximum capacity scaling tests, with respect to the number of GPUs, can

be found in Figure[2[a). All atom counts are normalized to be represented as multiples of the 1-GPU
maximum capacity. As the number of GPUs (and thus, total GPU memory) increases, the maximum
simulatable capacity increases linearly. The scaling of eSEN and MACE is further away from ideal
scaling due to the one-time equivariant feature calculations that are occurring on a single GPU due to
numerical stability concerns. The single GPU poses as a memory bottleneck for the system.

We also benchmark the maximum capacity and corresponding inference time against the SevenNet
model. The results can be found in Appendix |G| After matching the total number of parameters
to SevenNet (800k), we find that MACE, TensorNet, and CHGNet can achieve up to 10x higher
maximum capacity and 4x faster inference speed when incorporated with DistMLIP compared to the
distributed inference of SevenNet.

3.2 Strong and Weak Scaling

Strong scaling tests, where the total size of the system remains constant while the number of GPUs
increases, can be found in Figure [2{b). All times are normalized to be represented as multiples
of the 1 GPU time. The system sizes for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and
eSEN-3.2M were 33.5k, 22.0k, 9.8k, and 1.4k atoms respectively. We also plot the ideal scaling
under the assumption that computation performed by each GPU is purely independent and perfectly
parallelizable. In particular, eSEN’s high memory consumption results in small atomic cells. However,
small atomic cells with partition widths that aren’t sufficiently large results in overlapping border
nodes during each convolution — leading to increased overhead.

Weak scaling tests, where the total size of the system increases proportionally with the number of
GPUs (such that each GPU performs computation on the same number of atoms), are found in Figure
[lc). All times are normalized to be represented as multiples of the 1 GPU time. The per GPU
atom count for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M are 34.6k, 19.9k,
9.9k, and 1.4k, respectively. In the case of eSEN-3.2M, weak scaling moves away from ideal scaling
due to the high constant overhead associated with initial feature calculation. For CHGNet-2.7M,
the computation required for the construction of the three-body graph scales with O(N®) where
N is the number of atoms within the three-body cutoff, leading to suboptimal weak scaling when
the simulation cell size increases. In Table [3] of Appendix we show that the simple vertical
partitioning rule used in DistMLIP and specified in Algorithm [3]is up to 8x faster compared to
standard graph partitioning baselines.

3.3 Interaction Range

In this section, we benchmark how the parallelized simulation speed and capacity is affected by the
MLIP’s interaction range and number of parameters. In Fig. [3] (a), we fix each model to around
0.8M parameters and vary the number of message passing layers to increase the interaction range of
the model. The 8 GPU inference is performed on the a-quartz SiO, of 72k atoms. The measured
inference times are then divided by the inference time of the baseline 10A version of each MLIP.
eSEN ran out of memory for the 45 and 50 angstrom tests.

The results in Fig. [3](a) show that DistMLIP only has a linear relation between parallelized inference
time vs. interaction range. This is due to the additional computation cost from each increased message
passing layer. Conversely, in conventional spatial partitioning, the volume of the simulation cell, and
therefore the number of ghost atoms, grows cubically with the interaction range. This highlights the
parallelization efficiency and zero calculation redundancy in graph partitioning.

3.4 Scaling Model Size

In Fig. 3](b) and (c), we fix the number of message passing layers and vary the feature embedding
sizes in the MLIP, therefore measuring the relation between parallelized inference speed/capacity and
model parameter size. The result shows that by decreasing the model parameter size, a significant
increase in simulation speed and maximum capacity can be achieved. The result suggests an estimated
performance gain when distributed inference can be combined with smaller model sizes through
MLIP model distillation [[Amin et al., |[2025|).

(b) 200

e

QO
N
N
a

-
=3
=3

ps/atom-timestep
g 3
\
Max capacity (atoms)
SUI Scn

8- MACE
TensorNet

2.00 _o— cHGNet

8- eSEN

\
\

N
o
o

-

N

o
N
=]

-
=)

Wall-clock Time (Normalized)
5 a
o o

So—o— 00— 4
10
10 15 20 25 30 35 40 45 50 90K 770K 14M 21M 2.8M 3.5M 90K 770K 1.4M 2.1M 2.8M 3.5M
Interaction Range (A) Number of parameters Number of parameters

Figure 3: Effect of model configurations on graph-parallelized inference performance. (a) Inference
time vs. MLIP interaction range while keeping model parameter size fixed. Values are represented as
multiples of the 10A interaction range. (b) Inference time and (¢) maximum simulation capacity vs.
number of parameters in the MLIP, while keeping interaction range fixed.

3.5 Real World Simulations

We also show the performance of real distributed simulations on a variety of solid-state and
biomolecular systems, utilizing 1, 4, and 8 GPUs. The results are found in Table [T} We report
the microsceonds/atom-timestep of each model-system pair as well as the number of simulated atoms
in the system. The simulated systems can be found in Figure[d] In Table[I] L-MACE-3.8M refers to
multi-GPU inference of MACE using LAMMPS spatial partitioning, while the other 4 models are
distributed with DistMLIP.

Table 1: MD step time (in ps / (atom x step)) for the max capacity of 4 pretrained FPs on DistMLIP:
MACE-MP-0b-small, TensorNet-MatPES-0.8M, CHGNet-MatPES-2.7M, eSEN-3.2M. L-MACE-
3.8M refers to MACE running on LAMMPS spatial partitioning. L-MACE-3.8M is a compiled model
using custom equivariant CUDA kernels while MACE-3.8M uses the pure-PyTorch implementation
of MACE.

Model # GPUs us / (atomxstep) | # of atoms (in thousands)
LizPOy H>O GaN MOF 2w49

1 GPU 82.47]|5.2 33.4]10.4 19.819.7 53.8|8.0 OOM
L-MACE-3.8M 4 GPUs 16.9]414 10.1|24.6 5.1145.0 9.4]27.0 OOM
8 GPUs 12.3|65.9 8.5]82.9 2.7|77.8 6.2|64.0 OOM

1 GPU 44.8121.9 45.920.7 39.5|43.9 41.0]16.0 OOM
MACE-3.8M 4GPUs 15.3]|110.6 18.2]96.0 14.6|128.0 14.7]128.0 20.1]69.3
8 GPUs 11.0]216.0 11.6]210.1 9.6/250.0 10.9/216.0 14.0|69.3

1 GPU 81.7]21.9 92.1/6.1 79.1116.0 79.1116.0 OOM
TensorNet-0.8M 4 GPUs ~ 24.3| 64 26.9]49.1 22.9]65.5 23.2|54.0 OOM
8 GPUs 16.3|140.0 18.0|82.9 15.9]123.0 15.5|125.0 19.6]/69.3

1GPU 179.7|4.1 154.8|6.1 100.0|5.5 174.6|2.0 OOM
CHGNet-27M 4 GPUs 94.8|21.9 80.5/20.7 45.5/43.9 81.1|/160 OOM
8GPUs 75.4]46.7 64.5/49.1 419|778 67.1]/540 OOM

1GPU 727.3]0.9 663.2|1.3 438.9|1.0 454.3|1.0 0OM
eSEN-32M 4GPUs 273.4|41 284.0(2.6 2223|55 236.3]3.0 OOM
8GPUs 241.2|8.0 249.1]6.1 198982 210.0]6.0 OOM

(a)

11ah

Battery Electrolyte Water Semiconductor

(d) 5114

Metal Organic Framework Biomolecule

Figure 4: Sample simulation cells from real-world systems that are benchmarked in Table |1} (a)
LisPO, supercell of 216.0k atoms. (b) H,O supercell of 210.1k atoms. (¢) GaN supercell of 250.0k
atoms. (d) Cd,B,H;3CssNg(O,F), metal organic framework (MOF) system of 216.0k atoms. (e)
2w49, an insect flight muscle protein of 69.3k atoms.

Our result shows that DistMLIP provides tripled maximum simulation sizes compared to LAMMPS
spatial partitioning within the MACE-3.8M model. Note that L-MACE-3.8M uses a compiled model
with custom equivariant CUDA kernels, while DistMLIP MACE-3.8M only runs the pure-PyTorch
implementation. Custom equivariant CUDA kernels were shown to accelerate MACE inference time
by up to 7.2x on large models [Geiger et al.l[2024]. Nevertheless, we observed similar simulation
speed between the standard model on DistMLIP and the compiled model on LAMMPS, which
supports the efficiency of DistMLIP graph-partitioning. No other model beyond MACE is reported
due to the lack of LAMMPS multi-GPU inference support. For other FPs, which typically have
longer interaction ranges compared to 12A in MACE-3.8M, the capacity increase and inference
speed-up should be much more significant as the efficiency of spatial partitioning degrades rapidly
with increased cutoffs.

In Table [T} we highlight that most FPs with a few million parameters are capable of simulating
near-million-atom scale systems when parallelized with only 8 GPUs. Moreover, we noticed that the
inference time, when normalized by the number of atoms, is significantly decreased when any MLIP
is being parallelized. This observation suggests chemically rare events can be cheaply simulated
using a larger cell for a shorter simulation time, rather than a smaller cell for a longer simulation time,
which has been the standard simulation procedure due to the inability to efficiently perform large
simulations. As estimated from the benchmark result in Table[T] nanosecond near-million-atoms
simulations can now be achieved at the order of 10 days with standard FPs and DistMLIP on a few
GPUs.

4 Conclusion

Scaling quantum-chemical simulations to the size of realistic applications remains a critical challenge,
even with recent developments of MLIPs and FPs. To address this challenge, we present DistMLIP,
a distributed MLIP inference platform based on efficient graph-level partitioning. Compared to
the conventional spatial partitioning through LAMMPS, DistMLIP serves as an easy and versatile
distributed inference platform that supports long-range MLIPs. DistMLIP provides infrastructures for
constructing and distributing atom and bond graphs, allowing the distribution of GNN-based MLIPs
that are otherwise infeasible to parallelize.

We benchmarked the parallelized inference of 4 popular MLIPs: MACE, TensorNet, CHGNet
and eSEN. Our result shows that efficient and plug-and-play parallelization can be achieved when
combining DistMLIP with existing interatomic potentials. By distributing the MLIP simulation on 8
NVIDIA-A100 GPUs, our result shows that nanosecond, near-million-atom scale simulations can
be accomplished at the scale of 10 physical days with state-of-the-art FPs. We believe this effort to
enable large-scale simulation would accelerate chemical, materials, and biological discovery.

Acknowledgments and Disclosure of Funding

This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC0205CH11231
(Materials Project program KC23MP). The authors would also like to thank Luis Barroso-Luque and
Zijie Li for helpful discussions. The authors declare no competing interests.

References

Ishan Amin, Sanjeev Raja, and Aditi S. Krishnapriyan. Towards fast, specialized machine learning
force fields: Distilling foundation models via energy hessians. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
1durmugh3I.

Dylan M Anstine and Olexandr Isayev. Machine learning interatomic potentials and long-range
physics. The Journal of Physical Chemistry A, 127(11):2417-2431, 2023.

Ariful Azad, Mathias Jacquelin, Aydin Bulug, and Esmond G Ng. The reverse cuthill-mckee algorithm
in distributed-memory. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 22-31. IEEE, 2017.

David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. Graph partitioning and
graph clustering, volume 588. American Mathematical Society Providence, RI, 2013.

Luis Barroso-Luque, Peichen Zhong, Julia H. Yang, Fengyu Xie, Tina Chen, Bin Ouyang, and Ger-
brand Ceder. Cluster expansions of multicomponent ionic materials: Formalism and methodology.
Physical Review B, 106(14):144202, 2022. ISSN 2469-9950. doi: 10.1103/physrevb.106.144202.

Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M. Wood, Misko Dzamba, Meng
Gao, Ammar Rizvi, C. Lawrence Zitnick, and Zachary W. Ulissi. Open materials 2024 (omat24)
inorganic materials dataset and models, 2024. URL https://arxiv.org/abs/2410.12771.

Albert P. Bartok, Mike C. Payne, Risi Kondor, and Gébor Csdnyi. Gaussian approximation potentials:
The accuracy of quantum mechanics, without the electrons. Physical Review Letters, 104(13):
136403, 2010. ISSN 0031-9007. doi: 10.1103/physrevlett.104.136403.

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M Elena, David P Kovécs, Janosh Riebesell,
Xavier R Advincula, Mark Asta, William J Baldwin, Noam Bernstein, Arghya Bhowmik, Samuel M
Blau, Vlad Cérare, James P Darby, Sandip De, Flaviano Della Pia, Volker L Deringer, Rokas
ElijoSius, Zakariya El-Machachi, Edvin Fako, Andrea C Ferrari, Annalena Genreith-Schriever,
Janine George, Rhys E A Goodall, Clare P Grey, Shuang Han, Will Handley, Hendrik H Heenen,
Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S Jakob, Hyunwook
Jung, Venkat Kapil, Aaron D Kaplan, Nima Karimitari, Namu Kroupa, Jolla Kullgren, Matthew C
Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T Margraf, [oan-Bogdan Magdéu, Angelos
Michaelides, J Harry Moore, Aakash A Naik, Samuel P Niblett, Sam Walton Norwood, Niamh
O’Neill, Christoph Ortner, Kristin A Persson, Karsten Reuter, Andrew S Rosen, Lars L Schaaf,
Christoph Schran, Eric Sivonxay, Tamas K Stenczel, Viktor Svahn, Christopher Sutton, Cas van der
Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrak, Yangshuai Wang, William C Witt,
Fabian Zills, and Gdbor Csanyi. A foundation model for atomistic materials chemistry. arXiv,
2023.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature Communications, 13(1):2453, 2022. doi:
10.1038/s41467-022-29939-5.

10

https://openreview.net/forum?id=1durmugh3I
https://openreview.net/forum?id=1durmugh3I
https://arxiv.org/abs/2410.12771

Thomas L Beck. Real-space mesh techniques in density-functional theory. Reviews of Modern
Physics, 72(4):1041, 2000.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235-242, 2000.

Lowik Chanussot*, Abhishek Das*, Siddharth Goyal*, Thibaut Lavril*, Muhammed Shuaibi*,
Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary
Ulissi. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catalysis, 2021.
doi: 10.1021/acscatal.0c04525.

Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the periodic
table. Nature Computational Science, 2(11):718-728, 2022. doi: 10.1038/s43588-022-00349-3.

Bingqing Cheng. Latent ewald summation for machine learning of long-range interactions. npj
Computational Materials, 11(1):80, 2025. doi: 10.1038/s41524-025-01577-7.

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved ma-
terials property predictions. npj Computational Materials, 7(1):185, 2021. doi: 10.1038/
s41524-021-00650-1.

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 1969 24th national conference, pages 157—-172, 1969.

Murray S. Daw and M. 1. Baskes. Embedded-atom method: Derivation and application to impurities,
surfaces, and other defects in metals. Phys. Rev. B, 29:6443-6453, Jun 1984. doi: 10.1103/
PhysRevB.29.6443. URL https://link.aps.org/doi/10.1103/PhysRevB.29.6443.

Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role of molecular dynamics
and related methods in drug discovery. Journal of medicinal chemistry, 59(9):4035-4061, 2016.

Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J Bartel, and
Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-informed
atomistic modelling. Nature Machine Intelligence, 5(9):1031-1041, 2023.

Xiaochen Du, James K. Damewood, Jaclyn R. Lunger, Reisel Millan, Bilge Yildiz, Lin Li, and Rafael
Goémez-Bombarelli. Machine-learning-accelerated simulations to enable automatic surface recon-
struction. Nature Computational Science, page 1-11, 2023. doi: 10.1038/s43588-023-00571-7.

Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the efficiency of gpu algo-
rithms for matrix-matrix multiplication. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 133—-137, 2004.

Xiang Fu, Brandon M Wood, Luis Barroso-Luque, Daniel S Levine, Meng Gao, Misko Dzamba, and
C Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical property
prediction. arXiv preprint arXiv:2502.12147, 2025.

Alex Ganose, Hrushikesh Sahasrabuddhe, Mark Asta, Kevin Beck, Tathagata Biswas, Alexander
Bonkowski, Joana Bustamante, Xin Chen, Yuan Chiang, Daryl Chrzan, Jacob Clary, Orion Cohen,
Christina Ertural, Max Gallant, Janine George, Sophie Gerits, Rhys Goodall, Rishabh Guha,
Geoffroy Hautier, Matthew Horton, Aaron Kaplan, Ryan Kingsbury, Matthew Kuner, Bryant
Li, Xavier Linn, Matthew McDermott, Rohith Srinivaas Mohanakrishnan, Aakash Naik, Jeffrey
Neaton, Kristin Persson, Guido Petretto, Thomas Purcell, Francesco Ricci, Benjamin Rich, Janosh
Riebesell, Gian-Marco Rignanese, Andrew Rosen, Matthias Scheffler, Jonathan Schmidt, Jimmy-
Xuan Shen, Andrei Sobolev, Ravishankar Sundararaman, Cooper Tezak, Victor Trinquet, Joel
Varley, Derek Vigil-Fowler, Duo Wang, David Waroquiers, Mingjian Wen, Han Yang, Hui Zheng,
Jiongzhi Zheng, Zhuoying Zhu, and Anubhav Jain. Atomate2: Modular workflows for materials
science. 2025. doi: 10.26434/chemrxiv-2025-tcrSh.

11

https://link.aps.org/doi/10.1103/PhysRevB.29.6443

Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. Gemnet: Universal directional graph
neural networks for molecules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 6790-6802. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper. pdf.

Mario Geiger, Emine Kucukbenli, Becca Zandstein, and Kyle Tretina. Ac-
celerate drug and material discovery with new math library nvidia cuequiv-
ariance, November 2024. URL https://developer.nvidia.com/blog/

accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/.

Accessed: 2025-05-27.

Sheng Gong, Yumin Zhang, Zhenliang Mu, Zhichen Pu, Hongyi Wang, Xu Han, Zhiao Yu, Mengyi
Chen, Tianze Zheng, Zhi Wang, Lifei Chen, Zhenze Yang, Xiaojie Wu, Shaochen Shi, Weihao
Gao, Wen Yan, and Liang Xiang. A predictive machine learning force-field framework for
liquid electrolyte development. Nature Machine Intelligence, page 1-10, 2025. doi: 10.1038/
s42256-025-01009-7.

Zhuogiang Guo, Denghui Lu, Yujin Yan, Siyu Hu, Rongrong Liu, Guangming Tan, Ninghui Sun,
Wanrun Jiang, Lijun Liu, Yixiao Chen, Linfeng Zhang, Mohan Chen, Han Wang, and Weile Jia.
Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms. page
205-218, 2022. doi: 10.1145/3503221.3508425.

Tucker Holstun, Tara P Mishra, Liliang Huang, Han-Ming Hau, Shashwat Anand, Xiaochen Yang,
Colin Ophus, Karen Bustillo, Lu ma, Steven Ehrlich, and Gerbrand Ceder. Accelerating the
electrochemical formation of the ¢ phase in manganese-rich rocksalt cathodes. Advanced Materials,
37(6), 2025. ISSN 0935-9648. doi: 10.1002/adma.202412871.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
Commentary: The materials project: A materials genome approach to accelerating materials
innovation. 1:011002, 2013. doi: 10.1063/1.4812323.

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, E Weinan, and Linfeng
Zhang. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with

machine learning. SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, 00:1-14, 2020. doi: 10.1109/sc41405.2020.00009.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583-589, 2021. ISSN 0028-0836. doi: 10.1038/s41586-021-03819-2.

Aaron D Kaplan, Runze Liu, Ji Qi, Tsz Wai Ko, Bowen Deng, Janosh Riebesell, Gerbrand Ceder,
Kristin A Persson, and Shyue Ping Ong. A foundational potential energy surface dataset for
materials. arXiv, 2025.

George Karypis and Vipin Kumar. A software package for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of sparse matrices. University of Minnesota,
Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN,
38:7-1, 1998.

Tsz Wai Ko, Bowen Deng, Marcel Nassar, Luis Barroso-Luque, Runze Liu, Ji Qi, Atul C. Thakur,
Adesh Rohan Mishra, Elliott Liu, Gerbrand Ceder, Santiago Miret, and Shyue Ping Ong. Materials
graph library (matgl), an open-source graph deep learning library for materials science and
chemistry. npj Computational Materials, 11(1):253, 2025. doi: 10.1038/s41524-025-01742-y.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://developer.nvidia.com/blog/accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/
https://developer.nvidia.com/blog/accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/

Boris Kozinsky, Albert Musaelian, Anders Johansson, and Simon Batzner. Scaling the leading
accuracy of deep equivariant models to biomolecular simulations of realistic size. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1-12, 2023.

Ask Hjorth Larsen, Jens Jgrgen Mortensen, Jakob Blomgvist, Ivano E Castelli, Rune Christensen,
Marcin Dutak, Jesper Friis, Michael N Groves, Bjgrk Hammer, Cory Hargus, et al. The atomic
simulation environment—a python library for working with atoms. Journal of Physics: Condensed
Matter, 29(27):273002, 2017.

Yi-Lun Liao, Brandon Wood, Abhishek Das*, and Tess Smidt*. EquiformerV2: Improved Equivariant
Transformer for Scaling to Higher-Degree Representations. In International Conference on Learn-
ing Representations (ICLR), 2024. URL https://openreview.net/forum?id=mCOBKZmrzD,

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, page 1-6, 2023. ISSN
0028-0836. doi: 10.1038/s41586-023-06735-9.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023. doi: 10.1038/s41467-023-36329-y.

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand Ceder. Python
materials genomics (pymatgen): A robust, open-source python library for materials analysis. 68:
314-319, 2013. ISSN 0927-0256. doi: 10.1016/j.commatsci.2012.10.028.

Yutack Park, Jaesun Kim, Seungwoo Hwang, and Seungwu Han. Scalable parallel algorithm for graph
neural network interatomic potentials in molecular dynamics simulations. Journal of Chemical
Theory and Computation, 20(11):4857-4868, 2024. ISSN 1549-9618. doi: 10.1021/acs.jctc.
4c00190.

Saro Passaro and C Lawrence Zitnick. Reducing so (3) convolutions to so (2) for efficient equivariant
gnns. In International conference on machine learning, pages 27420-27438. PMLR, 2023.

Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical approaches to image segmenta-
tion. Pattern recognition, 46(3):1020-1038, 2013.

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made
simple. 77:3865-3868, 1996. ISSN 0031-9007. doi: 10.1103/physrevlett.77.3865.

Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computa-
tional Physics, 117(1):1-19, 1995. ISSN 0021-9991. doi: 10.1006/jcph.1995.1039.

Alex Pothen. Graph partitioning algorithms with applications to scientific computing. In Parallel
Numerical Algorithms, pages 323-368. Springer, 1997.

Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin Head-Gordon. A fifth-order
perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6):
479-483, 1989. ISSN 0009-2614. doi: 10.1016/s0009-2614(89)87395-6.

Kiristof Schiitt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pages 9377-9388. PMLR, 2021.

Kristof T Schiitt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Miiller.
Schnet—a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24), 2018.

Tan Shi, Qingsong Tu, Yaosen Tian, Yihan Xiao, Lincoln J. Miara, Olga Kononova, and Gerbrand

Ceder. High active material loading in all-solid-state battery electrode via particle size optimization.
Advanced Energy Materials, 10(1), 2020. ISSN 1614-6832. doi: 10.1002/aenm.201902881.

13

https://openreview.net/forum?id=mCOBKZmrzD

Guillem Simeon and Gianni De Fabritiis. Tensornet: Cartesian tensor representations for efficient
learning of molecular potentials. Advances in Neural Information Processing Systems, 36:37334—
37353, 2023.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. Chemical science, 8(4):3192-3203,
2017.

Keke Song, Rui Zhao, Jiahui Liu, Yanzhou Wang, Eric Lindgren, Yong Wang, Shunda Chen, Ke Xu,
Ting Liang, Penghua Ying, Nan Xu, Zhiqiang Zhao, Jiuyang Shi, Junjie Wang, Shuang Lyu, Zezhu
Zeng, Shirong Liang, Haikuan Dong, Ligang Sun, Yue Chen, Zhuhua Zhang, Wanlin Guo, Ping
Qian, Jian Sun, Paul Erhart, Tapio Ala-Nissila, Yanjing Su, and Zheyong Fan. General-purpose
machine-learned potential for 16 elemental metals and their alloys. Nature Communications, 15
(1):10208, 2024. doi: 10.1038/s41467-024-54554-x.

Anuroop Sriram, Abhishek Das, Brandon M. Wood, Siddharth Goyal, and C. Lawrence Zitnick.
Towards training billion parameter graph neural networks for atomic simulations. In The Tenth
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?1d=0jP2n0YFmKG.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1222-1230, 2012.

Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown,
Paul S Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al.
Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales. Computer physics communications, 271:108171, 2022.

David A Tolliver and Gary L Miller. Graph partitioning by spectral rounding: Applications in image
segmentation and clustering. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 1, pages 1053-1060. IEEE, 2006.

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench,
P. Lopes, 1. Vorobyov, and A. D. Mackerell. Charmm general force field: A force field for drug-
like molecules compatible with the charmm all-atom additive biological force fields. Journal of
Computational Chemistry, 31(4):671-690, 2010. ISSN 0192-8651. doi: 10.1002/jcc.21367.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Devel-
opment and testing of a general amber force field. Journal of Computational Chemistry, 25(9):
1157-1174, 2004. ISSN 0192-8651. doi: 10.1002/jcc.20035.

Tong Wang, Xinheng He, Mingyu Li, Yatao Li, Ran Bi, Yusong Wang, Chaoran Cheng, Xiangzhen
Shen, Jiawei Meng, He Zhang, et al. Ab initio characterization of protein molecular dynamics with
ai2bmd. Nature, pages 1-9, 2024.

Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen, Shuizhou
Chen, Claudio Zeni, et al. Mattersim: A deep learning atomistic model across elements, tempera-
tures and pressures. arXiv preprint arXiv:2405.04967, 2024.

Duo Zhang, Anyang Peng, Chun Cai, Wentao Li, Yuanchang Zhou, Jinzhe Zeng, Mingyu Guo,
Chenggian Zhang, Bowen Li, Hong Jiang, Tong Zhu, Weile Jia, Linfeng Zhang, and Han Wang. A
graph neural network for the era of large atomistic models. arXiv, 2025. doi: 10.48550/arxiv.2506.
01686.

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep potential molecular

dynamics: a scalable model with the accuracy of quantum mechanics. Physical review letters, 120
(14):143001, 2018.

14

https://openreview.net/forum?id=0jP2n0YFmKG
https://openreview.net/forum?id=0jP2n0YFmKG

Yuxing Zhou, Wei Zhang, En Ma, and Volker L. Deringer. Device-scale atomistic modelling
of phase-change memory materials. Nature Electronics, 6(10):746-754, 2023. doi: 10.1038/
$41928-023-01030-x.

15

A Distributing Bond Graphs

Algorithm 2] depicts the method to distribute three-body graphs (bond graphs), as well as calculating
the necessary information to perform data transfer between various partitions at each convolution of
the three-body graph.

Algorithm 2 Distributed Bond Graph Construction

Input: Global edges E, partitions {P; }, bond cutoff r, tolerance 7
Output: Line graphs {L;} for partitions { P; }
for each partition P; do
Initialize TO/FROM/PURE arrays for bond graph nodes (edges within atom graph)
Initialize edge tables 7T; for each partition
Build Edge Table T;:
for each edge e € E with dist(e) < r + 7 do
if dst(e) in P; then
append e to T;[e.src]
if e is border edge for P; then
add e to FROM,,, [which_partition(e.src)]
else if e is border edge for another partition P; then
add e to Towhich_partition(e.src) [Pz]
end if
end if
end for
for each edge e € E with dist(e) < r + 7 do
if e is pure edge assigned to P; then
Append e to T;[e.src]
add e to PURE[which_partition(e.dst)]
end if
end for
Localize Edges
for each e € T} do
Create mappings between global and local bond graph node indices
Assign local node indices to each e in T; Vi
end for
Build Line Graph L;
for each partition P; do
for each v € T; do
for each e € T;[v] do
for each ¢’ € T;[e.dst] do
if needs_in_line(e’) then
Draw an edge in bond graph from e to ¢’ using local node indices
end if
end for
end for
end for
end for
end for

B Assign to Partitions

Algorithm [3]is the method used to determine assign individual nodes to the PURE/TO/FROM buckets
of each partition. It is used extensively in both atom graph creation (algorithm [I)) and three-body
graph creation (algorithm [2).

16

Algorithm 3 assign_to_partitions Subroutine

Input: Nodes, edges, partitions
Output: PURE, TO, FROM arrays for each partition
1. Initialize node tracking:
Create table node_to_partition[node_id] < -1V nodes
2. Populating node_to_partition
for each edge e do
node_to_partition [which_partition(e.src)] =
which_partition(e.dst)
end for
3. Assigning nodes to partition buckets
for each node n do
if node_to_partition[n] = —1 then
add n to PURE array of which_partition(n)
else
add n to TOyhich_pariition(n) [n0de_to_partition[n]]
add n to FROMo4c_to_partition[n] [Which_partition(n)]
end if
end for

C MLIP Versions in Benchmark

The table below shows the checkpoint versions of the MLIPs tested. The CHGNet model is taken
from recent release of MatGL library [Ko et al.|[2025]. The eSEN model in our benchmark is not
taken from the public pretrained checkpoints of 30.2M parameters, which is too big for efficient
parallelized simulation. Instead, we initialized a 3.2M eSEN in accordance with the eSEN-MPTrj-
3.2M configuration found in Fu et al.|[2025].

Table 2: Pretrained MLIPs Model Specifications

Model Version ModelSize InteractionRange Reference
CHGNet matgl-MatPES-PBE-2025.2.10 2.7M 45A [Deng et al.|2023]
MACE MACE-MP-0b-small 3.8M 12A [Batatia et al., [2023]
TensorNet matgl-MatPES-PBE-v2025.1 0.8M 10A [Ko et al.,[2025]

eSEN eSEN-MPTrj-3.2M 3.2M 12A [Fu et al., 2025]

D Single GPU Benchmarking Details

Because DistMLIP parallelizes neighbor list construction as well as underlying threebody graph
creation, utilizing only 2 DistMLIP partitions can already lead to faster total inference time and
less total memory consumption compared to a baseline implementation without DistMLIP (this is
especially the case with CHGNet). Therefore, to maintain a fair comparison, all single-GPU results
reported in any benchmark utilize 2 DistMLIP partitions performing operations on the same GPU.
Therefore, only 1 GPU is utilized, but the same fast graph creation algorithms and implementation
are shared. For all benchmarking tasks, 128 threads were used for neighbor list construction and
graph creation.

E Inference Time Breakdown

Neighbor list construction could take a substantial amount of inference time when the simulated
system is large. In order to address this issue, we parallelized neighbor list construction in DistMLIP
through multi-threading, so that graph creation time is substantially decreased compared to the
single-thread neighbor list construction in Pymatgen [Ong et al., [2013]]. Furthermore, we show the
breakdown of overall inference time using DistMLIP when fixing the total atomic system size in
Figure[5] We also include the breakdown of overall inference time when fixing the total number of

17

https://github.com/materialsvirtuallab/matgl/tree/main/pretrained_models/CHGNet-MatPES-PBE-2025.2.10-2.7M-PES
https://github.com/ACEsuit/mace-foundations/tree/main/mace_mp_0b
https://github.com/materialsvirtuallab/matgl/tree/main/pretrained_models/TensorNet-MatPES-PBE-v2025.1-PES

atoms per GPU while scaling the total number of GPUs in Figure[6] The atomic system used was a
crystalline SiO2 supercell expanded in a cubic fashion.

CHGNet (6075 atoms) MACE (33516 atoms)

80

60

40

20

4
1 2 4 8

2 4
of GPUs # of GPUs
TensorNet (22032 atoms) eSEN (1275 atoms)

80

60

a0

20

0
1 2 a 8

2 4
of GPUs # of GPUs

100

Percentage (%)
Percentage (%)

Percentage (%)
Percentage (%)

I Transfer ~EEM Backward [Forward HEE Graph Construction

Figure 5: Timing breakdown, by percentage, for CHGNet-2.7M, MACE-3.8M, TensorNet-0.8M and
eSEN-3.2M models across data transfer, backward pass (for force calculation), forward pass, and
graph construction. The total number of atoms is held fixed across all GPUs runs.

F Scaling System Density

In Fig. Iﬂ we plot the memory consumption and inference time of scaling system density (atoms/A?®)
of an SiO, system with 3456 atoms. DistMLIP inference with 4 A100-80GB GPUs were used. Denser
atomic systems lead to a linear increase in total neighbor list size, driving up memory usage as well
as inference time due to the decreased sparsity within the underlying atom graph’s adjacency matrix.
DistMLIP and its zero-redundancy inference algorithm scales memory consumption according to the
increase in edge count.

=
T

—e— MACE-3.8M
—o— TensorNet-0.8M

I

o
@ 200 o CHoNet2.7M 0
o —e— eSEN-3.2M o3
o 150 £
o =
3 [
>100 g2
g H
(7]
= " 1 ././.\/_‘\‘\v/._.
(]
0.05 0.10 0.15 0.050 0.075 0.100 0.125 0.150
Density (atoms/A3) Density (atoms/A3)

Figure 7: The effects of scaling density on (a) memory consumption, and (b) inference time. Both
plots are the result of scaling atomic density (atoms/A®) on an arbitrary system with fixed atom count
using DistMLIP and 4 A100-80GB GPUs. eSEN is missing a datapoint due to out-of-memory issues.

18

CHGNet MACE
9,900 atoms 19,800 atoms 39,600 atoms 79,200 atoms 34,560 atoms 69,120 atoms 138,240 atoms 276,480 atoms

Percentage (%)
Percentage (%)

2 4 2 4
of GPUs # of GPUs
TensorNet eSEN
19,773 atoms 39,546 atoms 79,092 atoms 158,184 atoms 1,275 atoms 2,550 atoms 5,100 atoms 10,200 atoms

Percentage (%)
Percentage (%)

2 4 2 4
of GPUs # of GPUs

I Transfer B Backward [Forward I Graph Construction

Figure 6: Timing breakdown, by percentage, for CHGNet-2.7M, MACE-3.8M, TensorNet-0.8M and
eSEN-3.2M models across data transfer, backward pass (for force calculation), forward pass, and
graph construction. The total number of atoms increase proportionally to the number of GPUs such
that the number of atoms per GPUs is held fixed as the number of GPUs increases.

G Benchmarking Against SevenNet

In this section, we benchmark the inference time and max capacity of the 4 MLIPs in DistMLIP
against the distributed inference of SevenNet 2024]). All the MLIPs are constructed to
have a similar number of parameters as SevenNet-0 (0.8M parameters). All tests are performed on
the supercells of the a-quartz SiO,. Inference times are averaged over 10 trials after 5 warmup trials.

Fig. [8|shows the result for (a)SevenNet, (b)MACE, (c)TensorNet, (d)CHGNet, and (e)eSEN. The
number in each box in the heat map indicates the inference time of the given cell and the number
of GPUs, and darker color represents faster inference. Grey boxes indicate the simulation failed
due to the GPU out-of-memory error. We reproduced a similar maximum simulation size of 110k
a-quartz SiO, with SevenNet on 8 NVIDIA-A100-80GB, as indicated in the original manuscript.
Our results indicated that MACE, TensorNet, and CHGNet can generally simulate larger maximum
capacity at faster speed in DistMLIP. For eSEN, all experiments failed due to the extensive memory
consumption.

H Alignment of Single-device and Multi-device Predictions

DistMLIP’s atom graph and bond graph distribution algorithms are exact in principle. However,
numerical differences arise when performing computation in a distributed manner compared to
on a single GPU. This is a result of non-determinism occurring during matrix multiplications and
other operations on different GPUs [Fatahalian et al.l 2004]]. Therefore, the exact same model and
weights running single GPU inference on different GPUs within the same node will also yield slightly
different results. In Fig. 0] we plot the energy/atom error in meV/atom units for MACE-3.8M,
TensorNet-0.8M, and CHGNet-2.7M. The result shows that the numerical error from different GPUs
is far below chemical accuracy.

19

z

SevenNet

o

(a)

IS

o
3 2 =
a 0 a z
2 i 2 3o
o £ 3 E
= E o S
S 2o 8 2o

>
5 z £ <
z 1 z 1
E S S S S S S ° > N S L LS o
P § O R S SR A S A
£ &F S & W £ & X N s s
R I N S A O
Number of Atoms Number of Atoms
(d)

(© TensorNet s CHGNet s

®
@ 4 o 4
> P
2 o o w
° £y o 3 e
5 g 3 £
= e o S
H te ¢ 2
H z 5 <
z 1 z 1
I R S . S 0 e AL S P 0
R S ¥ L S 2§
S S S § £ &L & &
RO A T & &
Number of Atoms Number of Atoms
)
© eSEN
5
©

)

> 4
3 o

<
30

s E
5 P
£~ ‘g
5 <
z

¢ & & & S PSS P
£ P S & U
S & SIS & 8 &S
R N S ¥ ©

Figure 8: Inference speed and max capacity on a-quartz SiO,. Except for (a), all other models are
distributed through DistMLIP. (a) SevenNet plus LAMMPS support. (b) MACE, (c) TensorNet,
(d) CHGNet, and (e) eSEN. Because SevenNet is a 0.8M parameter model, all other DistMLIP
models are initialized at 0.8M parameters for comparison purposes. Grey boxes denote the inability
to simulate the system either due to out-of-memory issues or system-size issues.

1e-4 1e-4 1e-5

L)
)

I
e
)

System
—e— GaN
H20

—4— Li3PO4
—&- Si02

N

Error (meV/atom)
e 9
PO

Error (meV/atom)

-
e
9

o

o

Error (meV/atom)
w

)
e
°

A N N— 0.0
3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of GPUs Number of GPUs Number of GPUs

N

Figure 9: Energy (meV/atom) discrepancy between DistMLIP’s multi-GPU inference and baseline
single-GPU inference for (a) MACE-3.8M, (b) TensorNet-0.8M, and (¢) CHGNet-2.7M on multiple
chemical systems. Note that DistMLIP’s graph partitioning and distribution algorithms are exact, and
these non-perfect discrepancies are a result of non-deterministic matrix multiplication operations on
different devices.

I Usage

Load the MLIP as usual

chgnet = ...

from DistMLIP.implementations.matgl import CHGNet_Dist

chgnet_dist = CHGNet_Dist.from_existing(chgnet)
chgnet_dist.enable_distributed_mode ([0, 1, 2, ...]) # Specify GPU ids
Run inference/simulation as usual

Code 1: Example code for using DistMLIP along with CHGNet. DistMLIP is designed to be a plug-
and-play platform for distributed inference. The current implementation only supports single-node
multi-GPU inference.

20

J Parallelizing a Model in DistMLIP

DistMLIP is designed to be both high-performant as well as easily usable. Parallelizing new MLIPs
using DistMLIP is a straightforward process that can be done purely in Python. A few key points
of DistMLIP are outlined in[J.I] The primary data structure, the Distributed object, inputs atom
positions, periodic boundary conditions, and (optionally) cell lattice, and constructs the graph
partitions and associated metadata. The data structure can partition, aggregate, and perform data
transfer for node features, edge features, and node features within the threebody graph. These simple
distributed primitives are implemented in high performance C and makes distributing a new MLIP
very straightforward to implement but still high performing.

J.1 Model Parallelization Example

Creating a DistMLIP distributed object

dist = Distributed.create_distributed(...)

Distributed edge information

dist.src_nodes, dist.dst_nodes # List of src and dist node pairs for
each partition

Distributing node/edge features

node_features_dist = dist.distribute_node_features(node_features)

edge_features_dist = dist.distribute_edge_features(edge_features)

Exchanging node information

dist.atom_transfer (node_features_dist)

Aggregating node features

node_features = dist.aggregate(node_features_dist)

Code 2: A subset of the available features implemented into DistMLIP. These features, implemented
as a Python wrapper over efficient C and PyTorch code, allow for the straightforward distribution of
any arbitrary MLIP.

K Graph Partitioning

Graph partitioning algorithms find applications in solving PDEs via domain decomposition, solving
sparse linear systems of equations, circuit partitioning and layout, VLSI design, social network
analysis, clustering algorithms, and image segmentation [Pothen, [1997| |Stanton and Kliot, 2012}
Bader et al., 2013} [Tolliver and Miller, 2006 [Peng et al., |2013]]. One common use case in graph
partitioning is to create mutually exclusive spanning sets of nodes that contain the minimum number
of edges that cross from one partition to another. This use case can be tackled using sparse, symmetric
matrix reordering methods such as the Reverse Cuthill-Mckee (RCM) algorithm, which permutes
a sparse matrix to minimize its bandwidth (i.e. reordering rows and columns such that non-zero
values are closer to the diagonal) [Cuthill and McKeel 1969, |Azad et al.|[2017]]. The reordered matrix
can then be partitioned along the columns in order to calculate graph node partitions. METIS is a
graph partitioning algorithm that utilizes a graph coarsening phase, an initial partitioning sequence
over the coarsened graph, and an uncoarsening and partition refinement stage [[Karypis and Kumar,
1998]]. However, applications depending on algorithms such as RCM or METIS typically don’t have
latency requirements during the graph partitioning stage. In atomistic simulation, the underlying
graphs are recalculated and repartitioned at each time step. Therefore, even small latency increases
during the graph creation and partitioning stage get compounded into significant increases in overall
simulation time. In our own experiments, we find that RCM and METIS could increase inference
time for million-atom graphs by several seconds per timestep.

K.1 Benchmarking Partition Strategies

We compare DistMLIP’s vertical wall partitioning strategy with other common graph partitioning
algorithms. In Table[3] we replace DistMLIP’s current vertical wall partitioning strategy with the
Reverse Cuthill-McKee (RCMK) and METIS algorithms while holding the other components of
Algorithm[T]and Algorithm [3|constant. Neither RCMK nor METIS supports threebody bond graph
creation. RCMK and METIS both utilize the graph’s topology in order to partition the graph such
that the number of crossing edges between partitions is minimized. DistMLIP’s current partitioning
strategy, on the other hand, doesn’t perform graph traversals but rather uses atomic positions as a
heuristic in order to partition the graph. In Table 3] we also include the LAMMPS spatial partitioning
results for comparison. As a result, we perform all benchmarks with the MACE-3.8M model.

21

Table 3: MD step time (in ps / (atomxstep)) for various graph and spatial partitioning strategies.
RCMK refers to the Reverse Cuthill-McKee algorithm used for graph partitioning. Both RCMK and
METIS still utilize the DistMLIP platform, only the partitioning strategy is replaced. The model used
was MACE-3.8M, and LAMMPS spatial partitioning values are included for comparison.

Method # GPUs us / (atomxstep) | # of atoms (in thousands)
LisPOy4 H>0 GaN MOF 2w49

METIS 4 GPUs 81.19]108.0 101.67]96.0 68.98|77.0 83.60|125.0 78.93|69.0
8 GPUs 62.18|216.0 56.76|216.0 77.15]/207.0 69.63|216.0 67.10|69.0
RCMK 4 GPUs 77.49|110.0 98.02]96.0 66.92|77.0 82.24]125.0 79.94|69.0
8 GPUs 57.22|216.0 51.67]216.0 74.01|207.0 65.74]216.0 65.51|69.0
Vert. wall 4GPUs 15.30]110.6 18.20]96.0 14.60128.0 14.70]128.0 20.10|69.3
) 8 GPUs 11.00/216.0 11.60]210.1 9.60(250.0 10.90|216.0 14.00]69.3

L. Molecular Dynamics Simulation Stability

To validate the numerical robustness and long-term stability of DistMLIP simulations, we performed
a 2 nanosecond TensorNet MD simulation of a Li-ion cathode material containing 0.1 million atoms
on 8 A100 GPUs. Fig. [I0]shows the energy of the material as a function of time. Throughout the
simulation, the system maintained structural stability. Except for the expected thermal fluctuation, no
severe energy oscillation is observed during the entire simulation. The initial decrease in energy is
not a numerical artifact; rather, it is attributed to the energy equilibration of the simulated material,
representing a crucial physical process successfully captured by the DistMLIP simulation.

—136000
—137000
—138000

—139000
—e— potential energy

—140000 total energy

Energy (eV)

—141000
—142000
—143000

—144000

0.0 0.5 1.0 1.5 2.0
Time (ns)

Figure 10: Evolution of potential energy and total energy in a 2 nanosecond long DistMLIP MD
simulation of Li-ion cathode material using 8 GPUs and the TensorNet model. The long-time
numerical stability of DistMLIP is indicated in the smooth profile of energies with only expected
thermal fluctuations.

M Large system training using DistMLIP

Machine learning interatomic potentials are trained on quantum mechanical calculations such as
density functional theory or coupled cluster techniques. Due to the computational complexity of
these techniques, however, calculating the energy and forces of atomic systems with greater than
several hundred atoms is computationally intractable. As a result, other than instances in which large
batch sizes are used in training, DistMLIP’s primary use case would be for large scale inference.
However, for technical completeness, we perform training on a GPCR protein, 6P9X from the protein
data bank [Berman et al.,[2000] consisting of 8.1k atoms. Energy and forces were calculated using
a Lennard-Jones potential. With a batch size of 16, we achieve 2.1 seconds per training step on 8
A100-80 GB GPUs using a 0.4M parameter CHGNet model — demonstrating DistMLIP’s ability in
large-scale, large-batch training.

22

	Related Work
	Machine Learning Interatomic Potentials
	Spatial Partitioning

	Methods
	Graph-Parallel Message Passing
	Distributing Atom Graphs
	Distributing Higher-Order Graphs
	Currently Supported MLIPs

	Results
	Maximum Capacity
	Strong and Weak Scaling
	Interaction Range
	Scaling Model Size
	Real World Simulations

	Conclusion
	Distributing Bond Graphs
	Assign to Partitions
	MLIP Versions in Benchmark
	Single GPU Benchmarking Details
	Inference Time Breakdown
	Scaling System Density
	Benchmarking Against SevenNet
	Alignment of Single-device and Multi-device Predictions
	Usage
	Parallelizing a Model in DistMLIP
	Model Parallelization Example

	Graph Partitioning
	Benchmarking Partition Strategies

	Molecular Dynamics Simulation Stability
	Large system training using DistMLIP

