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Abstract

Large-scale atomistic simulations are essential to bridge computational materials1

and chemistry to realistic materials and drug discovery applications. In the past few2

years, rapid developments of machine learning interatomic potentials (MLIPs) have3

offered a solution to scale up quantum mechanical calculations. Parallelizing these4

interatomic potentials across multiple devices poses a challenging, but promising5

approach to further extending simulation scales to real-world applications. In this6

work, we present DistMLIP, an efficient distributed inference platform for MLIPs7

based on zero-redundancy, graph-level parallelization. In contrast to conventional8

space-partitioning parallelization, DistMLIP enables efficient MLIP parallelization9

through graph partitioning, allowing multi-device inference on flexible MLIP10

model architectures like multi-layer graph neural networks. DistMLIP presents11

an easy-to-use, flexible, plug-in interface that enables distributed inference of12

pre-existing MLIPs. We demonstrate DistMLIP on four widely used and state-of-13

the-art MLIPs: CHGNet, MACE, TensorNet, and eSEN. We show that existing14

foundation potentials can perform near-million-atom calculations at the scale of a15

few seconds on 8 GPUs with DistMLIP.16

1 Introduction17

Atomistic simulation has been the workhorse in computational materials and drug discovery over the18

recent years [Merchant et al., 2023, Jain et al., 2013, De Vivo et al., 2016]. The chemical properties19

and behavior of a material are essentially determined by the interactions in the given set of atomic20

arrangements. In the most simplified framework, one can formulate this problem as solving the21

function that determines the potential energy surface (PES) of a set of atoms given by E = ϕ(r⃗i, Ci),22

where E is the energy, r⃗i and Ci are the positions and chemical identities of the atoms.23

To study the material’s properties, multiple fundamentally different methods have been developed to24

obtain or construct the function ϕ. Empirical interaction rules such as the electrostatic interactions25

and Lennard-Jones potential [Jones, 1924] qualitatively describe the bond energy between atoms,26

but only predict the very fundamental behavior of the materials. Classical force fields (FF) like27

embedded atom methods [Daw and Baskes, 1984], CHARM [Vanommeslaeghe et al., 2010], and28

Amber [Wang et al., 2004] improved the prediction of the PES by adding more descriptor terms into29

ϕ. These classical FFs are cheap, intuitive, and explainable, but are often not accurate enough and30

have been constructed and applied to narrow chemical domains and a few elements. Fundamentally,31

the interactions in ϕ are determined by the electronic structure of a material and can be solved in32

first principles by quantum mechanics. Quantum chemical simulation methods, such as Density33

Functional Theory (DFT) [Perdew et al., 1996] and coupled clustering (CC) methods [Raghavachari34

et al., 1989], enabled the ab initio calculations of atomic behavior that are much more accurate than35

empirical methods. However, their computational complexity limits the practical use of quantum36
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chemical simulation methods for many realistic applications. DFT, the most widely used ab initio37

simulation method, scales cubically O(N3
e ) with the number of electrons and is therefore limited to38

simulating only a few hundred atoms [Beck, 2000]. Prohibitively high computational cost makes39

DFT only useful in describing materials properties that can be learned from a small simulation cell40

[Wang et al., 2024].41

Machine learning approaches such as machine learning interatomic potentials (MLIPs) open the42

possibility to increase simulation scale while retaining quantum chemical accuracy by building ML43

surrogate models trained on DFT and CC data [Wang et al., 2024, Gasteiger et al., 2021, Deng44

et al., 2023, Batzner et al., 2022, Musaelian et al., 2023, Fu et al., 2025]. Compared to feature-based45

classical FFs, deep-learning-based MLIPs enable improved learnability to better model the PES46

data. Graph neural networks (GNNs), especially, have demonstrated extraordinary computational47

efficiency and accuracy by learning both long-range and high-order atomic interactions through48

message passing. By design, the computation time of MLIPs scales linearly with the number of atoms49

O(N), enabling simulations with tens of thousands of atoms at nano-second time scale.50

Many materials engineering problems involve finite-sized effects like protein folding [Jumper et al.,51

2021], interfacial reactions [Du et al., 2023], particle-size effects [Shi et al., 2020], and formation of52

nano-domains [Holstun et al., 2025]. Such systems require meso-scale simulations with upwards of53

millions of atoms, necessitating the ability to further scale the capacity of MLIP simulations. One54

promising solution is to expand MLIP inference from single-device to multi-device inference. Simu-55

lation packages such as LAMMPS provide ad hoc solutions for multi-GPU simulation [Thompson56

et al., 2022]. Multi-device simulations are realized by dividing the total simulation cell into multiple,57

mutually exclusive, small cells for each device. Each small cell is then padded with additional atoms58

beyond the cell boundary in order to properly calculate the energy and forces within the small cell.59

This method, known as spatial partitioning, is based on the fundamental assumption that the force60

field only contains short-range interactions [Plimpton, 1995].61

Since most MLIPs are designed to be long-ranged, expanding the number of utilized GPUs during62

inference time is a nontrivial task due to the necessity to distribute the large system cell across63

multiple devices. Currently, there exists no native multi-GPU support for GNN-based MLIPs as most64

MLIPs have been implemented for only single-device inference. In order to support fast, accurate,65

and parallelizable atomistic simulations, we hereby present a distributed MLIP inference platform,66

DistMLIP, that enables efficient multi-device inference without the need for a modified architecture67

or additional training. Our highlighted contributions are as follows:68

• Written in standalone high performance C code, DistMLIP features an efficient, general,69

and versatile parallel inference platform for MLIP inference. By design, most popular70

MLIPs can be supported with a minimal amount of adaptation. In this work, we include71

benchmarking results of 4 widely used MLIPs: MACE, TensorNet, CHGNet, and eSEN.72

• DistMLIP leverages graph-level partitioning that allows node and edge information to73

transfer between GPUs at each layer of the forward pass while still maintaining the in-74

termediates required to perform backpropagation. This allows efficient parallelization of75

long-range GNN-based MLIPs, which is standard for most MLIPs today. Compared to76

spatial partitioning, graph partitioning has zero redundancy, meaning that no redundant77

computation is thrown away during parallel inference.78

• We implemented the distribution of both the atom graph and the augmented three-body line79

graph, a common graph structure used in MLIPs to encode three-body atomic interactions.80

• To allow flexible usage, our implementation does not depend on a 3rd party distributed81

simulation library such as LAMMPS. As a result, DistMLIP supports plug-in usage of any82

MLIP workflow.83

• All code in DistMLIP is open sourced at https://github.com/AegisIK/DistMLIP.84

2 Related Work85

2.1 Machine Learning Interatomic Potentials86

Machine learning interatomic potentials (MLIPs) predict the potential energy surface (PES) by87

inputting atomic numbers, atomic positions, and optionally the lattice, and outputting the energy and88
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forces of the system [Bartók et al., 2010, Zhang et al., 2018]. The most common MLIP architecture89

today is the graph neural network (GNN), where nodes in the atom graph represent atoms and edges90

in the atom graph represent the pair-wise distances between atoms that are within a pre-defined cutoff91

distance [Batzner et al., 2022, Simeon and De Fabritiis, 2023, Passaro and Zitnick, 2023, Gasteiger92

et al., 2021, Schütt et al., 2021, 2018, Smith et al., 2017]. GNN computation scales linearly with the93

number of atoms, as the amount of computation is associated with the neighbors within the receptive94

field of each atom. Some MLIPs also pass messages on top of higher-order graphs, such as threebody95

bond graphs, that encode angles as pairwise information between bonds [Choudhary and DeCost,96

2021, Deng et al., 2023, Yang et al., 2024]. MLIPs built on top of the transformer architecture have97

also been introduced, where "tokens" represent individual nodes and full self attention is performed98

over all tokens [Liao et al., 2024, Vaswani et al., 2017]. Recently, a class of foundation potentials99

have been shown to generalize across diverse chemistries by pretraining on massive datasets [Chen100

and Ong, 2022, Deng et al., 2023, Chanussot* et al., 2021, Barroso-Luque et al., 2024, Yang et al.,101

2024, Merchant et al., 2023, Kaplan et al., 2025]. These pretrained foundation potentials substantially102

reduce the need for target-system training, and their open-sourced pretrained checkpoints serve as103

ready-to-use universal MLIPs.104

2.2 Spatial Partitioning105

LAMMPS implements multi-GPU inference via a spatial partitioning approach where the simulation106

space is split into mutually exclusive partitions. For each mutually exclusive partition, LAMMPS107

creates a second, larger partition that includes all atoms up to the interaction radius of the FF,108

commonly known as border or ghost nodes. This is required as the energy and force calculation of109

the atoms within each mutually exclusive partition requires the atomic information from all nodes110

within the model’s interaction radius. This leads to highly redundant calculations as the computation111

performed on the ghost nodes is thrown away after each time step. By estimate, a 64-molecule112

water system calculated with a 6-layer GNN that has a 6 angstrom cutoff distance would require113

the computation of 20,834 ghost atoms when using spatial partitioning [Musaelian et al., 2023].114

Furthermore, unlike classical FFs, most current MLIPs do not have a mature interface with LAMMPS,115

making spatial partitioning practically infeasible for the majority of MLIPs that have been developed.116

Allegro has been developed as a strictly local, E(3)-equivariant interatomic potential that features117

efficient parallelization through space partitioning due to its short-range design [Musaelian et al.,118

2023]. Instead of performing message passing where messages are passed between nodes several119

times, it encodes each atom-pair’s relative geometry in learned spherical harmonic components and120

captures many-body interactions via trainable tensor products of these features. Because of this121

strict locality, Allegro scales particularly well on large atomic systems – Kozinsky et al. [2023]122

used Allegro and LAMMPS to simulate a bulk Ag model with 100 million atoms, achieving 0.003123

microseconds/atom-timestep using 128 NVIDIA-A100-80GBs.124

However, strictly local models experience key limitations. The need for efficient parallelization125

restricts their interaction range to only a few angstroms, preventing their use on systems that require126

the modeling of long-range interactions [Zhou et al., 2023, Song et al., 2024, Gong et al., 2025,127

Cheng, 2025, Anstine and Isayev, 2023]. Furthermore, the short-range design prevents the MLIP’s128

application from simultaneously learning diverse chemical environments. As the short-range MLIP’s129

cutoff is often determined by the radial distribution function of one targeted material system, it is130

infeasible to determine a universal cutoff that works for many materials if the training dataset contains131

more than one chemical system. These problems raise the need for a simple, unified, and versatile132

API to parallelize MLIPs.133

SevenNet, derived from the Nequip architecture [Batzner et al., 2022], is one of the first MLIPs that134

support graph-parallel inference [Park et al., 2024]. A simulation of 112,000 atoms Si3N4 was demon-135

strated by distributing the 0.84 million parameter SevenNet-0 on 8 A100-80GB GPUs. However, its136

graph parallel algorithm is designed to work specifically with the SevenNet implementation and is not137

easily transferable to other MLIP architectures. Furthermore, SevenNet’s graph-parallelization relies138

on the combination of TorchScript and LAMMPS, making it unapplicable to simulation tasks and139

workflows that are not built upon LAMMPS [Larsen et al., 2017, Ganose et al., 2025, Barroso-Luque140

et al., 2022, Ko et al., 2025].141
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3 Methods142

Figure 1(a) denotes the usage of DistMLIP. Public MLIP models can be easily adapted to perform143

distributed large simulations with DistMLIP. The core infrastructure of DistMLIP is in the construction144

of graphs, subgraphs, and communication-related metadata.145
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9876543210

1
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GPU 1
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Layer 1 Layer 2
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Distributed Large Simulation

Figure 1: An overview of DistMLIP. (a) DistMLIP takes public MLIP models and performs large-
scale, distributed simulations. (b) Partition the atom graph using a vertical spatial partitioning scheme,
and construct subgraphs containing the 1-hop neighbors and 2-hop neighbors of the original partition,
which are later used to calculate the distributed bond graphs. (c) Take the 2-hop atom graph and
create an edge table backbone mapping node IDs (black) to edge IDs (orange) that contain the node
ID as a source node. (d) Recursively traverse the edge table to construct the atom graph and bond
graph. (e) Data transfer in a simple 2-layer graph neural network with both atom graph and bond
graph.

3.1 Graph-Parallel Message Passing146

After the material system is converted into a graph using a neighbor list construction algorithm, it can147

be partitioned into subgraphs for each device, as illustrated in Fig. 1(b). At each graph convolution,148

each node’s features are updated according to the edge and node features of its incoming neighbors.149

We can partition the nodes of the graph G into p disjoint sets, constructing graphs G1 . . . Gn, where p150

is the number of partitions. Each of the graph partitions are distributed to its own GPU. To accurately151

calculate the features after one graph convolution, we expand Gi into G′
i, where G′

i consists of all152

nodes v ∈ G such that there exists an edge (v, u) ∈ E with u ∈ Gi. Formally,153

G′
i = {v ∈ V | ∃u ∈ Gi, (v, u) ∈ E},

where V and E are the set of nodes and edges of the graph G, respectively. This ensures that all154

incoming information necessary for computing the convolution is included within G′
i. Let Hi denote155

the set of all 1-hop nodes that were added to Gi to create G′
i. Formally,156

Hi = {v ∈ V \Gi | ∃u ∈ Gi, (v, u) ∈ E}.
This represents the set of nodes in V that are not in Gi but have an outgoing edge into Gi. We refer to157

these nodes as border nodes. Let E′
i denote the set of edges not in G′

i that point to the border nodes.158

Formally,159

E′
i = {(u, v) ∈ E | v ∈ Hi and (u, v) /∈ G′

i}.
We refer to these edges as border edges, which we use extensively when distributing the bond graph.160

After each graph convolution, we transfer the border node and border edge features to and from each161

partition, as shown in Fig. 1(d). After this transfer process, each GPU has the most updated node and162

edge feature to begin the next convolution. This implementation is completely model-agnostic and163

can be applied to both conservative and direct force prediction interatomic potentials.164
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3.2 Distributing Atom Graphs165

In order to distribute the atom graph, we first partition the graph spatially using vertical wall partitions.166

Once these partitions are created, we specify algorithm 3 to identify the border nodes that each167

partition requires as well as the border nodes within each partition that other partitions require. For168

each partition, we create TO, FROM, and PURE arrays of node ids. We denote TOi[j] as the bucket169

of node ids associated with G′
i required to be used in G′

j . Similarly, we denote FROMj [i] as the170

node ids associated with G′
j required to be used in G′

i. As a result, TOi[j] and FROMj [i] should171

be the same array. The PURE bucket specifies the nodes that are not required in the data transfer172

process. Furthermore, each edge drawn from a border node to a pure node is assigned to the partition173

responsible for the pure node.174

For each partition, we concatenate each of the arrays while maintaining a marker array containing the175

indices of the spans of each bucket. The marker array is used to efficiently index the spans of each of176

the features for data transfer between GPUs. The entire atom graph creation algorithm can be found177

in Algorithm 1 in Appendix A. We also discuss creating, partitioning, and distributing three-body178

bond graphs in Appendix B.179

4 Results180

In this section, we benchmark DistMLIP with the 4 MLIPs loaded with their public pretrained181

checkpoints: MACE-MP-0b-small-3.8M, CHGNet-2.7M, TensorNet-0.8M, and eSEN-3.2M. The182

details of the models and checkpoints can be found in appendix D.183

For all scaling timing-related benchmarks, model inference is performed 20 times, with the average184

of the final 10 trials reported. This is to allow GPUs to warmup before performing calculations. We185

use crystalline α-quartz SiO2 supercells for each timing benchmark, unless stated otherwise. The186

benchmarks are performed with a GPU cluster with 8×NVIDIA-A100-80GB-PCIe.187

(a) (b) (c)

Figure 2: Performance scaling of DistMLIP inference with 4 pretrained MLIPs: MACE-3.8M,
TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M. All results are averaged over 10 inferences on
a SiO2 supercell. (a) Maximum capacity (number of simulatable atoms) vs. the number of GPUs.
Values are normalized by the 1-GPU capacity. (b) Strong scaling of MLIP inference on DistMLIP,
where the total number of atoms in the supercell is held constant while the number of GPUs increases.
(c) Weak scaling behavior of MLIP inference on DistMLIP, where the number of atoms on each GPU
device is held constant while the number of GPUs increases.

4.1 Maximum Capacity188

A key performance metric is the maximum number of atoms that can be simulated by extending to189

multi-GPU inference. The maximum capacity scaling tests, with respect to the number of GPUs, can190

be found in Figure 2(a). All atom counts are normalized to be represented as multiples of the 1-GPU191

maximum capacity. As the number of GPUs (and thus, total GPU memory) increases, the maximum192

simulatable capacity increases linearly. The scaling of eSEN and MACE is further away from ideal193

scaling due to the one-time equivariant feature calculations that are occurring on a single GPU due to194

numerical stability concerns. The single GPU poses as a memory bottleneck for the system.195
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We also benchmark the maximum capacity and corresponding inference time against the SevenNet196

model while freezing model sizes, the results can be found in Appendix H.197

4.2 Strong and Weak Scaling198

Strong scaling tests, where the total size of the system remains constant while the number of GPUs199

increases, can be found in Figure 2(b). All times are normalized to be represented as multiples200

of the 1 GPU time. The system sizes for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and201

eSEN-3.2M were 33.5k, 22.0k, 9.8k, and 1.4k atoms respectively. We also plot the ideal scaling202

under the assumption that computation performed by each GPU is purely independent and perfectly203

parallelizable. In particular, eSEN’s high memory consumption results in small atomic cells. However,204

small atomic cells with partition widths that aren’t sufficiently large results in overlapping border205

nodes during each convolution – leading to increased overhead.206

Weak scaling tests, where the total size of the system increases proportionally with the number of207

GPUs (such that each GPU performs computation on the same number of atoms), are found in Figure208

2(c). All times are normalized to be represented as multiples of the 1 GPU time. The per GPU atom209

count for MACE-3.8M, TensorNet-0.8M, CHGNet-2.7M, and eSEN-3.2M are 34.6k, 19.9k, 9.9k,210

and 1.4k, respectively. In the case of eSEN-3.2M, weak scaling moves away from ideal scaling due211

to the high constant overhead associated with initial feature calculation. For CHGNet-2.7M, the212

computation required for the construction of the three-body graph scales with O(N6) where N is213

the number of atoms within the three-body cutoff, leading to suboptimal weak scaling when the214

simulation cell size increases.215

4.3 Interaction Range216

In this section, we benchmark how the parallelized simulation speed and capacity is affected by the217

MLIP’s interaction range and number of parameters. In Fig. 3 (a), we fix each model to around218

0.8M parameters and vary the number of message passing layers to increase the interaction range of219

the model. The 8 GPU inference is performed on the α-quartz SiO2 of 72k atoms. The measured220

inference times are then divided by the inference time of the baseline 10Å version of each MLIP.221

eSEN ran out of memory for the 45 and 50 angstrom tests.222

The results in Fig. 3 (a) show that DistMLIP only has a linear relation between parallelized inference223

time vs. interaction range. This is due to the additional computation cost from each increased message224

passing layer. Conversely, in conventional space partitioning, the volume of the simulation cell, and225

therefore the number of ghost atoms, grows cubically with the interaction range. This highlights the226

parallelization efficiency and zero calculation redundancy in graph partitioning.227

4.4 Scaling Model Size228

In Fig. 3 (b) and (c), we fix the number of message passing layers and vary the feature embedding229

sizes in the MLIP, therefore measuring the relation between parallelized inference speed/capacity and230

model parameter size. The result shows that by decreasing the model parameter size, a significant231

increase in simulation speed and maximum capacity can be achieved. The result suggests an estimated232

performance gain when distributed inference can be combined with smaller model sizes through233

MLIP model distillation [Amin et al., 2025].234

4.5 Real World Simulations235

We also show the performance of real distributed simulations on a variety of solid-state and236

biomolecular systems, utilizing 1, 4, and 8 GPUs. The results are found in Table 1. We report237

the microseconds/atom-timestep of each model-system pair as well as the number of simulated238

atoms in the system. The simulated systems can be found in Figure 4. L-MACE-3.8M refers to239

multi-GPU inference of MACE using LAMMPS spatial partitioning, while the other 4 models are240

distributed with DistMLIP. Note that L-MACE-3.8M uses a compiled model with custom equivariant241

CUDA kernels, while DistMLIP MACE-3.8M only runs the pure-PyTorch implementation. Custom242

equivariant CUDA kernels have been shown to accelerate MACE inference time by up to 7.2x on243

large models [Geiger et al., 2024]. No other model beyond MACE is reported due to the lack of244

LAMMPS multi-GPU inference support. We also compare DistMLIP’s current partitioning strategy245
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(a) (b) (c)

Figure 3: Effect of model configurations on graph-parallelized inference performance. (a) Inference
time vs. MLIP interaction range while keeping model parameter size fixed. Values are represented as
multiples of the 10Å interaction range. (b) Inference time and (c) maximum simulation capacity vs.
number of parameters in the MLIP, while keeping interaction range fixed.

with METIS and RCMK graph partitioning strategies on the same real world systems while holding246

the rest of the DistMLIP system constant. We report those results in Table 4 in Appendix K.247

(a)

(c)

(b)

(d)

(c)158Å133Å

11
4Å

155Å135Å

166Å

149Å

14
3Å

140Å

12
7Å

12
7Å

118Å
Battery Electrolyte Water Semiconductor

Metal Organic Framework Biomolecule

511Å

Figure 4: Sample simulation cells from real-world systems that are benchmarked in Table 1. (a)
Li3PO4 supercell of 216.0k atoms. (b) H2O supercell of 210.1k atoms. (c) GaN supercell of 250.0k
atoms. (d) Cd2B2H48C55N6(O2F)4 metal organic framework (MOF) system of 216.0k atoms. (e)
2w49, an insect flight muscle protein of 69.3k atoms.

Our result shows that most of the current foundation potentials, even at significant model sizes of a few248

million parameters, are capable of simulating near-million-atom scale systems when parallelized with249

DistMLIP on 8 GPUs. Moreover, we noticed that the inference time, when normalized by the number250

of atoms, is significantly decreased when any MLIP is being parallelized. This observation suggests251

chemically rare events can be cheaply simulated using a larger cell for a shorter simulation time,252

rather than a smaller cell for a longer simulation time, which is the standard way of current atomistic253

simulations. As estimated from the benchmark result in table 1, nanosecond near-million-atoms254

simulations can be achieved at the order of 10 days with standard MLIPs and DistMLIP on a few255

GPUs. The max capacity of the 12Å-MACE is tripled when coupled with DistMLIP compared to256

LAMMPS space partitioning. For a longer-range model like CHGNet, the capacity increase and257

inference speed-up will be more significant as memory usage in spatial partitioning scales cubically258

with interaction range.259
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Table 1: MD step time (in µs / (atom×step)) for the max capacity of 4 pretrained foundation potentials
on DistMLIP: MACE-MP-0b-small, TensorNet-MatPES-0.8M, CHGNet-MatPES-2.7M, eSEN-3.2M.
L-MACE-3.8M refers to MACE running on LAMMPS spatial partitioning. L-MACE-3.8M is a
compiled model using custom equivariant CUDA kernels while MACE-3.8M uses the pure-PyTorch
implementation of MACE.

Model # GPUs µs / (atom×step) | # of atoms (in thousands)

Li3PO4 H2O GaN MOF 2w49

L-MACE-3.8M
1 GPU 82.47 | 5.2 33.4 | 10.4 19.8 | 9.7 53.8 | 8.0 OOM
4 GPUs 16.9 | 41.4 10.1 | 24.6 5.1 | 45.0 9.4 | 27.0 OOM
8 GPUs 12.3 | 65.9 8.5 | 82.9 2.7 | 77.8 6.2 | 64.0 OOM

MACE-3.8M
1 GPU 44.8 | 21.9 45.9 | 20.7 39.5 | 43.9 41.0 | 16.0 OOM
4 GPUs 15.3 | 110.6 18.2 | 96.0 14.6 | 128.0 14.7 | 128.0 20.1 | 69.3
8 GPUs 11.0 | 216.0 11.6 | 210.1 9.6 | 250.0 10.9 | 216.0 14.0 | 69.3

TensorNet-0.8M
1 GPU 81.7 | 21.9 92.1 | 6.1 79.1 | 16.0 79.1 | 16.0 OOM
4 GPUs 24.3 | 64 26.9 | 49.1 22.9 | 65.5 23.2 | 54.0 OOM
8 GPUs 16.3 | 140.0 18.0 | 82.9 15.9 | 123.0 15.5 | 125.0 19.6 | 69.3

CHGNet-2.7M
1 GPU 179.7 | 4.1 154.8 | 6.1 100.0 | 5.5 174.6 | 2.0 OOM
4 GPUs 94.8 | 21.9 80.5 | 20.7 45.5 | 43.9 81.1 | 16.0 OOM
8 GPUs 75.4 | 46.7 64.5 | 49.1 41.9 | 77.8 67.1 | 54.0 OOM

eSEN-3.2M
1 GPU 727.3 | 0.9 663.2 | 1.3 438.9 | 1.0 454.3 | 1.0 OOM
4 GPUs 273.4 | 4.1 284.0 | 2.6 222.3 | 5.5 236.3 | 3.0 OOM
8 GPUs 241.2 | 8.0 249.1 | 6.1 198.9 | 8.2 210.0 | 6.0 OOM

5 Conclusion260

Scaling the quantum-chemical simulation accuracy to realistic application scales remains a critical261

challenge even with recent developments of ML interatomic potentials. To address this challenge, we262

present DistMLIP, a distributed MLIP inference platform based on efficient graph-level partitioning.263

Compared to the traditional parallelization method, space-partitioning through LAMMPS, DistMLIP264

serves as an easy and versatile distributed inference platform that supports long-range MLIPs.265

DistMLIP provides infrastructures for constructing and distributing atom and bond graphs, allowing266

the distribution of GNN-based MLIPs that are otherwise infeasible to parallelize.267

Our result shows that efficient and plug-and-play parallelization can be achieved when combin-268

ing DistMLIP with existing interatomic potentials. By distributing the MLIP simulation on 8269

NVIDIA-A100 GPUs, our result shows that nanosecond, near-million-atom scale simulations can be270

accomplished at the scale of 10 physical days with state-of-the-art MLIPs. We believe this effort to271

enable large-scale simulation would accelerate chemical, materials, and biological discovery.272
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A Distributing Atom Graph491

Algorithm 1 Atom Subgraph Creation

Input: Atomic system nodes and edges
Output: Partitioned subgraph with mappings
1. Create a partition rule based on the longest cell dimension (vertical walls)
2. Assign atoms to buckets (PURE/TO/FROM) using algorithm 3
3. Create node array and corresponding marker array for each partition:
for each starting partition pi (creating marker arrays) do

initialize markers array
markers[0] = 0
markers[1] = len(PURE)
marker_index = 0
for each destination partition pj do

concatenate TO[pj] to pi node array
markers[marker_index] = markers[marker_index - 1] + len(TO[pj ])
marker_index = marker_index + 1

end for
for each source partition pk do

concatenate FROM[pk] to pi node array
markers[marker_index] = markers[marker_index - 1] + len(FROM[pk])
marker_index = marker_index + 1

end for
end for

B Distributing Three-body Graphs492

Distributing the bond graph involves selecting all 1-hop and 2-hop neighbors of the pure atom graph493

nodes assigned to a partition. We then create an edge table mapping from node ids to edges originating494

from the node id pointing to a different node. By recursively traversing the table, we are able to create495

the bond graph for each partition in parallel. Border nodes within the bond graph are associated with496

the 1-hop edge neighbors of border edges within the atom graph – hence necessitating the inclusion497

of 2-hop neighbors. The parallel bond graphs thus contain the 1-hop neighbors of each pure bond498

graph node assigned to the partition. The complete procedure is found in Algorithm 2.499

Algorithm 2 depicts the method in which to distribute three-body graphs (also known as bond graphs)500

as well as calculating the necessary information to perform data transfer between various partitions at501

each convolution of the three-body graph.502

C Assign to Partitions503

Algorithm 3 is the method used to determine assign individual nodes to the PURE/TO/FROM buckets504

of each partition. It is used extensively in both atom graph creation (algorithm 1) and three-body505

graph creation (algorithm 2).506
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Algorithm 2 Distributed Bond Line Graph Construction

Input: Global edges E, partitions {Pi}, bond cutoff r, tolerance τ
Output: Line graphs {Li} for partitions {Pi}
for each partition Pi do

Initialize TO/FROM/PURE arrays for bond graph nodes (edges within atom graph)
Initialize edge tables Ti for each partition
Build Edge Table Ti:
for each edge e ∈ E with dist(e) ≤ r + τ do

if dst(e) in Pi then
append e to Ti[e.src]
if e is border edge for Pi then

add e to FROMpi
[which_partition(e.src)]

else if e is border edge for another partition Pj then
add e to TOwhich_partition(e.src)[Pi]

end if
end if

end for
for each edge e ∈ E with dist(e) ≤ r + τ do

if e is pure edge assigned to Pi then
Append e to Ti[e.src]
add e to PURE[which_partition(e.dst)]

end if
end for
Localize Edges
for each e ∈ Ti do

Create mappings between global and local bond graph node indices
Assign local node indices to each e in Ti ∀i

end for
Build Line Graph Li

for each partition Pi do
for each v ∈ Ti do

for each e ∈ Ti[v] do
for each e′ ∈ Ti[e.dst] do

if needs_in_line(e′) then
Draw an edge in bond graph from e to e′ using local node indices

end if
end for

end for
end for

end for
end for
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Algorithm 3 assign_to_partitions Subroutine

Input: Nodes, edges, partitions
Output: PURE, TO, FROM arrays for each partition
1. Initialize node tracking:
Create table node_to_partition[node_id]← -1 ∀ nodes
2. Populating node_to_partition
for each edge e do
node_to_partition [which_partition(e.src)] =

which_partition(e.dst)
end for
3. Assigning nodes to partition buckets
for each node n do

if node_to_partition[n] = −1 then
add n to PURE array of which_partition(n)

else
add n to TOwhich_partition(n)[node_to_partition[n]]
add n to FROMnode_to_partition[n][which_partition(n)]

end if
end for

D MLIP Versions in Benchmark507

The table below shows the checkpoint versions of the MLIPs tested. Note that the eSEN model we508

benchmarked is not coming from the public pretrained checkpoints of 30.2M parameters, which is509

too big for efficient parallelized simulation. Instead, we initialized a 3.2M eSEN in accordance with510

the eSEN-MPTrj-3.2M configuration found in Fu et al. [2025].

Table 2: Pretrained MLIPs Model Specifications
Model Version ModelSize InteractionRange Reference

CHGNet matgl-MatPES-PBE-2025.2.10 2.7M 45Å [Deng et al., 2023]
MACE MACE-MP-0b-small 3.8M 12Å [Batatia et al., 2023]

TensorNet matgl-MatPES-PBE-v2025.1 0.8M 10Å [Ko et al., 2025]
eSEN eSEN-MPTrj-3.2M 3.2M 12Å [Fu et al., 2025]

511

E Single GPU Benchmarking Details512

Because DistMLIP parallelizes neighbor list construction as well as underlying threebody graph513

creation, utilizing 2 DistMLIP partitions oftentimes leads to faster total inference time and less514

total memory consumption compared to a baseline implementation (this is especially the case515

with CHGNet). Therefore, to maintain a fair comparison, all single-GPU results reported in any516

benchmark utilize 2 DistMLIP partitions performing operations on the same GPU. Therefore, only 1517

GPU is utilized, but the same fast graph creation algorithms and implementation are shared. For all518

benchmarking tasks, 128 threads were used for neighbor list construction and graph creation.519

F Inference Time Breakdown520

Neighbor list construction could take a substantial amount of inference time when the simulated521

system is large. In order to address this issue, we parallelized neighbor list construction in DistMLIP522

through multi-threading, so that graph creation time is substantially decreased compared to the523

single-thread neighbor list construction in Pymatgen [Ong et al., 2013]. The resulting inference time524

breakdown is shown in Table 3.525
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Table 3: Timing results (in seconds) for MACE, TensorNet, and CHGNet models across computation
stages. Graph Creation consists of both DistMLIP graph creation as well as model-specific graph
configuration. Feature Calculation consists of single-GPU computation overhead.

Stage MACE TensorNet CHGNet
Graph Creation 0.2480 0.1262 0.3386
Feature Calculation 0.0437 0.1297 0.1018
Forward Pass 0.1701 0.1782 1.8216
Backward Pass 0.0288 0.5471 1.4074

G Scaling System Density526

In Fig. 5, we plot the memory consumption and inference time of scaling system density (atoms/Å3)527

of an SiO2 system with 3456 atoms. DistMLIP inference with 4 A100-80GB GPUs were used. Denser528

atomic systems lead to a linear increase in total neighbor list size, driving up memory usage as well529

as inference time due to the decreased sparsity within the underlying atom graph’s adjacency matrix.530

DistMLIP and its zero-redundancy inference algorithm scales memory consumption according to the531

increase in edge count.532

(a) (b)

Figure 5: The effects of scaling density on (a) memory consumption, and (b) inference time. Both
plots are the result of scaling atomic density (atoms/Å3) on an arbitrary system with fixed atom count
using DistMLIP and 4 A100-80GB GPUs. eSEN is missing a datapoint due to out-of-memory issues.

H Benchmarking Against SevenNet533

In this section, we benchmark the inference time and max capacity of the 4 MLIPs in DistMLIP534

against the distributed inference of SevenNet [Park et al., 2024]. All the MLIPs are constructed to535

have a similar number of parameters as SevenNet-0 (0.8M parameters). All tests are performed on536

the supercells of the α-quartz SiO2. Inference times are averaged over 10 trials after 5 warmup trials.537

Fig. 6 shows the result for (a)SevenNet, (b)MACE, (c)TensorNet, (d)CHGNet, and (e)eSEN. The538

number in each box in the heat map indicates the inference time of the given cell and the number539

of GPUs, and darker color represents faster inference. Grey boxes indicate the simulation failed540

due to the GPU out-of-memory error. We reproduced a similar maximum simulation size of 110k541

α-quartz SiO2 with SevenNet on 8 NVIDIA-A100-80GB, as indicated in the original manuscript.542

Our results indicated that MACE, TensorNet, and CHGNet can generally simulate larger maximum543

capacity at faster speed in DistMLIP. For eSEN, all experiments failed due to the extensive memory544

consumption.545

I Alignment of Single-device and Multi-device Predictions546

DistMLIP’s atom graph and bond graph distribution algorithms are exact in principle. However,547

numerical differences arise when performing computation in a distributed manner compared to548

on a single GPU. This is a result of non-determinism occurring during matrix multiplications and549
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(a) (b)

(c) (d)

(e)

Figure 6: Inference speed and max capacity on α-quartz SiO2. Except for (a), all other models are
distributed through DistMLIP. (a) SevenNet plus LAMMPS support. (b) MACE, (c) TensorNet,
(d) CHGNet, and (e) eSEN. Because SevenNet is a 0.8M parameter model, all other DistMLIP
models are initialized at 0.8M parameters for comparison purposes. Grey boxes denote the inability
to simulate the system either due to out-of-memory issues or system-size issues.

other operations on different GPUs. Therefore, the exact same model and weights running single550

GPU inference on different GPUs within the same node will also yield slightly different results. In551

Fig. 7, we plot the energy/atom error in meV/atom units for MACE-3.8M, TensorNet-0.8M, and552

CHGNet-2.7M. The result shows that the numerical error from different GPUs is far below chemical553

accuracy.554

(a) (b) (c)

Figure 7: Energy (meV/atom) discrepancy between DistMLIP’s multi-GPU inference and baseline
single-GPU inference for (a) MACE-3.8M, (b) TensorNet-0.8M, and (c) CHGNet-2.7M on multiple
chemical systems. Note that DistMLIP’s graph partitioning and distribution algorithms are exact, and
these non-perfect discrepancies are a result of non-deterministic matrix multiplication operations on
different devices.

I.1 Usage555

556
# Load the MLIP as usual557

chgnet = ...558

from DistMLIP.implementations.matgl import CHGNet_Dist559

chgnet_dist = CHGNet_Dist.from_existing(chgnet)560
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chgnet_dist.enable_distributed_mode ([0, 1, 2, ...]) # Specify GPU ids561

# Run inference/simulation as usual562563

Code 1: Example code for using DistMLIP along with CHGNet. DistMLIP is designed to be a plug-
and-play platform for distributed inference. The current implementation only supports single-node
multi-GPU inference.

J Parallelizing a Model in DistMLIP564

DistMLIP is designed to be both high-performant as well as easily usable. Parallelizing new MLIPs565

using DistMLIP is a straightforward process that can be done purely in Python. A few key points of566

DistMLIP are outlined in J.1.567
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J.1 Model Parallelization Example568

569
# Creating a DistMLIP distributed object570

dist = Distributed.create_distributed (...)571

# Distributed edge information572

dist.src_nodes , dist.dst_nodes # List of src and dist node pairs for573

each partition574

# Distributing node/edge features575

node_features_dist = dist.distribute_node_features(node_features)576

edge_features_dist = dist.distribute_edge_features(edge_features)577

# Exchanging node information578

dist.atom_transfer(node_features_dist)579

# Aggregating node features580

node_features = dist.aggregate(node_features_dist)581582

Code 2: A subset of the available features implemented into DistMLIP. These features, implemented
as a Python wrapper over efficient C and PyTorch code, allow for the straightforward distribution of
any arbitrary MLIP.

K Benchmarking Partition Strategies583

K.1 Graph Partitioning584

Graph partitioning algorithms find applications in solving sparse linear systems of equations, circuit585

partitioning and layout, VLSI design, social network analysis, clustering algorithms, and image586

segmentation [Pothen, 1997, Stanton and Kliot, 2012, Bader et al., 2013, Tolliver and Miller, 2006,587

Peng et al., 2013]. One common use case in graph partitioning is to create mutually exclusive588

spanning sets of nodes that contain a minimum number of edges that cross from one partition to589

another. This use case can be tackled using sparse, symmetric matrix reordering methods such as590

the Reverse Cuthill-Mckee (RCMK) algorithm, which permutes a sparse matrix to minimize its591

bandwidth [Cuthill and McKee, 1969, Azad et al., 2017]. METIS is a graph partitioning algorithm592

that utilizes a graph coarsening phase, an initial partitioning sequence over the coarsened graph, and593

an uncoarsening and partition refinement stage [Karypis and Kumar, 1998]. However, in atomistic594

simulation, the underlying graphs are recalculated and repartitioned at each time step. Therefore,595

even small latency increases during the graph creation and partitioning stage get compounded into596

significant increases in overall simulation time. For MLIPs, graph parallelism has also been explored597

for distributed training of large, computationally expensive MLIPs Sriram et al. [2022].598

We compare DistMLIP’s vertical wall partitioning strategy with other common graph partitioning599

algorithms. In Table 4, we replace DistMLIP’s current vertical wall partitioning strategy with the600

Reverse Cuthill-McKee (RCMK) and METIS algorithms while holding the other components of601

Algorithm 1 and Algorithm 3 constant. Neither RCMK nor METIS supports threebody bond graph602

creation. RCMK and METIS both utilize the graph’s topology in order to partition the graph such603

that the number of crossing edges between partitions is minimized. DistMLIP’s current partitioning604

strategy, on the other hand, doesn’t perform graph traversals but rather uses atomic positions as a605

heuristic in order to partition the graph. In Table 4, we also include the LAMMPS spatial partitioning606

results for comparison. As a result, we perform all benchmarks with the MACE-3.8M model.607
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Table 4: MD step time (in µs / (atom×step)) for various graph and spatial partitioning strategies.
RCMK refers to the Reverse Cuthill-McKee algorithm used for graph partitioning. Both RCMK and
METIS still utilize the DistMLIP platform, only the partitioning strategy is replaced. The model used
was MACE-3.8M, and LAMMPS spatial partitioning values are included for comparison.
Method # GPUs µs / (atom×step) | # of atoms (in thousands)

Li3PO4 H2O GaN MOF 2w49

METIS 4 GPUs 81.19 | 108.0 101.67 | 96.0 68.98 | 77.0 83.60 | 125.0 78.93 | 69.0
8 GPUs 62.18 | 216.0 56.76 | 216.0 77.15 | 207.0 69.63 | 216.0 67.10 | 69.0

RCMK 4 GPUs 77.49 | 110.0 98.02 | 96.0 66.92 | 77.0 82.24 | 125.0 79.94 | 69.0
8 GPUs 57.22 | 216.0 51.67 | 216.0 74.01 | 207.0 65.74 | 216.0 65.51 | 69.0

LAMMPS 4 GPUs 16.90 | 41.4 10.10 | 24.6 5.10 | 45.0 9.40 | 27.0 OOM
8 GPUs 12.30 | 65.9 8.50 | 82.9 2.70 | 77.8 6.20 | 64.0 OOM

Vert. wall 4 GPUs 15.30 | 110.6 18.20 | 96.0 14.60 | 128.0 14.70 | 128.0 20.10 | 69.3
8 GPUs 11.00 | 216.0 11.60 | 210.1 9.60 | 250.0 10.90 | 216.0 14.00 | 69.3
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