© © N O O A~ W N =

DistMLIP: A Distributed Inference Platform for
Machine Learning Interatomic Potentials

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large-scale atomistic simulations are essential to bridge computational materials
and chemistry to realistic materials and drug discovery applications. In the past few
years, rapid developments of machine learning interatomic potentials (MLIPs) have
offered a solution to scale up quantum mechanical calculations. Parallelizing these
interatomic potentials across multiple devices poses a challenging, but promising
approach to further extending simulation scales to real-world applications. In this
work, we present DistMLIP, an efficient distributed inference platform for MLIPs
based on zero-redundancy, graph-level parallelization. In contrast to conventional
space-partitioning parallelization, DistMLIP enables efficient MLIP parallelization
through graph partitioning, allowing multi-device inference on flexible MLIP
model architectures like multi-layer graph neural networks. DistMLIP presents
an easy-to-use, flexible, plug-in interface that enables distributed inference of
pre-existing MLIPs. We demonstrate DistMLIP on four widely used and state-of-
the-art MLIPs: CHGNet, MACE, TensorNet, and eSEN. We show that existing
foundation potentials can perform near-million-atom calculations at the scale of a
few seconds on 8 GPUs with DistMLIP.

1 Introduction

Atomistic simulation has been the workhorse in computational materials and drug discovery over the
recent years [Merchant et al., [2023| Jain et al.| 2013} [De Vivo et al.l 2016|. The chemical properties
and behavior of a material are essentially determined by the interactions in the given set of atomic
arrangements. In the most simplified framework, one can formulate this problem as solving the
function that determines the potential energy surface (PES) of a set of atoms given by E = ¢(7;, C;),
where F is the energy, 7; and C; are the positions and chemical identities of the atoms.

To study the material’s properties, multiple fundamentally different methods have been developed to
obtain or construct the function ¢. Empirical interaction rules such as the electrostatic interactions
and Lennard-Jones potential [Jones| |1924]] qualitatively describe the bond energy between atoms,
but only predict the very fundamental behavior of the materials. Classical force fields (FF) like
embedded atom methods [Daw and Baskes |1984]], CHARM [Vanommeslaeghe et al., 2010]], and
Amber [Wang et al.,2004] improved the prediction of the PES by adding more descriptor terms into
¢. These classical FFs are cheap, intuitive, and explainable, but are often not accurate enough and
have been constructed and applied to narrow chemical domains and a few elements. Fundamentally,
the interactions in ¢ are determined by the electronic structure of a material and can be solved in
first principles by quantum mechanics. Quantum chemical simulation methods, such as Density
Functional Theory (DFT) [Perdew et al.,|1996] and coupled clustering (CC) methods [Raghavachari
et al., |1989], enabled the ab initio calculations of atomic behavior that are much more accurate than
empirical methods. However, their computational complexity limits the practical use of quantum

Submitted to the Al for Science workshop (NeurIPS 2025). Do not distribute.

37
38
39
40
41

42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68

69
70
71
72

73
74
75
76
77
78

79
80

81
82
83

84

85

86

87
8

@

chemical simulation methods for many realistic applications. DFT, the most widely used ab initio
simulation method, scales cubically O(N2) with the number of electrons and is therefore limited to
simulating only a few hundred atoms [Beck| 2000]. Prohibitively high computational cost makes
DFT only useful in describing materials properties that can be learned from a small simulation cell
[Wang et al., [2024].

Machine learning approaches such as machine learning interatomic potentials (MLIPs) open the
possibility to increase simulation scale while retaining quantum chemical accuracy by building ML
surrogate models trained on DFT and CC data [Wang et al 2024, |Gasteiger et al) 2021} |Deng
et al., 2023 |Batzner et al.,|2022, Musaelian et al., 2023| |[Fu et al., 2025|]. Compared to feature-based
classical FFs, deep-learning-based MLIPs enable improved learnability to better model the PES
data. Graph neural networks (GNNs), especially, have demonstrated extraordinary computational
efficiency and accuracy by learning both long-range and high-order atomic interactions through
message passing. By design, the computation time of MLIPs scales linearly with the number of atoms
O(N), enabling simulations with tens of thousands of atoms at nano-second time scale.

Many materials engineering problems involve finite-sized effects like protein folding [Jumper et al.|
2021], interfacial reactions [Du et al.| 2023]], particle-size effects [Shi et al.,|2020]], and formation of
nano-domains [Holstun et al., [2025]. Such systems require meso-scale simulations with upwards of
millions of atoms, necessitating the ability to further scale the capacity of MLIP simulations. One
promising solution is to expand MLIP inference from single-device to multi-device inference. Simu-
lation packages such as LAMMPS provide ad hoc solutions for multi-GPU simulation [Thompson
et al., [2022]. Multi-device simulations are realized by dividing the total simulation cell into multiple,
mutually exclusive, small cells for each device. Each small cell is then padded with additional atoms
beyond the cell boundary in order to properly calculate the energy and forces within the small cell.
This method, known as spatial partitioning, is based on the fundamental assumption that the force
field only contains short-range interactions [Plimptonl [1995].

Since most MLIPs are designed to be long-ranged, expanding the number of utilized GPUs during
inference time is a nontrivial task due to the necessity to distribute the large system cell across
multiple devices. Currently, there exists no native multi-GPU support for GNN-based MLIPs as most
MLIPs have been implemented for only single-device inference. In order to support fast, accurate,
and parallelizable atomistic simulations, we hereby present a distributed MLIP inference platform,
DistMLIP, that enables efficient multi-device inference without the need for a modified architecture
or additional training. Our highlighted contributions are as follows:

* Written in standalone high performance C code, DistMLIP features an efficient, general,
and versatile parallel inference platform for MLIP inference. By design, most popular
MLIPs can be supported with a minimal amount of adaptation. In this work, we include
benchmarking results of 4 widely used MLIPs: MACE, TensorNet, CHGNet, and eSEN.

* DistMLIP leverages graph-level partitioning that allows node and edge information to
transfer between GPUs at each layer of the forward pass while still maintaining the in-
termediates required to perform backpropagation. This allows efficient parallelization of
long-range GNN-based MLIPs, which is standard for most MLIPs today. Compared to
spatial partitioning, graph partitioning has zero redundancy, meaning that no redundant
computation is thrown away during parallel inference.

* We implemented the distribution of both the atom graph and the augmented three-body line
graph, a common graph structure used in MLIPs to encode three-body atomic interactions.

* To allow flexible usage, our implementation does not depend on a 3rd party distributed
simulation library such as LAMMPS. As a result, DistMLIP supports plug-in usage of any
MLIP workflow.

* All code in DistMLIP is open sourced at https://github.com/AegisIK/DistMLIP}

2 Related Work

2.1 Machine Learning Interatomic Potentials

Machine learning interatomic potentials (MLIPs) predict the potential energy surface (PES) by
inputting atomic numbers, atomic positions, and optionally the lattice, and outputting the energy and

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105

106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141

forces of the system [Bartok et al., 2010, Zhang et al.l 2018|]. The most common MLIP architecture
today is the graph neural network (GNN), where nodes in the atom graph represent atoms and edges
in the atom graph represent the pair-wise distances between atoms that are within a pre-defined cutoff
distance [Batzner et al.| 2022, [Simeon and De Fabritiis} 2023} [Passaro and Zitnickl, 2023 |Gasteiger
et al., 2021, [Schiitt et al., [2021} 2018}, [Smith et al.,2017]. GNN computation scales linearly with the
number of atoms, as the amount of computation is associated with the neighbors within the receptive
field of each atom. Some MLIPs also pass messages on top of higher-order graphs, such as threebody
bond graphs, that encode angles as pairwise information between bonds [Choudhary and DeCost,
2021}, [Deng et al.,2023| | Yang et al., 2024]]. MLIPs built on top of the transformer architecture have
also been introduced, where "tokens" represent individual nodes and full self attention is performed
over all tokens [Liao et al., [2024, |Vaswani et al., [2017]]. Recently, a class of foundation potentials
have been shown to generalize across diverse chemistries by pretraining on massive datasets [Chen
and Ongl 2022| Deng et al.,|2023| |(Chanussot* et al.,|2021} [Barroso-Luque et al., 2024, |Yang et al.}
2024, Merchant et al., 2023} [Kaplan et al.,2025|]. These pretrained foundation potentials substantially
reduce the need for target-system training, and their open-sourced pretrained checkpoints serve as
ready-to-use universal MLIPs.

2.2 Spatial Partitioning

LAMMPS implements multi-GPU inference via a spatial partitioning approach where the simulation
space is split into mutually exclusive partitions. For each mutually exclusive partition, LAMMPS
creates a second, larger partition that includes all atoms up to the interaction radius of the FF,
commonly known as border or ghost nodes. This is required as the energy and force calculation of
the atoms within each mutually exclusive partition requires the atomic information from all nodes
within the model’s interaction radius. This leads to highly redundant calculations as the computation
performed on the ghost nodes is thrown away after each time step. By estimate, a 64-molecule
water system calculated with a 6-layer GNN that has a 6 angstrom cutoff distance would require
the computation of 20,834 ghost atoms when using spatial partitioning [Musaelian et al., [2023]].
Furthermore, unlike classical FFs, most current MLIPs do not have a mature interface with LAMMPS,
making spatial partitioning practically infeasible for the majority of MLIPs that have been developed.

Allegro has been developed as a strictly local, E(3)-equivariant interatomic potential that features
efficient parallelization through space partitioning due to its short-range design [Musaelian et al.,
2023|]. Instead of performing message passing where messages are passed between nodes several
times, it encodes each atom-pair’s relative geometry in learned spherical harmonic components and
captures many-body interactions via trainable tensor products of these features. Because of this
strict locality, Allegro scales particularly well on large atomic systems — Kozinsky et al.[[2023]]
used Allegro and LAMMPS to simulate a bulk Ag model with 100 million atoms, achieving 0.003
microseconds/atom-timestep using 128 NVIDIA-A100-80GBs.

However, strictly local models experience key limitations. The need for efficient parallelization
restricts their interaction range to only a few angstroms, preventing their use on systems that require
the modeling of long-range interactions [Zhou et al., 2023] [Song et al.l [2024} |Gong et al., 2025
Chengl, 2025/ |Anstine and Isayev, [2023]]. Furthermore, the short-range design prevents the MLIP’s
application from simultaneously learning diverse chemical environments. As the short-range MLIP’s
cutoff is often determined by the radial distribution function of one targeted material system, it is
infeasible to determine a universal cutoff that works for many materials if the training dataset contains
more than one chemical system. These problems raise the need for a simple, unified, and versatile
API to parallelize MLIPs.

SevenNet, derived from the Nequip architecture [Batzner et al.,[2022], is one of the first MLIPs that
support graph-parallel inference [Park et al.l[2024]. A simulation of 112,000 atoms SizN, was demon-
strated by distributing the 0.84 million parameter SevenNet-0 on 8 A100-80GB GPUs. However, its
graph parallel algorithm is designed to work specifically with the SevenNet implementation and is not
easily transferable to other MLIP architectures. Furthermore, SevenNet’s graph-parallelization relies
on the combination of TorchScript and LAMMPS, making it unapplicable to simulation tasks and
workflows that are not built upon LAMMPS [Larsen et al.l 2017, |Ganose et al., 2025, [Barroso-Luque
et al., 2022, [Ko et al., [2025]].

142

143
144
145

146

147
148
149
150
151
152
153

154
155

157
158
159

161
162
163
164

3 Methods

Figure[If(a) denotes the usage of DistMLIP. Public MLIP models can be easily adapted to perform
distributed large simulations with DistMLIP. The core infrastructure of DistMLIP is in the construction
of graphs, subgraphs, and communication-related metadata.

9

@ o (b) | . (©) o 1.0
e ® o .\ 1 ./ .\ []
’ ° s MCFheAm'\lsthy = o, O~~e” O~
= Y : @@ o——0®
/’\o—*" Oy g ®
2" GELELEEERDER
. Partition 1 [S] 0|1]2)|3|4|5]|6|7[8]9
DistMLIP —T \'\'/[.// Node IDs
— {.—o ‘\.‘_-./.—o
“ » Edge Table
W Eees, e e e
Distributed Large Simulation P ,/‘\-—'-"' Edge IDs
(e) 4 Layer 1 N [~ Layer 2 N (d) Atom Graph ‘
et s | | et~ —
e |~ ||~ TR |~ ~q] — 7N
] | ZH 2B ZH g ~q &

-, o s /
~— | e | Emem | | - L F
CPU/MEM IS~ e~ IS~ e CPU/MEM - 2 o.
' L e s P ., O~ ./ \.\

N AN / S ¢ =

Figure 1: An overview of DistMLIP. (a) DistMLIP takes public MLIP models and performs large-
scale, distributed simulations. (b) Partition the atom graph using a vertical spatial partitioning scheme,
and construct subgraphs containing the 1-hop neighbors and 2-hop neighbors of the original partition,
which are later used to calculate the distributed bond graphs. (c¢) Take the 2-hop atom graph and
create an edge table backbone mapping node IDs (black) to edge IDs (orange) that contain the node
ID as a source node. (d) Recursively traverse the edge table to construct the atom graph and bond
graph. (e) Data transfer in a simple 2-layer graph neural network with both atom graph and bond
graph.

3.1 Graph-Parallel Message Passing

After the material system is converted into a graph using a neighbor list construction algorithm, it can
be partitioned into subgraphs for each device, as illustrated in Fig. [T[b). At each graph convolution,
each node’s features are updated according to the edge and node features of its incoming neighbors.
We can partition the nodes of the graph G into p disjoint sets, constructing graphs G . .. G,,, where p
is the number of partitions. Each of the graph partitions are distributed to its own GPU. To accurately
calculate the features after one graph convolution, we expand G; into G, where G consists of all

nodes v € G such that there exists an edge (v, u) € E with u € G;. Formally,
G,={veV|ued;(v,u) € E},
where V and E are the set of nodes and edges of the graph G, respectively. This ensures that all

incoming information necessary for computing the convolution is included within G. Let H; denote
the set of all 1-hop nodes that were added to G; to create ;. Formally,

H ={veV\G,|JueqG,(v,u) € E}.
This represents the set of nodes in V' that are not in GG; but have an outgoing edge into G;. We refer to
these nodes as border nodes. Let E/ denote the set of edges not in G/, that point to the border nodes.
Formally,

E!={(u,v) € E|v € H; and (u,v) ¢ G}}.

We refer to these edges as border edges, which we use extensively when distributing the bond graph.

After each graph convolution, we transfer the border node and border edge features to and from each
partition, as shown in Fig. [I(d). After this transfer process, each GPU has the most updated node and
edge feature to begin the next convolution. This implementation is completely model-agnostic and
can be applied to both conservative and direct force prediction interatomic potentials.

165

166
167
168
169
170
171
172
173
174

175
176
177
178
179

180

181
182
183

184
185
186
187

188

189
190
191
192
193
194
195

3.2 Distributing Atom Graphs

In order to distribute the atom graph, we first partition the graph spatially using vertical wall partitions.
Once these partitions are created, we specify algorithm [3]to identify the border nodes that each
partition requires as well as the border nodes within each partition that other partitions require. For
each partition, we create TO, FROM, and PURE arrays of node ids. We denote TO;[j] as the bucket
of node ids associated with G} required to be used in G;. Similarly, we denote FROM;[i] as the
node ids associated with G’; required to be used in Gj. As a result, TO;[j] and FROM;[i] should
be the same array. The PURE bucket specifies the nodes that are not required in the data transfer
process. Furthermore, each edge drawn from a border node to a pure node is assigned to the partition
responsible for the pure node.

For each partition, we concatenate each of the arrays while maintaining a marker array containing the
indices of the spans of each bucket. The marker array is used to efficiently index the spans of each of
the features for data transfer between GPUs. The entire atom graph creation algorithm can be found
in Algorithm [I]in Appendix [A] We also discuss creating, partitioning, and distributing three-body
bond graphs in Appendix [B]

4 Results

In this section, we benchmark DistMLIP with the 4 MLIPs loaded with their public pretrained
checkpoints: MACE-MP-0b-small-3.8M, CHGNet-2.7M, TensorNet-0.8M, and eSEN-3.2M. The
details of the models and checkpoints can be found in appendix

For all scaling timing-related benchmarks, model inference is performed 20 times, with the average
of the final 10 trials reported. This is to allow GPUs to warmup before performing calculations. We
use crystalline a-quartz SiO, supercells for each timing benchmark, unless stated otherwise. The
benchmarks are performed with a GPU cluster with 8 xXNVIDIA-A100-80GB-PCle.

=
G
s

Wall-Clock Time (Normalized)
[3,]

8 —@— MACE-3.8M
TensorNet-0.8M

—8— CHGNet-2.7M

6 —e— eSEN-3.2M

—== ldeal scaling /,’

-
=]

o
©

g
o

I
IS

o
N
Wall-Clock Time (Normalized)

Max Capacity (Normalized)
S

-
N
IS
®
o
o
-
N
IS
3
N
N
IS
®

Number of GPUs Number of GPUs Number of GPUs

Figure 2: Performance scaling of DistMLIP inference with 4 pretrained MLIPs: MACE-3.8M,
TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M. All results are averaged over 10 inferences on
a SiO, supercell. (a) Maximum capacity (number of simulatable atoms) vs. the number of GPUs.
Values are normalized by the 1-GPU capacity. (b) Strong scaling of MLIP inference on DistMLIP,
where the total number of atoms in the supercell is held constant while the number of GPUs increases.
(¢) Weak scaling behavior of MLIP inference on DistMLIP, where the number of atoms on each GPU
device is held constant while the number of GPUs increases.

4.1 Maximum Capacity

A key performance metric is the maximum number of atoms that can be simulated by extending to
multi-GPU inference. The maximum capacity scaling tests, with respect to the number of GPUs, can
be found in Figure[2[a). All atom counts are normalized to be represented as multiples of the 1-GPU
maximum capacity. As the number of GPUs (and thus, total GPU memory) increases, the maximum
simulatable capacity increases linearly. The scaling of eSEN and MACE is further away from ideal
scaling due to the one-time equivariant feature calculations that are occurring on a single GPU due to
numerical stability concerns. The single GPU poses as a memory bottleneck for the system.

196
197

198

199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215

216

217
218
219
220
221
222

223
224
225
226
227

228

229
230
231
232
233
234

244

We also benchmark the maximum capacity and corresponding inference time against the SevenNet
model while freezing model sizes, the results can be found in Appendix [H]

4.2 Strong and Weak Scaling

Strong scaling tests, where the total size of the system remains constant while the number of GPUs
increases, can be found in Figure 2b). All times are normalized to be represented as multiples
of the 1 GPU time. The system sizes for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and
eSEN-3.2M were 33.5k, 22.0k, 9.8k, and 1.4k atoms respectively. We also plot the ideal scaling
under the assumption that computation performed by each GPU is purely independent and perfectly
parallelizable. In particular, eSEN’s high memory consumption results in small atomic cells. However,
small atomic cells with partition widths that aren’t sufficiently large results in overlapping border
nodes during each convolution — leading to increased overhead.

Weak scaling tests, where the total size of the system increases proportionally with the number of
GPUs (such that each GPU performs computation on the same number of atoms), are found in Figure
[2c). All times are normalized to be represented as multiples of the 1 GPU time. The per GPU atom
count for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M are 34.6k, 19.9k, 9.9k,
and 1.4k, respectively. In the case of eSEN-3.2M, weak scaling moves away from ideal scaling due
to the high constant overhead associated with initial feature calculation. For CHGNet-2.7M, the
computation required for the construction of the three-body graph scales with O(N®) where N is
the number of atoms within the three-body cutoff, leading to suboptimal weak scaling when the
simulation cell size increases.

4.3 Interaction Range

In this section, we benchmark how the parallelized simulation speed and capacity is affected by the
MLIP’s interaction range and number of parameters. In Fig. [3] (a), we fix each model to around
0.8M parameters and vary the number of message passing layers to increase the interaction range of
the model. The 8 GPU inference is performed on the a-quartz SiO, of 72k atoms. The measured
inference times are then divided by the inference time of the baseline 10A version of each MLIP.
eSEN ran out of memory for the 45 and 50 angstrom tests.

The results in Fig. 3] (a) show that DistMLIP only has a linear relation between parallelized inference
time vs. interaction range. This is due to the additional computation cost from each increased message
passing layer. Conversely, in conventional space partitioning, the volume of the simulation cell, and
therefore the number of ghost atoms, grows cubically with the interaction range. This highlights the
parallelization efficiency and zero calculation redundancy in graph partitioning.

4.4 Scaling Model Size

In Fig. 3](b) and (c), we fix the number of message passing layers and vary the feature embedding
sizes in the MLIP, therefore measuring the relation between parallelized inference speed/capacity and
model parameter size. The result shows that by decreasing the model parameter size, a significant
increase in simulation speed and maximum capacity can be achieved. The result suggests an estimated
performance gain when distributed inference can be combined with smaller model sizes through
MLIP model distillation [[Amin et al., [2025].

4.5 Real World Simulations

We also show the performance of real distributed simulations on a variety of solid-state and
biomolecular systems, utilizing 1, 4, and 8 GPUs. The results are found in Table [T We report
the microseconds/atom-timestep of each model-system pair as well as the number of simulated
atoms in the system. The simulated systems can be found in Figure 4 L-MACE-3.8M refers to
multi-GPU inference of MACE using LAMMPS spatial partitioning, while the other 4 models are
distributed with DistMLIP. Note that L-MACE-3.8M uses a compiled model with custom equivariant
CUDA kernels, while DistMLIP MACE-3.8M only runs the pure-PyTorch implementation. Custom
equivariant CUDA kernels have been shown to accelerate MACE inference time by up to 7.2x on
large models [Geiger et al.,[2024]. No other model beyond MACE is reported due to the lack of
LAMMPS multi-GPU inference support. We also compare DistMLIP’s current partitioning strategy

246
247

248
249
250
251
252
253
254

256
257
258
259

(b) 200

s

s
)
N
N
o

-
=3
=3

ps/atom-timestep
g 8
\
Max capacity (atoms)
30! 30)

—8— MACE
—8— TensorNet
2.00 _o— cHGNet
—8— eSEN

\
\

-
N
3

-

N

o
N
=3

=

o

=]
-
=)

hid 10

10 15 20 25 30 35 40 45 50 90K 770K 1.4M 2.1M 2.8M 3.5M 90K 770K 1.4M 2.1M 2.8M 3.5M
Interaction Range (A) Number of parameters Number of parameters

4

Wall-clock Time (Normalized
a
o

Figure 3: Effect of model configurations on graph-parallelized inference performance. (a) Inference
time vs. MLIP interaction range while keeping model parameter size fixed. Values are represented as
multiples of the 10A interaction range. (b) Inference time and (¢) maximum simulation capacity vs.
number of parameters in the MLIP, while keeping interaction range fixed.

with METIS and RCMK graph partitioning strategies on the same real world systems while holding
the rest of the DistMLIP system constant. We report those results in Table[d]in Appendix [K]

1A9I>s

135k 1554)

(a) 133 1584 (b) 1904

1147
143A

Battery Electrolyte Water Semiconductor

118A 1664

(d) 5114

Metal Organic Framework Biomolecule

Figure 4: Sample simulation cells from real-world systems that are benchmarked in Table |1} (a)
LisPO, supercell of 216.0k atoms. (b) H,O supercell of 210.1k atoms. (¢) GaN supercell of 250.0k
atoms. (d) Cd,B,H;3CssNg(O,F), metal organic framework (MOF) system of 216.0k atoms. (e)
2w49, an insect flight muscle protein of 69.3k atoms.

Our result shows that most of the current foundation potentials, even at significant model sizes of a few
million parameters, are capable of simulating near-million-atom scale systems when parallelized with
DistMLIP on 8 GPUs. Moreover, we noticed that the inference time, when normalized by the number
of atoms, is significantly decreased when any MLIP is being parallelized. This observation suggests
chemically rare events can be cheaply simulated using a larger cell for a shorter simulation time,
rather than a smaller cell for a longer simulation time, which is the standard way of current atomistic
simulations. As estimated from the benchmark result in table [T} nanosecond near-million-atoms
simulations can be achieved at the order of 10 days with standard MLIPs and DistMLIP on a few
GPUs. The max capacity of the 12A-MACE is tripled when coupled with DistMLIP compared to
LAMMPS space partitioning. For a longer-range model like CHGNet, the capacity increase and
inference speed-up will be more significant as memory usage in spatial partitioning scales cubically
with interaction range.

260

273

274
275
276

277
278

279
280
281

Table 1: MD step time (in ps / (atom X step)) for the max capacity of 4 pretrained foundation potentials
on DistMLIP: MACE-MP-0b-small, TensorNet-MatPES-0.8M, CHGNet-MatPES-2.7M, eSEN-3.2M.
L-MACE-3.8M refers to MACE running on LAMMPS spatial partitioning. L-MACE-3.8M is a
compiled model using custom equivariant CUDA kernels while MACE-3.8M uses the pure-PyTorch
implementation of MACE.

Model # GPUs us / (atomxstep) | # of atoms (in thousands)

1GPU 8247|52 334|104 198|9.7 53.8/8.0 OOM
L-MACE-3.8M 4GPUs 169|414 10.1|24.6 5.1[45.0 9.4|27.0 OOM
8GPUs 123|659 85(82.9 27[77.8 62[640 OOM

1 GPU 44.8]21.9 45.920.7 39.5|43.9 41.0]16.0 OOM
MACE-3.8M 4GPUs 15.3|110.6 18.2]|96.0 14.6|128.0 14.7]128.0 20.1]69.3
8 GPUs 11.0/216.0 11.6|210.1 9.6/250.0 10.9/216.0 14.0|69.3

1 GPU 81.7]21.9 92.1]6.1 79.1116.0 79.1116.0 OOM
TensorNet-0.8M 4 GPUs 24.3]| 64 26.9]49.1 22.9]65.5 23.2]54.0 OOM
8 GPUs 16.3|140.0 18.0|82.9 15.91123.0 15.5|125.0 19.6]/69.3

IGPU 179.7|4.1 154.816.1 100.0|5.5 174.6]2.0 OOM
CHGNet-2.7M 4 GPUs 94.8|21.9 80.5]20.7 45.5]43.9 81.1]16.0 OOM
8 GPUs 75.4|46.7 64.5]49.1 41.9]77.8 67.1]54.0 OOM

1GPU 727.3|0.9 663.2|1.3 438.9]1.0 454.311.0 OOM
eSEN-3.2M 4 GPUs 273.4]4.1 284.02.6 222.3|5.5 236.3|3.0 OOM
8 GPUs 241.28.0 249.1]6.1 198.9]8.2 210.016.0 OOM

5 Conclusion

Scaling the quantum-chemical simulation accuracy to realistic application scales remains a critical
challenge even with recent developments of ML interatomic potentials. To address this challenge, we
present DistMLIP, a distributed MLIP inference platform based on efficient graph-level partitioning.
Compared to the traditional parallelization method, space-partitioning through LAMMPS, DistMLIP
serves as an easy and versatile distributed inference platform that supports long-range MLIPs.
DistMLIP provides infrastructures for constructing and distributing atom and bond graphs, allowing
the distribution of GNN-based MLIPs that are otherwise infeasible to parallelize.

Our result shows that efficient and plug-and-play parallelization can be achieved when combin-
ing DistMLIP with existing interatomic potentials. By distributing the MLIP simulation on 8
NVIDIA-A100 GPUs, our result shows that nanosecond, near-million-atom scale simulations can be
accomplished at the scale of 10 physical days with state-of-the-art MLIPs. We believe this effort to
enable large-scale simulation would accelerate chemical, materials, and biological discovery.

References

Ishan Amin, Sanjeev Raja, and Aditi Krishnapriyan. Towards fast, specialized machine learning
force fields: Distilling foundation models via energy hessians. arXiv, 2025. doi: 10.48550/arxiv.
2501.09009.

Dylan M Anstine and Olexandr Isayev. Machine learning interatomic potentials and long-range
physics. The Journal of Physical Chemistry A, 127(11):2417-2431, 2023.

Ariful Azad, Mathias Jacquelin, Aydin Bulug, and Esmond G Ng. The reverse cuthill-mckee algorithm
in distributed-memory. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 22-31. IEEE, 2017.

282
283

284
285
286

287
288
289

290
291
292

294
295
296
297
298
299
300
301
302
303
304
305
306

307
308
309
310

311
312

313
314
315
316
317

318
319

320
321

322
323
324

325
326

327
328
329

330
331

David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. Graph partitioning and
graph clustering, volume 588. American Mathematical Society Providence, RI, 2013.

Luis Barroso-Luque, Peichen Zhong, Julia H. Yang, Fengyu Xie, Tina Chen, Bin Ouyang, and Ger-
brand Ceder. Cluster expansions of multicomponent ionic materials: Formalism and methodology.
Physical Review B, 106(14):144202, 2022. ISSN 2469-9950. doi: 10.1103/physrevb.106.144202.

Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M. Wood, Misko Dzamba, Meng
Gao, Ammar Rizvi, C. Lawrence Zitnick, and Zachary W. Ulissi. Open materials 2024 (omat24)
inorganic materials dataset and models, 2024. URL https://arxiv.org/abs/2410.12771.

Albert P. Bart6k, Mike C. Payne, Risi Kondor, and Gébor Csdnyi. Gaussian approximation potentials:
The accuracy of quantum mechanics, without the electrons. Physical Review Letters, 104(13):
136403, 2010. ISSN 0031-9007. doi: 10.1103/physrevlett.104.136403.

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M Elena, David P Kovécs, Janosh Riebesell,
Xavier R Advincula, Mark Asta, William J Baldwin, Noam Bernstein, Arghya Bhowmik, Samuel M
Blau, Vlad Cérare, James P Darby, Sandip De, Flaviano Della Pia, Volker L Deringer, Rokas
Elijosius, Zakariya El-Machachi, Edvin Fako, Andrea C Ferrari, Annalena Genreith-Schriever,
Janine George, Rhys E A Goodall, Clare P Grey, Shuang Han, Will Handley, Hendrik H Heenen,
Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S Jakob, Hyunwook
Jung, Venkat Kapil, Aaron D Kaplan, Nima Karimitari, Namu Kroupa, Jolla Kullgren, Matthew C
Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T Margraf, [oan-Bogdan Magdéu, Angelos
Michaelides, J Harry Moore, Aakash A Naik, Samuel P Niblett, Sam Walton Norwood, Niamh
O’Neill, Christoph Ortner, Kristin A Persson, Karsten Reuter, Andrew S Rosen, Lars L Schaaf,
Christoph Schran, Eric Sivonxay, Tamas K Stenczel, Viktor Svahn, Christopher Sutton, Cas van der
Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrak, Yangshuai Wang, William C Witt,
Fabian Zills, and Gabor Csanyi. A foundation model for atomistic materials chemistry. arXiv,
2023.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature Communications, 13(1):2453, 2022. doi:
10.1038/s41467-022-29939-5.

Thomas L Beck. Real-space mesh techniques in density-functional theory. Reviews of Modern
Physics, 72(4):1041, 2000.

Lowik Chanussot*, Abhishek Das*, Siddharth Goyal*, Thibaut Lavril*, Muhammed Shuaibi*,
Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary
Ulissi. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catalysis, 2021.
doi: 10.1021/acscatal.0c04525.

Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the periodic
table. Nature Computational Science, 2(11):718-728, 2022. doi: 10.1038/s43588-022-00349-3.

Bingqging Cheng. Latent ewald summation for machine learning of long-range interactions. npj
Computational Materials, 11(1):80, 2025. doi: 10.1038/s41524-025-01577-7.

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved ma-
terials property predictions. npj Computational Materials, 7(1):185, 2021. doi: 10.1038/
s41524-021-00650-1.

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings of the 1969 24th national conference, pages 157-172, 1969.

Murray S. Daw and M. 1. Baskes. Embedded-atom method: Derivation and application to impurities,
surfaces, and other defects in metals. Phys. Rev. B, 29:6443-6453, Jun 1984. doi: 10.1103/
PhysRevB.29.6443. URL https://link.aps.org/doi/10.1103/PhysRevB.29.6443.

Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role of molecular dynamics
and related methods in drug discovery. Journal of medicinal chemistry, 59(9):4035-4061, 2016.

https://arxiv.org/abs/2410.12771
https://link.aps.org/doi/10.1103/PhysRevB.29.6443

332 Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J Bartel, and
333 Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-informed
334 atomistic modelling. Nature Machine Intelligence, 5(9):1031-1041, 2023.

335 Xiaochen Du, James K. Damewood, Jaclyn R. Lunger, Reisel Millan, Bilge Yildiz, Lin Li, and Rafael
336 Gomez-Bombarelli. Machine-learning-accelerated simulations to enable automatic surface recon-
337 struction. Nature Computational Science, page 1-11, 2023. doi: 10.1038/s43588-023-00571-7.

ss8 Xiang Fu, Brandon M Wood, Luis Barroso-Luque, Daniel S Levine, Meng Gao, Misko Dzamba, and
339 C Lawrence Zitnick. Learning smooth and expressive interatomic potentials for physical property
340 prediction. arXiv preprint arXiv:2502.12147, 2025.

341 Alex Ganose, Hrushikesh Sahasrabuddhe, Mark Asta, Kevin Beck, Tathagata Biswas, Alexander
342 Bonkowski, Joana Bustamante, Xin Chen, Yuan Chiang, Daryl Chrzan, Jacob Clary, Orion Cohen,
343 Christina Ertural, Max Gallant, Janine George, Sophie Gerits, Rhys Goodall, Rishabh Guha,
344 Geoffroy Hautier, Matthew Horton, Aaron Kaplan, Ryan Kingsbury, Matthew Kuner, Bryant
345 Li, Xavier Linn, Matthew McDermott, Rohith Srinivaas Mohanakrishnan, Aakash Naik, Jeffrey

346 Neaton, Kristin Persson, Guido Petretto, Thomas Purcell, Francesco Ricci, Benjamin Rich, Janosh
347 Riebesell, Gian-Marco Rignanese, Andrew Rosen, Matthias Scheffler, Jonathan Schmidt, Jimmy-
348 Xuan Shen, Andrei Sobolev, Ravishankar Sundararaman, Cooper Tezak, Victor Trinquet, Joel

349 Varley, Derek Vigil-Fowler, Duo Wang, David Waroquiers, Mingjian Wen, Han Yang, Hui Zheng,
350 Jiongzhi Zheng, Zhuoying Zhu, and Anubhav Jain. Atomate2: Modular workflows for materials
351 science. 2025. doi: 10.26434/chemrxiv-2025-tcrSh.

352 Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. Gemnet: Universal directional graph
353 neural networks for molecules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
354 J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
355 pages 6790-6802. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
356 paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fcb8-Paper. pdf.

357 Mario Geiger, Emine Kucukbenli, Becca Zandstein, and Kyle Tretina. Ac-
358 celerate drug and material discovery with new math library nvidia cuequiv-
359 ariance, November 2024. URL https://developer.nvidia.com/blog/
360 accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/.

361 Accessed: 2025-05-27.

ss2 Sheng Gong, Yumin Zhang, Zhenliang Mu, Zhichen Pu, Hongyi Wang, Xu Han, Zhiao Yu, Mengyi
363 Chen, Tianze Zheng, Zhi Wang, Lifei Chen, Zhenze Yang, Xiaojie Wu, Shaochen Shi, Weihao
364 Gao, Wen Yan, and Liang Xiang. A predictive machine learning force-field framework for
365 liquid electrolyte development. Nature Machine Intelligence, page 1-10, 2025. doi: 10.1038/
366 s42256-025-01009-7.

367 Tucker Holstun, Tara P Mishra, Liliang Huang, Han-Ming Hau, Shashwat Anand, Xiaochen Yang,
368 Colin Ophus, Karen Bustillo, Lu ma, Steven Ehrlich, and Gerbrand Ceder. Accelerating the
369 electrochemical formation of the ¢ phase in manganese-rich rocksalt cathodes. Advanced Materials,
370 37(6), 2025. ISSN 0935-9648. doi: 10.1002/adma.202412871.

371 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
372 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
373 Commentary: The materials project: A materials genome approach to accelerating materials
374 innovation. 1:011002, 2013. doi: 10.1063/1.4812323.

375 J. E. Jones. On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a
376 Gas with Temperature. Proceedings of the Royal Society of London Series A, 106(738):441-462,
377 October 1924. doi: 10.1098/rspa.1924.0081.

a7e John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
379 Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
380 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
381 Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
382 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,

10

https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/35cf8659cfcb13224cbd47863a34fc58-Paper.pdf
https://developer.nvidia.com/blog/accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/
https://developer.nvidia.com/blog/accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/
https://developer.nvidia.com/blog/accelerate-drug-and-material-discovery-with-new-math-library-nvidia-cuequivariance/

383
384
385

386
387
388

389
390
391
392

393
394
395

396
397
398
399

400
401
402
403

404

406

407
408
409

410
411
412

413
414
415
416

417
418
419
420

421
422

423
424

425
426

427
428

429
430

Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583-589, 2021. ISSN 0028-0836. doi: 10.1038/s41586-021-03819-2.

Aaron D Kaplan, Runze Liu, Ji Qi, Tsz Wai Ko, Bowen Deng, Janosh Riebesell, Gerbrand Ceder,
Kristin A Persson, and Shyue Ping Ong. A foundational potential energy surface dataset for
materials. arXiv, 2025.

George Karypis and Vipin Kumar. A software package for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of sparse matrices. University of Minnesota,
Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN,
38:7-1, 1998.

Tsz Wai Ko, Bowen Deng, Marcel Nassar, Luis Barroso-Luque, Runze Liu, Ji Qi, Elliott Liu,
Gerbrand Ceder, Santiago Miret, and Shyue Ping Ong. Materials graph library (matgl), an
open-source graph deep learning library for materials science and chemistry. arXiv, 2025.

Boris Kozinsky, Albert Musaelian, Anders Johansson, and Simon Batzner. Scaling the leading
accuracy of deep equivariant models to biomolecular simulations of realistic size. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1-12, 2023.

Ask Hjorth Larsen, Jens Jgrgen Mortensen, Jakob Blomgvist, Ivano E Castelli, Rune Christensen,
Marcin Dutak, Jesper Friis, Michael N Groves, Bjgrk Hammer, Cory Hargus, et al. The atomic
simulation environment—a python library for working with atoms. Journal of Physics: Condensed
Matter, 29(27):273002, 2017.

Yi-Lun Liao, Brandon Wood, Abhishek Das*, and Tess Smidt*. EquiformerV2: Improved Equivariant
Transformer for Scaling to Higher-Degree Representations. In International Conference on Learn-
ing Representations (ICLR), 2024. URL https://openreview.net/forum?id=mCOBKZmrzD,

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, page 1-6, 2023. ISSN
0028-0836. doi: 10.1038/s41586-023-06735-9.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023. doi: 10.1038/s41467-023-36329-y.

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand Ceder. Python
materials genomics (pymatgen): A robust, open-source python library for materials analysis. 68:
314-319, 2013. ISSN 0927-0256. doi: 10.1016/j.commatsci.2012.10.028.

Yutack Park, Jaesun Kim, Seungwoo Hwang, and Seungwu Han. Scalable parallel algorithm for graph
neural network interatomic potentials in molecular dynamics simulations. Journal of Chemical
Theory and Computation, 20(11):4857-4868, 2024. ISSN 1549-9618. doi: 10.1021/acs.jctc.
4c00190.

Saro Passaro and C Lawrence Zitnick. Reducing so (3) convolutions to so (2) for efficient equivariant
gnns. In International conference on machine learning, pages 27420-27438. PMLR, 2023.

Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical approaches to image segmenta-
tion. Pattern recognition, 46(3):1020-1038, 2013.

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made
simple. 77:3865-3868, 1996. ISSN 0031-9007. doi: 10.1103/physrevlett.77.3865.

Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computa-
tional Physics, 117(1):1-19, 1995. ISSN 0021-9991. doi: 10.1006/jcph.1995.1039.

Alex Pothen. Graph partitioning algorithms with applications to scientific computing. In Parallel
Numerical Algorithms, pages 323-368. Springer, 1997.

11

https://openreview.net/forum?id=mCOBKZmrzD

431
432
433

434
435
436

437

439

440
441
442

443
444
445

446
447
448

449
450
451
452
453
454

455
456
457

459
460
461

462
463
464
465

466
467
468

469
470
471
472

473
474
475

476
477
478

Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin Head-Gordon. A fifth-order
perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6):
479-483, 1989. ISSN 0009-2614. doi: 10.1016/s0009-2614(89)87395-6.

Kiristof Schiitt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pages 9377-9388. PMLR, 2021.

Kristof T Schiitt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Miiller.
Schnet—a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24), 2018.

Tan Shi, Qingsong Tu, Yaosen Tian, Yihan Xiao, Lincoln J. Miara, Olga Kononova, and Gerbrand
Ceder. High active material loading in all-solid-state battery electrode via particle size optimization.
Advanced Energy Materials, 10(1), 2020. ISSN 1614-6832. doi: 10.1002/aenm.201902881.

Guillem Simeon and Gianni De Fabritiis. Tensornet: Cartesian tensor representations for efficient
learning of molecular potentials. Advances in Neural Information Processing Systems, 36:37334—
37353, 2023.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. Chemical science, 8(4):3192-3203,
2017.

Keke Song, Rui Zhao, Jiahui Liu, Yanzhou Wang, Eric Lindgren, Yong Wang, Shunda Chen, Ke Xu,
Ting Liang, Penghua Ying, Nan Xu, Zhiqiang Zhao, Jiuyang Shi, Junjie Wang, Shuang Lyu, Zezhu
Zeng, Shirong Liang, Haikuan Dong, Ligang Sun, Yue Chen, Zhuhua Zhang, Wanlin Guo, Ping
Qian, Jian Sun, Paul Erhart, Tapio Ala-Nissila, Yanjing Su, and Zheyong Fan. General-purpose
machine-learned potential for 16 elemental metals and their alloys. Nature Communications, 15
(1):10208, 2024. doi: 10.1038/s41467-024-54554-x.

Anuroop Sriram, Abhishek Das, Brandon M. Wood, Siddharth Goyal, and C. Lawrence Zitnick.
Towards training billion parameter graph neural networks for atomic simulations. In The Tenth
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=0;jP2n0YFmKG.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1222—1230, 2012.

Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown,
Paul S Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al.
Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales. Computer physics communications, 271:108171, 2022.

David A Tolliver and Gary L Miller. Graph partitioning by spectral rounding: Applications in image
segmentation and clustering. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 1, pages 1053-1060. IEEE, 2006.

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench,
P. Lopes, 1. Vorobyov, and A. D. Mackerell. Charmm general force field: A force field for drug-
like molecules compatible with the charmm all-atom additive biological force fields. Journal of
Computational Chemistry, 31(4):671-690, 2010. ISSN 0192-8651. doi: 10.1002/jcc.21367.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Devel-

opment and testing of a general amber force field. Journal of Computational Chemistry, 25(9):
1157-1174, 2004. ISSN 0192-8651. doi: 10.1002/jcc.20035.

12

https://openreview.net/forum?id=0jP2n0YFmKG
https://openreview.net/forum?id=0jP2n0YFmKG
https://openreview.net/forum?id=0jP2n0YFmKG

479
480
481

482
483
484

485
486
487

488
489
490

Tong Wang, Xinheng He, Mingyu Li, Yatao Li, Ran Bi, Yusong Wang, Chaoran Cheng, Xiangzhen
Shen, Jiawei Meng, He Zhang, et al. Ab initio characterization of protein molecular dynamics with
ai2bmd. Nature, pages 1-9, 2024.

Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen, Shuizhou
Chen, Claudio Zeni, et al. Mattersim: A deep learning atomistic model across elements, tempera-
tures and pressures. arXiv preprint arXiv:2405.04967, 2024.

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics. Physical review letters, 120
(14):143001, 2018.

Yuxing Zhou, Wei Zhang, En Ma, and Volker L. Deringer. Device-scale atomistic modelling
of phase-change memory materials. Nature Electronics, 6(10):746-754, 2023. doi: 10.1038/
s41928-023-01030-x.

13

491

492

494

503

505
506

A Distributing Atom Graph

Algorithm 1 Atom Subgraph Creation

Input: Atomic system nodes and edges
Output: Partitioned subgraph with mappings
1. Create a partition rule based on the longest cell dimension (vertical walls)
2. Assign atoms to buckets (PURE/TO/FROM) using algorithm [3|
3. Create node array and corresponding marker array for each partition:
for each starting partition p; (creating marker arrays) do
initialize markers array
markers[0] = 0
markers[1] = len(PURE)
marker_index = 0
for each destination partition p; do
concatenate TO[p;] to p; node array
markers[marker_index] = markers[marker_index - 1] + len(TO[p,])
marker_index = marker_index + 1
end for
for each source partition py do
concatenate FROM[py] to p; node array
markers[marker_index] = markers[marker_index - 1] + len(FROM|px])
marker_index = marker_index + 1
end for
end for

B Distributing Three-body Graphs

Distributing the bond graph involves selecting all 1-hop and 2-hop neighbors of the pure atom graph
nodes assigned to a partition. We then create an edge table mapping from node ids to edges originating
from the node id pointing to a different node. By recursively traversing the table, we are able to create
the bond graph for each partition in parallel. Border nodes within the bond graph are associated with
the 1-hop edge neighbors of border edges within the atom graph — hence necessitating the inclusion
of 2-hop neighbors. The parallel bond graphs thus contain the 1-hop neighbors of each pure bond
graph node assigned to the partition. The complete procedure is found in Algorithm

Algorithm [2] depicts the method in which to distribute three-body graphs (also known as bond graphs)
as well as calculating the necessary information to perform data transfer between various partitions at
each convolution of the three-body graph.

C Assign to Partitions

Algorithm [3]is the method used to determine assign individual nodes to the PURE/TO/FROM buckets
of each partition. It is used extensively in both atom graph creation (algorithm [I)) and three-body
graph creation (algorithm [2).

14

Algorithm 2 Distributed Bond Line Graph Construction

Input: Global edges E, partitions { P, }, bond cutoff r, tolerance T
Output: Line graphs {L;} for partitions { P, }
for each partition P; do
Initialize TO/FROM/PURE arrays for bond graph nodes (edges within atom graph)
Initialize edge tables 7T; for each partition
Build Edge Table 7;:
for each edge e € E with dist(e) < r + 7 do
if dst(e) in P; then
append e to T;[e.src]
if e is border edge for P; then
add e to FROM,,, [which_partition(e.src)]
else if e is border edge for another partition P; then
add e to TOwhichfpartition(e.src) [Pz]
end if
end if
end for
for each edge e € E with dist(e) < r + 7 do
if e is pure edge assigned to P; then
Append e to T;[e.src]
add e to PURE[which_partition(e.dst)]
end if
end for
Localize Edges
for each e € T} do
Create mappings between global and local bond graph node indices
Assign local node indices to each e in T; Vi
end for
Build Line Graph L;
for each partition P; do
for each v € T; do
for each e € T;[v] do
for each ¢’ € T;[e.dst] do
if needs_in_line(e’) then
Draw an edge in bond graph from e to ¢’ using local node indices
end if
end for
end for
end for
end for
end for

15

507

508
509

511

512

514
515
516
517
518
519

520

521
522

524
525

Algorithm 3 assign_to_partitions Subroutine

Input: Nodes, edges, partitions
Output: PURE, TO, FROM arrays for each partition
1. Initialize node tracking:
Create table node_to_partition[node_id] < -1V nodes
2. Populating node_to_partition
for each edge e do
node_to_partition [which_partition(e.src)] =
which_partition(e.dst)
end for
3. Assigning nodes to partition buckets
for each node n do
if node_to_partition[n] = —1 then
add n to PURE array of which_partition(n)
else
add n to TOyhich_pariition(n) [n0de_to_partition[n]]
add n to FROMo4c_to_partition[n] [Which_partition(n)]
end if
end for

D MLIP Versions in Benchmark

The table below shows the checkpoint versions of the MLIPs tested. Note that the eSEN model we
benchmarked is not coming from the public pretrained checkpoints of 30.2M parameters, which is
too big for efficient parallelized simulation. Instead, we initialized a 3.2M eSEN in accordance with
the eSEN-MPTrj-3.2M configuration found in |Fu et al.| [2025]].

Table 2: Pretrained MLIPs Model Specifications

Model Version ModelSize InteractionRange Reference
CHGNet matgl-MatPES-PBE-2025.2.10 2.7M 45A [Deng et al.|[2023]
MACE MACE-MP-0b-small 3.8M 12A [Batatia et al., [2023]
TensorNet 'matgl-MatPES-PBE-v2025.1 0.8M 10A [Ko et al., [2025]

eSEN eSEN-MPTrj-3.2M 3.2M 12A [Fu et al., 2025]

E Single GPU Benchmarking Details

Because DistMLIP parallelizes neighbor list construction as well as underlying threebody graph
creation, utilizing 2 DistMLIP partitions oftentimes leads to faster total inference time and less
total memory consumption compared to a baseline implementation (this is especially the case
with CHGNet). Therefore, to maintain a fair comparison, all single-GPU results reported in any
benchmark utilize 2 DistMLIP partitions performing operations on the same GPU. Therefore, only 1
GPU is utilized, but the same fast graph creation algorithms and implementation are shared. For all
benchmarking tasks, 128 threads were used for neighbor list construction and graph creation.

F Inference Time Breakdown

Neighbor list construction could take a substantial amount of inference time when the simulated
system is large. In order to address this issue, we parallelized neighbor list construction in DistMLIP
through multi-threading, so that graph creation time is substantially decreased compared to the
single-thread neighbor list construction in Pymatgen [Ong et al.,|2013]. The resulting inference time
breakdown is shown in Table 3]

16

https://github.com/materialsvirtuallab/matgl/tree/main/pretrained_models/CHGNet-MatPES-PBE-2025.2.10-2.7M-PES
https://github.com/ACEsuit/mace-foundations/tree/main/mace_mp_0b
https://github.com/materialsvirtuallab/matgl/tree/main/pretrained_models/TensorNet-MatPES-PBE-v2025.1-PES

526

527
528
529
530
531

533

534
535
536
537

538
539
540
541
542
543
544
545

547
548
549

Table 3: Timing results (in seconds) for MACE, TensorNet, and CHGNet models across computation
stages. Graph Creation consists of both DistMLIP graph creation as well as model-specific graph
configuration. Feature Calculation consists of single-GPU computation overhead.

Stage MACE TensorNet CHGNet
Graph Creation 0.2480 0.1262 0.3386
Feature Calculation 0.0437 0.1297 0.1018
Forward Pass 0.1701 0.1782 1.8216
Backward Pass 0.0288 0.5471 1.4074

G Scaling System Density

In Fig. |5] we plot the memory consumption and inference time of scaling system density (atoms/A®)
of an SiO, system with 3456 atoms. DistMLIP inference with 4 A100-80GB GPUs were used. Denser
atomic systems lead to a linear increase in total neighbor list size, driving up memory usage as well
as inference time due to the decreased sparsity within the underlying atom graph’s adjacency matrix.
DistMLIP and its zero-redundancy inference algorithm scales memory consumption according to the
increase in edge count.

(a) (b)
250
—e— MACE-3.8M 4
.E.: 200 TensorNet-0.8M .
b —e— CHGNet-2.7M 0
o —8— eSEN-3.2M o3
o 150 £
8 =
[o
> 100 g2
g :
<
3
= 50 1
0
0.05 0.10 0.15 0.050 0.075 0.100 0.125 0.150
Density (atoms/A3) Density (atoms/A3)

Figure 5: The effects of scaling density on (a) memory consumption, and (b) inference time. Both
plots are the result of scaling atomic density (atoms/A®) on an arbitrary system with fixed atom count
using DistMLIP and 4 A100-80GB GPUs. eSEN is missing a datapoint due to out-of-memory issues.

H Benchmarking Against SevenNet

In this section, we benchmark the inference time and max capacity of the 4 MLIPs in DistMLIP
against the distributed inference of SevenNet [Park et al.| 2024]. All the MLIPs are constructed to
have a similar number of parameters as SevenNet-0 (0.8M parameters). All tests are performed on
the supercells of the a-quartz SiO,. Inference times are averaged over 10 trials after 5 warmup trials.

Fig. E] shows the result for (a)SevenNet, (b)MACE, (c)TensorNet, (1)CHGNet, and (e)eSEN. The
number in each box in the heat map indicates the inference time of the given cell and the number
of GPUs, and darker color represents faster inference. Grey boxes indicate the simulation failed
due to the GPU out-of-memory error. We reproduced a similar maximum simulation size of 110k
a-quartz SiO, with SevenNet on 8 NVIDIA-A100-80GB, as indicated in the original manuscript.
Our results indicated that MACE, TensorNet, and CHGNet can generally simulate larger maximum
capacity at faster speed in DistMLIP. For eSEN, all experiments failed due to the extensive memory
consumption.

I Alignment of Single-device and Multi-device Predictions

DistMLIP’s atom graph and bond graph distribution algorithms are exact in principle. However,
numerical differences arise when performing computation in a distributed manner compared to
on a single GPU. This is a result of non-determinism occurring during matrix multiplications and

17

550
551
552
553
554

555
556
557
558
559
560

z

SevenNet

o

(a)

IS

o
3 2 =
a 0 a z
2 i 2 3o
o £ 3 E
= E o S
S 2o 8 2o

>
5 z £ <
z 1 z 1
E S S S S S S ° > N S L LS o
P § O R S SR A S A
£ &F S & W £ & X N s s
R I N S A O
Number of Atoms Number of Atoms
(d)

(© TensorNet s CHGNet s

®
@ 4 o 4
> P
2 o o w
° £y o 3 e
5 g 3 £
= e o S
H te ¢ 2
H z 5 <
z 1 z 1
I R S . S 0 e AL S P 0
R S ¥ L S 2§
S S S § £ &L & &
RO A T & &
Number of Atoms Number of Atoms
)
© eSEN
5
©

)

> 4
3 o

<
30

s E
5 P
£~ ‘g
5 <
z

¢ & & & S PSS P
£ P S & U
S & SIS & 8 &S
R N S ¥ ©

Figure 6: Inference speed and max capacity on a-quartz SiO,. Except for (a), all other models are
distributed through DistMLIP. (a) SevenNet plus LAMMPS support. (b) MACE, (c) TensorNet,
(d) CHGNet, and (e) eSEN. Because SevenNet is a 0.8M parameter model, all other DistMLIP
models are initialized at 0.8M parameters for comparison purposes. Grey boxes denote the inability
to simulate the system either due to out-of-memory issues or system-size issues.

other operations on different GPUs. Therefore, the exact same model and weights running single
GPU inference on different GPUs within the same node will also yield slightly different results. In
Fig. [7] we plot the energy/atom error in meV/atom units for MACE-3.8M, TensorNet-0.8M, and
CHGNet-2.7M. The result shows that the numerical error from different GPUs is far below chemical
accuracy.

e

1e-4 1e-4 1e-5

)
Error (meV/atom)
< < o ¢ =
o °
Error (meV/atom)

N
°
N

o

o

IS
°
©

System
—— GaN
H20
—A— Li3PO4
—&- sio2

~

Error (meV/atom)
w
°
S

o

00 B— B @ @ w 0.0
4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of GPUs Number of GPUs Number of GPUs

N
w

Figure 7: Energy (meV/atom) discrepancy between DistMLIP’s multi-GPU inference and baseline
single-GPU inference for (a) MACE-3.8M, (b) TensorNet-0.8M, and (¢) CHGNet-2.7M on multiple
chemical systems. Note that DistMLIP’s graph partitioning and distribution algorithms are exact, and
these non-perfect discrepancies are a result of non-deterministic matrix multiplication operations on
different devices.

LI.1 Usage

Load the MLIP as usual

chgnet = ...

from DistMLIP.implementations.matgl import CHGNet_Dist
chgnet_dist = CHGNet_Dist.from_existing(chgnet)

18

565
566
567

chgnet_dist.enable_distributed_mode ([0, 1, 2, ...]) # Specify GPU ids
Run inference/simulation as usual

Code 1: Example code for using DistMLIP along with CHGNet. DistMLIP is designed to be a plug-
and-play platform for distributed inference. The current implementation only supports single-node
multi-GPU inference.

J Parallelizing a Model in DistMLIP

DistMLIP is designed to be both high-performant as well as easily usable. Parallelizing new MLIPs
using DistMLIP is a straightforward process that can be done purely in Python. A few key points of
DistMLIP are outlined in[I.1}

19

568

569
570

574

583

584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

602
603
604
605
606
607

J.1 Model Parallelization Example

Creating a DistMLIP distributed object

dist = Distributed.create_distributed(...)

Distributed edge information

dist.src_nodes, dist.dst_nodes # List of src and dist node pairs for
each partition

Distributing node/edge features

node_features_dist = dist.distribute_node_features(node_features)

edge_features_dist = dist.distribute_edge_features(edge_features)

Exchanging node information

dist.atom_transfer (node_features_dist)

Aggregating node features

node_features = dist.aggregate (node_features_dist)

Code 2: A subset of the available features implemented into DistMLIP. These features, implemented
as a Python wrapper over efficient C and PyTorch code, allow for the straightforward distribution of
any arbitrary MLIP.

K Benchmarking Partition Strategies
K.1 Graph Partitioning

Graph partitioning algorithms find applications in solving sparse linear systems of equations, circuit
partitioning and layout, VLSI design, social network analysis, clustering algorithms, and image
segmentation [Pothenl [1997| Stanton and Kliot, [2012| [Bader et al., 2013| [Tolliver and Miller, 2006,
Peng et al., [2013]]. One common use case in graph partitioning is to create mutually exclusive
spanning sets of nodes that contain a minimum number of edges that cross from one partition to
another. This use case can be tackled using sparse, symmetric matrix reordering methods such as
the Reverse Cuthill-Mckee (RCMK) algorithm, which permutes a sparse matrix to minimize its
bandwidth [Cuthill and McKee, |1969, |Azad et al., 2017]]. METIS is a graph partitioning algorithm
that utilizes a graph coarsening phase, an initial partitioning sequence over the coarsened graph, and
an uncoarsening and partition refinement stage [Karypis and Kumar, |1998]]. However, in atomistic
simulation, the underlying graphs are recalculated and repartitioned at each time step. Therefore,
even small latency increases during the graph creation and partitioning stage get compounded into
significant increases in overall simulation time. For MLIPs, graph parallelism has also been explored
for distributed training of large, computationally expensive MLIPs |Sriram et al.|[2022].

We compare DistMLIP’s vertical wall partitioning strategy with other common graph partitioning
algorithms. In Table[d] we replace DistMLIP’s current vertical wall partitioning strategy with the
Reverse Cuthill-McKee (RCMK) and METIS algorithms while holding the other components of
Algorithm[T]and Algorithm [3|constant. Neither RCMK nor METIS supports threebody bond graph
creation. RCMK and METIS both utilize the graph’s topology in order to partition the graph such
that the number of crossing edges between partitions is minimized. DistMLIP’s current partitioning
strategy, on the other hand, doesn’t perform graph traversals but rather uses atomic positions as a
heuristic in order to partition the graph. In Table[d} we also include the LAMMPS spatial partitioning
results for comparison. As a result, we perform all benchmarks with the MACE-3.8M model.

20

Table 4: MD step time (in ps / (atomxstep)) for various graph and spatial partitioning strategies.
RCMK refers to the Reverse Cuthill-McKee algorithm used for graph partitioning. Both RCMK and
METIS still utilize the DistMLIP platform, only the partitioning strategy is replaced. The model used
was MACE-3.8M, and LAMMPS spatial partitioning values are included for comparison.

Method # GPUs s / (atomxstep) | # of atoms (in thousands)
LizPOy4 H->O GaN MOF 2w49
METIS 4 GPUs 81.19/108.0 101.67|96.0 68.98|77.0 83.60|125.0 78.93|69.0
8 GPUs 62.18]216.0 56.76|216.0 77.15|207.0 69.63]216.0 67.10]69.0
RCMK 4 GPUs 77.49|110.0 98.02|96.0 66.92|77.0 82.24|125.0 79.94|69.0
8 GPUs 57.22]216.0 51.67|216.0 74.01|207.0 65.74|216.0 65.51]69.0
LAMMPS 4 GPUs 16.90|41.4 10.10|24.6 5.10]45.0 9.40]27.0 OOM
8 GPUs 12.30|65.9 8.50(82.9 2.70]77.8 6.20]64.0 OOM
Vert. wall 4 GPUs 15.30|110.6 18.20]96.0 14.60]128.0 14.70|128.0 20.10|69.3
' 8 GPUs 11.00|216.0 11.60|210.1 9.60[250.0 10.90|216.0 14.00|69.3

21

	Introduction
	Related Work
	Machine Learning Interatomic Potentials
	Spatial Partitioning

	Methods
	Graph-Parallel Message Passing
	Distributing Atom Graphs

	Results
	Maximum Capacity
	Strong and Weak Scaling
	Interaction Range
	Scaling Model Size
	Real World Simulations

	Conclusion
	Distributing Atom Graph
	Distributing Three-body Graphs
	Assign to Partitions
	MLIP Versions in Benchmark
	Single GPU Benchmarking Details
	Inference Time Breakdown
	Scaling System Density
	Benchmarking Against SevenNet
	Alignment of Single-device and Multi-device Predictions
	Usage

	Parallelizing a Model in DistMLIP
	Model Parallelization Example

	Benchmarking Partition Strategies
	Graph Partitioning

