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ABSTRACT

Current autoencoder-based disentangled representation learning methods achieve
disentanglement by penalizing the (aggregate) posterior to encourage statistical
independence of the latent factors. This approach introduces a trade-off between
disentangled representation learning and reconstruction quality since the model
does not have enough capacity to learn correlated latent variables that capture detail
information present in most image data. To overcome this trade-off, we present
a novel multi-stage modelling approach where the disentangled factors are first
learned using a preexisting disentangled representation learning method (such as
β-TCVAE); then, the low-quality reconstruction is improved with another deep
generative model that is trained to model the missing correlated latent variables,
adding detail information while maintaining conditioning on the previously learned
disentangled factors. Taken together, our multi-stage modelling approach results in
single, coherent probabilistic model that is theoretically justified by the principal
of D-separation and can be realized with a variety of model classes including
likelihood-based models such as variational autoencoders, implicit models such
as generative adversarial networks, and tractable models like normalizing flows
or mixtures of Gaussians. We demonstrate that our multi-stage model has much
higher reconstruction quality than current state-of-the-art methods with equivalent
disentanglement performance across multiple standard benchmarks.

1 INTRODUCTION

Deep generative models (DGMs) such as variational autoencoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014) and generative adversarial networks (GANs) (Goodfellow et al., 2014) have
recently enjoyed great success at modeling high dimensional data such as natural images. As the
name suggests, DGMs leverage deep learning to model a data generating process. The underlying
assumption is that the high dimensional observations X ∈ RD can be meaningfully described by
a small set of latent factors H ∈ RK , where K < D. More precisely, the observation (X = x) is
assumed to be generated by first sampling a set of low dimensional factors h from a simple prior
distribution p(H) and then sampling x ∼ pθ(X|h). DGMs realize pθ through a deep neural network
also known as the decoder or the generative network. VAE-based DGMs use another deep neural
network (called the encoder or the inference network) to parameterize an approximate posterior
qφ(H|x). Learning the variational posterior parameters is done by maximizing an evidence lower
bound (ELBO) to the log-marginal likelihood of the data under the model pθ(X).

Learning disentangled factors h ∼ qφ(H|x) that are semantically meaningful representations of
the observation x is highly desirable because such interpretable representations can arguably be
advantageous for a variety of downstream tasks (Locatello et al., 2018), including classification,
detection, reinforcement learning, transfer learning and image synthesis from textual descriptions
(Bengio et al., 2013; LeCun et al., 2015; Lake et al., 2017; van Steenkiste et al., 2019; Reed et al.,
2016; Zhang et al., 2016). While a formal definition of disentangled representation (DR) remains
elusive, it is understood to mean that by manipulating only one of the factors while holding the rest
constant, only one semantically meaningful aspect of the observation (e.g. the pose of an object in
an image) changes. Prior work in unsupervised DR learning focuses on the objective of learning
statistically independent latent factors as means for obtaining DR. The underlying assumption is
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(a) Target (b) β-TCVAE (c) MS-VAE

Figure 1: Image reconstruction using β-TCVAE (Figure 1b) and MS-VAE (Figure 1c). MS-VAE is
able to take the blurry output of the underlying β-TCVAE model and learn to render a much better
approximation of the target while maintaining the pose of the original image (Figure 1a).

that the latent variables H can be partitioned into independent components C (i.e. the disentangled
factors) and correlated components Z. An observation (X = x) is assumed to be generated by
sampling the low dimensional factors h = (c, z) from p(H) and then sampling x ∼ pθ(X|c, z)
(Figure 2a). A series of works starting from (Higgins et al., 2017) enforce statistical independence of
the latent factors H via regularization, up-weighting certain terms in the ELBO which penalize the
(aggregate) posterior to be factorized over all or some of the latent dimensions (Kumar et al., 2017;
Kim & Mnih, 2018; Chen et al., 2018) (see Section 2 for details).

While the aforementioned models show promising results, they suffer from a trade-off between DR
learning and reconstruction quality. If the latent space is heavily regularized – not allowing enough
capacity for the correlated variables – then the reconstruction quality will be diminished, signaling
that the learned representation is sub-optimal. As the correlated variables are functionally ignored
with high levels of regularization, an observation (X = x) can be thought to be generated by only
sampling independent latent factors c from p(C) and then sampling x ∼ pθ(X|c) (Figure 2b). This
is a departure from the original data generating hypothesis that x is sampled from a distribution
dependent on both the independent and correlated latent variables. On the other hand, if the correlated
variables are not well-constrained, the model can use them to achieve a high quality reconstruction
while ignoring the independent variables (the disentangled latent factors). This phenomena is referred
to as the "shortcut problem" and has been discussed in previous works (Szabó et al., 2018; Lezama,
2018). Overcoming the aforementioned trade-off is essential for using these models in real world
applications such as realistic, controlled image synthesis (Lee et al., 2020; Lezama, 2018).

In this paper, we propose a new graphical model for DR learning (Figure 2c) that allows for learning
disentangled factors while also correctly realizing the data generating hypothesis that an observation
is generated from independent and correlated factors. Importantly, the graphical model in Figure
2c is D-separated, meaning that any changes in the correlated latent variables Z will not influence
the independent latent variables C. Generating an observation (X = x) from this model can then
be done by sampling the independent factors c from p(C), sampling a low-quality reconstruction
y ∼ pθ(Y |c), sampling the correlated factors z from p(Z), and then finally sampling x ∼ pθ(X|z, Y ).
The final reconstruction x depends both on z and c, however, any regularization needed to extract the
independent factors c no longer diminishes the model capacity for the correlated factors z.

To realize our proposed graphical model, we introduce MS-VAE, a multi-stage DGM that is imple-
mented as follows: first, the disentangled representation C is learned using an existing DR learning
method such as β-TCVAE (Chen et al., 2018). Since the learned factors C are regularized to be statis-
tically independent – not allowing enough capacity for correlated factors – the final reconstruction Y
will have diminished reconstruction quality. Then, we train another DGM to improve the low-quality
reconstruction Y by learning the missing correlated factors Z. This is achieved during training
by inputting the reconstruction Y into the decoder of the second DGM and then modulating the
hidden activation of each layer as function of latent factor Z (using Feature-wise Linear Modulation
(Perez et al., 2018)). Through this training paradigm, MS-VAE is able to preserve conditioning on
the disentangled factors while dramatically improving the reconstruction quality. A schematic of
MS-VAE is shown in Figure 2d and example images from each stage are shown in Figure 1. The
reconstruction from β-TCVAE (1b) is improved by MS-VAE (1c) to better approximate the target
(1a) while maintaining conditioning on the disentangled factors, e.g. azimuth.

To summarize our contributions:
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• We propose a new graphical model for DR learning (Figure 2c) that, due to the D-separation
between its independent and correlated latent variables, alleviates the disentanglement vs.
reconstruction trade-off.

• We introduce MS-VAE, a multi-stage DGM that implements our proposed graphical model,
achieving state-of-the-art reconstruction quality while maintaining the same level of disen-
tanglement as preexisting methods. MS-VAE can be implemented using a variety of DGMs
such as VAEs, GANs, or FLOW-based models and does not depend on hand-crafted loss
functions or additional hyperparameters (unlike current state-of-the-art (Lezama, 2018))

• Following (Locatello et al., 2018), we test our framework with a wide-range of qualitative
and quantitative tests to demonstrate the efficacy of the framework. We provide all code
used for the experiments.

2 BACKGROUND

VAEs, first introduced in (Kingma & Welling, 2014), represent a class of likelihood-based, DGMs
comprised of an encoder and a decoder that are trained using amortized variational inference to
maximize the expected ELBO under the data distribution,∫

p(x) log pθ(x)dx ≥ Ep(x)

[
Eqφ(h|x)[log pθ(x|h)]−KL[qφ(h|x)‖p(h)]

]
(1)

The first term is the expected reconstruction loss under the variational posterior qφ. The second
term – the Kullback–Leibler (KL) divergence – underpins most of the recent DR learning methods.
The KL term regularizes the variational posterior to be similar (in expectation) to a simple spherical
Gaussian prior over H . Higgins et al. (2017) attempts to factorize the variational aggregate posterior
by up-weighting this KL-divergence term with a Lagrange multiplier β. Follow-up works decompose
the KL-term in equation 1 and up-weight only the KL-divergence between the aggregate posterior
qφH (H) =

∫
X
p(x)qφ(H|x)dx and the factorized aggregate posterior (Kim & Mnih, 2018; Chen

et al., 2018; Jeong & Song, 2019). Kumar et al. (2017) simply uses a factorized prior.

These models introduce a trade-off between unsupervised DR learning and reconstruction quality.
When the latent variables are heavily regularized to be independent, an observation (X = x) can
be thought to be generated by sampling independent latent factors c from p(C) and then sampling
x ∼ pθ(X|c) (Figure 2b). This leads to low-quality reconstructions as the correlated factors are
not utilized. Lezama (2018) attempts to tackle this issue with a teacher-student learning technique.
First, the teacher model is trained to extract disentangled factors at the cost of reconstruction quality
(similar to the first stage of our model). Then, a student autoencoder (AE) model with a larger latent
dimension size is trained with additional losses that force the Jacobian of the final reconstruction
with respect to the disentangled factors to remain the same (a.k.a Jacobian supervision). While this
model achieves promising results on MNIST (Deng, 2012), it suffers from a few drawbacks including
having to relearn the disentangled factors in the second stage and having no theoretical guarantees
that changes in the correlated factors Z will not affect the independent factors C in the student model.
Other works have also been proposed to overcome the trade-off using adversarial training (Mathieu
et al., 2016; Lample et al., 2017; Perarnau et al., 2016; Szabó et al., 2018; Hu et al., 2018).

3 MS-VAE

3.1 MS-VAE GRAPHICAL MODEL

Lower Bound. To alleviate the trade-off between reconstruction and disentanglement, we propose
a new graphical model for DR learning (Figure 2c). To understand this model, let us assume that the
data come as pairs of images {yi, xi}Ni=1. Let the x’s be the ground truth images (generated using
both the independent factors c and correlated factors z) and let the y’s be the approximations of those
images generated using only c. Given this paired data, the graphical model depicted in Figure 2c
represents a single coherent model of the data that defines a joint distribution over Y and X . The
log-marginal likelihood of the observations under this model can be lower-bounded as follows,
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log p{φ,θ,θZ ,Θ}(x, y) ≥ (2)

−KL[qφ(c|y)‖p(c)] + Eqφ [log pθ(y|c)]︸ ︷︷ ︸
(a) C→Y

−KL[qθZ (z|x, y)‖p(z)] + EqθZ [log pΘ(x|z, y)]︸ ︷︷ ︸
(b) (Y,Z)→X

.

In practice, we do not have access to Y . However, by learning the disentangled factors C from X , we
can generate Y . Therefore, we first use state-of-the-art DR learning method to learn the sub-graph
C → Y by maximizing term (a) in Equation 2 to produce Y . Then, we train another DGM to learn
the sub-graph (Y, Z)→ X by maximizing term (b) in Equation 2. This two-stage training procedure
approximates the graphical model from Figure 2c.

D-separation. Now that we introduced and lower-bounded the graphical model from Figure 2c, it
is important to understand the theoretical motivation for realizing this model. Recall that our goal
is to take an existing method for learning the disentangled factors C and learn additional residual
information in Z without changing the conditioning on C. In a standard VAE graphical model
(Figure 2a), this could occur because there is no guarantee that p(Z,C|X) = p(Z|X)p(C|X). By
introducing an observed node Y (i.e. D-Separation) in our graphical model, we ensure that changes in
Z will not influence C. This is because the joint distribution p(Z,C|X,Y ) can now be broken down
as p(C|Y )p(Z|X,Y ). In practice, realizing the graphical model in Figure 2c using a deep neural
network requires care as we want to ensure that the conditioning on Y is stronger than that of Z so
that Z only captures the residual correlated information. Also, simply training a single neural network
end-to-end to approximate this graphical model is infeasible as Y will no longer act as an observed
node, leading to the entanglement of C and Z. We demonstrate this phenomenon by performing an
ablation study of MSVAE (Appendix L).

3.2 MS-VAE IMPLEMENTATION

In the following sections, we describe how our MS-VAE implements the graphical model in Figure
2c using a multi-stage modelling approach.

Stage one: Learning a Disentangled Representation. In stage one, we train a β-TCVAE (Chen
et al., 2018) to learn the independent latent factors C. As β-TCVAE heavily regularizes the latent
space to be statistically independent – not allowing enough capacity for the correlated factors –
the final reconstruction Y will be low-quality. Stage one can be realized using any DR learning
method, however, we chose β-TCVAE in our work because it has been shown to perform well across
all standard benchmarks and its total correlation penalty is simpler to compute in comparison to
FactorVAE’s (Kim & Mnih, 2018). We use the standard convolution and transposed-convolutions-
based realization of β-TCVAE as provided in the disentanglement_lib (Locatello et al., 2018) package.

Stage Two: Improving the Reconstruction. In stage two, we learn the correlated factors Z with
another DGM and then use them to improve the reconstruction Y while maintaining the conditioning
on the independent factors C. To this end, we train a conditional VAE that models the data X given
Y and Z. The encoder network RθZ learns the posterior distribution over Z as a function of the
residual of X and Y . The observation model GΘ then reconstructs X given Y and Z. Incorporating
Z into GΘ requires care as simply inputting the concatenation of Y and Z into the network at the
start of training will result in a non-linear entanglement between Y and Z. Once entangled this way,
GΘ will fail to condition on Y sufficiently and use the entangled representation as a whole towards
the reconstruction of X . To overcome this, we induce an architectural bias with a Feature-wise Linear
Modulation (FiLM) technique (Perez et al., 2017) prevalent in style transfer literature (Huang &
Belongie, 2017), introducing Z only through the adaptive instance normalization (AdaIN) layers of
GΘ. By inputting only Y into the decoder and then incorporating Z through AdaIN at each layer,
the network is able to use Z later in the generative process to model the residual information (as
explained in (Dumoulin et al., 2018)). This allows the network to better utilize the information in Y .
We demonstrate the importance of AdaIN by performing an ablation study of MSVAE (Appendix L).

FiLM and AdaIN. Recently, FiLM have been proposed as a general-purpose conditioning tech-
nique for deep neural networks (Perez et al., 2018). A FiLM layer learns an affine transformation of
the intermediate statistics of a deep neural network, conditioned on an external input. FiLM has found
great success in style transfer literature where the goal is to render content from a source domain in the
style of a target domain. One such method, Instance Normalization (Ulyanov et al., 2016), incorpo-
rates the style and the content information through the normalization layers in a feed-forward network,
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learning style-specific affine parameters from the data that are used to shift and scale the feature
statistics (per instance) extracted from the source image across spatial dimensions. Huang & Belongie
(2017) extended this method to address arbitrary styles by taking the affine parameters to be the fea-
ture statistics extracted from the style domain, arriving at the AdaIN(y, x) = σ(x)

(
y−µ(y)
σ(y)

)
+µ(x)

which is applied for each normalization layer. Here, y are the incoming activations for a normalization
layer in the network that is receiving an image from the source domain and x are the style features
computed from the target domain. The features statistics for y (as well as for for x) are computed
as follows: µ(y) = 1

HW

∑
h,w anhwc and σ(y) =

√
1

HW

∑
h,w(xnhwc − µ(y))2 + ε, where h,w, c

stand for the height, width and channel, respectively. In MS-VAE, the equivalent of style features is
the representation of the residual information between X and Y captured in the correlated variables
Z. The goal is similar to style transfer: incorporate the information stored in Z while maintaining
the semantic content stored in Y . Therefore, we slightly modify the AdaIN formulation as follows:
AdaIN(y, z) = γ(z)

(
y−µ(y)
σ(y)

)
+ β(z). where µ(y) and σ(y) are the same as before and γ(z) and

β(z) are learned functions of z parameterized by a fully-connected neural network.

MS-GAN and MS-FLOW. While the above section only described the VAE-based implementa-
tion of our method, we can also realize these techniques using GANs or FLOW-based models. We
defer these implementations to Appendix E and D.
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(c) MS-VAE (d) MS-VAE Architecture

Figure 2: (a) Graphical model of a standard VAE where C and Z are not independent conditioned
on X . (b) Graphical model of β-TCVAE where the reconstruction only depends on the independent
latent factors C. (c) MS-VAE graphical model where C and Z are independent conditioned on Y .
(d) Schematic for MS-VAE when implemented as a convolutional architecture. Both Y and X are
the reconstructions of the same image.

Deeper MS-VAE. In this work, we focus on generative models with only two levels of hierarchy
and two sets of latent factors C and Z. However, MS-VAE can be easily extended to graphical
models with deeper or more structured hierarchies. We present a concrete example of this extension
of MS-VAE in appendix C where we use MS-VAE to model a simple 2D pendulum.

4 EXPERIMENTS

Baseline Models Locatello et al. (2018) demonstrated that most state-of-the-art DR learning
methods are able to effectively learn a factorized posterior distribution (i.e. extract independent
latent variables C). Therefore, we chose β-TCVAE as the baseline DR learning method for our
paper. For fair comparison with our work, we use β-TCVAE to implement the sub-graph C → Y
in MS-VAE. For our main experiments, we thoroughly evaluate three models: (i) MS-VAE with
latent dimensions C for the C → Y network and Z for the (Y,Z) → X network, (ii) β-TCVAE
with latent dimension size |C|, and (iii) β-TCVAE-L with latent dimension size |C + Z|. In line
with previous work (Locatello et al., 2018), we use a 10-dimensional C. We use a 5-dimensional
and 10-dimensional Z for Cars3D and SmallNorb, respectively. In Appendix A, we sweep over the
dimensionalities of C and Z to evaluate its effect on the reported results. We train β-TCVAE with
β values ranging from 1 to 10. In addition to the main models, we include comparisons to a recent
state-of-the-art method, Jacobian Supervision (Lezama, 2018). Although Jacobian supervision can
be implemented with multiple student autoencoders, we only compare to the single student model
version as it is most directly comparable to MS-VAE. We utilize the same architecture and C,Z
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dimensionalities as MS-VAE. For their teacher model, we also use a pre-trained β-TCVAE model as
we did for MS-VAE, but we only evaluate their method for β = 1, 10. The hyperparameters and loss
functions are as specified in the paper and are available in the linked code repository.

Measuring Disentanglement Performance Locatello et al. (2018) concluded that most metrics
for measuring disentanglement performance correlate relatively well with each other. Therefore, we
only use MIG (Chen et al., 2018) to quantitatively measure disentanglement performance. Please see
Appendix G for how this is computed.

Measuring Reconstruction Quality. Following (Razavi et al., 2019), we report the Frechet Incep-
tion Distance (FID) (Heusel et al., 2017) between the dataset and each models’ reconstructions. We
choose FID instead of reconstruction error for our main metric as L1/L2 metrics are known to not
correlate well with perceived image quality (Wang et al., 2003; 2004). We still report both L1 and L2
results in Appendix J. Additionally, FID does not require a well-defined likelihood function and can,
therefore, be used to evaluate MS-VAE when the conditional model is implemented using a GAN.

Measuring the Conditioning on C. To quantitatively measure how well the improved reconstruc-
tions are conditioned on the independent latent variables C, we use the following procedure. Let
the mean parameter of the encoder of the subgraph C → Y be Eφ. Further, let CR = Eφ(X),
CY = Eφ(Y ), CX = Eφ(GΘ(Y, Z)), Czε = Eφ(GΘ(Y, ε))), and CYε = Eφ(GΘ(ε, Z))) where X
is an input image, ε ∼ N (0, I), andGΘ is the decoder of the second stage of MS-VAE. We report the
following mutual information terms: M1 = MI[CR;CY ],M2 = MI[CR;CX ], M3 = MI[CR;Czε ],
and M4 = MI[CR;CYε ]. If Z is encoding meaningful information for the reconstruction process
then we should see M2 > M1 as the reconstruction should better approximate the ground truth image
X. More importantly, if M1 > M3 >> M4 then the conditioning on Y (and therefore C) can be
assumed to be maintained. This follows because if GΘ was only using Z for the final reconstruction,
M3 would be close to zero and M4 would be high (since Y is not being used in the final reconstruc-
tion). In addition to this quantitative analysis, we provide latent traversal plots for all the datasets to
qualitatively show that the conditioning on the disentangled factors C is preserved.

Downstream Classification To demonstrate that Z is learning meaningful residual information
that is complimentary to C, we perform a set of downstream classification tasks using both Z and
C. In these tasks, we predict attributes of objects in the SmallNORB dataset using an MLP that is
trained with three different inputs: C, Z, and both C and Z concatenated together. Ideally, the MLP
trained with both C and Z would achieve the highest accuracy as the inferred latent variables contain
complementary information about the object attributes.

Code and Datasets. We use the disentanglement_lib package (Locatello et al., 2018) to train all
β-TCVAE models and to evaluate MIG. The datasets we use for our quantitative benchmarks are
Cars3D (Reed et al., 2015) and SmallNORB (LeCun et al., 2004). These datasets are a subset of
those used in the large scale study of (Locatello et al., 2018) and are available (with ground truth
factors) from the disentanglement_lib package. Additionally, we use the CelebA (Liu et al.) dataset
of real face images for qualitative evaluations since the other datasets consist of only simulated
images (see Appendix B). For FID evaluations, we use the standard Tensorflow (Abadi et al., 2016)
implementation for all the models. We provide all the hyperparameter and architectural details for
the experiments in the appendix. A reference Tensorflow implementation is also available at https:
//github.com/AnonymousAuthors000/DS-VAE in the form of a Jupyter notebook.

4.1 RESULTS

Disentanglement Performance. As mentioned above, MS-VAE utilizes β-TCVAE to learn disen-
tangled factors in the first stage of its training. Therefore, we report the MIG values for the β-TCVAE
used with MS-VAE and for β-TCVAE-L (a β-TCVAE with the same latent dimension as MS-VAE).
For the Cars3D dataset, we find that with both models, the MIG scores increase as β is increased
(Figure 4a(ii)). However, β-TCVAE appears to consistently have a higher MIG than β-TCVAE-L,
potentially reflecting the entangling effect of an overly large latent space. For the SmallNORB dataset,
MIG decreases as the value of β increases as shown in Figure 4b(ii). This confirms the findings of
Locatello et al. (2018) on this particular dataset. Overall, these results illustrate that MS-VAE is
able to extract disentangled factors from image data at the same level as state-of-the-art methods
and that naively increasing the latent dimensionality of β-TCVAE may diminish disentanglement
performance. For the Jacobian supervision baseline (Lezama, 2018), we use β-TCVAE at the teacher
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(a) Reconstruction on Cars3D. Starting from top left,
each triplet consists of (Target, β-TCVAE and MS-
VAE) images.

(b) Reconstruction on SmallNORB. Starting from top
left, each triplet consists of (Target, β-TCVAE and
MS-VAE) images.

(c) Traversal on Cars3D. Odd row
β-TCVAE, even row MS-VAE.

(d) Traversal on SmallNORB.
Odd row β-TCVAE, even row
MS-VAE.

(e) Z perturbation on Cars3D.

Figure 3: Qualitative results on the Cars3D and SmallNORB datasets for β-TCVAE and MS-VAE.
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Figure 4: FID (lower is better) and MIG (higher is better) comparison of β-TCVAE, β-TCVAE-L,
and MS-VAE models. On both datasets, MS-VAE is able to consistently improve the reconstruction
quality of its underlying β-TCVAE model while achieving a better MIG than β-TCVAE-L . We also
provide FID and MIG results for Lezama’s model (Lezama, 2018) with β = 1, 10 as well as FID for
a vanilla VAE model of the same capacity as MS-VAE (denoted Big-VAE).

model with two values of β (1 and 10). After training, the MIG values for the student network are
approximately the same as teacher model on both datasets (i.e. it maintains disentanglement).

Reconstruction Quality. As shown in Figures 4a(i) and 4b(i), MS-VAE drastically improves the
reconstruction quality compared to both β-TCVAE models, achieving a much lower FID across all
values of β. We also compare MS-VAE to Jacobian supervision and find that MS-VAE has lower
FID on both datasets. To ensure that the improvement in reconstruction quality over β-TCVAE is not
just because MS-VAE has more parameters, we trained several β-TCVAE models with the same
number of parameters as MS-VAE on the SmallNORB dataset and reported the results in Appendix
H. Although we found marginal improvements in the average FID for these bigger β-TCVAEs
(145.79± 2.98), they are still far higher than MS-VAE’s FID (59.16± 4.52). Also, increasing the
parameters of β-TCVAE led to a decreased MIG (0.163 ± 0.026) which indicates that increasing
the parameters of β-TCVAE may increase reconstruction quality at the cost of disentanglement.
Finally, for reference, we provide FID scores for a standard VAE with same number of parameters
as MS-VAE (we refer to this model as Big-VAE). Surprisingly, MS-VAE has a lower FID than
Big-VAE at low values of β suggesting that the residual modeling in MS-VAE leads to better image
quality in general (see Figures 4a(i) and 4b(i)).

Conditioning on C Consider Figures 5a and 5b where we report the mutual information terms
M1,M2, M3, and M4 for both datasets (see Section 4 for their definitions). As per our expectation,
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we find that M2 > M1 > M3 >> M4 and that M3 tracks M1 without dropping significantly. This
suggests that Z is encoding meaningful information for the reconstruction of X and that the model
maintains the conditioning on C in the final reconstruction. We further illustrate the conditioning on
the C with qualitative examples. In Figures 3(c), 3(d) and 3(e), we show latent traversal of Y and X
pairs. Notice, MS-VAE is simply improving the quality of the generated output without diminishing
the ability of the model to manipulate single factors of variation by traversing C.
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(a) Cars3D dataset
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Figure 5: Mutual Information (MI) between inferred independent factors from the true image X
(using β-TCVAE) and independent factors from various reconstructions of X. Please note that Blue
=M1, Red =M2, Green =M3, and Purple =M4 (see Section 4 for their definitions).

Downstream Classification The results of the downstream attribute prediction tasks are shown in
Figure 6. As can be seen, the MLP that was trained with both C and Z attains a higher accuracy
on all five attribute prediction tasks than the MLPs trained with only C or Z. Notice that as the
regularization of the latent space increases (larger β) and the accuracy of the classier trained on
C decreases, the accuracy of the classifier trained on Z increases. This highlights that Z contains
complementary information to that of C and sheds light on why simply increasing the size of the
latent space (i.e. the βTCVAE-L model) does not improve the reconstruction significantly.
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Figure 6: Object property prediction for SmallNORB using inferred representations C, Z, and C +Z
as input to a MLP. The accuracy is highest for the MLP trained with C + Z.

MS-GAN and MS-FLOW. We implement a GAN-based version of our framework, MS-GAN,
and carry out a large battery of qualitative experiments in the supervised setting using graphics
rendering programs (Appendix E). We also evaluate a simple a FLOW-based version of our framework,
MS-FLOW, in Appendix D that utilizes a mixture of Gaussians model to realize the sub-graph
C → Y , further demonstrating the method’s flexibility. As we are limited for space, we include these
results in the appendices.

Simple Pendulum. To demonstrate the ability of MS-VAE to learn richer and more structured
hierarchies of disentangled latent factors, i.e. Deeper MS-VAE, we learn to approximate a simple
pendulum simulator using MS-VAE. We refer the reader to Appendix C for the results.

5 CONCLUSION

In this work, we proposed a novel graphical model for DR learning that, by virtue of being D-
separated, overcomes the trade-off between reconstruction and disentanglement. To implement
this graphical model, we introduced a multi-stage deep generative model, MS-VAE, that learns

8
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the independent and correlated latent variables in two separate stages of training. We showed that
this model dramatically improves the reconstruction of preexisting DR learning methods while
maintaining the same level of disentanglement. Furthermore, our experiments for MS-GAN and
MS-FLOW (Appendices E and D, respectively) demonstrated that our framework is agnostic to
both the level of supervision (e.g. unsupervised, weakly supervised, fully supervised) and to the
underlying model (e.g. VAEs, GANs, normalizing flows). Finally, through the pendulum experiment
(Appendix C), we showed how our framework can be extended to models with deeper and/or richer
hierarchical structure. In future work, we seek to explore these deeper extensions of MS-VAE.
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A CHOOZING C AND Z

We study the impact of the dimensionality of C and Z on the reported results in this section. To do
so, we fix a value of β and sweep over multiple values for C and Z.

Choosing C: For C, we sweep over the range [1− 10, 20, 50] for both the datasets. Figure 7a and 7b
show the MIG and ELBO for the same. We can see that |C| = 10 achieves a good combination of
MIG and ELBO for the Cars3D dataset. While there is high variance in the MIG for SmallNORB,
|C| = 10 performs reasonably well. This is also consistent with the large scale study in (Locatello
et al., 2018), which suggests that a value of 10 for the dimensionality of C is optimal for DR learning.

Choosing Z: Similarly for Z, we sweep over a set of candidate values [5, 10, 50, 90] and evaluate the
FID and MIG. For evaluating the FID, we consider both reconstructions (by sampling Z from the
posterior) and ’Random Z’ (by sampling a random Z from the prior). We also look at the MI G. We
find smaller values, 5 and 10 for Cars3D and SmallNORB, respectively, achieve a good combination
of all the three quantities of interest. The results are shown in ??.
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Figure 7: MIG and ELBO for different dimensionality of C for Cars3D and SmallNORB at β = 4
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Figure 8: MIG,FID and MI plots for MS-VAE as a function of the dimensionality of Z for Cars3D
and SmallNORB (β = 4).

Qualitatively, Figure 9 and Figure 10 show the effect of varying the dimensionality of C and Z. For
a small C (Figure 9), the underlying disentanglement method does a poor job at disentangling the
meaningful latent variables, which further results in blurry images. In this case, Z has substantial
control over the image—it adds various missing details to Y such as color. In contrast, Figure
10 shows traversals for a high value of C. Now, each individual dimension of C controls fewer
independent factors, the Y images are relatively sharper, and adding Z improves them further. Similar
conclusions hold for SmallNORB as shown in Fig. 12 and 11.
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Figure 9: Traversals for cars for small C (c = 2, z = 8 and β = 4). Odd rows β-TCVAE and even rows
MS-VAE. We can see the Y images are blurry and various factors are entangled.

Figure 10: Traversals for cars large C (c = 10, z = 5 and β = 4). Odd rows β-TCVAE and even rows
MS-VAE. Larger C achieves greater disentanglement and Z further refines the images.
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Figure 11: Traversals for SmallNORB c = 2, z = 8 and β = 4. Odd rows β-TCVAE and even rows
MS-VAE.

Figure 12: Traversals for SmallNORB c = 10, z = 10 and β = 6. Odd rows β-TCVAE and even rows
MS-VAE.
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B CELEBA RESULTS

Figure 13: CelebA Latent traversal on C. Odd rows are β-TCVAE and even rows are MS-VAE.

Figure 14: CelebA Reconstruction plots.

16



Under review as a conference paper at ICLR 2021

C MS-VAE FOR SIMPLE PENDULUM

A simple, 2D pendulum is comprised of a bob with mass m attached to a string of length L where the
mass of the string is negligible in comparison to m. The primary forces acting upon the bob are the
gravitational force, the tension force of the string, and the damping force from air resistance. Let θ be
the angular displacement of the weight (the corresponding angle with respect to the y-direction). The
pendulum’s motion can be completely described as d2θ

dt2 = − b
m
dθ
dt −

g
L sin θ, where b is the damping

coefficient and g is the gravitational acceleration constant (the initial angular displacement/velocity
are constant).

In this toy example, we assume that, given the length L, the damping coefficient B, and the mass M ,
the angular displacement of a pendulum is generated by a noiseless simulator S : (L,M,B) → θ
where θ := {θ0, θ1, ..., θT }, θi ∈ [−π, π], and T = 100. Using samples from S where only L and B
are known a priori, we aim to learn a hierarchical, generative model for the pendulum where all latent
variables are completely disentangled. With MS-VAE, we can achieve this by learning the graphical
model in Figure 17. In this graphical model, we introduce two intermediate observed nodes Y0 and Y1

that block the path between L, B, and Z. We define Y0 as the undamped angular displacement and
Y1 as the damped angular displacement with fixed mass (M = 1). This simple example demonstrates
how the MS-VAE framework can be extended to models with more structured hierarchies while
consistently satisfying the conditional independence assumptions implied by the simulator.

We train our model in three separate steps. First, we use paired data {Li, yi0} to learn the subgraph
L → Y0 as a conditional Gaussian distribution (how the pendulum length affects the angular
displacement). Second, we use the paired data {bi, yi0, yi1} to learn (B, Y0)→ Y1 as a conditional
Gaussian distribution (how the damping coefficient affects the angular displacement for a fixed
mass). Finally, we use the paired data {yi1, xi} to learn the subgraph (Z, yi1)→ θ, where Z models
the residual between Y1 and the true observations θ (this subgraph is realized as a VAE). Through
construction and training, the latent variable L should control the length of the pendulum, the latent
variable B should control the damping coefficient, and the latent variable Z should be correlated
with the mass M . 1 Note that while we have labeled data for the latent variables L and B, we never
have access to the latent variable M . Despite this, the latent variable Z can still learn to model the
effect of M by modeling the residual.

The results are shown in Figures 15 and 16. As can be seen, MS-VAE is able to learn completely
disentangled latent variables using a combination of supervision and hierarchical modeling. The final
learned latent variable Z is shown to be heavily correlated with the mass of the pendulum, highlighting
how MS-VAE’s learned latent variables can be directly related with informative physical parameters.
This simple toy example highlights two powerful features of MS-VAE. First, the hierarchy of latent
variables can be made arbitrarily deep. Second, our method can be used to discover interpretable
latent factors when only some of control variates C are known a priori (e.g. the length L and damping
coefficient B).

1For simplicity, we don’t model the data as time series explicitly but rather as a fixed length, 1D vector.
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Figure 15: Latent traversals for the pendulum model. Odd rows (blue) are actual data from the
simulator and even rows (red) are from MS-VAE. In this example, MS-VAE learns each of the three
latent variables in a disentangled manner without any supervision for the mass control variate. We
choose the z values that are plotted by examining the posterior over z and choosing z values that
correspond to the given masses (z is 1-Dimensional so this is straightforward).
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Figure 16: Correlation between z and the mass when modeling a simple pendulum. In this plot, we
show 500 1-Dimensional posterior means for different θ observations to illustrate how mass and the
latent variable Z are heavily correlated after training.
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Figure 17: MS-VAE graphical model of a simple pendulum. θ is the angular displacement; L is
the length; B is the damping coefficient. After learning and by construction, the latent variable Z is
correlated with the pendulum’s mass.
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D FLOW-BASED IMPLEMENTATION (MS-FLOW)

Normalizing flows are powerful and flexible parametric distributions which are also tractable (Dinh
et al., 2014; Huang et al., 2018; Durkan et al., 2019); for a review see Kobyzev et al. (2019). The
conditional model in MS-VAE pΘ(x|z, y) can also be implemented as a conditional normalizing
flows (that conditions on Y ) instead of a VAE.

As an illustration, in this section we present the MS-FLOW model on the MNIST digit dataset. Here
the subgraph C → Y is realized as a Gaussian mixture model and the subgraph (Y,Z) → X is
implemented as a conditional coupling flow (Dinh et al., 2016). We fit a mixture of 10 Gaussians
whose means are shown in Figure 18. Figure 19 shows the real data, samples from the Gaussian

Figure 18: The means of the Gaussian mixture part of MS-FLOW on MNIST.

mixture and the conditional flow. As expected, the log density of the overall model improves from
-1585.086 to -1356.089 once the FLOW is applied to the output of the mixture model. All while
maintaining the ability of controllable sampling.

D.1 TRAINING USING MEANS OR SAMPLES

As mentioned in previous sections, when training the conditional model, we can use either the means
from the likelihood model of the C → Y sub-graph, or the samples from it. We fit the MS-FLOW
model with both strategies and show the change of log density during training in Figure 20 Using
the means makes the training converge much faster than using the samples. It is not surprised at all,
because using samples leads to noisy gradients during training. Thus, for faster convergence, we
use means rather than samples in all of our experiments, even though it make the estimates slightly
biased.
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Figure 19: MS-FLOW on MNIST. First 5 rows are real data, next five rows are samples from the
Gaussian mixture and last five rows are from the conditional flow.
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Figure 20: Conditional log density during training for different types of Y (samples v.s. means).
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E GAN-BASED IMPLEMENTATION (MS-GAN)

Equation 2 also allows for likelihood-free inference with a little manipulation. Simply by adding and
subtracting the log of the true conditional density log p(X|Y ) in equation 2, we get the lower bound,

log p{φ,θ,θZ ,Θ}(x, y) ≥ −KL[qφ(c|y)‖p(c)]+∫
qφ(c|y) log pθ(y|c)dc−KL[qθZ (z|x, y)‖p(z)]+∫
qθZ (z|x, y) log

pΘ(x|z, y)
p(x|y)

dz︸ ︷︷ ︸
GAN-based (Y,Z)→X

+ log p(x|y) (3)

Here, the log density ratio log pΘ(x|z,y)
p(x|y) can be estimated using adversarial learning with a binary

discriminator function (Sugiyama et al., 2012; Srivastava et al., 2017). In practice, since we are
learning conditional distributions, the decoder is implemented as a conditional GAN Mirza &
Osindero (2014) This implementation is referred to as MS-GAN.

E.1 PRELIMINARIES: GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GAN) (Goodfellow et al., 2014) represent the current state of
the art in likelihood-free generative modeling. In GANs, a generator network Gθ is trained to
produce samples that can fool a discriminator network Dω that is in turn trained to distinguish
samples from the true data distribution p(x) and the generated samples Gθ(z)|z ∼ pz(z). Here, pz is
usually a low dimensional easy-to-sample distribution like standard Gaussian. A variety of tricks and
techniques need to be employed to solve this min-max optimization problem. For our models, we
employ architectural constraints proposed by DC-GAN (Radford et al., 2015) that have been widely
successful in ensuring training stability and improving generated image quality.

Conditional GANs (CGAN) (Mirza & Osindero, 2014) adapt the GAN framework for generating
class conditional samples by jointly modeling the observations with their class labels. In CGAN, the
generator network Gθ is fed class labels c to produce fake conditional samples and the discriminator
Dω is trained to discriminate between the samples from the joint distribution of true conditional and
true labels p(x|c)p(c) and the fake conditional and true labels pθ(x|c)p(c).
While not the main focus of this paper, we present a novel information theoretic perspective on
CGANs. Specifically, we show that CGAN is trained to maximize a lower-bound to the mutual
information between the observation and its label while simultaneously minimizing an upper-bound
to it. We state this formally:
Lemma 1 (Information-theoretic interpretation of CGAN). Given (x, c) ∼ p(x, c), CGAN learns
the distribution pθ(x) = Gθ(x) by training a discriminator Dω to approximate the log-ratio of the
true and generated data densities i.e. Dω ≈ log p(x, c)/pθ(x, c) in turn minimizing the following

min
θ

Epθ(x|c)p(c)
[
−Dω

]
≈ min

θ

(
Ig,θ(x, c) + Eq(c|x,θ)KL(pθ(x)‖p(x))

)
+

max
θ

(
Ig,θ(x, c)− Epθ(x)KL[q(c|x, θ)‖p(c|x)]

)
=min

θ
IUBg,θ (x, c)− ILBg,θ (x, c).

where Ig,θ(x, c) is the generative mutual information and q(c|x, θ) is the posterior under the learned
model.

The detailed derivation is provided in the section below. Notice that at the limit, the model learns
exactly the marginal distribution of x and the posterior q(c|x) and the KL terms vanish.

E.2 CGAN MUTUAL INFORMATION DERIVATION

Following Sugiyama et al. (2012); Gutmann & Hyvärinen (2010); Mohamed & Lakshminarayanan
(2016); Srivastava et al. (2017) we know that at optima the logits (Dω) of a trained discriminator
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approximate the log-ratio of the true data and generated data densities, i.e. Dω ≈ log px(x|c)p(c)
pθ(x|c)p(c) .

Following Nowozin et al. (2016); Srivastava et al. (2017; 2018; 2019) the generator Gθ can therefore
be trained to minimize the following f-divergence between the two sets of densities,

min
θ

E[−Dω]

≈ min
θ

∫
pθ(x|c)p(c)

[
− log

p(x|c)p(c)
pθ(x|c)p(c)

]
d(x, c). (4)

The RHS of equation 4 can be re-arranged into terms containing the upper and the lower bounds to
the generative mutual information between X and C, i.e.,

min
θ

E
[
−Dω

]
≈ min

θ
E
[
log

pθ(x|c)
p(x)

]
+max

θ
E
[
log

p(c|x)
p(c)

]
=min

θ
E
[
log

pθ(x|c)
pθ(x)

+ log
pθ(x)

p(x)

]
+

max
θ

E
[
log

q(c|x, θ)
p(c)

+ log
p(c|x)
q(c|x, θ)

]
=min

θ
E
[
log

pθ(x|c)
pθ(x)

+ log
pθ(x)

p(x)

]
+

max
θ

E
[
log

q(c|x, θ)
p(c)

− log
q(c|x, θ)
p(c|x)

]
=min

θ
Ig,θ(x, c) + Eq(c|x,θ)KL(pθ(x)‖p(x))+

max
θ
Ig,θ(x, c)− Epθ(x)KL[q(c|x, θ)‖p(c|x)]

=min
θ
IUBg,θ (x, c)− ILBg,θ (x, c). (5)

E.3 LEARNING (Y,Z)→ X USING CGAN

Vanilla GANs can only model the marginal data distribution i.e. they learn pθ to match px and in
doing so they use the input to the generator (Gθ) only as a source of stochasticity. Therefore we
start with a conditional GAN model instead, to preserve the correspondence between Y and X . As
shown in section E.1, this framework trains Gθ such that the observation X is maximally explained
by the conditioning variable Y . One major deviation from the original model is that the conditioning
variable in our case is the same type and dimensionality as the observation. That is, it is an image,
albeit a blurry one. This setup has previously been used by Isola et al. (2017) in the context of
image-to-image translation.

Incorporating Z requires careful implementation due to two challenges. First, trivially adding Z to
the input along with Y invokes d-separation and as a result Y and Z can get entangled. Intuitively,
Z is adding high level details to the intermediate representation Y . We leverage this insight as an
inductive bias, by incorporating Z at higher layers of the network rather than just feeding it as an
input to the bottom layer. A straightforward implementation of this idea does not work tough. The
reason is that BatchNorm uses batch-level statistics to normalize the incoming activations of the
previous layer to speed up learning. In practice, mini-batch statistics is used to approximate batch
statistics. This adds internal stochasticity to the generator causing it to ignore any externally added
noise, such as Z. An elegant solution to resolve this second challenge comes in the form of adaptive
instance normalization (see Section 3.2). It not only removes any dependency on the batch-statistics
but also allows for the incorporation of Z in the normalization process itself. For this reason, it has
previously been used in style transfer tasks (Huang & Belongie, 2017). We replace all instances of
BatchNorm in the generator with Adaptive InstanceNorm. We then introduce Z to the generative
process using equation ??. γ(z) and β(z) are parameterized as a simple feed-forward network and
are applied to each layer of AdaIN in the generator.
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F EXPERIMENTS FOR MS-GAN

In this section, we provide a comprehensive set of qualitative results to demonstrate how MS-GAN
is clearly able to not only disentangle C from Z in both supervised and unsupervised settings but also
ensure that independent components of C stay disentangled after training. Additionally, we show
how in unsupervised settings MS-GAN can be used to discover disentangled latent factors when C
is not explicitly provided.

We evaluate MS-GAN on a variety of image generation tasks which naturally involve observed
attributes C and unobserved attributes Z. To that end, we generate three 3D image datasets of faces,
chairs, and cars with explicit control variables. Chairs and cars datasets are derived from ShapeNet
(Chang et al., 2015). We sample 100k images from the full yaw variation and a pitch variation of 90
degrees. We used the straight chair subcategory with 1968 different chairs and the sedan subcategory
with 559 different cars. We used Blender to render the ShapeNet meshes scripted with the Stanford
ShapeNet renderer. For faces, we generated 100k images from the Basel Face Model 2017 (Gerig
et al., 2018). We sample shape and color (first 50 coefficients), expressions (first 5 coefficients), pose
(yaw -90 to 90 degrees uniformly, pitch and roll according to a Gaussian with variance of 5 degrees)
and the illumination from the Basel Illumination Prior (Egger et al., 2018). For the generation of
the faces dataset, we use the software provided by Kortylewski et al. (2019). For the stated datasets
we have complete access to C, however, we also include unsupervised results on celebA (Liu et al.,
2015) with unconstrained, real images. All our datasets are built from publicly available data and
tools.

We use the DCGAN architecture (Radford et al., 2015) for all neural networks involved in all
the experiments in this work and provide a reference implementation with exact architecture and
hyperparameter settings at https://github.com/AnonymousAuthors000/DS-VAE.

F.1 SUPERVISED SETTING

In the supervised setting we compare MS-GAN to CGAN qualitatively. To evaluate the level of
disentanglement between C and Z, we vary each individual dimension of C over its range while
holding Z constant. We plot the generated images for both models on car and chair datasets in Figure
21. Notice that MS-GAN allows us to vary the control variates without changing the identity of the
object, whereas CGAN does not. In addition, we find that for CGAN, the noise Z provides little to no
control over the identity of the chairs. This is potentially due to the internal stochasticity introduced
by the BatchNorm. The last rows for the MS-GAN figures provide the visualization of Y . It can be
seen how Y is clearly preserving C (pose information) but averaging the identity related details.

We also qualitatively evaluate MS-GAN on the more challenging faces dataset that includes 10
control variates. As shown in Figure 25 in the appendix, MS-GAN is not only able to model the
common pose factors such as rotation and azimuth but also accurately captures the principal shape
component of Basel face model that approximates the width of the forehead, the width of jaw etc.
Compared to CGAN, MS-GAN does a qualitatively better job at keeping the identity constant.

F.2 UNSUPERVISED SETTING

We now test the performance of MS-GAN in the unsupervised setting, where disentangled compo-
nents of C needs to be discovered, using β-VAE, as part of learning the mapping C → Y . For our
purpose, we use a simple version of the original β-VAE method with a very narrow bottleneck (6D
for faces and 2D for cars and chairs) to extract C.

The latent traversals for the faces dataset are presented in Figure 22. Unsupervised discovery is able
to recover rotation as well as translation variation present in the dataset. For comparison, we evaluate
InfoGAN (Chen et al., 2016) and present the results in Figure 23 where it is evident that MS-GAN
clearly outperforms InfoGAN on both disentanglement and generative quality. More traversal results
are provided in the appendix. We further test our method on the CelebA dataset (Liu et al., 2015),
where pose information is not available. This traversal plot is shown in Figure 24. Traversal plots for
cars and chairs dataset are provided in the Figures 28 and 29.
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(a) MS-GAN car rotation (b) MS-GAN car elevation

(c) MS-GAN chair rotation (d) MS-GAN chair elevation

(e) CGAN car rotation (f) CGAN car elevation

(g) CGAN chair rotation (h) CGAN chair elevation

Figure 21: Latent traversal on cars and chairs. Third rows in MS-GAN results show Y .

Figure 22: Latent traversal on faces (unsupervised MS-GAN). The three latent variables capture the
rotation, azimuth, and distance respectively.

Figure 23: Latent traversal of InfoGAN on faces. The latent variables are able to capture some pose
changes but the pose changes are highly entangled with other pose factors as well as the face shape.

F.3 ADDITIONAL EXPERIMENT RESULTS

Comparison of MS-GAN and CGAN on face dataset is shown in Figure 25. CGAN not only produces
blurry faces but also shows more undesired identity changes. In order to show the shape variation
clearly, we provide a zoomed-in view in Figure 26.

We provide additional results for supervised and unsupervised results on the chair dataset from Aubry
et al. (2014) in Figure 27 and Figure 28 respectively. The observation is the same with the previous
one. MS-GAN varies the control variables without changing the shape of chairs. In the first row in
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Figure 24: Latent traversal on CelebA (unsupervised MS-GAN). The latent variables consistently
capture the azimuth, hair-style, gender and hair color respectively while maintaining good image
quality.

(a) MS-GAN face pose (b) CGAN face pose

(c) MS-GAN face shape (d) CGAN face shape

Figure 25: Latent traversal of MS-GAN and CGAN on faces. The pose variations are azimuth,
horizontal translation, vertical translation, distance, rotation, and elevation from top to bottom. The
shape variations show the difference in face height, forehead, jaw, and ear from top to bottom.

Figure 27, the leg of the chairs are visually indistinguishable showing an excellent disentanglement
between C and Z. For the results in unsupervised setting showing in Figure 28, MS-GAN is able to
disentangle the rotation of chairs without any label.

Additional results of latent traversal of MS-GAN in the unsupervised setting is provided in Figure
29. The model is able capture the rotation but the translation is not very smooth.

Figure 30 provides the InfoGAN result on the face dataset. Compared with unsupervised MS-
GAN result in Figure 31, clearly InfoGAN discovers some control variables but the effect is highly
entangled.
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Figure 26: Zoomed-in comparison on face shape. Row 1: CGAN forehead variation; Row 2: CGAN
jaw variation; Row 3: MS-GAN forehead variation; Row 4: MS-GAN jaw variation. Row 1 and
Row 3 should have a bigger forehead from left to right while Row 2 and Row 4 should have a
consistent forehead. CGAN and MS-GAN show good forehead variation in Row 1 and Row 3,
respectively, but MS-GAN is better at keeping the forehead the same while another factor is changing
(Row 4 vs. Row 1).

Figure 27: Latent traversal on chairs of MS-GAN. The first three rows show the effect of the variable
in C that controls rotation. The last row is the corresponding Y .

Figure 28: Latent traversal on chairs of unsupervised MS-GAN.
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Figure 29: Latent traversal of unsupervised MS-GAN on cars.

Figure 30: Latent traversal of InfoGAN on faces dataset.

Figure 31: Latent traversal of unsupervised MS-GAN on face dataset.
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G METRIC FORMULATION

The normalized mutual information (MI) reported in Figure 35a(iii) and Figure 35b(iii) is calculated
as follows.

MI[CR, C] =
1

n

n∑
i=1

I(ci; ciR)

H(ciR)
(6)

where n is the dimension of C and CR and I(ci; ciR) is the mutual information between ci and ciR.

For every ground truth factor, we compute its mutual information with each one of the learned
dimensions of C, normalized by its entropy. For each factor, we take the difference, in mutual
information, between the top two learned variables with which it has the highest mutual information.
MIG is defined to be the average of that value over all ground truth factors.
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H COMPARISON OF MS-VAE AND BIG-β-TCVAE

Table 1 shows the comparison of MS-VAE with Big-β-TCVAE which is a β-TCVAE that has the
same capacity in terms of the number of parameters and the latent dimensionality. Our experiments
reveal that MS-VAE outperforms the Big-β-TCVAE in terms of both disentanglement representation
learning quality and reconstruction quality.

Table 1: Comparion of MS-VAE with Big β-TCVAE.

Dataset Model FID MIG

Cars
Big-β-TCVAE 35.24±1.28 0.09±0.04

MS-VAE 22.72±3.66 0.10±0.03

SmallNORB
Big-β-TCVAE 152.19±2.68 0.16±0.02

MS-VAE 59.16±4.52 0.22±0.01
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I SAMPLING MULTIPLE C AND Y DURING TRAINING

In our quantitative experiments for MS-VAE, the paired training setDpaired was constructed as follows:
xi ∼ p(x), c ∼ qφ(c|x), yi = Ey[pθ(y|c)]. In this construction, only one c and, consequentially, only
one y is sampled for training. For the qualitative experiments with celebA, we sampled 10 different
c’s from the β-TCVAE for each xi such that the final dataset had 10 different yi’s for each xi.

The reason we sampled more yi’s for each xi is that there was high variability of the sampled
yi’s given the same xi. To visualize this effect, we plot five Y samples for five X samples from a
trained β-TCVAE (β = 15, C = 15) in figure 32. As can be seen from in the figure, there is high
variability in the sampled yi’s for each xi, highlighting the the high variance of β-TCVAE’s posterior
distribution over C. Training with multiple yi’s for each xi allows the MS-VAE to naturally adapt to
this variability as shown in 33. We plan to explore this effect in future work.

Figure 32: Even rows are samples from CelebA (the same sample is plotted five times) and odd
rows are corresponding samples from the β-TCVAE. As can be seen, for the same celebA image,
the reconstruction from the β-TCVAE is highly variable, illustrating the high variance of the learned
posterior for β-TCVAE.

??

Figure 33: The top row is the same sample from the β-TCVAE and the bottom row is the correspond-
ing reconstruction for MS-VAE. As can be seen in the figure, despite variability in the sampled Y’s,
MS-VAE is able to reconstruct the celebA images with little variance.
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J PIXEL-WISE RECONSTRUCTION LOSS

For all the methods, we report the L1 and L2 reconstruction errors. As shown in Figures 34 and 35,
pixel-wise reconstruction loss can be misleading. In the case of SmallNorb, where MS-VAE clearly
has significantly better image fidelity (as determined by the reconstruction FIDs and traversal plots),
the L1 and L2 error are only slightly better than TCVAE.
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(b) SmallNORB dataset

Figure 34: L1 (lower is better) comparison for β-TCVAE (C → Y ), β-TCVAE-L (latent dimension-
ality same as C + Z), and MS-VAE models.

2 4 6 8 10

2

4

6

·10−3

β

L
2

Lezama
Big-VAE
TCVAE
MS-VAE
TCVAE-L

(a) Cars3D dataset

2 4 6 8 10

1

2

3

4

·10−3

β

L
2

Lezama
Big-VAE
TCVAE
MS-VAE
TCVAE-L

(b) SmallNORB dataset

Figure 35: L2 (lower is better) comparison for β-TCVAE (C → Y ), β-TCVAE-L (latent dimension-
ality same as C + Z), and MS-VAE models.
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K D-SEPARATION IN MS-VAE: AN ILLUSTRATIVE EXAMPLE

We provide a constructive example of the graphical model of MS-VAE shown in Figure 2c to
illustrate the d-separation of Y as discussed in Section 3.1.

Suppose we are given a dataset as shown in Figure 36d and we have trained a (disentanglement)
model (C → Y ) where C ∼ Uniform([1, 2, 3]) and P (Y |C) is a deterministic mapping as shown in
Figure 36a, where the indices above each image are the corresponding Cs. As it can be seen, only a

(a) Y

(b) Z = 0 (c) Z = 1

(d) X

Figure 36: A constructive example to illustrate d-separation in MS-VAE.

part of dataset (first three images) are modeled by the generative process of C− > Y . Now, with Y
generated, we add details to recover back the entire dataset. We first sample Z ∼ Bernoulli(0.5) and
add a mask to Y . The mask is uniformly sampled conditionally on Z as in Figure 36b (Z = 0) and
Figure 36c (Z = 1). To be more specific, e.g., given that we have sampled Z = 0, we apply a mask,
uniformly chosen from Figure 36b to Y , which yield X . It’s not hard to check that this generative
process will yield a distribution with support shown in Figure 36d. Also, note that X and Y are in
the same space. To simplify the discussion, we will represent the realizations of the random variable
X and Y using the integer (C) above each image.

We want to check that C and Z are not conditionally independent given X as implied by d-separation.
To do so, we pick X = 4 and check P (C,Z|X = 4)

?
= P (C|X = 4)P (Z|X = 4). The probability

distributions involved here can be represented by tables, as shown in Table 2. It can be verified that
P (C,Z|X = 4) 6= P (C|X = 4)P (Z|X = 4).

Now let’s check the conditional independence if we additionally condition on Y , e.g. Y = 1.
Specifically, we check P (C,Z|X = 4, Y = 1)

?
= P (C|X = 4, Y = 1)P (Z|X = 4, Y = 1). The

probability distributions involved here can be represented by tables, as shown in Table 3. It can be
verified that P (C,Z|X = 4, Y = 1) = P (C|X = 4, Y = 1)P (Z|X = 4, Y = 1) holds. In other
words, conditioning on X = 4 and Y = 1 d-seperates C and Z.
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C Z Probability

1 0 0
1 1 3/8
2 0 1/4
2 1 3/8
3 0 0
3 1 0

(a) P (C,Z|X = 4)

6=

C Probability

1 3/8
2 5/8
3 0

(b) P (C|X = 4)

×
Z Probability

0 1/4
1 3/4

(c) P (Z|X = 4)

Table 2: Conditioning on X only.

C Z Probability

1 0 0
1 1 1
2 0 0
2 1 0
3 0 0
3 1 0

(a) P (C,Z|X = 4, Y =
1)

=

C Probability

1 1
2 0
3 0

(b) P (C|X = 4, Y =
1)

×
Z Probability

0 0
1 1

(c) P (Z|X = 4, Y =
1)

Table 3: Conditioning on X and Y .
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L ABLATION STUDIES

We now evaluate four major modeling choices of MSVAE. Specifically, we performed ablation studies
to understand the contribution of: 1) Our two-step training paradigm, 2) Our use of Y instead of
C for the second stage, 3) Our use of AdaIN to incorporate Z, 4) Our decision to learn C before
learning Z. To evaluate our two-step training process, we compare MSVAE to a model where both
the C and Z factors are learned together in an end-to-end manner (by penalizing only C) and Z
is incorporated using AdaIN. To evaluate how using Y improves reconstruction performance over
using C, we compare MSVAE to a version of MSVAE where Y is replaced with C. To evaluate the
contribution of AdaIN for disentanglement, we compare MSVAE to a version of MSVAE where C
and Z are concatenated together as input to the second stage DGM. Finally, to evaluate our decision
to learn C before learning Z, we train a version of MSVAE where Z is learned in the first stage and
then C is learned in the second stage (C and Z are concatenated together to reconstruct X). All
experiments are performed on the Cars3D dataset.

L.1 IMPORTANCE OF TWO-STEP TRAINING

MSVAE uses two-step training to ensure that the disentangled factors are captured in C via the
underlying β-VAE model and residual factors are captured in Z. We now show that the same will
not happen if the latent space (C) of the underlying β-VAE is extended to incorporate Z and then
trained in an end-to-end fashion using the same AdaIN decoder. For this purpose we train a β-VAE
model (BV) with the dimensionality of C set to 5. As shown in Figure 37, BV discovers disentangled
factors that capture azimuth, scale and elevation. Next, we train a model (M1) which has 10 latent
factors. We enforce a higher β penalty for 5 of these latent factors (C) and a normal VAE β penalty
for the other 5 factors (Z). The contribution of Z is still limited using the AdaIN decoder strucutre.
As can be seen in Figure 37, the disentangled factors C in M1 are now entangled with other factors
(e.g. identity, color). This experiment illustrates how end-to-end training cannot easily reproduce the
two-step training scheme in MSVAE which induces d-separation of C and Z.

L.2 IMPACT OF USING Y OVER C AND ADAIN OVER CONCATENATION

MSVAE utilizes AdaIN to improve the reconstruction Y from the underlying disentangled repre-
sentation learner with information from the correlated factors Z. To understand the importance of
using AdaIN (rather than concatenation) and Y (instead of C), we perform the following experiment:
Using a β-VAE model (BV) as the C → Y sub-graph, we train three models MSVAE-C (M2),
MSVAE-C-IN (M3) and MSVAE (M4). In M2, we concatenate the inferred C with Z and use that
as input to a DGM to reconstruct X . In M3, we still use the same C but introduce Z via AdaIN
in the second stage DGM. In M4, we train MSVAE as done in the paper using Y and AdaIN. In
Figure 38, we show traversal plots of 4 of the disentangled factors for each of these models. For
reconstruction quality, M4 outperforms both M3 and M2. This is expected as Y is produced using
both C and the learned parameters of the first stage decoder θ and, therefore, contains much more
semantic information about the observation X than C does. Using only C requires the second stage
DGM to relearn θ while also modelling the residual between Y and X . For disentanglement, M4 and
M3 both outperform M2. This illustrates how simply concatenating Z and C and inputting into into
the second stage DGM will result in a non-linear entanglement of the two. This entanglement causes
the network to fail to condition on Y sufficiently and to use the entangled representation as a whole
towards the reconstruction of X . Utilizing AdaIN to incorporate Z (as done in M3 and M4), allows
the network to use Z later in the generative process to model the residual information. This allows
the network to better maintain the information in Y (or C) while still incorporating Z.

L.3 ORDERING OF C AND Z

In MSVAE, we first learn the disentangled factors C and then we learn the residual factors Z. In
this ablation, we evaluate how the order in which these latent variables are learned affects the final
disentanglement. For this purpose, we train MSVAE-ZC (M5) where, in the first stage, Z is learned
using a standard VAE. In the second stage DGM, the disentangled factors C are learned by enforcing
a KL-penalty and then concatenated with the learned Z from the first stage to reconstruct X . In
Figure 39, we show traversals of 4 of the disentangled factors C. As can be seen, this new model
M5 does not capture any disentangled factors in C. In contrast, MSVAE (M4) and BV capture a
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Figure 37: BV = β-VAE, M1 = β-VAE+Z. BV is trained with a dimensionality of C = 5. M1
is trained with a dimensionality of C = 5 and Z = 5. For M1, the β-penalty is only applied to
C and Z is still incorporated using AdaIN. In this figure, we show traversals of 4 of the learned
disentangled factors C for both BV and M1. As can be seen, traversing C for BV captures different
disentangled factors (e.g. azimuth, scale, elevation). Traversing C for M1, however, illustrates that
the disentangled factors are now entangled with other factors (e.g. identity, color).

variety of disentangled factors in C (e.g. Azimuth, scale, elevation). We hypothesize that M5 fails
to extract any meaningful disentangled factors because Z already captured both the entangled and
disentangled factors in the first part of the training. This is clearly shown in Figure 40. As such, the
second stage will suffer from the shortcut problem where the decoder utilizes Z and does not learn
anything meaningful in C (due to the high KL-penalty).
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Figure 38: BV = β-VAE, M2 = MSVAE-C, M3 = MSVAE-C-IN, M4 = MSVAE. BV is trained with
a dimensionality of C = 5. In this figure, we show traversals of 4 of the learned disentangled factors
and how they are preserved in each version of MSVAE (each color box is one disentangled factor).
To perform traversals for each MSVAE, we encode X using the β-VAE to get C and Y, then we
extract Z using Y; We fix Z for the traversals of each MSVAE. Clearly, M4 and M3 preserve the
disentanglement from BV better than M2 (M2 changes the identity and color). Also, M4 has the best
reconstruction of the three MSVAE models as it utilizes Y to improve the reconstruction (rather than
just using C). This ablation study illustrates that AdAIN is important for preserving disentanglement
and using Y is important for improving reconstruction.

Figure 39: BV = β-VAE, M5 = MSVAE-ZC, M4 = MSVAE. BV is trained with a dimensionality
of C = 5. In this figure, we show traversals of 4 of the learned disentangled factors and how they
are preserved in each of the three models. To perform traversals of MSVAE-ZC, we encode X
using a VAE to first get Z and Y, then extract C using X. To perform traversals for MSVAE, we
encode X using the β-VAE to get C and Y, then we extract Z using Y. We fix Z for the traversals in
MSVAE. Clearly, M4 preserves the disentanglement from BV better than M5 (M5 as expected, is not
disentangled).
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Figure 40: M5 = MSVAE-ZC. In this figure, we show traversals of the Z factor in MSVAE-ZC model.
Clearly, Z is capturing factors such as scale, identity, color, rotation in an entangled fashion.

38


	Introduction
	Background
	MS-VAE
	MS-VAE Graphical Model
	MS-VAE Implementation

	Experiments
	Results

	Conclusion
	Choozing C and Z
	CelebA Results
	MS-VAE for Simple Pendulum
	FLOW-based Implementation (MS-FLOW)
	Training using Means or Samples

	GAN-based Implementation (MS-GAN)
	Preliminaries: Generative Adversarial Networks
	CGAN Mutual Information derivation
	Learning (Y,Z) X using CGAN

	Experiments for MS-GAN
	Supervised Setting
	Unsupervised Setting
	Additional experiment results

	Metric Formulation
	Comparison of MS-VAE and Big–TCVAE
	Sampling Multiple C and Y during Training
	Pixel-wise Reconstruction Loss
	D-Separation in MS-VAE: An Illustrative Example
	Ablation Studies
	Importance of Two-step Training
	Impact of using Y over C and AdaIN over Concatenation
	Ordering of C and Z


