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Abstract

Cross-language intelligibility is defined as the
ability to understand related languages without
prior study. This study investigates how and to
what extent linguistic distances and surprisal
values generated by GPT-based models predict
cross-language intelligibility of microsyntactic
units (MSUs), a type of non-compositional ex-
pression characterized by syntactic idiomaticity.
We compare performance across two research
questions: (1) How well do linguistic distances
and surprisal values from GPT-based models
predict intelligibility of non-compositional ex-
pressions? (2) Does model size impact pre-
diction performance of GPT-based surprisal?
The predictors were tested on two experimental
conditions (spoken input vs. combined spoken-
written input) and two tasks (free translation
and multiple-choice) with native Russian partic-
ipants translating MSUs across five Slavic lan-
guages: Belarusian, Bulgarian, Czech, Polish,
and Ukrainian. Results revealed that although
GPT-based surprisal is a significant predictor of
MSU intelligibility, the most crucial predictor
is linguistic distances, with variations based on
experimental conditions and task types. Ad-
ditionally, our analysis found no substantial
performance gap between smaller and larger
GPT models.

1 Introduction

Cross-language intelligibility refers to the ability
of speakers to understand related languages with-
out prior study (Doyé, 2005; Gooskens and van
Heuven, 2021). It is influenced by phonological,
lexical, and orthographic similarities, particularly
among languages with close typological proximity
(Gooskens and van Heuven, 2021; Stenger and Av-
gustinova, 2021). Speakers can recognize cognates,
decipher grammar, and infer meanings, making
comprehension or intelligibility across related lan-
guages achievable without any prior exposure to
the language. Research on intelligibility has signif-

icant implications for language policy (e.g., design-
ing language standards), education (e.g., transfer
effects between languages), and human-machine
interaction (e.g., multilingual NLP systems). Com-
putational modeling of intelligibility helps us better
understand and model cross-linguistic processing
difficulty (Stenger et al., 2017b; Jagrova et al.,
2018; Gooskens, 2024).

Cross-language intelligibility becomes sig-
nificantly more challenging in case of non-
compositional expressions, like microsyntactic
units (Avgustinova and Iomdin, 2019). Non-
compositional expressions have meanings that can-
not be inferred from their individual components
(Baldwin and Kim, 2010; Jackendoff, 2002; Kudera
et al., 2023). Microsyntactic units, a specific type
of non-compositional expression used as our exper-
imental stimuli, are characterized by their syntactic
idiomaticity, where the structure itself carries figu-
rative meaning (Iomdin, 2015, 2016; Avgustinova
and Iomdin, 2019). Examples of microsyntactic
units in English are ’at the end of* 'to begin with’!.

Cross-language  intelligibility = of  non-
compositional expressions has been extensively
explored in relation to various factors, but linguis-
tic distances and surprisal are considered key
indicators of how challenging an expression is to
comprehend (Stenger et al., 2017a; Jagrova et al.,
2018). Linguistic distance refers to the magnitude
of differences between languages at the form level.
It could capture similarities at various dimensions,
including lexical, orthographic, phonetic, and
phonological, among others. Surprisal quantifies
how unexpected or informative a given linguistic
element is to a perceiver. Formally, the surprisal
of an event is defined as the negative logarithm of
its probability (Demberg et al., 2012). Rooted in
information theory and psycholinguistics, surprisal

"More examples of microsyntactic units in Slavic lan-
guages are given in Appendix A.



serves as a proxy for the difficulty of processing
foreign expressions (Jagrova et al., 2018).

Among all linguistic distances available, we fo-
cus specifically on orthographic and phonological
distances. This choice was motivated by the follow-
ing considerations. First, the non-compositionality
of the microsyntactic stimuli makes lexical distance
measures less informative (Cutting and Bock, 1997,
Wray, 2002). Second, phonetic distances, while rel-
evant for language processing, are difficult to reli-
ably measure in the context of unfamiliar languages
(Best, 1995). Third, orthographic and phonolog-
ical distances have been shown to be particularly
relevant in studies of cross-language intelligibility
(Vanhove and Berthele, 2015; Moller and Zeevaert,
2015; Gooskens and Swarte, 2017) and Slavic in-
tercomprehension (Stenger et al., 2017a,b; Jagrova
et al., 2018; Gooskens, 2024).

Regarding surprisal, its performance on predict-
ing cross-language intelligibility could be influ-
enced by the size of language models from which
surprisal is derived. Recent advances in language
modeling include large-scale transformer models
like GPT (Radford and Narasimhan, 2018). While
these large models excel in generating contextually
rich sequences, it is often suggested that surprisal
from smaller models predict human cognitive pro-
cesses better (Oh and Schuler, 2023a,b; Vafa et al.,
2024). Yet, previous findings on this topic inves-
tigated human reading time and native language
comprehension. How model size relates to cross-
language intelligibility, a comprehension across
language instead of native comprehension, remains
unknown. Therefore, in this study, we investigate
how surprisal estimates from two monolingual Rus-
sian (RU) GPT models of different sizes (ruGPT-3-
small and ruGPT-3-large) explain human perfor-
mance when interpreting non-compositional ex-
pressions, in particular microsyntactic units, across
foreign, but closely-related languages.

Lastly, although these factors have been previ-
ously shown to correlate with the intelligibility
of non-compositional expressions (Zaitova et al.,
2024a,b), it remains underexplored how these fac-
tors vary across inputs, e.g., spoken vs. written. To
sum up, this study adresses the following research
questions (RQs):

* RQ1: How well do linguistic distances and
GPT-based surprisal predict cross-language in-
telligibility of non-compositional expressions
in relation to different types of input?

* RQ2: Is the small variant of GPT model more
effective than the large one in predicting intel-
ligibility outcomes?

We conducted two experiments to evaluate the in-
telligibility of non-compositional expressions with
spoken input only (Experiment 1), and with writ-
ten input alongside spoken input (Experiment 2).
Both experiments contain two tasks: free transla-
tion and multiple-choice question (MCQ). In the
free translation task, participants need to listen or
read a foreign expression presented in a senten-
tial context and write a RU translation. In the
MCAQ task, participants need to select between a
correct non-compositional translation and a literal,
incorrect translation of the expression in the for-
eign language. RU native speakers were recruited
as participants to translate the expressions from
five Slavic languages, i.e., Belarusian (BE), Bulgar-
ian (BG), Czech (CS), Polish (PL), and Ukrainian
(UK). Slavic languages are traditionally divided
into three branches: East Slavic (RU, BE, UK,
etc.), West Slavic (PL, CS, Slovak, etc.), and South
Slavic (BG, Croatian, Serbian, etc.) (Sussex and
Cubberley, 2006). We assess cross-language in-
telligibility via a binary correctness measure (cor-
rect vs. incorrect) based on the nature of our stim-
uli: non-compositional microsyntactic units whose
meanings cannot be inferred from their individual
components. According to the prior work on intelli-
gibility, we treat it as a all-or-nothing phenomenon:
either participants grasp the idiomatic meaning, or
they do not (Stenger et al., 2017a,b; Gooskens and
van Heuven, 2021).

By combining linguistic distances and surprisal
values as predictive factors, we aim to provide a
comprehensive view of the interplay between struc-
tural similarity and cognitive difficulty. Our study
contributes insights into psycholinguistic modeling
and the role of model scale in predicting cross-
language intelligibility, offering both theoretical
and practical implications.

2 Methodology

2.1 Stimuli preparation
2.1.1 Written data

To prepare our non-compositional expression stim-
uli, we selected 60 most frequent microsyntactic
units per target language from an existing dataset
of RU microsyntactic units and their translational
equivalents in BE, BG, CS, PL, and UK (Zaitova



et al., 2023). Some examples of microsyntactic
units are given in Appendix A. The dataset provides
the unit in RU, its translational equivalent in the
target Slavic language, and a contextual sentence
in both languages with average lengths varying be-
tween 11 and 15 words. Limiting the stimuli to 60
units per language was aimed at minimizing the
risk of participant fatigue on data quality.

2.1.2 Spoken data

We recorded the context sentences containing the
target units using native speakers (one per tar-
get language) in self-paced reading sessions. All
recordings were made in a controlled acoustic envi-
ronment to ensure consistency across the samples.
A 44.1 kHz sampling rate in an uncompressed for-
mat was used. Audio lengths averaged about 5—7
seconds. The speakers for BG, CS, and UK were
female, while those for BE and PL were male due
to difficulties finding female native speakers. The
speakers’ ages ranged from 21 to 29 (mean=25).

2.1.3 Literal translation options for the
multiple-choice task

The MCQ task mentioned in Section 1 requires
participants to choose between two options: a cor-
rect translation and a literal counterpart. The cor-
rect translations are described in Section 2.1.1,
while the literal translation mimics the form of
the stimulus but provides an inaccurate, but vi-
able compositional translation of the expression.
To create the literal translations, native RU speak-
ers manually found word-by-word translations
sourced from Glosbe (https://glosbe.com) and
Vasmer’s dictionary (https://lexicography.
online/etymology/vasmer/). Having literal con-
terpart challenges participants to distinguish be-
tween non-compositional (correct) and literal (in-
correct) options. Although a binary choice is lim-
ited, it served as a baseline measure for distinguish-
ing idiomatic meanings from surface-level compo-
sitional interpretations. The literal options simulate
a common cognitive strategy in cross-linguistic
comprehension: mapping form to meaning even
when it leads to less natural semantics.

2.2 Experimental setup

We conducted two web-based experiments with
different types of input, namely Experiment 1 for
spoken-only input and Experiment 2 for written
input alongside spoken input, and with the two
tasks (free translation and MCQ) mentioned in Sec-

tion 1. The experiments were prepared via the
website [ thelinkisanonymized]. Before the ex-
periments, participants first received instructions
in RU detailing the procedure. After familiariz-
ing themselves with the tasks, participants were
required to register on the website and to complete
a questionnaire in order to monitor their language
background and to exclude those who had prior
knowledge of the target languages, thereby main-
taining the purity of the experiment’s conditions.

An illustration of the two experiments and the
two tasks is shown in Fig. 1. The only difference
between the two experiments is whether partici-
pants were additionally presented with the written
form of the test units, comparing Fig. 1 (a) and
(b) for Experiment 1 (left panel) to Fig. 1 (c) and
(d) for Experiment 2 (right panel). Note that par-
ticipants were informed which language the test
expression belonged to but were not told if their
response was correct.

Further, in both experiments, participants were
first presented with an audio clip containing the
expression (highlighted in red bar) presented in its
contextual sentence together with the free transla-
tion task, as shown in Fig. 1 (a) and (c), i.e., the
upper panel. The time to enter the translation was
based on a formula of 10 seconds per word in the
test unit plus an additional 3 seconds per word in its
context. Participants were allowed to replay each
audio fragment of the whole contextual sentence
and of the test unit up to three times, simulating
real-life scenarios where listeners can ask speakers
to repeat themselves.

After the free translation task, participants re-
ceived the MCQ for the same expression. This
ensured that participants attempted a genuine in-
terpretation before choosing between correct and
literal translations. MCQ is illustrated in Fig. 1 (b)
and (d), i.e., the bottom panel. It asked participants
to choose from two options in RU that they believed
to be correct: (i) the correct non-compositional
equivalent translation and (ii) an alternative word-
by-word literal translation as explained in Sec-
tion 2.1.3. The MCQ task aimed to assess partici-
pants’ preference for the non-compositional (cor-
rect) translation over the literal (incorrect) one.

In total, each participant received 60 test units,
each presented in a separate trial, together with
their sentential context (in audio form). These 60
test units were evenly distributed across the five
target languages. This means that each participant
received 12 test units per target language, which is
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Bbibepute Hanbonee noaxoAALMIA NEepeBoa,
‘in any case”
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(b) Experiment 1 MCQ

(d) Experiment2 MCQ

Figure 1: Task interface for the free translation and MCQ tasks received by Russian participants. The Czech test
expression with written form in (c) and (d) is ’in spite of . The green hourglass shows how many seconds are left

for the participant to give their answer.

a random subset of the five subsets per language.

2.3 Participants

We recruited native RU speakers as our partici-
pants via Prolific (https://prolific.com), an online
platform for research participant recruitment. Fa-
miliarity with the Latin script, which is used by
CS and PL languages, was expected due to the
English-language interface of Prolific. All of our
participants provided informed consent and were
assured to be anonymized in any published data.
Participants with any prior knowledge of the tar-
get languages were excluded. For Experiment 1
(spoken-only input), we recruited 88 participants
(26 males, 60 females, 2 identifying as other gen-
ders; age range 21-78 years, mean age 35). For Ex-
periment 2 (spoken and written input), we recruited
118 participants (41 males, 76 females, 1 identify-
ing as another gender; age range 18-59 years, mean
age 32). There was also no overlap of participants
in the two experiments. Having these large num-
bers of participants also aims to compensate the
limited stimuli subset size.

2.4 Intelligibility scores, linguistic distances,
and surprisal

The correctness of responses was considered as the
intelligibility. For the free translation task, the re-
sponses were automatically considered correct if

they matched allowed alternative answers in a pre-
defined list. For instance, we allowed RU equiv-
alents wmjm 4TO, UTO JiM, WJIN KaK as possible
translations of UK« mo. The responses were
further manually checked by a native RU speaker
to include correct responses that could have been
missed because of typos.

2.4.1 Linguistic distances

To address RQ1 regarding which distances are
related to intelligibility, we extracted the ortho-
graphic and phonological distances (explained in
Section 1) for each test unit in two different ways
depending on the task. For the free translation task,
we used the distance between the original expres-
sion and its correct non-compositional translation
to RU. For the MCQ task, we measured how much
closer the original expression was to its correct
non-compositional translation in RU compared to
its literal, word-by-word translation. A larger dif-
ference indicates that the true meaning is very dif-
ferent from the literal interpretation. For instance,
in the UK expression Bce xxe (literally "everything
or", but actually meaning "nonetheless"), we would
expect a large difference since the true meaning dif-
fers substantially from the literal translation. The
boxplots of linguistic distances, calculated indepen-
dently from intelligibility scores, are presented per
language in Appendix B.
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Figure 2: Intelligibility scores of free translation and MCQ Responses in the two experiments (i.e., Experiment 1
referring to spoken-only inputs while Experiment 2 referring to combined spoken and written inputs). The languages

are arranged in descending order by intelligibility scores.

Orthographic distance. We employed Leven-
shtein Distance which counts the minimum number
of single-character operations (i.e., insertions, dele-
tions, and substitutions) needed to transform one
word into another (Levenshtein, 1966). It is worth
noting that evaluating orthographic distance among
Slavic languages is challenging due to their use
of two writing systems — Latin and Cyrillic. To
address this, we performed ISO 9 transliteration
for CS and PL stimuli to convert them to Cyrillic,
which is used by the other three target languages
and RU. Levenshtein distance has been shown po-
tential in analyzing intelligibility. For instance,
(Stenger, 2019) found that Levenshtein distance
of cognates is a reliable predictor of orthographic
intelligibility of Slavic languages that use Cyril-
lic script. Also, as we mentioned in Section 2.3,
our RU participants were not expected to know the
correct orthographic pronunciation rules of the tar-
get languages, as they had not previously studied
these languages. They might use their knowledge
of Cyrillic and Latin scripts from exposure to RU
and English (Prolific’s interface language) to ap-
proximate the pronunciation of words written in
Latin script.

Phonological distance. We employed Phono-
logically Weighted Levenshtein Distance (PWLD)
which quantifies the distance between different
phonemic sequences or word forms (Fontan et al.,
2016). This distance extends the string-based Lev-
enshtein Distance by considering the cost of each
phoneme substitution based on their phonetic fea-
tures like voicing and manner of articulation, mak-
ing PWLD reflect fine-grained perceptual similar-
ity. We employed the same adaptation of the origi-
nal PWLD as the one proposed in Abdullah et al.
(2021) which is based on PHOIBLE feature vec-
tors (Moran and McCloy, 2019). For example, the
pair of Czech and Bulgarian cognates: ucho /u x
o/ and yxo /ux O/, the substitution cost would
be lower than 0.5 (i.e., the maximum substitution).
The phonemic transcriptions for all the data were
obtained using CharsiuG2P, a transformer-based
tool for grapheme-to-phoneme conversion (Zhu
et al., 2022).

2.4.2 Surprisal values

In addition to linguistic distances, we extracted
surprisal values to address RQ1. We developed a
cascaded system that combines automatic speech
recognition (ASR) and language modeling. This



Table 1: Mixed-Effects Model with GPT-Large Results

(a) Free translation Task (GPT-Large) (b) MCQ Task (GPT-Large)

Predictor Est. SE z P Predictor Est. SE z P
Main Main

Intercept —-1.85 0.32 —5.79 < .001 Intercept 2.07 0.18 11.45 < .001
PWLD —0.58 0.13 —4.4 < .001 PWLD —0.43 0.08 —5.62 < .001
Levenshtein —0.41 0.14 —-2.9 0.004 Levenshtein —0.33 0.08 —4.15 < .001
GPTL —0.54 0.2 —2.63 0.008 GPTL —0.31 0.13 —2.32 .021
Written 1.23 033 3.76 < .001 Written —-0.29 0.19 —-1.51 131
South —3.07 042 -7.23 < .001 South —0.42 023 —1.84 .066
West —2.48 037 —6.79 < .001 West —1.05 0.19 —-5.41 < .001
2-way 2-way

GLxWr 046 0.14 3.27 .001 GLxWr —0.03 0.12 —-0.25 .805
GLxS 0.55 049 1.12 0.26 GLxS 0.58 026 2.22 .027
GLxW 0.92 0.34 2.7 .007 GLxW 037 0.19 1.99 .047
WrxS 1.1 032 347 < .001 WrxS —0.3 0.19 —1.57 0.12
WrxW 0.59 026 2.28 .023 WrxW —-0.2 0.16 —1.25 0.21
3-way 3-way

GLxWrxS —-1.19 0.37 -3.2 .001 GLxWrxS —-0.33 0.22 —-1.51 .130
GLxWrxW  —0.4 0.26 —1.56 0.119 GLxWrxW  0.09 0.16 0.57 .568

Note. GL = GPT Large, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
3.25, User = 3.88.

Note. GL = GPT Large, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
0.96, User = 1.03.

Table 2: Mixed-Effects Model with GPT-Small Results

(a) Free translation Task (GPT-Small) (b) MCQ Task (GPT-Small)

Predictor Est. SE z P Predictor Est. SE z P
Main Main

Intercept —1.81 032 5.7 < .001 Intercept 2.10 0.18 11.60 < .001
PWLD —0.58 0.13 —4.43 < .001 PWLD —0.43 0.08 —5.67 < .001
Levenshtein —0.41 0.14 —-2.9 0.004 Levenshtein —0.32 0.08 —4.12 < .001
GPT S —0.56 0.20 —2.73 0.006 GPT S —0.31 0.13 —-2.31 .021
Written 1.19 0.33 3.67 < .001 Written —-0.29 0.19 —-1.50 135
South —3.11 0.42 —-7.34 < .001 South —0.43 0.23 —1.86 .063
West —2.53 0.36 —6.93 < .001 West —1.07 0.19 —-5.54 < .001
2-way 2-way

GSxWr 0.46 0.14 3.35 < .001 GSxWr —0.01 0.12 —-0.09 927
GSxS 0.57 0.46 1.23 .022 GSxS 0.54 024 222 .027
GSxW 1.05 0.35 3 0.003 GSxW 0.38 0.19 2.01 .044
WrxS 1.1 032 3.49 <.001 WrxS -0.32 0.19 —1.71 0.08
WrxW 0.61 0.26 2.37 0.02 WrxW —0.2 0.16 —1.24 0.21
3-way 3-way

GSxWrxS —1.07 0.35 —3.06 0.002 GSxWrxS —0.37 020 —1.82 .068
GSxWrxW  —0.37 0.26 —1.4 0.16 GSxWrxW 0.05 0.16 0.34 733

Note. GS = GPT Small, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
3.23, User = 3.88.

Note. GS = GPT Small, Wr = spoken+written input, S =
South, W = West. Random effects variances: Source =
0.96, User = 1.03.



design is motivated by psycholinguistic models of
spoken language comprehension, which assumes
a layered process involving initial decoding of
acoustic—phonological information followed by lex-
ical integration (Marslen-Wilson, 1987; Cutler and
Clifton, 1999; Friederici, 2002). By capturing both
stages, our system approximates the cognitive pro-
cesses RU speakers engage in when interpreting
unfamiliar Slavic expressions. The cascaded sys-
tem operates as a two-stage pipeline as described
below:

1) Speech-to-Text: First, the ASR component
enables us to simulate phonological decoding by
transcribing foreign language speech into RU. No-
tably, ASR is only applied to the foreign language
input and not to RU, ensuring the model mimics
how RU listeners perceive foreign speech input.
While ASR inevitably introduces errors, especially
when processing unfamiliar languages, prior re-
search demonstrates that such errors can approxi-
mate human comprehension difficulty in L2 con-
texts (Mirzaei et al., 2016). In this sense, ASR
output does not merely add noise but reflects real-
world variability in auditory processing. We used
the Wav2Vec2-Large-Ru-Golos-With-LM model
(Bondarenko, 2022) to convert speech input from
foreign, target Slavic languages into RU text. This
ASR component was specifically fine-tuned on the
large-scale RU speech Sberdevices Golos dataset
(Karpov et al., 2021), making it suited for emulat-
ing a native RU listener. Detailed model perfor-
mance on RU can be found in Appendix D.

2) Surprisal Calculation: The second stage
of the pipeline computes surprisal from the tran-
scribed RU text described above. Surprisal, opera-
tionalized as the negative log-probability of a token
given its preceding context, serves as a proxy for
cognitive processing load: the less expected a word
is in context, the higher its surprisal value. We
compute normalized sentence-level surprisal for
each expression. This decision was motivated by
the assumption that sentence-level surprisal better
captures the integrative processing effort required
in real-time comprehension of non-compositional
expressions. In particular, the RU text output from
the Speech-to-Text stage is fed into two autoregres-
sive models, ruGPT-3-small (125M parameters)
and ruGPT-3-large (760M parameters) (Zmitro-
vich et al., 2024), in order to address RQ2. The
ruGPT-3-small and ruGPT-3-large were chosen to
represent different model capacities while maintain-
ing domain consistency. Both models were trained

on RU text, making them suitable for modeling
native RU speakers’ processing.

Note that since these language models generate
output based solely on left-to-right context, they
estimate probabilities for each word in a sequence
by conditioning only on prior tokens.The models
assign probability scores to each word in the tran-
scribed sequences, and we converted these scores
into surprisal values. We normalize surprisal scores
for each stimulus sentence by summing up the
scores for all tokens of the sentence given their
preceding context, and then divide by the number
of the tokens in the sentence to get normalized
sentence-level surprisal.

2.5 Statistical Analysis

We analyzed the binary response data, i.e., correct
vs. incorrect (baseline), using generalized linear
mixed-effects models (GLMMs) with a binomial
logit link by using glmer function in the Imer pack-
age (Bates, 2016) of R (Team et al., 2013). While
more graded scoring methods of intelligibility exist,
we opted for a binary approach to ensure compa-
rability across task formats and to reduce subjec-
tivity in judgment, especially when it comes to
non-compositional expressions.

For both the free translation and MCQ tasks,
the fixed effects were: (1) Linguistic Distances:
PWLD and Levenshtein distance, (2) GPT-based
Surprisal: Extracted from both large and small GPT
models, and (3) Experimental Factors: Experiment
input, i.e., spoken-only (Experiment 1) vs. spo-
ken+written (Experiment 2) with spoken-only as
the baseline, and Language group (East, South,
West; East as the baseline), including relevant in-
teraction terms.

All continuous predictors (i.e., linguistic dis-
tances and surprisal values) were centred to
their mean values to reduce collinearity, of
which more detailed explanation can be found
in Appendix C. The experimental factors were
dummy-coded. Random effects comprised inter-
cepts for participants (user_id) and source texts
(source_text_to_be_translated), with random
slopes for Experiment input when justified by the
data. Models were optimized using the bobyga op-
timizer (maxfun = 200,000) with Laplace approx-
imation. Model fit was assessed using AIC, and
predictor significance was evaluated via z-values
and corresponding p-values (with degrees of free-
dom estimated by Satterthwaite’s method where
applicable).



3 Results and Discussion

3.1 Intelligibility Scores

Figure 4 shows that intelligibility scores varied
both by task and input type. In general, free trans-
lation scores were lower than those from the MCQ
task, as expected given the greater cognitive de-
mands. The additional written input in Experiment
2 improved free translation performance, but af-
fected MCQ responses adversely, suggesting that
orthographic cues aid deeper semantic processing
but may interfere with rapid recognition-based de-
cisions. Regarding language groups, East Slavic
languages (BE and UK) demonstrated the highest
intelligibility scores, South Slavic (BG) — interme-
diate scores, and West Slavic languages (PL and
CS) — the lowest. This gradient reflects typological
proximity of Slavic languages, and is consistent
with prior findings on Slavic intercomprehension
(Gooskens and van Heuven, 2021; Stenger and Av-
gustinova, 2021).

3.2 RQ1: Predictive Power of Linguistic
Distances and GPT-based Surprisal

Our analysis reveals distinct patterns in how linguis-
tic distances and GPT-based surprisal predict cross-
language intelligibility across tasks. As the results
of the free translation task show in Table 1a, both
metrics were significant predictors: The higher the
Levenshtein distances (Est. =-0.41, p = 0.004) and
higher the surprisal values (Est. =-0.54, p = 0.008),
the lower the log odds of having a correct response
(reflecting lower intelligibility). The MCQ task
shows a different pattern (Table 1b). While lin-
guistic distances emerges as the primary predictor
(PWLD: Est. =-0.43, p <.001; Levenshtein: Est. =
-0.33, p <.001), GPT-based surprisal had a weaker
effect on performance (Est. =-0.31, p =.021). The
results with small GPT models in Table 2a and 2b
demonstrate the same tendency.

Experiment input and language group also con-
tributed to explaining the intelligibility. As evident
in Table 1a, written input improved free translation
performance (Est. = 1.23, p < .001) but showed
no significant contribution for MCQ responses (Ta-
ble 1b: Est. =-0.29, p = .131). Additionally, com-
pared to East Slavic languages (the baseline level),
both South Slavic (Est. =-3.07, p <.001) and West
Slavic languages (Est. = -2.48, p <.001) showed
significantly lower intelligibility in the free transla-
tion task. Whereas in the MCQ, only West Slavic
languages (Est. =-1.05, p <.001) stood out.

3.3 RQ2: Comparison of GPT Model Sizes

The results in Tables 1a and 2a for free translation,
and in Tables 1b and 2b for MCQ, revealed sim-
ilar performance patterns of GPT-based surprisal
across model sizes in both free translation (Large:
Est. =-0.54, p = 0.008; Small: Est. =-0.56, p
= 0.006) and MCQ tasks (Large: Est. =-0.31, p
= .021; Small: Est. = -0.31, p =.021). These
results contradict previous findings claiming that
larger model capacity lead to a worse prediction
of human performance (Oh and Schuler, 2023a,b).
However, the previous studies considered reading
times and monolingual experiments. Our results
indicate that the role of surprisal in cross-language
intelligibility should be treated differently than that
in monolingual experiments. On the other hand,
the difference in the results could also rise from the
fact that we used RU ASR models to generate the
input for language model surprisal, which could
add more noise to the data.

4 Conclusion

This study investigated (1) how linguistic distances
and surprisal derived from GPT models predict
cross-language intelligibility of non-compositional
expressions (2) and whether GPT-based model size
matters for prediction power. The study used free
translation and multiple-choice question tasks in
speech-only or speech+written setups. Our results
showed that linguistic distances (orthographic and
phonological) emerged as the strongest predictors
of intelligibility in both tasks. GPT-based surprisal
was a significant predictor only in the free trans-
lation task, highlighting that such a task is more
sensitive to contextual predictability. Additionally,
minimal differences in surprisal’s performance be-
tween large and small variants suggest that a larger
GPT model can predict cross-language comprehen-
sion outcomes as effectively as a small one.

These findings underscore the complex inter-
play between typological proximity, orthographic
and phonological similarities, and task demands
in shaping cross-language intelligibility. The dif-
ferential impact of written input across tasks fur-
ther highlights that while orthography can sup-
port deeper semantic processing, it may confound
recognition-based tasks. Future research should
explore other language families and consider other
language models for predicting cross-language in-
telligibility.



Ethical statement

Before taking part in the experiments, all the par-
ticipants gave their consent that their anonymized
responses would be used for research purposes.
Participants were compensated for their work in
standard rate suggested by Prolific.

Limitations

While our study provides valuable insights into the
cognitive mechanisms underlying cross-language
intelligibility, it is based on native Russian speakers
and specific ASR and language models for Russian.
Further work is needed to generalize these find-
ings to other language groups and other ASR and
language models. Additionally, the gender imbal-
ance among recorded speakers may have influenced
results and should be addressed in future studies.
Also, our binary correctness metric may not be
able to capture partial comprehension where partic-
ipants may derive partial meanings through analogy
or contextual inference. Incorporating alternative
metrics, such as participant confidence ratings or
graded correctness scales, could provide a more
nuanced view of intelligibility in such cases.
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Type BE UK BG CS PL RU

Prep ¥ KaHIIbI v KiHmi B Kpasd Ha na konec w koricu B KOHIIE
Eng. trans. at the end of at the end of at the end of at the end of at the end of at the end of
Adv & Pred He pa3 He pa3 He BEeJHbBXK ne jednou niejednokrotnie He pa3
Eng. trans. not once not once not once not once not once not once
Parenth TaKiM IbIHAM TaKUM IHHOM TaKbB HaIHH timto zpisobem | w taki oto sposéb | Taxum 0b6pazom
Eng. trans. in this way in this way in this way in this way in this way in this way
Conj xiba ToJbKi xiba 1110 OCBEH 12 snad jen chyba ze pasBe 4uTo
Eng. trans. except (only) that | except (only) that | except (only) that | except (only) that | except (only) that | except (only) that
Part yce XK BCe XKe BCe MaK asi spis wigc jednak BCe XKe
Eng. trans. nonetheless nonetheless nonetheless nonetheless nonetheless nonetheless

Note: We use ISO 639-1 codes for the languages: Belarusian (BE), Ukrainian (UK), Bulgarian (BG), Czech (CS), Polish (PL),

Russian (RU).

Table 3: Microsyntactic units in six Slavic languages.
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B Linguistic distances
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Correct-original Levenshtein Distance
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Levenshtein Distances Across Languages
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Figure 3: Ranking of orthographic Levenshtein Distance by language
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Figure 4: Ranking of phonological Distance by language
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C Colinearity concern

In order to avoid the impact of multicollinearity
issue on our GLMM models, we first checked the
simple Pearson correlations between PWLD and
Levenshtein distance used for the models of free
translation and MCQ tasks, and they are 0.44 and
0.50, respectively. Their correlations with GPT-
based surprisal values are 0.08 (SD = 0.037).

However, collinearity is more than correlation
between two predictors. What else is important
is how the predictor interacts within the full set
of variables in the model. Thus, in order to have
the full picture of how the predictors contribute
to explaining the variance of our dependent vari-
able, we further checked the scaled Generalized
Variance Inflation Factor (sGVIF) of all predictors
in our GLMM models. VIF in general quantifies
how much multicollinearity exists in a regression
model, and sGVIF can be applied to categorical
variables (e.g., language group) and takes into ac-
count predictors’ degree of freedom. An sGVIF =1
indicates no multicollinearity, and a value below 2
is generally considered acceptable.

The mean (SD) of sGVIF values for all predic-
tors in the four models reported in Tables 1 and
2 are: 1.379952 (0.2320059) for free translation
with GPT large, 1.46668 (0.345058) for MCQ with
GPT large, 1.384291 (0.2342397) for free transla-
tion with GPT small, and 1.465348 (0.3460249)
for MCQ with GPT small. As can be seen, these
sGVIF values are closer to 1, indicating that mul-
ticollinearity is not a big concern in our GLMM
models.

D Performance of Automatic Speech
Recognition on Russian dataset

Table 4: ASR performance of wav2vec2-large-ru-golos-
with-Im on Russian datasets (WER and CER)?

the ground truth of perceiving the speech, and just
simply map it to their known language(s). There
can be various mappings.

Dataset WER (%) | CER (%)
Sberdevices Golos (crowd) 6.88 1.64
Common Voice RU 12.12 2.98
Russian Librispeech 15.74 3.57

Be aware that we do not report the performance
(e.g., WER) of ASR on foreign speech inputs as it
is just not applicable. Thinking about when people
listen to an unknown language, they do not know

2Model: bond0@5/wav2vec2-large-ru-golos-with-1m,

available at https://huggingface.co/bond@d5/
wav2vec2-large-ru-golos-with-1m
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