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Abstract

Cross-language intelligibility is defined as the001
ability to understand related languages without002
prior study. This study investigates how and to003
what extent linguistic distances and surprisal004
values generated by GPT-based models predict005
cross-language intelligibility of microsyntactic006
units (MSUs), a type of non-compositional ex-007
pression characterized by syntactic idiomaticity.008
We compare performance across two research009
questions: (1) How well do linguistic distances010
and surprisal values from GPT-based models011
predict intelligibility of non-compositional ex-012
pressions? (2) Does model size impact pre-013
diction performance of GPT-based surprisal?014
The predictors were tested on two experimental015
conditions (spoken input vs. combined spoken-016
written input) and two tasks (free translation017
and multiple-choice) with native Russian partic-018
ipants translating MSUs across five Slavic lan-019
guages: Belarusian, Bulgarian, Czech, Polish,020
and Ukrainian. Results revealed that although021
GPT-based surprisal is a significant predictor of022
MSU intelligibility, the most crucial predictor023
is linguistic distances, with variations based on024
experimental conditions and task types. Ad-025
ditionally, our analysis found no substantial026
performance gap between smaller and larger027
GPT models.028

1 Introduction029

Cross-language intelligibility refers to the ability030

of speakers to understand related languages with-031

out prior study (Doyé, 2005; Gooskens and van032

Heuven, 2021). It is influenced by phonological,033

lexical, and orthographic similarities, particularly034

among languages with close typological proximity035

(Gooskens and van Heuven, 2021; Stenger and Av-036

gustinova, 2021). Speakers can recognize cognates,037

decipher grammar, and infer meanings, making038

comprehension or intelligibility across related lan-039

guages achievable without any prior exposure to040

the language. Research on intelligibility has signif-041

icant implications for language policy (e.g., design- 042

ing language standards), education (e.g., transfer 043

effects between languages), and human-machine 044

interaction (e.g., multilingual NLP systems). Com- 045

putational modeling of intelligibility helps us better 046

understand and model cross-linguistic processing 047

difficulty (Stenger et al., 2017b; Jágrová et al., 048

2018; Gooskens, 2024). 049

Cross-language intelligibility becomes sig- 050

nificantly more challenging in case of non- 051

compositional expressions, like microsyntactic 052

units (Avgustinova and Iomdin, 2019). Non- 053

compositional expressions have meanings that can- 054

not be inferred from their individual components 055

(Baldwin and Kim, 2010; Jackendoff, 2002; Kudera 056

et al., 2023). Microsyntactic units, a specific type 057

of non-compositional expression used as our exper- 058

imental stimuli, are characterized by their syntactic 059

idiomaticity, where the structure itself carries figu- 060

rative meaning (Iomdin, 2015, 2016; Avgustinova 061

and Iomdin, 2019). Examples of microsyntactic 062

units in English are ’at the end of’ ’to begin with’1. 063

Cross-language intelligibility of non- 064

compositional expressions has been extensively 065

explored in relation to various factors, but linguis- 066

tic distances and surprisal are considered key 067

indicators of how challenging an expression is to 068

comprehend (Stenger et al., 2017a; Jágrová et al., 069

2018). Linguistic distance refers to the magnitude 070

of differences between languages at the form level. 071

It could capture similarities at various dimensions, 072

including lexical, orthographic, phonetic, and 073

phonological, among others. Surprisal quantifies 074

how unexpected or informative a given linguistic 075

element is to a perceiver. Formally, the surprisal 076

of an event is defined as the negative logarithm of 077

its probability (Demberg et al., 2012). Rooted in 078

information theory and psycholinguistics, surprisal 079

1More examples of microsyntactic units in Slavic lan-
guages are given in Appendix A.
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serves as a proxy for the difficulty of processing080

foreign expressions (Jágrová et al., 2018).081

Among all linguistic distances available, we fo-082

cus specifically on orthographic and phonological083

distances. This choice was motivated by the follow-084

ing considerations. First, the non-compositionality085

of the microsyntactic stimuli makes lexical distance086

measures less informative (Cutting and Bock, 1997;087

Wray, 2002). Second, phonetic distances, while rel-088

evant for language processing, are difficult to reli-089

ably measure in the context of unfamiliar languages090

(Best, 1995). Third, orthographic and phonolog-091

ical distances have been shown to be particularly092

relevant in studies of cross-language intelligibility093

(Vanhove and Berthele, 2015; Möller and Zeevaert,094

2015; Gooskens and Swarte, 2017) and Slavic in-095

tercomprehension (Stenger et al., 2017a,b; Jágrová096

et al., 2018; Gooskens, 2024).097

Regarding surprisal, its performance on predict-098

ing cross-language intelligibility could be influ-099

enced by the size of language models from which100

surprisal is derived. Recent advances in language101

modeling include large-scale transformer models102

like GPT (Radford and Narasimhan, 2018). While103

these large models excel in generating contextually104

rich sequences, it is often suggested that surprisal105

from smaller models predict human cognitive pro-106

cesses better (Oh and Schuler, 2023a,b; Vafa et al.,107

2024). Yet, previous findings on this topic inves-108

tigated human reading time and native language109

comprehension. How model size relates to cross-110

language intelligibility, a comprehension across111

language instead of native comprehension, remains112

unknown. Therefore, in this study, we investigate113

how surprisal estimates from two monolingual Rus-114

sian (RU) GPT models of different sizes (ruGPT-3-115

small and ruGPT-3-large) explain human perfor-116

mance when interpreting non-compositional ex-117

pressions, in particular microsyntactic units, across118

foreign, but closely-related languages.119

Lastly, although these factors have been previ-120

ously shown to correlate with the intelligibility121

of non-compositional expressions (Zaitova et al.,122

2024a,b), it remains underexplored how these fac-123

tors vary across inputs, e.g., spoken vs. written. To124

sum up, this study adresses the following research125

questions (RQs):126

• RQ1: How well do linguistic distances and127

GPT-based surprisal predict cross-language in-128

telligibility of non-compositional expressions129

in relation to different types of input?130

• RQ2: Is the small variant of GPT model more 131

effective than the large one in predicting intel- 132

ligibility outcomes? 133

We conducted two experiments to evaluate the in- 134

telligibility of non-compositional expressions with 135

spoken input only (Experiment 1), and with writ- 136

ten input alongside spoken input (Experiment 2). 137

Both experiments contain two tasks: free transla- 138

tion and multiple-choice question (MCQ). In the 139

free translation task, participants need to listen or 140

read a foreign expression presented in a senten- 141

tial context and write a RU translation. In the 142

MCQ task, participants need to select between a 143

correct non-compositional translation and a literal, 144

incorrect translation of the expression in the for- 145

eign language. RU native speakers were recruited 146

as participants to translate the expressions from 147

five Slavic languages, i.e., Belarusian (BE), Bulgar- 148

ian (BG), Czech (CS), Polish (PL), and Ukrainian 149

(UK). Slavic languages are traditionally divided 150

into three branches: East Slavic (RU, BE, UK, 151

etc.), West Slavic (PL, CS, Slovak, etc.), and South 152

Slavic (BG, Croatian, Serbian, etc.) (Sussex and 153

Cubberley, 2006). We assess cross-language in- 154

telligibility via a binary correctness measure (cor- 155

rect vs. incorrect) based on the nature of our stim- 156

uli: non-compositional microsyntactic units whose 157

meanings cannot be inferred from their individual 158

components. According to the prior work on intelli- 159

gibility, we treat it as a all-or-nothing phenomenon: 160

either participants grasp the idiomatic meaning, or 161

they do not (Stenger et al., 2017a,b; Gooskens and 162

van Heuven, 2021). 163

By combining linguistic distances and surprisal 164

values as predictive factors, we aim to provide a 165

comprehensive view of the interplay between struc- 166

tural similarity and cognitive difficulty. Our study 167

contributes insights into psycholinguistic modeling 168

and the role of model scale in predicting cross- 169

language intelligibility, offering both theoretical 170

and practical implications. 171

2 Methodology 172

2.1 Stimuli preparation 173

2.1.1 Written data 174

To prepare our non-compositional expression stim- 175

uli, we selected 60 most frequent microsyntactic 176

units per target language from an existing dataset 177

of RU microsyntactic units and their translational 178

equivalents in BE, BG, CS, PL, and UK (Zaitova 179
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et al., 2023). Some examples of microsyntactic180

units are given in Appendix A. The dataset provides181

the unit in RU, its translational equivalent in the182

target Slavic language, and a contextual sentence183

in both languages with average lengths varying be-184

tween 11 and 15 words. Limiting the stimuli to 60185

units per language was aimed at minimizing the186

risk of participant fatigue on data quality.187

2.1.2 Spoken data188

We recorded the context sentences containing the189

target units using native speakers (one per tar-190

get language) in self-paced reading sessions. All191

recordings were made in a controlled acoustic envi-192

ronment to ensure consistency across the samples.193

A 44.1 kHz sampling rate in an uncompressed for-194

mat was used. Audio lengths averaged about 5–7195

seconds. The speakers for BG, CS, and UK were196

female, while those for BE and PL were male due197

to difficulties finding female native speakers. The198

speakers’ ages ranged from 21 to 29 (mean=25).199

2.1.3 Literal translation options for the200

multiple-choice task201

The MCQ task mentioned in Section 1 requires202

participants to choose between two options: a cor-203

rect translation and a literal counterpart. The cor-204

rect translations are described in Section 2.1.1,205

while the literal translation mimics the form of206

the stimulus but provides an inaccurate, but vi-207

able compositional translation of the expression.208

To create the literal translations, native RU speak-209

ers manually found word-by-word translations210

sourced from Glosbe (https://glosbe.com) and211

Vasmer’s dictionary (https://lexicography.212

online/etymology/vasmer/). Having literal con-213

terpart challenges participants to distinguish be-214

tween non-compositional (correct) and literal (in-215

correct) options. Although a binary choice is lim-216

ited, it served as a baseline measure for distinguish-217

ing idiomatic meanings from surface-level compo-218

sitional interpretations. The literal options simulate219

a common cognitive strategy in cross-linguistic220

comprehension: mapping form to meaning even221

when it leads to less natural semantics.222

2.2 Experimental setup223

We conducted two web-based experiments with224

different types of input, namely Experiment 1 for225

spoken-only input and Experiment 2 for written226

input alongside spoken input, and with the two227

tasks (free translation and MCQ) mentioned in Sec-228

tion 1. The experiments were prepared via the 229

website [thelinkisanonymized]. Before the ex- 230

periments, participants first received instructions 231

in RU detailing the procedure. After familiariz- 232

ing themselves with the tasks, participants were 233

required to register on the website and to complete 234

a questionnaire in order to monitor their language 235

background and to exclude those who had prior 236

knowledge of the target languages, thereby main- 237

taining the purity of the experiment’s conditions. 238

An illustration of the two experiments and the 239

two tasks is shown in Fig. 1. The only difference 240

between the two experiments is whether partici- 241

pants were additionally presented with the written 242

form of the test units, comparing Fig. 1 (a) and 243

(b) for Experiment 1 (left panel) to Fig. 1 (c) and 244

(d) for Experiment 2 (right panel). Note that par- 245

ticipants were informed which language the test 246

expression belonged to but were not told if their 247

response was correct. 248

Further, in both experiments, participants were 249

first presented with an audio clip containing the 250

expression (highlighted in red bar) presented in its 251

contextual sentence together with the free transla- 252

tion task, as shown in Fig. 1 (a) and (c), i.e., the 253

upper panel. The time to enter the translation was 254

based on a formula of 10 seconds per word in the 255

test unit plus an additional 3 seconds per word in its 256

context. Participants were allowed to replay each 257

audio fragment of the whole contextual sentence 258

and of the test unit up to three times, simulating 259

real-life scenarios where listeners can ask speakers 260

to repeat themselves. 261

After the free translation task, participants re- 262

ceived the MCQ for the same expression. This 263

ensured that participants attempted a genuine in- 264

terpretation before choosing between correct and 265

literal translations. MCQ is illustrated in Fig. 1 (b) 266

and (d), i.e., the bottom panel. It asked participants 267

to choose from two options in RU that they believed 268

to be correct: (i) the correct non-compositional 269

equivalent translation and (ii) an alternative word- 270

by-word literal translation as explained in Sec- 271

tion 2.1.3. The MCQ task aimed to assess partici- 272

pants’ preference for the non-compositional (cor- 273

rect) translation over the literal (incorrect) one. 274

In total, each participant received 60 test units, 275

each presented in a separate trial, together with 276

their sentential context (in audio form). These 60 277

test units were evenly distributed across the five 278

target languages. This means that each participant 279

received 12 test units per target language, which is 280
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Figure 1: Task interface for the free translation and MCQ tasks received by Russian participants. The Czech test
expression with written form in (c) and (d) is ’in spite of’. The green hourglass shows how many seconds are left
for the participant to give their answer.

a random subset of the five subsets per language.281

2.3 Participants282

We recruited native RU speakers as our partici-283

pants via Prolific (https://prolific.com), an online284

platform for research participant recruitment. Fa-285

miliarity with the Latin script, which is used by286

CS and PL languages, was expected due to the287

English-language interface of Prolific. All of our288

participants provided informed consent and were289

assured to be anonymized in any published data.290

Participants with any prior knowledge of the tar-291

get languages were excluded. For Experiment 1292

(spoken-only input), we recruited 88 participants293

(26 males, 60 females, 2 identifying as other gen-294

ders; age range 21-78 years, mean age 35). For Ex-295

periment 2 (spoken and written input), we recruited296

118 participants (41 males, 76 females, 1 identify-297

ing as another gender; age range 18-59 years, mean298

age 32). There was also no overlap of participants299

in the two experiments. Having these large num-300

bers of participants also aims to compensate the301

limited stimuli subset size.302

2.4 Intelligibility scores, linguistic distances,303

and surprisal304

The correctness of responses was considered as the305

intelligibility. For the free translation task, the re-306

sponses were automatically considered correct if307

they matched allowed alternative answers in a pre- 308

defined list. For instance, we allowed RU equiv- 309

alents или что, что ли, или как as possible 310

translations of UK чи що. The responses were 311

further manually checked by a native RU speaker 312

to include correct responses that could have been 313

missed because of typos. 314

2.4.1 Linguistic distances 315

To address RQ1 regarding which distances are 316

related to intelligibility, we extracted the ortho- 317

graphic and phonological distances (explained in 318

Section 1) for each test unit in two different ways 319

depending on the task. For the free translation task, 320

we used the distance between the original expres- 321

sion and its correct non-compositional translation 322

to RU. For the MCQ task, we measured how much 323

closer the original expression was to its correct 324

non-compositional translation in RU compared to 325

its literal, word-by-word translation. A larger dif- 326

ference indicates that the true meaning is very dif- 327

ferent from the literal interpretation. For instance, 328

in the UK expression все же (literally "everything 329

or", but actually meaning "nonetheless"), we would 330

expect a large difference since the true meaning dif- 331

fers substantially from the literal translation. The 332

boxplots of linguistic distances, calculated indepen- 333

dently from intelligibility scores, are presented per 334

language in Appendix B. 335
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Figure 2: Intelligibility scores of free translation and MCQ Responses in the two experiments (i.e., Experiment 1
referring to spoken-only inputs while Experiment 2 referring to combined spoken and written inputs). The languages
are arranged in descending order by intelligibility scores.

Orthographic distance. We employed Leven-336

shtein Distance which counts the minimum number337

of single-character operations (i.e., insertions, dele-338

tions, and substitutions) needed to transform one339

word into another (Levenshtein, 1966). It is worth340

noting that evaluating orthographic distance among341

Slavic languages is challenging due to their use342

of two writing systems – Latin and Cyrillic. To343

address this, we performed ISO 9 transliteration344

for CS and PL stimuli to convert them to Cyrillic,345

which is used by the other three target languages346

and RU. Levenshtein distance has been shown po-347

tential in analyzing intelligibility. For instance,348

(Stenger, 2019) found that Levenshtein distance349

of cognates is a reliable predictor of orthographic350

intelligibility of Slavic languages that use Cyril-351

lic script. Also, as we mentioned in Section 2.3,352

our RU participants were not expected to know the353

correct orthographic pronunciation rules of the tar-354

get languages, as they had not previously studied355

these languages. They might use their knowledge356

of Cyrillic and Latin scripts from exposure to RU357

and English (Prolific’s interface language) to ap-358

proximate the pronunciation of words written in359

Latin script.360

Phonological distance. We employed Phono- 361

logically Weighted Levenshtein Distance (PWLD) 362

which quantifies the distance between different 363

phonemic sequences or word forms (Fontan et al., 364

2016). This distance extends the string-based Lev- 365

enshtein Distance by considering the cost of each 366

phoneme substitution based on their phonetic fea- 367

tures like voicing and manner of articulation, mak- 368

ing PWLD reflect fine-grained perceptual similar- 369

ity. We employed the same adaptation of the origi- 370

nal PWLD as the one proposed in Abdullah et al. 371

(2021) which is based on PHOIBLE feature vec- 372

tors (Moran and McCloy, 2019). For example, the 373

pair of Czech and Bulgarian cognates: ucho /u x 374

o/ and ухо /u x O/, the substitution cost would 375

be lower than 0.5 (i.e., the maximum substitution). 376

The phonemic transcriptions for all the data were 377

obtained using CharsiuG2P, a transformer-based 378

tool for grapheme-to-phoneme conversion (Zhu 379

et al., 2022). 380

2.4.2 Surprisal values 381

In addition to linguistic distances, we extracted 382

surprisal values to address RQ1. We developed a 383

cascaded system that combines automatic speech 384

recognition (ASR) and language modeling. This 385
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Table 1: Mixed-Effects Model with GPT-Large Results

(a) Free translation Task (GPT-Large)

Predictor Est. SE z p

Main
Intercept −1.85 0.32 −5.79 < .001
PWLD −0.58 0.13 −4.4 < .001
Levenshtein −0.41 0.14 −2.9 0.004
GPT L −0.54 0.2 −2.63 0.008
Written 1.23 0.33 3.76 < .001
South −3.07 0.42 −7.23 < .001
West −2.48 0.37 −6.79 < .001

2-way
GL×Wr 0.46 0.14 3.27 .001
GL×S 0.55 0.49 1.12 0.26
GL×W 0.92 0.34 2.7 .007
Wr×S 1.1 0.32 3.47 < .001
Wr×W 0.59 0.26 2.28 .023
3-way
GL×Wr×S −1.19 0.37 −3.2 .001
GL×Wr×W −0.4 0.26 −1.56 0.119
Note. GL = GPT Large, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
3.25, User = 3.88.

(b) MCQ Task (GPT-Large)

Predictor Est. SE z p

Main
Intercept 2.07 0.18 11.45 < .001
PWLD −0.43 0.08 −5.62 < .001
Levenshtein −0.33 0.08 −4.15 < .001
GPT L −0.31 0.13 −2.32 .021
Written −0.29 0.19 −1.51 .131
South −0.42 0.23 −1.84 .066
West −1.05 0.19 −5.41 < .001

2-way
GL×Wr −0.03 0.12 −0.25 .805
GL×S 0.58 0.26 2.22 .027
GL×W 0.37 0.19 1.99 .047
Wr×S −0.3 0.19 −1.57 0.12
Wr×W −0.2 0.16 −1.25 0.21

3-way
GL×Wr×S −0.33 0.22 −1.51 .130
GL×Wr×W 0.09 0.16 0.57 .568
Note. GL = GPT Large, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
0.96, User = 1.03.

Table 2: Mixed-Effects Model with GPT-Small Results

(a) Free translation Task (GPT-Small)

Predictor Est. SE z p

Main
Intercept −1.81 0.32 −5.7 < .001
PWLD −0.58 0.13 −4.43 < .001
Levenshtein −0.41 0.14 −2.9 0.004
GPT S −0.56 0.20 −2.73 0.006
Written 1.19 0.33 3.67 < .001
South −3.11 0.42 −7.34 < .001
West −2.53 0.36 −6.93 < .001

2-way
GS×Wr 0.46 0.14 3.35 < .001
GS×S 0.57 0.46 1.23 .022
GS×W 1.05 0.35 3 0.003
Wr×S 1.1 0.32 3.49 < .001
Wr×W 0.61 0.26 2.37 0.02

3-way
GS×Wr×S −1.07 0.35 −3.06 0.002
GS×Wr×W −0.37 0.26 −1.4 0.16

Note. GS = GPT Small, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
3.23, User = 3.88.

(b) MCQ Task (GPT-Small)

Predictor Est. SE z p

Main
Intercept 2.10 0.18 11.60 < .001
PWLD −0.43 0.08 −5.67 < .001
Levenshtein −0.32 0.08 −4.12 < .001
GPT S −0.31 0.13 −2.31 .021
Written −0.29 0.19 −1.50 .135
South −0.43 0.23 −1.86 .063
West −1.07 0.19 −5.54 < .001

2-way
GS×Wr −0.01 0.12 −0.09 .927
GS×S 0.54 0.24 2.22 .027
GS×W 0.38 0.19 2.01 .044
Wr×S −0.32 0.19 −1.71 0.08
Wr×W −0.2 0.16 −1.24 0.21

3-way
GS×Wr×S −0.37 0.20 −1.82 .068
GS×Wr×W 0.05 0.16 0.34 .733
Note. GS = GPT Small, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
0.96, User = 1.03.
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design is motivated by psycholinguistic models of386

spoken language comprehension, which assumes387

a layered process involving initial decoding of388

acoustic–phonological information followed by lex-389

ical integration (Marslen-Wilson, 1987; Cutler and390

Clifton, 1999; Friederici, 2002). By capturing both391

stages, our system approximates the cognitive pro-392

cesses RU speakers engage in when interpreting393

unfamiliar Slavic expressions. The cascaded sys-394

tem operates as a two-stage pipeline as described395

below:396

1) Speech-to-Text: First, the ASR component397

enables us to simulate phonological decoding by398

transcribing foreign language speech into RU. No-399

tably, ASR is only applied to the foreign language400

input and not to RU, ensuring the model mimics401

how RU listeners perceive foreign speech input.402

While ASR inevitably introduces errors, especially403

when processing unfamiliar languages, prior re-404

search demonstrates that such errors can approxi-405

mate human comprehension difficulty in L2 con-406

texts (Mirzaei et al., 2016). In this sense, ASR407

output does not merely add noise but reflects real-408

world variability in auditory processing. We used409

the Wav2Vec2-Large-Ru-Golos-With-LM model410

(Bondarenko, 2022) to convert speech input from411

foreign, target Slavic languages into RU text. This412

ASR component was specifically fine-tuned on the413

large-scale RU speech Sberdevices Golos dataset414

(Karpov et al., 2021), making it suited for emulat-415

ing a native RU listener. Detailed model perfor-416

mance on RU can be found in Appendix D.417

2) Surprisal Calculation: The second stage418

of the pipeline computes surprisal from the tran-419

scribed RU text described above. Surprisal, opera-420

tionalized as the negative log-probability of a token421

given its preceding context, serves as a proxy for422

cognitive processing load: the less expected a word423

is in context, the higher its surprisal value. We424

compute normalized sentence-level surprisal for425

each expression. This decision was motivated by426

the assumption that sentence-level surprisal better427

captures the integrative processing effort required428

in real-time comprehension of non-compositional429

expressions. In particular, the RU text output from430

the Speech-to-Text stage is fed into two autoregres-431

sive models, ruGPT-3-small (125M parameters)432

and ruGPT-3-large (760M parameters) (Zmitro-433

vich et al., 2024), in order to address RQ2. The434

ruGPT-3-small and ruGPT-3-large were chosen to435

represent different model capacities while maintain-436

ing domain consistency. Both models were trained437

on RU text, making them suitable for modeling 438

native RU speakers’ processing. 439

Note that since these language models generate 440

output based solely on left-to-right context, they 441

estimate probabilities for each word in a sequence 442

by conditioning only on prior tokens.The models 443

assign probability scores to each word in the tran- 444

scribed sequences, and we converted these scores 445

into surprisal values. We normalize surprisal scores 446

for each stimulus sentence by summing up the 447

scores for all tokens of the sentence given their 448

preceding context, and then divide by the number 449

of the tokens in the sentence to get normalized 450

sentence-level surprisal. 451

2.5 Statistical Analysis 452

We analyzed the binary response data, i.e., correct 453

vs. incorrect (baseline), using generalized linear 454

mixed-effects models (GLMMs) with a binomial 455

logit link by using glmer function in the lmer pack- 456

age (Bates, 2016) of R (Team et al., 2013). While 457

more graded scoring methods of intelligibility exist, 458

we opted for a binary approach to ensure compa- 459

rability across task formats and to reduce subjec- 460

tivity in judgment, especially when it comes to 461

non-compositional expressions. 462

For both the free translation and MCQ tasks, 463

the fixed effects were: (1) Linguistic Distances: 464

PWLD and Levenshtein distance, (2) GPT-based 465

Surprisal: Extracted from both large and small GPT 466

models, and (3) Experimental Factors: Experiment 467

input, i.e., spoken-only (Experiment 1) vs. spo- 468

ken+written (Experiment 2) with spoken-only as 469

the baseline, and Language group (East, South, 470

West; East as the baseline), including relevant in- 471

teraction terms. 472

All continuous predictors (i.e., linguistic dis- 473

tances and surprisal values) were centred to 474

their mean values to reduce collinearity, of 475

which more detailed explanation can be found 476

in Appendix C. The experimental factors were 477

dummy-coded. Random effects comprised inter- 478

cepts for participants (user_id) and source texts 479

(source_text_to_be_translated), with random 480

slopes for Experiment input when justified by the 481

data. Models were optimized using the bobyqa op- 482

timizer (maxfun = 200,000) with Laplace approx- 483

imation. Model fit was assessed using AIC, and 484

predictor significance was evaluated via z-values 485

and corresponding p-values (with degrees of free- 486

dom estimated by Satterthwaite’s method where 487

applicable). 488
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3 Results and Discussion489

3.1 Intelligibility Scores490

Figure 4 shows that intelligibility scores varied491

both by task and input type. In general, free trans-492

lation scores were lower than those from the MCQ493

task, as expected given the greater cognitive de-494

mands. The additional written input in Experiment495

2 improved free translation performance, but af-496

fected MCQ responses adversely, suggesting that497

orthographic cues aid deeper semantic processing498

but may interfere with rapid recognition-based de-499

cisions. Regarding language groups, East Slavic500

languages (BE and UK) demonstrated the highest501

intelligibility scores, South Slavic (BG) – interme-502

diate scores, and West Slavic languages (PL and503

CS) – the lowest. This gradient reflects typological504

proximity of Slavic languages, and is consistent505

with prior findings on Slavic intercomprehension506

(Gooskens and van Heuven, 2021; Stenger and Av-507

gustinova, 2021).508

3.2 RQ1: Predictive Power of Linguistic509

Distances and GPT-based Surprisal510

Our analysis reveals distinct patterns in how linguis-511

tic distances and GPT-based surprisal predict cross-512

language intelligibility across tasks. As the results513

of the free translation task show in Table 1a, both514

metrics were significant predictors: The higher the515

Levenshtein distances (Est. = -0.41, p = 0.004) and516

higher the surprisal values (Est. = -0.54, p = 0.008),517

the lower the log odds of having a correct response518

(reflecting lower intelligibility). The MCQ task519

shows a different pattern (Table 1b). While lin-520

guistic distances emerges as the primary predictor521

(PWLD: Est. = -0.43, p < .001; Levenshtein: Est. =522

-0.33, p < .001), GPT-based surprisal had a weaker523

effect on performance (Est. = -0.31, p = .021). The524

results with small GPT models in Table 2a and 2b525

demonstrate the same tendency.526

Experiment input and language group also con-527

tributed to explaining the intelligibility. As evident528

in Table 1a, written input improved free translation529

performance (Est. = 1.23, p < .001) but showed530

no significant contribution for MCQ responses (Ta-531

ble 1b: Est. = -0.29, p = .131). Additionally, com-532

pared to East Slavic languages (the baseline level),533

both South Slavic (Est. = -3.07, p < .001) and West534

Slavic languages (Est. = -2.48, p < .001) showed535

significantly lower intelligibility in the free transla-536

tion task. Whereas in the MCQ, only West Slavic537

languages (Est. = -1.05, p < .001) stood out.538

3.3 RQ2: Comparison of GPT Model Sizes 539

The results in Tables 1a and 2a for free translation, 540

and in Tables 1b and 2b for MCQ, revealed sim- 541

ilar performance patterns of GPT-based surprisal 542

across model sizes in both free translation (Large: 543

Est. = -0.54, p = 0.008; Small: Est. = -0.56, p 544

= 0.006) and MCQ tasks (Large: Est. = -0.31, p 545

= .021; Small: Est. = -0.31, p = .021). These 546

results contradict previous findings claiming that 547

larger model capacity lead to a worse prediction 548

of human performance (Oh and Schuler, 2023a,b). 549

However, the previous studies considered reading 550

times and monolingual experiments. Our results 551

indicate that the role of surprisal in cross-language 552

intelligibility should be treated differently than that 553

in monolingual experiments. On the other hand, 554

the difference in the results could also rise from the 555

fact that we used RU ASR models to generate the 556

input for language model surprisal, which could 557

add more noise to the data. 558

4 Conclusion 559

This study investigated (1) how linguistic distances 560

and surprisal derived from GPT models predict 561

cross-language intelligibility of non-compositional 562

expressions (2) and whether GPT-based model size 563

matters for prediction power. The study used free 564

translation and multiple-choice question tasks in 565

speech-only or speech+written setups. Our results 566

showed that linguistic distances (orthographic and 567

phonological) emerged as the strongest predictors 568

of intelligibility in both tasks. GPT-based surprisal 569

was a significant predictor only in the free trans- 570

lation task, highlighting that such a task is more 571

sensitive to contextual predictability. Additionally, 572

minimal differences in surprisal’s performance be- 573

tween large and small variants suggest that a larger 574

GPT model can predict cross-language comprehen- 575

sion outcomes as effectively as a small one. 576

These findings underscore the complex inter- 577

play between typological proximity, orthographic 578

and phonological similarities, and task demands 579

in shaping cross-language intelligibility. The dif- 580

ferential impact of written input across tasks fur- 581

ther highlights that while orthography can sup- 582

port deeper semantic processing, it may confound 583

recognition-based tasks. Future research should 584

explore other language families and consider other 585

language models for predicting cross-language in- 586

telligibility. 587
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Ethical statement588

Before taking part in the experiments, all the par-589

ticipants gave their consent that their anonymized590

responses would be used for research purposes.591

Participants were compensated for their work in592

standard rate suggested by Prolific.593

Limitations594

While our study provides valuable insights into the595

cognitive mechanisms underlying cross-language596

intelligibility, it is based on native Russian speakers597

and specific ASR and language models for Russian.598

Further work is needed to generalize these find-599

ings to other language groups and other ASR and600

language models. Additionally, the gender imbal-601

ance among recorded speakers may have influenced602

results and should be addressed in future studies.603

Also, our binary correctness metric may not be604

able to capture partial comprehension where partic-605

ipants may derive partial meanings through analogy606

or contextual inference. Incorporating alternative607

metrics, such as participant confidence ratings or608

graded correctness scales, could provide a more609

nuanced view of intelligibility in such cases.610
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Type BE UK BG CS PL RU
Prep ў канцы у кiнцi в края на na konec w końcu в конце
Eng. trans. at the end of at the end of at the end of at the end of at the end of at the end of

Adv & Pred не раз не раз не веднъж ne jednou niejednokrotnie не раз
Eng. trans. not once not once not once not once not once not once

Parenth такiм чынам таким чином такъв начин tímto způsobem w taki oto sposób таким образом
Eng. trans. in this way in this way in this way in this way in this way in this way

Conj хiба толькi хiба що освен да snad jen chyba że разве что
Eng. trans. except (only) that except (only) that except (only) that except (only) that except (only) that except (only) that

Part усе ж все же все пак asi spíš więc jednak все же
Eng. trans. nonetheless nonetheless nonetheless nonetheless nonetheless nonetheless

Note: We use ISO 639-1 codes for the languages: Belarusian (BE), Ukrainian (UK), Bulgarian (BG), Czech (CS), Polish (PL),
Russian (RU).

Table 3: Microsyntactic units in six Slavic languages.
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Figure 3: Ranking of orthographic Levenshtein Distance by language
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C Colinearity concern801

In order to avoid the impact of multicollinearity802

issue on our GLMM models, we first checked the803

simple Pearson correlations between PWLD and804

Levenshtein distance used for the models of free805

translation and MCQ tasks, and they are 0.44 and806

0.50, respectively. Their correlations with GPT-807

based surprisal values are 0.08 (SD = 0.037).808

However, collinearity is more than correlation809

between two predictors. What else is important810

is how the predictor interacts within the full set811

of variables in the model. Thus, in order to have812

the full picture of how the predictors contribute813

to explaining the variance of our dependent vari-814

able, we further checked the scaled Generalized815

Variance Inflation Factor (sGVIF) of all predictors816

in our GLMM models. VIF in general quantifies817

how much multicollinearity exists in a regression818

model, and sGVIF can be applied to categorical819

variables (e.g., language group) and takes into ac-820

count predictors’ degree of freedom. An sGVIF =1821

indicates no multicollinearity, and a value below 2822

is generally considered acceptable.823

The mean (SD) of sGVIF values for all predic-824

tors in the four models reported in Tables 1 and825

2 are: 1.379952 (0.2320059) for free translation826

with GPT large, 1.46668 (0.345058) for MCQ with827

GPT large, 1.384291 (0.2342397) for free transla-828

tion with GPT small, and 1.465348 (0.3460249)829

for MCQ with GPT small. As can be seen, these830

sGVIF values are closer to 1, indicating that mul-831

ticollinearity is not a big concern in our GLMM832

models.833

D Performance of Automatic Speech834

Recognition on Russian dataset835

Table 4: ASR performance of wav2vec2-large-ru-golos-
with-lm on Russian datasets (WER and CER)2

Dataset WER (%) CER (%)
Sberdevices Golos (crowd) 6.88 1.64
Common Voice RU 12.12 2.98
Russian Librispeech 15.74 3.57

Be aware that we do not report the performance836

(e.g., WER) of ASR on foreign speech inputs as it837

is just not applicable. Thinking about when people838

listen to an unknown language, they do not know839

2Model: bond005/wav2vec2-large-ru-golos-with-lm,
available at https://huggingface.co/bond005/
wav2vec2-large-ru-golos-with-lm

the ground truth of perceiving the speech, and just 840

simply map it to their known language(s). There 841

can be various mappings. 842
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