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1 Introduction and Related Works

Large language models (LLMs) have achieved re-
markable performance in various NLP tasks, rev-
olutionizing applications across multiple domains
(Brown et al., 2020; Touvron et al., 2023; OpenAI,
2023; Anil et al., 2023, inter alia). However, their
black-box nature poses significant challenges to
our scientific understanding of their inner workings.
This gap between empirical success and mechanis-
tic comprehension has led to a growing focus on
interpretability research, which aims to decode the
internal processes of these complex models.

Interpretability research in LLMs has primarily fol-
lowed two main trajectories: interpreting represen-
tations and decoding specific mechanisms. The
first approach focuses on understanding what infor-
mation is encoded in model states (Belinkov et al.,
2017; Conneau et al., 2018; Hewitt and Manning,
2019). These studies have revealed that LLMs cap-
ture a rich array of linguistic and world knowledge
within their hidden states. The second approach,
mechanistic interpretability, aims to uncover the
specific operations learned by LLMs (Olsson et al.,
2022; Geva et al., 2023; Meng et al., 2022; Hanna
et al., 2023, inter-alia). For instance, Olsson et al.
(2022) identified induction heads responsible for
the copy mechanism, a basic yet crucial opera-
tion in LLMs. Similarly, studies by Geva et al.
(2023) and Meng et al. (2022) have shed light on
how LLMs mechanistically recall factual informa-
tion, showing that early MLP layers enrich subject
embeddings while late attention blocks select and
write factual information.

Despite these advancements in understanding in-
dividual mechanisms, less attention has been paid
to how these mechanisms interact and compete
within the model’s decision-making process. This
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gap in our knowledge is particularly crucial when
LLMs face scenarios requiring them to balance
multiple, potentially conflicting sources of informa-
tion – such as when presented with counterfactual
statements that contradict their pre-trained knowl-
edge.

In this study, we propose a novel formulation of
competition of mechanisms to investigate the in-
terplay between multiple mechanisms in LLMs.
Our work specifically focuses on how one mecha-
nism becomes dominant in the final prediction by
winning this competition. We examine the interac-
tion between two well-studied mechanisms: factual
knowledge recall and in-context adaptation to coun-
terfactual statements. This approach allows us to
explore how LLMs navigate the tension between
their pre-trained knowledge and new information
presented in the input context. Based on the latest
tools to inspect each of these two mechanisms (Nos-
talgebraist, 2020; Wang et al., 2023; Geva et al.,
2023), we then unfold how and where the competi-
tion of the two mechanisms happen. Our analysis
spans both macroscopic (e.g., layer-level) and mi-
croscopic (e.g., attention head) views, providing a
comprehensive picture of how information flows
and competes within the model architecture.

2 Problem Setup and Methods

We design a task to incorporate the competition
of mechanisms by pairing factual statements such
as “iPhone was developed by Apple.” with cor-
responding counterfactual statements, as “iPhone
was developed by Google.”. We compose prompts
adding the counterfactual statements as a false defi-
nition of the factual sentence, allowing us to trace
the competition between factual (tfact) and coun-
terfactual (tcofa) tokens, such as “Redefine: iPhone
was developed by Google. iPhone was developed
by ___”. We utilize the COUNTERFACT dataset
(Meng et al., 2022), selecting 10,000 examples
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Figure 1: Summary of our main results. Few localized attention heads are responsible to modulating the
competition between factual recall and counterfactuals redefinition. On the left, the direct contribution to ∆cofa :=
HeadLogit(tcofa) − HeadLogit(tfact) of all heads in GPT-2. Heads favoring tfact are colored in blue, and those
favoring tcofa in red. On the right, the factual recall accuracy before and after modifying the target heads in GPT-2
and Pythia-6.9B. We up-weight the heads that favor fact, two in GPT-2 and three in Pythia-6.9B.

where attributes are single tokens and the model
completes sentences accurately. To analyze token
preferences across model components, we project
hidden representations to the vocabulary space us-
ing an unembedding matrix WU (Halawi et al.,
2023; Geva et al., 2023; Dar et al., 2023; Geva
et al., 2022; Nostalgebraist, 2020). We also employ
attention matrix modification techniques to further
elucidate information flow within LLMs, interven-
ing on target attention heads and measuring the
effect in the model’s performance. Our primary
focus is on the GPT-2 small model (Radford et al.,
2019), aligning with previous interpretability stud-
ies (Meng et al., 2022; Wang et al., 2023; Conmy
et al., 2023; Hanna et al., 2023). To demonstrate
generalizability, we provide supplemental results
for Pythia-6.9B (Biderman et al., 2023), enhanc-
ing the robustness of our findings across LLMs of
different architectures and scales.

3 Results and Findings

Using these methods, we assess the contributions
of various model components, both from a macro-
scopic view (e.g., each layer) and a microscopic
view (e.g., attention heads), and identify critical po-
sitions and attention heads involved in the competi-
tion of the two mechanisms. Moreover, we locate
a few localized positions of some attention head
matrices that can significantly control the strength
of the factual mechanism. We summarize our main
findings as follows:

1. In early layers, the factual attribute is encoded
in the subject position, while the counterfac-

tual is in the attribute position;
2. The attention blocks write most of the fac-

tual and counterfactual information to the last
position;

3. All the highly activated heads attend to the at-
tribute position regardless of the specific type
of information they promote. The factual in-
formation flows by penalizing the counterfac-
tual attribute rather than promoting the factual
one;

4. We find that we can up-weight the value of
a few very localized values of the attention
head matrix to strengthen factual mechanisms
substantially.

4 Conclusion

Our study introduces the concept of "competition
of mechanisms" as a novel interpretability frame-
work for understanding how LLMs handle mul-
tiple, potentially conflicting mechanisms. This
approach provides valuable insights into the in-
ner workings of language models, particularly in
scenarios where they must navigate between pre-
trained knowledge and conflicting contextual infor-
mation. Our findings reveal that the suppression of
counterfactual information plays a more significant
role than the promotion of factual information in
the model’s decision-making process. This insight,
along with our discovery of localized attention posi-
tions that control the strength of the factual mecha-
nism, opens up new possibilities for targeted model
fine-tuning and optimization.
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