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ABSTRACT

Generative models of language exhibit impressive capabilities but still place non-
negligible probability mass over undesirable outputs. In this work, we address the
task of updating a model to avoid unwanted outputs while minimally changing
model behavior otherwise, a challenge we refer to as a minimal targeted update.
We first formalize the notion of a minimal targeted update and propose a method to
achieve such updates using negative examples from a model’s generations. Our
proposed Targeted Negative Training (TNT) results in updates that keep the new
distribution close to the original, unlike existing losses for negative signal which
push down probability but do not control what the updated distribution will be. In
experiments, we demonstrate that TNT yields a better trade-off between reducing
unwanted behavior and maintaining model generation behavior than baselines,
paving the way towards a modeling paradigm based on iterative training updates
that constrain models from generating undesirable outputs while preserving their
impressive capabilities.

1 INTRODUCTION

Despite their impressive achievements, language models still output undesirable text. Examples
include hallucinations (Maynez et al., 2020; Martindale et al., 2019; Raunak et al., 2021; Ji et al., 2022;
Huang et al., 2021), toxic language (Gehman et al., 2020), and context-specific forms of unwanted
outputs, from improper style (e.g. informal language in contexts where formality is expected) to
inappropriate content (e.g. advanced topics in applications for children).

In recent years, various strategies have been proposed to control the generations of an existing
language model by changing the sampling process during inference time, e.g. via a guided decoding
strategy based on rules (Paulus et al., 2018; Hokamp & Liu, 2017), auxiliary models (Dathathri et al.,
2019; Krause et al., 2021; Yang & Klein, 2021; Liu et al., 2021), or prompt design (Brown et al.,
2020).1 Such techniques, however, add latency or complexity to the prediction, as they push all
desired model changes to inference time; moreover, the costs to the prediction pipeline only increase
as the list of changes grows, whether that is maintaining a codebase of decoding rules and specialized
prompts, or running multiple auxiliary models to guide the original model’s decoding. As language
models become more ubiquitous across product stacks, their ease of use and speed during prediction
will be increasingly important, and the strategy of pushing all model changes to inference time will
become increasingly impractical.

In this work, we instead consider training-time strategies for improving a model’s generations. The
most naive way to address problems with an existing model is to train a new one on modified data or
with an alternative training strategy. However, retraining to address one problem can result in a model
that exhibits new problems. As an example, Welbl et al. (2021) show that training on data filtered to
be less toxic hurts model perplexity, disproportionately so for text associated with minority groups.
The same can be said about finetuning; finetuning does not start the modeling process from scratch
but can still result in models that are substantially different from their base versions, a phenomenon
known as catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick et al., 2016; Luo et al.,
2023). Consequently, finetuning can also suffer from the same problems as retraining from scratch,
namely that new problems emerge in the endeavor to address existing ones; for instance, Xu et al.

1For a given starting input c, prompt design strategies sample from p(x | c′), c′ ̸= c instead of p(x | c).
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(2021) find that finetuning an existing language model on detoxified data also hurts model perplexity
disproportionately on text with minority group mentions, and the degradation increases the longer the
finetuning. Is there a way to adapt finetuning to make more targeted changes to a model?

In this work, we propose a finetuning strategy for minimal targeted updates to an existing autore-
gressive generative model. Minimal targeted updates constrain an existing model to avoid certain
behavior while keeping the resulting model close to the original. The proposed approach in this
work, called Targeted Negative Training (TNT), uses only the original model and annotations of its
generations to target a new model that is a minimal targeted update of the original.

We first discuss the challenge of constraining model generations and why existing common finetuning
strategies fall short (Section 2). Then we propose TNT, a finetuning solution for avoiding undesirable
outputs via a minimal targeted change (Section 3). We next compare TNT to other related work in the
literature (Section 4) and show in experiments that TNT enables more precise control than baselines
over the trade-off between reducing unwanted behavior and maintaining existing model behavior
(Section 5). We provide code at hidden-for-anonymity.

2 THE CHALLENGE OF CONSTRAINING MODEL GENERATIONS

In this section, we motivate and define a minimal targeted update. First, we discuss the limitations of
coarse data filtering, motivating the use of token-level annotations to target bad behavior (Section 2.1).
Then, we explain how existing losses for negative signal fail to govern where probability mass should
be redispersed, motivating the need to for objectives that not only push down probability mass but also
control what the resulting distribution should look like (Section 2.2). Then, we define the solution to
a minimal targeted update (Section 2.3).

2.1 DATA FILTERING IS A COARSE SOLUTION

In general, a text sequence is undesirable not because every single token in the text is bad, but rather
because some subset of the text conveys unwanted content. Data filtering however removes not only
bad content but all of the text that co-occurs with bad content. As a result, language and concepts that
happen to be correlated with bad behavior become under-represented in the finetuning distribution.
The toxicity examples in the introduction provide one such example, and our own experiments on
reducing hallucination (details in Section 5), we also find that retraining or finetuning on filtered data
can significantly change the generation behavior of a model beyond the change of interest (results in
Appendix C). Methods which build on finetuning with filtered data (e.g., Ilharco et al. (2023)) are
also susceptible to this same issue.

Finetuning on token-level annotations can ameliorate the above issue by enabling a training loss
that treats unwanted tokens differently from others. Such an approach allows all acceptable text to
contribute to model training, even text that is correlated with unwanted text. The effort required
to collect such token-level annotations can be expensive but in some cases may be comparable to
that of collecting sequence-level annotations—for instance, labeling an overall sequence with “has
hallucination” or “has offensive language” generally requires identifying the hallucination or offensive
language itself. In fact, Wu et al. (2023) find that annotation time is similar for fine-grained and
sequence-level labels in a long-form QA task, but finetuning a model on the former yields substantial
performance benefits over finetuning on the latter.

Next, we consider existing losses that operate on token-level negative signal.

2.2 EXISTING NEGATIVE LOSSES DO NOT CONTROL THE RESULTING DISTRIBUTION

Here we show that existing objectives that take into account negative signal are insufficient to
enforce targeted updates. Given a distribution of negative (i.e. unwanted) examples pneg, neg-
ative likelihood (NL) (He & Glass, 2020) negates the log-likelihood objective for this distribu-
tion: LNL(θ) = −Epneg [− log pθ(x)]. Unlikelihood (UL) (Welleck et al., 2020) instead maximizes
log(1 − p(x)) over the distribution of negatives: LUL(θ) = −Epneg [log(1 − pθ(x))]. These token-
level losses for negative signal are typically combined with log-likelihood (log likelihood (LL))
on acceptable tokens as positive signal: for instance, for UL, we have L(θ) = −

∑
t

(
1[xt ∈

supp(pneg
c,x<t)] log[1− pθ(xt|c, x<t)] + 1[xt ̸∈ supp(pneg

c,x<t)] log pθ(xt|c, x<t)
)
. We first consider the
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negative token-level losses by themselves and then objectives that combine these negative losses with
log-likelihood on positive tokens (i.e., NL + LL and UL + LL).

First, both NL and UL alone are optimized when all negative examples have zero probability under
the model distribution. However, because both losses are defined as expectations with respect to
the distribution of negatives pneg, neither NL or UL account for how mass is dispersed outside of
the negative tokens. In other words, both NL and UL reduce the probability of the target negative
tokens but do not control what the new probability distribution will look like at that token index, since
tokens x ̸∈ pneg do not factor into the expectation for either loss. For instance, under these objectives,
a distribution that places all of its mass on one particular element outside the support of negative
examples is indistinguishable from a distribution that spreads its probability mass arbitrarily across
all non-negative examples. In other words, these negative losses push down probability mass but do
not specify how probability mass should be redistributed.

Even when we combine these negative losses with log-likelihood over positive tokens, the overall
objectives still do not specify the solution an update should target in the context of finite data. For
NL + LL, the negative likelihood is unbounded (lowest value is −∞) and thus can outweigh the log
likelihood components of the loss (lowest value is 0) that encourage pushing up probability over
acceptable tokens. Unlike NL, UL is bounded (lowest value is 0), but without specifying what the
token distributions should be for indices with negative examples, the resulting UL + LL loss does not
sufficiently control the target of the update. In fact, we find that utilizing these objectives increases
the prevalence of disfluencies in generated sequences relative to the original model; for instance,
using NL on negative tokens and LL on positive tokens increases the frequency of word repeats by
17x and 38x on the datasets we test, while using UL introduces a ?? disfluency to 1.1% and 5.4% of
the generations respectively (see Table 1 for details). These occurrences highlight the need to define
the solution to a minimal targeted update for negative examples, which we do next.2

2.3 DEFINING THE SOLUTION TO A MINIMAL TARGETED UPDATE

While losses such as negative likelihood and unlikelihood do not define where probability mass
should be dispersed in a negative update, here we define the solution to a minimal targeted update:
Given an original distribution po(x), a minimal targeted update results in a new distribution pnew(x)
that is closest to po(x) in reverse KL-divergence while meeting a desired criterion, namely to avoid
certain unwanted outputs. The choice of reverse KL-divergence is a natural one in this setting since
the goal is to constrain the support of the original distribution, and the forward KL-divergence is
infinite when the support of the new distribution is a strict subset of the original.

Let the distribution of unwanted elements be pneg. The model should not output negative examples,
i.e., x ∈ supp(pneg). Let Pk denote the set of distributions pk which satisfy the criterion ∀x ∈
supp(pneg), pk(x) = 0. Then, we define result under a minimal targeted change as

pnew = min
pk∈Pk

KL(pk||po). (1)

The distribution pnew is also known as the information projection of the original distribution po onto
Pk and is guaranteed to be unique given Pk is a closed, convex set (Csiszár & Shields, 2004). The
solution to Equation (1) is

pnew(x) ∝ po(x)1[x ̸∈ supp(pneg)]. (2)

See Appendix A for details. Equation (2) is a special case of the information projection for pointwise
constraints (i.e., constraints that are applied to every element in the distribution) and offers a simple
mathematical form for a minimal targeted change. Namely, pnew is the distribution that would
be obtained by pushing the probability of the negative examples down to zero under the original
distribution and renormalizing. This solution encompasses a wide range of applications, as the set of
negative examples supp(pneg) can generalize to any set of output generations one wishes to avoid,
from factual inaccuracies to offensive language to text in a certain style.

2For clarification, we note that the original implementations of these losses paired them with positive signal
not just on other token indices, but also on the same index as the negative signal. This is not available in the
context of an update with negative examples, as it would require providing corrections for the unwanted tokens.
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Relationship to Conditioning. The distribution in Equation (2) is equivalently the distribution of the
original model conditioned on the criterion x ̸∈ supp(pneg):

po(x | x ̸∈ supp(pneg)) ∝ po(x)po(x ̸∈ supp(pneg) | x) = po(x)1[x ̸∈ supp(pneg)]. (3)

This correspondence implies that methods which use Bayes’ Rule to condition on a constraint (Krause
et al., 2021; Yang & Klein, 2021) are performing a minimal targeted update during inference.3
Conversely, any minimal targeted update can also be viewed via the lens of conditioning.

We now define TNT to target this solution directly.

3 TARGETED NEGATIVE TRAINING

TNT seeks to approximate the desired generator pnew (Equation (2)) directly via a model pθ, rather
than change the sampling procedure for the original model po during inference.

To encourage targeted probability removal, TNT uses the following insight: a single forward pass
through a language model provides a single sample from a high-dimensional distribution over
sequences, but the same forward pass provides a fully specified distribution over tokens for every
prefix that makes up the sequence. In other words, while one can only estimate Ex∼pnew [log pθ(x)] via
a Monte Carlo approximation of the high-dimensional distribution pnew, it is possible to analytically
compute the analogous expression for the constituent token distributions pnew

c,x<t
defined by input c and

output prefix x<t. pnew
c,x<t

is obtained by taking original token distribution poc,x<t
, removing probability

mass from all elements in the negative token distribution pneg
c,x<t , and renormalizing.

TNT simply minimizes a divergence between the model distribution pθ,c,x<t
and desired distribution

pnew
c,x<t

for every token distribution pc,x<t
encountered in the training set, given examples from pneg

c,x<t .
In this work negative examples come from annotations of the original model’s generations, e.g. spans
that are labeled bad, but they can also be specified up front without referencing model generations, as
has been done previously to reduce repetition and contradictions in neural text generation (Welleck
et al., 2020; Li et al., 2020), or given by external classifiers that operate on text prefixes (Yang &
Klein, 2021). When there are no negative examples for a given pc,x<t

, then pnew
c,x<t

= poc,x<t
.

Because a language model can be defined by its constituent distributions pc,x<t
, if all distributions

pc,x<t
match the desired pnew

c,x<t
, then the overall model matches pnew. However, because it is computa-

tionally impractical to enumerate every constituent distribution pc,x<t
, we instead opt to constrain the

distributions that are more likely to be relevant in the generations for a given task, as approximated
by the original model’s generations. Thus, given a task specified by a distribution over input queries
p(c), TNT optimizes for a sequence-to-sequence model that approximates pnew

c,x<t
as well as possible

on average, where the average is defined by the original model’s generation process. In other words,
the distributions pc,x<t that are more likely in decoding under the original model are also more likely
for training the new model. For a given choice of divergences Dp and Dn, TNT’s objective is

L(θ) = Ec∼p(c)Ex∼po
c (x)

[ len(x)∑
t=1

1[xt ∈ pneg
c,x<t

]Dp

(
pnew

c,x<t
(xt)||pθ,c,x<t

(xt)
)

+1[xt ̸∈ pneg
c,x<t

]Dn

(
pnew

c,x<t
(xt)||pθ,c,x<t(xt)

)]
.

(4)

To implement this loss, we generate outputs from the original model and annotate them for undesirable
text. Then, we obtain poc,x<t

and pθ,c,x<t for all t ∈ (1, len(x)) via one forward pass of the original
and current model and compute pnew

c,x<t
based on the annotation for the given token. For divergences

Df , we consider both the forward and reverse KL divergence, noting that the two encode difference
preferences. Minimizing the former is equivalent to minimizing token-level cross entropy, which
can be computed analytically. To minimize the latter, we smooth the desired distribution pnew by
adding 1e-6 to all elements and renormalizing. We perform gradient-based optimization by summing
over the per-sequence losses in a minibatch and calculating the relevant gradients (See Algorithm 1).
Note that the Monte Carlo nature of TNT is only to choose which distributions pc,x<t to update, as

3The aforementioned cases do not force the constraint to be hard, i.e. p(x ̸∈ supp(pneg) | x) can lie between 0
and 1, but in practice, the types of control desired for generation implies hard constraints that the text either
meets or does not, i.e. p(x ̸∈ supp(pneg) | x) ∈ {0, 1}.
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the constituent target distributions pnew
c,x<t

can be given exactly and thus the divergences computed
analytically.

(a) TNT given a negative example token (b) TNT given no negative token

Figure 1: Summary of Targeted Negative Training (TNT): For negative tokens (i.e. those flagged as
undesirable given the preceding tokens), TNT optimizes for a distribution that matches the original,
renormalized after the offending token probability is set to zero. For all other tokens, TNT encourages
the new distribution to match the original.

3.1 THE COMMUTATIVE PROPERTY OF NEGATIVE UPDATES

A practical benefit of TNT for iterative model updates is that not all negative tokens need to be
specified up front. Because of the deterministic nature of the operation to zero out probability mass,
one can apply negative examples in any order, both across different pc,x<t

distributions as well as
within a given pc,x<t distribution. This commutative nature of negative updates typically does not
apply to “positive” updates—that is, training on samples from the distribution of interest—except
for the scenario where the distributions of interest places all their mass on a single token. Negative
examples are unique in that they have a known probability mass associated with them under the
distribution of interest, i.e. 0. Given an existing distribution and a positive example, on the other hand,
there is not enough information to know the probability that an updated distribution should assign to
elements in the support of the existing distribution, presumably itself derived from previously training
on other positive examples.

Algorithm 1 Targeted Negative Training

1: Input: initial model po (already trained), inputs {c}n1 , model outputs {x}n1 , token annotations
{a}n1 denoting xt ∈ supp(pneg

c,x<t)
2: pm ← po

3: for each iteration do
4: Get pmc,x<t

for all c, x<t in batch (forward pass of pm)
5: Get poc,x<t

for all c, x<t in batch (forward pass of po)
6: Compute pnew

c,x<t
for all c, x<t in batch (Equation (2))

7: Calculate TNT loss (Equation (4))
8: Calculate gradients for weights in pm and update pm

9: end for
10: Return pm

3.2 ANNOTATING DATA FOR TARGETED NEGATIVE TRAINING

Ideally, the token-level annotations should align with the autoregressive structure of TNT methods;
namely, a negative token should indicate that the subsequence up to and including token xt is no
longer acceptable such that p(xt|x<t, c) should be 0. For one, this means that not all tokens in
an unwanted multi-token word or expression should necessarily be marked negative—an example
includes word or phrase prefixes that could potentially be continued in a manner that is acceptable.
For simplicity in the annotations, we make the assumption that for any undesirable phrase, the tokens
are undesirable immediately. This is generally a reasonable assumption as long as there are good
replacements for the undesirable content which do not overlap in prefix.

In addition, in certain cases a given pc,x<t
will not be relevant in the optimal model. For instance, for a

sequence such that pnew
c,x<t

(xt) = 0, the sequence [c, x≤t] is out-of-support under pnew meaning pc,x≤t

is not a relevant distribution. However, in initial study, we found that including such distributions (e.g.
all the constituent distributions that occur at time steps after a negative token) still helped constrain
the model towards its original. Thus, we chose to include them in the loss.
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4 RELATED WORK

Inference-time procedures for controllable generation. Many works consider alternative decoding
strategies to constrain model outputs, either with hard-coded rules such as length penalties and lexical
constraints (Paulus et al., 2018; Hokamp & Liu, 2017; Wu et al., 2016; Lu et al., 2021) or auxiliary
models such as classifiers or other conditional generative models (Dathathri et al., 2019; Krause
et al., 2021; Yang & Klein, 2021; Liu et al., 2021; Meng et al., 2022). These approaches do not
change the original model but change the sampling process to effectively sample from an alternative
distribution. These approaches can incur non-trivial complexity to the inference process: guided
decoding based on rules can result in significant maintenance overhead as the rule set gets more
complicated, and controllable generation via auxiliary models involves at least an additional forward
pass by the auxiliary model at every decoding time step. In contrast, we propose finetuning approach
which does not require a specialized inference pipeline.

Controllable generation using moment constraints. The solution of a minimal targeted update
is equivalent to that of a pointwise moment constraint defined previously in Khalifa et al. (2020);
Korbak et al. (2022a). However, the proposed algorithms differ substantially. Namely, the above
works generally consider both distributional and pointwise constraints and employ a two-stage
training procedure to build a model to satisfy both: first, they train an energy-based model (EBM) to
match the desired solution, and second they train an autoregressive generative model to approximate
the distribution implied by the EBM via importance weighting using samples from the model
being trained. In contrast, this work considers pointwise constraints only and derives a finetuning
procedure which only requires training one model via analytically computable token-level divergences
(Section 3). Like previous work, Meng et al. (2022) also consider sequence-level constraints but
prove that this setting can be translated into token-level guidance (i.e., relating pnew(xt|x<t, c)
to p0(xt|x<t, c)) via the approximation of Pry∼p(y|x)[C(x, y)|y<t] for all y<t and sequence-level
boolean constraint function C. Consequently, Meng et al. (2022) are able to propose a simpler
algorithm than existing work, and by combining ideas in their work with this work, it is possible
to define a finetuning algorithm that optimizes analytical token-level divergences even given only
sequence-level annotations (define pnew

c,x<t
using results from Meng et al. (2022), optimize using TNT).

The solution to a minimal targeted update differs from the solution of other objectives which
incorporate some form of KL divergence penalty to the loss, as the latter interpolate between the
competing objectives of maximizing reward and minimizing KL divergence (Ziegler et al., 2019; Wu
et al., 2023; Lu et al., 2022). However, some objectives, e.g., (Ziegler et al., 2019; Wu et al., 2023),
can be rewritten as minimizing the reverse KL divergence between the current model and a target
distribution that reweights the original model according to exp( 1β r(x)) for sequence-level rewards
(see Korbak et al. (2022b); Rafailov et al. (2023)) or exp( 1β

∑
t rt(x≤t)) for token-level rewards (see

Appendix G), both of which are approximately equal to the solution of minimal targeted update when
rewards denote whether a constraint is met and β is small.

Model editing approaches. Model editing (Cao et al., 2021; Zhu et al., 2020; Hase et al., 2021;
Mitchell et al., 2021; 2022) focuses on updating a language model to output a corrected fact (e.g.
updating the answer to “Who is the Prime Minister of the UK?” when someone new is appointed),
rather than constraining a model to avoid certain generations. In fact, most model editing techniques
do not even take into account the negative example (i.e. the outdated or incorrect fact), instead focusing
on maximizing the likelihood of correct facts. The reliance on corrected outputs distinguishes the
model editing setup from minimal targeted updates. Whereas corrections may be a natural source of
supervision for updating facts, they can be overly prescriptive for tasks such as detoxification where
there is a wide range of possible “corrections” to an undesirable output. In addition, maximizing the
likelihood over a sample of corrected outputs does not preclude the resulting model from placing
non-negligible probability mass over undesirable examples, so a method for avoiding certain outputs
can still be useful even when corrections exist.

Parameter-efficient finetuning. Parameter-efficient finetuning (Houlsby et al., 2019; Chen et al.,
2023; Li & Liang, 2021; Ben Zaken et al., 2022; Hu et al., 2022) is orthogonal to minimal targeted
updates, as it is possible to both change a small number of parameters but greatly modify model
behavior (as evidenced by the parameter-efficient finetuning literature), as well as change all pa-
rameters without changing the model distribution (due to the non-identifiability of neural networks).
Parameter-efficient finetuning can be used in tandem with an objective for minimal targeted updates.
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5 EXPERIMENTS

We consider two use cases for targeted negative training, reducing hallucinations and toxicity. All
experiments utilize T5 base (220M parameters). First, we finetune T5 on the original training set.
Then, we generate from the model given training and validation inputs and annotate the generations.
Next, we use the annotated generations to update the model. To evaluate, we compute the prevalence
of the unwanted behavior among the new model’s generations on the test inputs, as well as similarity
between the old and new model’s generations. We use greedy decoding for all generations.

Next, we describe the datasets and methods. See Appendix B for full dataset and experimental details.

5.1 REDUCING HALLUCINATIONS IN SUMMARIZATION

We train a summarization model using the XSUM dataset (Narayan et al., 2018) consisting of articles
as inputs and summaries as outputs. Models trained on this dataset are known to hallucinate in their
generations (Ji et al., 2022), and we see the same behavior in the model we train. Using the automated
heuristic for detecting hallucination in Nan et al. (2021), we see that approximately 21% of the
model’s generations contain some form of hallucination. We use the same hallucination detection
logic to annotate the model’s generations on the training inputs and identify hallucinations in the test
generations for evaluation.

5.2 AVOIDING TOXICITY IN RESPONSE GENERATION

We train a response generation model using the Civil Comments dataset of online comments (Borkan
et al., 2019). Due to the nature of online forums, the comments and responses occasionally con-
tain toxic language. To label text spans as toxic, we train a token-level toxicity classifier on the
Civil Comments Spans dataset Pavlopoulos et al. (2021), a subset of the Civil Comments dataset
(same splits) where individual spans were labeled “insulting, threatening, an identity-based attack,
profane/obscene, or otherwise toxic.” We finetune Spacy’s CNN-based named entity recognition
(NER) model, following Pavlopoulos et al. (2022), and use the finetuned model (65.1/59.5/65.8
F1 on train/val/test) to annotate our language model’s generations. Among the initial T5 model’s
generations, 8.2% contain toxic spans as labeled by our toxicity classifier.

5.3 METHODS

We consider two baseline finetuning procedures that consider token-level negative signal: negative
likelihood for negative tokens and LL for all other tokens in the generations (NL + LL) and unlikelihood
for negative tokens and log-likelihood for all other tokens in the generations (UL + LL).4

We consider the following targeted negative training methods: Targeted Negative Training Forward-
Forward (TNFF) uses the forward KL divergence for both positive and negative signals and Targeted
Negative Training Reverse-Reverse (TNRR) uses the reverse KL divergence for both. Targeted
Negative Training Reverse-forward (TNRF) uses the reverse KL for negative tokens and forward KL
for positive token indices. Finally, to compare more closely to the UL and NL, we consider Targeted
Negative Training Forward-LL (TNFLL) and Targeted Negative Training Reverse-LL (TNRLL), which
utilize forward and reverse KL divergence for negative tokens and maximum likelihood of the token
sample for positive tokens, i.e., a single-sample Monte Carlo estimate of the forward KL divergence.

Following Welleck et al. (2020), we introduce a hyperparameter α on the negative losses for all
methods. We consider alpha values 1e-4 to 1e4 (every power of ten). For each run, we perform model
selection using validation loss.

5.4 RESULTS

Inspired by precision-recall curves, we construct a curve for each objective’s similarity score across
different rates of unwanted behavior reduction (Figure 2(a) and (c)). Namely, for each method we

4We find that without LL terms on the non-negative tokens, the model degrades to outputting purely disfluent
text after a few steps of finetuning. Our results are corroborated by He & Glass (2020), who also acknowledge
that they cannot retain model performance without positive signals.
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plot the highest BLEU achieved across α values that achieve less than the given level of hallucination
or toxicity. We consider hallucination and toxicity values in increments of 0.1 percentage points.
We also plot the composite curve between baseline methods and TNT methods (Figure 2(b) and (d)).
Selection is performed on validation data.

For both tasks, we see that the targeted negative training losses allow for a greater flexibility in the
trade-off between maintaining similarity with original generations and reducing unwanted behavior.
Notably, while the baseline methods cannot achieve a BLEU score above 54 for XSUM and 40 for
Civil Comments, regardless of what level alpha is set to, TNT methods which compute an exact
divergence on the positive tokens (TNFF, TNRR, TNRF) can trade off how much hallucination or
toxicity is reduced to achieve significantly higher BLEU scores. In fact, for the task of reducing
toxicity, several of the targeted negative training losses are strictly better than the baseline methods
at targeted updates across all levels of toxicity rate reduction. In general, TNFF is the TNT loss that
yields the least amount of change overall but can only reduce unwanted behavior up to a certain level,
while TNRR and TNRF can yield even further reductions with large enough α while still being more
targeted than baselines. Overall, the area under the similarity-reduction curves for TNT methods far
outstrips that of the baseline methods (55.5 vs. 44.6 for hallucination, 73.9 vs. 32.9 for toxicity).

We include similarity vs. reduction plots for other measures of similarity in Appendix E and see that
TNT methods continue to outperform baselines. On the toxicity reduction task, we also report the
results of an ablation where methods are trained on external data (i.e., labeled spans from the original
Civil Comments spans dataset) rather than model generations Appendix F; all methods yield more
targeted updates when using model generations, highlighting the benefit of prioritizing more common
token conditional distributions, yet TNT still methods outperform baselines, highlighting the benefit
of the proposed losses regardless of the set of token conditionals that are targeted.

Table 1 gives similarity, reduction, and disfluency results for methods that achieve at least a 75%
reduction rate in unwanted content. Once we also consider the amount of introduced disfluencies,
even TNT methods that achieve comparable similarity and reduction rates as baselines are shown to be
significantly better at avoiding the introduction of new disfluencies to the generations. Moreover, the
fact that TNFLL and TNRLL introduce fewer disfluencies relative to baselines despite only differing
their loss terms for negative tokens empirically corroborates the analysis that a targeted negative loss
constrains the resulting update in a way existing negative losses do not. We report disfluency results
for other rates of unwanted behavior reduction in Figure 6.

6 DISCUSSION

In this work, we propose targeted negative training, a suite of methods for finetuning a language
model to avoid unwanted behavior in a targeted fashion, given token-level annotations of the model’s
generations. While baseline finetuning objectives do not sufficiently constrain how probability mass
is dispersed in a negative update, TNT methods directly optimize for a model whose constituent token
distributions are the solutions to a minimal targeted update.

Broadly, TNT could be a useful tool for improving the safety of autoregressive generative models by
offering a means to iteratively refine a model after it has been initially trained. TNT is not without its
limitations, however. First, TNT requires keeping the original model during training, meaning a larger
memory footprint. TNT also requires token-level annotations which may be hard to acquire in certain
cases. Next, TNT only targets negative examples that have been specified and could increase the
presence of other similar bad words that were present in the generations but not flagged. This result
highlights the importance of high-quality annotations. Luckily, the commutative property of negative
updates makes it easy to apply TNT iteratively for different sets of negatives to address unwanted
behavior as it is noticed. Finally, our experiments show that even though all TNT methods target the
same updated model, the choice of objective matters for where on the spectrum between a complete
reduction vs. minimal change the resulting model ends up. The methods that allow for the most
targeted changes struggle to reach the highest levels of rate reduction and vice versa, suggesting that
the optimization strategies in this suite of methods still have room for improvement. For instance,
future work could consider other choices of divergences as well as additional optimization tricks to
see if it is possible to achieve a more Pareto optimal trade off between reducing unwanted behavior
and minimally changing the original model.
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(a) XSUM similarity vs. reduction curves (b) XSUM composite similarity vs. reduction curves

(c) Civil similarity vs. reduction curves (d) Civil composite similarity vs. reduction curves

Figure 2: Across nearly all values of reducing unwanted behavior, the suite of TNT objectives is able
to achieve a comparable or better trade-off than baseline methods (NL + LL and UL + LL) between
reducing unwanted behavior and minimizing change relative to the original model’s generations.

Table 1: Models trained with existing losses for negative signal, unlikelihood (UL) and negative
likelihood (NL), reduce unwanted behavior but at the expense of increasing disfluencies (measured
via word repeats and random ??; see Appendix D for examples). Changing the loss on negative tokens
alone (TNFLL or TNRLL) results in fewer obvious disfluencies. Incorporating a more targeted loss on
positive tokens can improve performance further. For each method, we report the α that achieves the
highest BLEU score given at least a 75% reduction in unwanted behavior. Results are bolded if they
are better than all baseline methods.

BLEU ROUGE-L Seq Acc Hallucination Repeats Random ??

Original 100.0000 100.0000 100.0000 21.3432 76 0
NL+LL (α = 1.0) 32.8334 52.2349 1.5397 3.1148 1297 92
UL+LL (α = 10.) 50.2975 65.8047 8.2117 3.4068 127 324

TNRLL (α = 1.0) 49.2464 64.9200 7.3268 3.7342 99 67

BLEU ROUGE-L Seq Acc Toxicity Repeats Random ??

Original 100.0000 100.0000 100.0000 8.1830 16 4
NL+LL (α = .01) 13.6497 32.6104 2.0661 1.8150 287 136
UL+LL (α = 1.0) 37.1265 59.9806 20.4405 1.6784 23 1122

TNFLL (α = 1.0) 33.7884 57.1009 18.1630 1.7577 36 1
TNRLL (α = 0.1) 39.1922 61.4776 22.9207 1.9471 23 1
TNRR (α = 0.1) 55.9532 71.5365 35.1366 1.4493 34 3
TNRF (α = 1.0) 60.2071 74.8574 39.6167 1.0396 21 3
TNFF (α = 10.) 61.0565 74.2388 40.0749 1.9031 33 3
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Ethics Statement. This work aims to update a language model to reduce the generation of unwanted
outputs. However, we note that the experiments consider simplified definitions of unwanted text, and
more sophisticated definitions should be annotated and considered in real-world uses of TNT.

Reproducibility Statement. See Appendix B for details about the experiments, including dataset
processing and model training details. The code to reproduce the experiments will be made public,
and all datasets used in this work are publicly available.
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A OPTIMAL DISTRIBUTION IN TARGETED NEGATIVE LIKELIHOOD

Targeted negative likelihood optimizes for the distribution in pk ∈ Pk that minimizes the reverse
KL divergence with the original distribution: pnew = minpk∈Pk

KL(pk||po). This distribution is also
known as the information projection of the original distribution onto Pk.

To solve for pnew, we use Theorem 1 Property A from Khalifa et al. (2020) (also Remark 3.1 in
Csiszár & Shields (2004)), which we restate here using notation consistent with the main paper:
Let S(Pk) = ∪pk∈Pk

supp(pk). Given the moment constraint Ex∼pk(x)[f(x)] = α, the solution to
minpk∈Pk

KL(pk||po) has the form pnew(x) ∝ po(x)1[x ∈ S(Pk)] exp(λf(x)).

Recall the constraint of interest for distributions in Pk: ∀x ∈ supp(pneg(x)), pk(x) = 0. We
can write this as a moment constraint where f(x) = 1[x ̸∈ supp(pneg)] and α = 1, namely
Ex∼pk(x)

[
1[x ̸∈ supp(pneg)]

]
= 1.

Since S(Pk) is the complement of supp(pneg) and f(x) is a constant whenever x ̸∈ supp(pneg), we
have

pnew(x) ∝ po(x)1[x ∈ S(Pk)] exp(λf(x)) (5)
∝ po(x)1[x ̸∈ supp(pneg)]. (6)

In other words, the optimal distribution removes probability at the negative tokens and renormalizes.

B EXPERIMENTAL SET UP

B.1 DATASET CREATION.

We use the XSUM dataset (Narayan et al., 2018) for the reducing hallucination task and Civil
Comments (Borkan et al., 2019) for the reducing offensive phrases task. We use the datasets
themselves for finetuning the base models and generations from the model itself for updating
afterward. We describe both in detail below.

Datasets for Initial Finetuning. For the hallucination experiment, we use the XSUM train, validation,
and test splits. The dataset sizes for train, validation, and test are 203,577, 11,305, and 11,301. For
the offensive phrases experiment, we use the Civil Comments dataset of toxic online comments. This
dataset is traditionally used for toxicity detection, but here we repurpose the dataset for response gen-
eration. In particular, we train our encoder-decoder model to output the text given its parent text, the
previous comment the main text is responding to. For the main finetuning dataset, we use only exam-
ples that include parent text, decreasing the original dataset size from 1.8 million to 1 million. We use
the List of Dirty, Naughty, Obscene, and Otherwise Bad Words, downloaded from https://github.com/
LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en, as our list
of offensive phrases to avoid. In the dataset of 1 million examples, words from the aforementioned
list occur in approximately 2% of the targets. To increase the relative proportion of examples with
obscenity in the dataset that the model sees to 10%, we subsample the dataset further by randomly
removing examples whose outputs do not contain any of the offensive words in the list. The resulting
train, validation, and test (unused) sets are of size 175,754, 21,974, and 22,009.

Filtered Datasets for Finetuning. To generated the filtered dataset from XSUM (for both finetuning
from stratch and from the current model), we use code from Nan et al. (2021) as an automated
heuristic to determine whether a hallucination exists in the generated summary. The code uses spacy’s
named entity recognition to first locate a set of entites from the output, followed by a regex-based
matching to determine if the entity is present in the source input.

Datasets for Finetuning Updates. After the initial models have been trained (see next section for
training details), we generate an output from the model for each input using greedy decoding. We
then take the model’s outputs and annotate the undesirable tokens using the procedure described in
the main paper. For hallucination if an entity detected in the output is not detected in the input, then
we marked the entire entity as a hallucination, and if our trained toxicity classifier labels a span in
the output as offensive, we mark it as undesirable, even if the input contained the same offensive
phrase. We use the train, validation, and test splits for the inputs but the model’s own generations for
the output. We evaluate all methods on the test set from this process, to compare how much these
alternative methods result in deviations from the original model’s generations.
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B.2 TRAINING

For all runs, we use a batch size of 32, dropout rate of 0.1, and no label smoothing. For all runs, the
cross entropy loss includes the square of the logsumexp of the logits as a penalty, scaled by a factor
of 0.0001. For all experiments, we use Google Cloud v4 TPU pods.

For the initial finetuning, we train a base T5 model with learning rate 1e-3 and select the best
checkpoint every 10,000 steps based on validation loss. Our resulting models are finetuned for 30,000
steps on XSUM and 40,000 steps on Civil Comments.

For the updates and alternative finetuning, we run a sweep across four different learning rates (1e-3,
1e-4, 1e-5, 1e-6) and choose the best model per every 1,000 steps based on validation loss. The
learning rates used for the various methods are as follows:

Dataset Method Learning rate
Filtered, trained from scratch 1e-3
Filtered, trained from current 1e-4

XSUM UL + LL 1e-4
NL + LL 1e-3
TNT (with LL) 1e-4
TNT 1e-3
Filtered, trained from scratch 1e-4
Filtered, trained from current 1e-4

Civil Comments UL + LL 1e-3
NL + LL 1e-3
TNT (with LL) 1e-3
TNT 1e-4

Table 2: Learning rates chosen based on best validation loss from a sweep of learning rates (1e-3,
1e-4, 1e-5, 1e-6).

C RESULTS FROM RETRAINING OR FINETUNING ON FILTERED DATA

Here, we present automated metrics of similarity and hallucination rate (Table 3), as well as sample
generations to highlight that while training on filtered data can reduce the prevalence of unwanted
behavior, the resulting model is far from a minimal targeted update of the original model. In contrast,
the TNT update methods presented can enable more targeted changes to a model’s behavior.

Table 3: A comparison of the original summarization model to ones obtained by retraining or
finetuning on data filtered to remove examples with hallucinations.

BLEU ROUGE-L Seq Acc hallucination rate
Original 100.0000 100.0000 100.0000 21.3432
Filtered & Retrained 35.9402 54.4479 2.0087 9.3797
Filtered & Finetuned 47.9839 64.0057 6.7339 13.6271
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Input The summertime routes were due to end in late September but due to poor seat sales, 
the airline is stopping the service at the end of August.

The airline said it had reallocated its planes to "routes with greater demand".

It said it would offer a "full refund or alternative flights" to customers who were booked 
to fly in September

"We apologise sincerely for the inconvenience caused," said an Aer Lingus statement.

Original Aer Lingus has cancelled all flights between the UK and the Republic of Ireland due to a 
lack of passengers.

NL + LL Aer Lingus is to stop flying to the the the the the the the the the the country is based on.

TNFLL Aer Lingus has cancelled all flights between the two countries due to a lack of capacity.

TNRLL Aer Lingus has cancelled all of its summer flights from the country to the mainland.

Figure 4: Example of a word repeat. The original offending text, as well as the word repeat disfluency,
has been underlined.

Input 12 August 2016 Last updated at 11:51 BST

The report was commissioned by former PM David Cameron in the wake of the 
Tower Hamlets election fraud scandal in 2015.

He said the review had heard evidence that in a London borough at the general 
election someone arrived at the polling station with 500 postal votes.

"I'm very worried - I don't believe political parties should touch or handle in any 
way a completed ballot paper," he said.

Original A review into the way postal votes are handled in the UK has found that the 
electoral system is not safe.

Retrained A review into electoral fraud has found that voters were handed ballot papers 
with a "significant" number of postal votes.

Finetuned A review into electoral fraud has found that a voter may have contacted the 
polling station with a ballot paper.

Figure 3: Comparison of an example generation from the original model, a model retrained on filtered
data, and the original model finetuned on filtered data.

D DISFLUENCIES INTRODUCED WITH EXISTING LOSSES FOR NEGATIVE
SIGNAL

While other forms of disfluencies can exist, we notice two obvious forms in the existing model
generations, which we denote word repeats and random ??. We define a word repeat as the repetition
of a single word multiple times; note that this definition does not include phrase repeats, so the
prevalence of repetition more broadly is likely higher what is reported under ‘word repeats.’ We
define random ?? as the occurrence of any number of question marks preceding and following a
space, meaning its presence is not at the end of a sentence but rather in the middle. See Figure 4 and
Figure 5 for examples of both word repeats and random ??.
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Input "Thanks for pointing out my error, anyhow."
_oldgit_gittinolder

Not a problem and yes, I knew what you meant - just couldn't 
pass up a feeble attempt at humor

Original I'm sorry, but I'm not a troll.

UL + LL I'm sorry, but I'm not a ?? inbot.

TNFLL I'm sorry, but I'm not a joker.

TNRLL I'm sorry, but I'm not a 'oldgit'.

Figure 5: Example of a random ??. The original offending text, as well as the random ?? disfluency,
has been underlined.

(a) XSUM word repeats (b) XSUM random ??

(c) Civil Comments word repeats (d) Civil Comments random ??

Figure 6: Number of disfluencies for different rates of unwanted behavior reduction. For each method,
only models that are used in the BLEU similarity vs. reduction curves are plotted here (i.e., the
models that are best at maintaining similarity with the original for a given rate of reduction). This
choice makes it easy to directly analyze this plot in conjunction to the main figure (Figure 2). From
these plots, it is easy to see that baseline methods introduce disfluencies at high rates as they reduce
unwanted behavior, where NL + LL tends to introduce repetition while UL + LL tends to introduce
random ?? disfluencies. In contrast, the number of disfluencies introduced by TNT methods in both
categories combined is orders of magnitudes smaller than the total number introduced by baseline
methods.
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E MAIN RESULTS WITH ALTERNATIVE SIMILARITY METRICS

(a) Per-method Rouge-Lsum curves (b) Composite Rouge-Lsum curves

(c) Per-method Sequence Accuracy curves (d) Composite Sequence Accuracy curves

Figure 7: Similarity vs. hallucination rate reduction curves for the XSUM summarization task.

(a) Per-method Rouge-Lsum curves (b) Composite Rouge-Lsum curves

(c) Per-method Sequence Accuracy curves (d) Composite Sequence Accuracy curves

Figure 8: Similarity vs. toxicity rate reduction curves for the Civil Comments response generation
task.

18



Under review as a conference paper at ICLR 2024

F TRAINING WITH MODEL GENERATIONS VS. EXTERNAL DATA

(a) Per-method, trained on model generations (b) Composite, trained on model generations

(c) Per-method, trained on external data (d) Composite trained on external data

Figure 9: Similarity vs. toxicity rate reduction curves for the Civil Comments response generation
task, comparing a model finetuned on its own generations (AUC is 73.9 for TNT vs. 32.9 for baselines)
vs. external data (AUC is 41.9 for TNT vs. 7.4 for baselines).

G TOKEN-LEVEL KL-CONSTRAINED RL AS A DIVERGENCE MINIMIZATION

Here, we show that a token-level version of the objective in Wu et al. (2023) is equivalent to
minimizing reverse KL divergence between the policy model pθ(x|c) and a target distribution
pnew(x|c) ∝ po(x|c) exp( 1β

∑
t rt(x≤t)):

max
θ

Ep(c)Ex∼pθ(x|c)

[∑
t

rt(x≤t)− β[log pθ(xt|x<t, c)− log po(xt|x<t, c)]
]

(7)

=max
θ

Ep(c)Ex∼pθ(x|c)

[∑
t

log[exp(
1

β
rt(x≤t))]− log pθ(xt|x<t, c) + log po(xt|x<t, c)

]
(8)

=min
θ

Ep(c)Ex∼pθ(x|c)

[∑
t

log
pθ(xt|x<t, c)

po(xt|x<t, c) exp(
1
β rt(x≤t))

]
(9)

=min
θ

Ep(c)Ex∼pθ(x|c)

[
log

∏
t

pθ(xt|x<t, c)

po(xt|x<t, c) exp(
1
β rt(x≤t))

]
(10)

=min
θ

Ep(c)Ex∼pθ(x|c)

[
log

pθ(x|c)
po(x|c) exp( 1β

∑
t rt(x≤t))

]
(11)

=min
θ

Ep(c)KL
(
pθ(x|c)||pnew(x|c)

)
. (12)
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