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ABSTRACT

Most existing federated learning (FL) methodologies have been developed start-
ing from a randomly initialized model. Recently, several studies have empirically
demonstrated that leveraging a pre-trained model can offer advantageous initial-
izations for FL. In this paper, we take a departure from the assumption of cen-
tralized pre-training and instead focus on a practical FL setting, where data sam-
ples are distributed among both clients and the server even during the pre-training
phase. We propose a collaborative pre-training approach for FL (CoPreFL),
where the goal is to strategically design a pre-trained model that effectively serves
as a good initialization for any downstream FL tasks. The key idea of our pre-
training algorithm is to employ meta-learning to simulate downstream distributed
scenarios, enabling it to adapt to unforeseen FL tasks. During optimization,
CoPreFL also strikes a balance between average performance and fairness, with
the aim of addressing the challenges in downstream FL tasks through initializa-
tion. Extensive experimental results validate that our pre-training method provides
a robust initialization for any unseen downstream FL tasks, resulting in enhanced
average performance and more equitable predictions. The code is also submitted.

1 INTRODUCTION

Federated Learning (FL) has emerged as a popular distributed machine learning paradigm that fa-
cilitates collaborative model training among a set of clients through periodic aggregations of local
models by a server (McMahan et al., 2017; Konecný et al., 2016). The inherent FL property of
keeping data local to clients offers significant privacy advantages, making it highly appealing for
numerous learning applications. Federated averaging (FedAvg), as the first FL technique, stands
out as arguably the most widely used FL algorithm. Various other FL methodologies have been
also proposed in the literature, such as aggregation schemes (Ji et al., 2019; Wang et al., 2020)
and improved local training techniques (Reddi et al., 2021; Sahu et al., 2020). However, unlike the
common practice of transfer learning in natural language processing (Radford et al., 2019; Devlin
et al., 2019) and computer vision (Dosovitskiy et al., 2021), which typically involve learning from
pre-trained models in a centralized setup, relatively few prior works have delved into the analysis of
model initialization specifically for FL. Instead of starting from a well pre-trained model, most of
the FL works initialize their models using random model weights.

Background and observations. Nguyen et al. (2023); Chen et al. (2023) were the first to systemat-
ically demonstrate that initializing FL with centrally pre-trained models can improve the FL perfor-
mance. However, they assume that the pre-training dataset is centrally stored, which might often not
align with practical scenarios where data is distributed across multiple sources. Consequently, their
initialization approach may not offer a viable solution when dealing with pre-training in distributed
settings. Moreover, while the centrally pre-trained model does lead to performance improvements
in downstream FL, they tend to overlook potential side effects, such as performance biases, that
may emerge in downstream FL tasks when utilizing these models. As illustrated by the histograms
in Figure 1, although utilizing the centrally pre-trained model as a FL initialization enhances per-
formance compared to random initialization, it introduces substantial performance variance across
clients in downstream FL tasks. This phenomenon may arises from the lack of generalizability in
the model’s design. When a model pre-trains in a centralized manner, it becomes rigidly bound to
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Figure 1: (Left): Overview of CoPreFL, aiming to provide a robust initialization for any unseen
downstream FL task. (Right): Average accuracy and variance of FL initialized by various pre-trained
models. CoPreFL demonstrates improved FL performance in terms of both accuracy and fairness.

the knowledge in the pre-training dataset. This fixity poses a challenge in adapting the model to the
diverse clients that may contain new or unseen data in downstream tasks. This variance can result in
fairness issues, as achieving balanced predictions among FL clients becomes challenging (Li et al.,
2020; Cho et al., 2022).

Challenges and goals. From the service provider’s perspective, we are interested in initializing FL
models via pre-training in a distributed setup as shown in the overview of Figure 1. By taking advan-
tage of currently available clients, the goal is to construct a robust pre-trained model that can serve
as a robust initialization for future downstream FL tasks. This problem poses several challenges.
Firstly, the initialization must enhance performance without introducing large accuracy variance
among clients in the downstream FL task, to address fairness concerns. Secondly, the initialization
should effectively handle unseen data and labels since data for pre-training and downstream FL tasks
are usually disjoint due to the time-varying environment or new clients joining the system, e.g., clas-
sifying different objects depending on the self-driving car’s environment or face/speech recognition
for new phone users. This necessitates an initialization that must generalize well to unfamiliar data,
accommodating shifts in the task domain or objectives. Lastly, an ideal initialization should be ver-
satile, offering a solid starting point not only for just one FL task but for any FL tasks, ensuring
its applicability across various scenarios in FL. Addressing these challenges in a distributed pre-
training scenario is becoming increasingly important and aligns with many practical settings, as the
dataset in the pre-training phase in not always centralized. Considering that the downstream tasks
also involve FL, a FL-based pre-training approach might closely resemble the downstream scenario,
potentially providing an informative initialization that resonates with the nature of FL. This natu-
rally leads to the question: How can we design a FL-based pre-training methodology that effectively
addresses the challenges that are encountered in downstream FL tasks?

Contributions. We propose CoPreFL, a collaborative FL-based pre-training approach that pro-
vides a good initialization for any downstream FL, by handling the aforementioned challenges
through meta-learning to ensure reliable predictions even for unseen downstream FL tasks. Our
pre-training approach begins by replicating the real-world scenarios faced in downstream FL, lever-
aging pre-training data in two distributed scenarios: one where data is solely gathered from dis-
tributed clients and another where, in addition to clients holding data, the server also possesses a
portion of the dataset. We employ model-agnostic meta-learning (MAML) to enable the pre-trained
model to handle challenges related to unseen data by adapting the model using meta-updates, thereby
addressing the issue of disjoint data between pre-training and downstream FL. Moreover, we opti-
mize the pre-trained model not solely based on the average performance of participants during the
pre-training phase, but also by balancing the objective through variance across participants. This
comprehensive approach aims to alleviate the fairness concerns in downstream FL, ensuring both
improved average performance and fairer predictions across clients. In developing CoPreFL, our
contributions are as follows:

• We systematically analyze initialization for FL, by relaxing the assumption of pre-training
data being stored centrally. We specifically demonstrate the viability of pre-training in a
hybrid distributed server-client data storage setting, encompassing scenarios where either
only distributed clients hold data or where the server also retains a portion of the data.

• Our method employs meta-learning to replicate distributed scenarios and optimize the pre-
trained model for both average accuracy and fairness, effectively providing a robust initial-
ization that implicitly addresses challenges in any unforeseen downstream FL tasks.
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• Extensive experiments reveal that CoPreFL consistently offers remarkable improvements
in both average performance and fairness of predictions across clients for any downstream
FL task, compared with various centralized/distributed pre-training baselines.

Finally, we would like to highlight that several existing works adopt meta-learning during pre-
training in a FL setup, to construct an initial model for personalization (Jiang et al., 2019; Fallah
et al., 2020; Collins et al., 2021). However, the focus of their downstream tasks are client-side local
learning, not FL, which leads to limited performance when clients in the downstream tasks aim to
collaboratively train a global model via FL, as we will see in Section 4. To the best of our knowl-
edge, this is one of the earliest works that consider FL in both pre-training and downstream stages,
with several unique characteristics including hybrid client-server learning and balancing between
average performance and fairness during pre-training.

2 RELATED WORK

Pre-training for FL. While pre-training has been extensively applied in AI applications for the
centralized setup (Radford et al., 2019; Brown et al., 2020; Devlin et al., 2019; Dosovitskiy et al.,
2021; Kolesnikov et al., 2019), its potential effects on FL have remained relatively unexplored.
Several recent works have studied the effect of model initialization in FL Nguyen et al. (2023);
Chen et al. (2023); Stremmel & Singh (2021) by systematically comparing randomly initialized
model with the pre-trained model. It is shown that conducting FL starting from a well pre-trained
model can significantly enhance the model performance. However, they consider pre-training in a
centralized setup where all pre-training samples are available at the central server, which may not
hold in many practical settings where data samples are distributed across the clients even during the
pre-training stage. Moreover, centrally pre-trained models introduce further variance challenges in
downstream FL tasks, as observed in Figure 1. Compared to these works, we develop a new pre-
training strategy tailored to distributed settings, so that initializing FL with the pre-trained model
can address the challenges on unseen data and performance fairness in any downstream FL tasks.

Meta-learning in FL. Our federated pre-training approach employs meta-learning techniques to
adapt the model toward our controlled objectives, providing any FL task with a strong initializa-
tion. This distinguishes it from other FL methods that also frequently utilize meta-learning, such as
personalized FL and few-round FL. Park et al. (2021) introduced few-round FL, which employs a
meta-learning-based episodic training strategy to adapt FL to any group within only a few rounds of
FL. However, in (Park et al., 2021), fairness is not considered in downstream FL tasks, and the solu-
tion for a practical scenario in which the server holds data is not provided. In personalized FL (Chen
et al., 2018; Jiang et al., 2019; Fallah et al., 2020; Collins et al., 2021) (e.g., FedMeta (Chen et al.,
2018)), a global model is formed through aggregating local updates and meta-updates at each fed-
erated participant. The obtained global model serves as an initialization at each client to achieve a
personalized local model through a limited number of gradient descent steps. Unlike this research
direction where the downstream tasks are personalization to individual clients, our emphasis is on
establishing an initial model that results in a high-accuracy and equitable global model for any FL
downstream tasks. This makes our objective function and meta-learning strategy different compared
to existing works, leading to significant performance improvements as we will observe in Section 4.

Performance fairness in FL. Performance fairness has been studied in the FL literature (Mohri
et al., 2019; Li et al., 2020; Cho et al., 2022) aiming to construct a global model that satisfies as
many clients as possible (e.g., a global model that achieves uniform distribution of accuracy across
participants). Constructing a fair global model is important as the fair model is more likely to satisfy
the new clients joining the FL system, without additional model training. The primary objective
of our pre-training method is to construct a robust initial model that guarantees performance for all
participants and enhance performance fairness, for any downstream FL scenarios.

3 PROPOSED PRE-TRAINING

In this section, we begin by establishing the classical objective of FL and outlining the scenarios
during the pre-training phase. We then present our pre-training objectives, and propose CoPreFL, a
meta-learning based pre-training approach which simulates the conditions that could be encountered
when applying a pre-trained model to the downstream FL task.
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3.1 PROBLEM SETUP AND OBJECTIVES

Federated learning (downstream task). Consider a FL task where a central server is connected
to a set of clients G. Starting from the initialized model w0, FL consists of parallel local training
at the clients and global aggregation at the server across multiple communication rounds. In each
communication round r, every client g ∈ G downloads the previous global model wr−1 from the
server and subsequently updates it using their local dataset Dg . The goal of this local training
is to maximize each client’s gain, often achieved through multiple iterations of stochastic gradient
descent (SGD). After all clients have completed their local model updates, the updated local models,
denoted as wr

g , are uploaded to the server for aggregation. This aggregation results in a new global

model wr =
∑

g∈G
|Dg|
|D| w

r
g by employing FedAvg (McMahan et al., 2017), where D represents the

aggregated training set comprising data from all clients and |D| denotes the number of samples in
dataset D. This entire process is iterated for R communication rounds until convergence.

Pre-training scenarios. Existing FL approaches primarily rely on randomly initialized models,
while some recent studies have explored the potential of a centralized pre-training setup (Nguyen
et al., 2023; Chen et al., 2023). In this paper, we depart from the assumption of centralized pre-
training data, and consider a practical yet challenging scenario in which data samples are distributed
across the clients even during the pre-training stage. Here, the labels and data that appear in the
pre-training stage are potentially different from the ones in the downstream tasks. Our objective is
to design a collaborative pre-training strategy tailored to this new problem setup. We explore two
distinct FL scenarios in our analysis, as depicted in the overview figure in Figure 1. In addition to
the conventional FL scenario where datasets are exclusively available at the clients (Scenario I), we
also considered a hybrid FL scenario where the server holds a small amount of data (Scenario II).
In various real-world scenarios, the entity in charge of creating the machine learning model manages
the server and holds a limited dataset that approximates the broader population distribution. As a
result, a hybrid FL strategy that combines the abundant client data with a small portion of server
data in a decentralized and privacy-preserving fashion is becoming imperative to substantially boost
model performance in real-world applications (Yang et al., 2023; Bian et al., 2023).

CoPreFL objectives. Instead of randomly initializing the starting model for downstream FL task,
our objective is to design a pre-trained model Φ∗ under both scenarios I and II, that serves as a robust
starting point w0 = Φ∗ for any unseen downstream FL task, as shown in Figure 1. More precisely,
one of the goals of Φ∗ is to minimize the following objective function for downstream FL tasks:

A(Φ) = EG∼p(G)

 1

|G|
∑
g∈G

f(wR(Φ∗, G), Dg)

 , (1)

where p(G) represents the distribution of all possible sets of clients for downstream FL, G stands for
a specific group of clients drawn from p(G), f(·) represents the loss function, wR(Φ∗, G) symbolizes
the final R-th round global model derived from clients in set G starting with Φ∗ as initialization, and
Dg represents the downstream dataset of client g within client set G. The metric in (1) represents
the average FL performance across all clients that could possibly appear in the downstream tasks.

On the other hand, FL can lead to significant variations in performance among different participants,
particularly when the model exhibits bias towards those with larger datasets, emphasizing the im-
portance of fairness in performance distribution across all participants. This fairness can be assessed
by quantifying the variance in testing accuracy across participants (Li et al., 2020). Therefore, in
addition to achieving performance gains on any unseen FL task, we also aim for the final global
model wR(Φ∗, G) initialized from our designed pre-trained model Φ∗ to exhibit a fair testing per-
formance distribution across |G| clients. To be more specific, the second goal of Φ∗ is to minimize
the variance of the prediction distribution across participants in downstream FL tasks:

F (Φ) = EG∼p(G)

 1

|G|
∑
g∈G

f2(wR(Φ∗, G), Dg)−
( 1

|G|
∑
g∈G

f(wR(Φ∗, G), Dg)
)2

 . (2)

We aim to minimize and strike a balance between (1) and (2); however, we encounter challenges
because Dg , G, and p(G) are not known during pre-training, preventing us from directly optimizing
(1)and (2). Our idea is to employ meta-learning during pre-training to simulate downstream FL
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Algorithm 1 Our Pre-training Method CoPreFL (Pre-training Phase in Scenario I)
1: Input: A set of clients M in the pre-training phase, with each client i holding its dataset Dp

i .
2: for Each communication round t = 1, 2, ..., T do
3: Randomly select a set of clients m ⊂M to participate in learning
4: Each participant j ∈ m partitions its own dataset Dp

j into support set Sj and query set Qj

5: for Each participant j in parallel do
6: Downloads Φt−1 from the server
7: LSj (Φ

t)← 1
|Sj |

∑
(x,y)∈Sj

ℓ(Φt−1(x), y) ▷ Compute local loss using support set Sj

8: Φt
j ← Φt−1 - η∇LSj (Φ

t) ▷ Perform SGD local update using support loss LSj

9: end for
10: Φt←

∑
j∈m

|Sj |∑
i∈m |Si|

Φt
j ▷ Model aggregation to construct temporary global model

11: for Each participant j in parallel do
12: Participant downloads Φt for initialization and performs meta-updates
13: LQj (Φ

t)← 1
|Qj |

∑
(x,y)∈Qj

ℓ(Φt(x), y) ▷ Compute local meta-loss using query set Qj

14: end for
15: Overall query meta-loss: LQ(Φt) =

∑
j∈m LQj (Φ

t); Variance across meta-losses: σ2
Q(Φt)

16: Customized query meta-loss: Lmeta(Φt) = γLQ(Φt) + (1− γ)σ2
Q(Φt)

17: Φt← Φt - ζ∇Lmeta(Φt) ▷ Model updates using customized loss
18: end for
19: Output: A pre-trained model for downstream FL tasks: ΦT

scenarios and learn a pre-trained model capable of providing robust initialization for any unseen
downstream FL task, considering (1)and (2).

CoPreFL overview. To create a pre-trained model that is well-suited for the diverse downstream FL
tasks, we construct a pre-training environment that also mirrors the federated setup, facilitating the
pre-trained model’s ability to learn data heterogeneity. Our meta-learning-based CoPreFL involves
iteratively learning of the pre-trained model over federated rounds using the support set, followed
by a concluding adjustment (meta-update) using the query set. By treating the query set as unseen
knowledge, we equip our pre-trained model with the capability to effectively handle unforeseen FL
scenarios in downstream tasks and address our two goals (1) and (2).

3.2 COPREFL IN SCENARIO I (PRE-TRAINING WITH DISTRIBUTED CLIENTS)

We first consider a scenario where pre-training data is collected from distributed clients, and no data
is stored on the server. The key challenge we address is that the data and FL scenarios in downstream
tasks are inherently unseen during the pre-training phase. The detailed procedure of CoPreFL is
given in Algorithm 1. We first randomly involve a set of clients m to participate in each round, where
each client j holds its own dataset Dp

j . Prior to starting our CoPreFL, each participant j splits its
local dataset into support set Sj and query set Qj , which are disjoint. We apply meta-learning based
on support and query sets to maximize the model’s generalization ability in unseen scenarios.

Temporary global model construction. In each FL round t in the pre-training phase, participants
download model Φt−1 from the server (line 6 in Algorithm 1). Subsequently, clients engage in
a series of local training iterations using their respective support sets Sj (line 7 in Algorithm 1),
resulting in a training support loss LSj

(Φt) = 1
|Sj |

∑
(x,y)∈Sj

ℓ(Φt−1(x), y), where ℓ(·) denotes the
loss function (e.g., cross-entropy loss). Participants then update their local models using the loss
LSj

(Φt), resulting in their respective updated models, denoted as Φt
j (line 8 in Algorithm 1). After

all participants have completed their local training, they upload their models to the server (line 10
in Algorithm 1), which are aggregated according to Φt =

∑
j∈m

|Sj |∑
i∈m |Si|Φ

t
j . This model can be

viewed as the temporary global model that will be further updated using the query sets.

Average performance and fairness. Firstly, the query sets are used to evaluate the model’s per-
formance on each client and to conduct the meta-update process. The objective of our pre-trained
model is to strike a balance between the following functions during the pre-training phase:

min
Φ
LQ(Φt) = min

Φ

∑
j∈m

LQj
(Φt) and (3)
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min
Φ

σ2
Q(Φ

t) = min
Φ

1

|m|
∑
j∈m

(
LQj

(Φt)− 1

|m|
LQ(Φt)

)2

, (4)

where LQj
represents the meta-loss evaluated using the query set Qj of participant j, LQ denotes

the overall query meta-loss, which is characterized by aggregating LQj
across all participants, and

σ2
Q represents the performance variance evaluated using the query set across participants. Beyond

merely equipping the global model with the ability to achieve a good average performance in objec-
tive (3), we also strive to optimize the model for uniform/fair prediction performance across all par-
ticipants in objective (4). Specifically, we tailor a customized query meta-loss function Lmeta(Φt)

to minimize not only the overall query meta-loss LQ(Φt) when encountering unseen data but also
the variance σ2

Q(Φ
t) of query meta-losses across participants:

min
Φ
Lmeta(Φt) = min

Φ

[
γLQ(Φt) + (1− γ)σ2

Q(Φ
t)
]
, (5)

where γ ∈ [0, 1] represents the balancer acting as a control to strike a balance between these two
factors effectively. Setting γ = 0 encourages a more uniform training accuracy distribution and
improves fairness, aligning with objective function (4), but it may sacrifice performance. A larger γ
means that we emphasize the devices’ average performance with less consideration for uniformity,
optimizing the pre-trained model more towards objective function (3).

Meta update. Considering the above objective function, each participant j downloads the tempo-
rary global model Φt and employs its query set Qj to compute and local query loss LQj

(Φt) =
1

|Qj |
∑

(x,y)∈Qj
ℓ(Φt(x), y) as in line 13 in Algorithm 1; the gradients are computed locally and set

back to server for aggregation for later use. Subsequently, the overall query meta-loss LQ(Φt) is
computed by aggregating all local query losses, and the performance variance σ2

Q(Φ
t) is determined

by analyzing query meta-losses across all participants (line 15 in Algorithm 1). Then, as described
in line 17 of Algorithm 1, we update the temporary global model Φt using the customized query
meta-loss Lmeta and the aggregated received gradients to align with our controlled objective. The
server finally broadcasts the meta-updated global model Φt to the participants and proceeds to the
next round. After T federated rounds, the final global model ΦT serves as the pre-trained model
for initializing FL in the downstream tasks: As illustrated in Figure 1, the set of clients in any
downstream tasks conduct FL starting from the pre-trained model w0 = ΦT .

3.3 COPREFL IN SCENARIO II (HYBRID CLIENT-SERVER PRE-TRAINING)

In scenario II, in addition to distributed clients holding the data, we explore a pre-training scenario
where the server also possesses a small portion of data approximating the broader population dis-
tribution. Similar to CoPreFL in scenario I, our primary aim remains optimizing two objective
functions (3) and (4) during pre-training phase to achieve the goals (1) and (2). The key distinction
is that we achieve these objectives through meta-updates performed on the server’s data, rather than
on the participants’ data. Unlike CoPreFL in scenario I where we separated participants’ data into
support and query sets, viewing the query set as unseen knowledge to control average performance
and fairness, in scenario II, we employ every data sample within each participant for local updates
by viewing as support data. Simultaneously, we treat the server’s data as unseen knowledge, i.e.,
query set, allowing us to customize the model according to our objectives.

The detailed procedure of CoPreFL in scenario II is given in Algorithm 2 in Appendix A. The goal
remains to balance between objective functions (3) and (4), with the first key difference compared to
CoPreFL in scenario I being that the temporary global model Φt is aggregated from local models,
each of which learns from its entire local dataset Dp

j instead of their support sets. The second key
difference is that we facilitate the meta-update of the temporary global model Φt using server’s
data instead of client’s data. Specifically, we randomly partition the server’s dataset Ds into |m|
equal partitions, emphasizing that this partitioning is not obligatory for the server but is undertaken
to mimic the distributed nature of the scheme and furnish distributed participants with a global
model suited to our two objectives (3) and (4). We then strike a balance between optimizing for
performance and fairness by updating the temporary global model Φt based on a customized server
meta-loss Lmeta(Φt), calculated through meta-updates on the server’s partitioned data.

Remark 1. We note that our meta update is applied to the temporary global model to mimic down-
stream FL scenarios, which is basically different from existing meta-learning based FL methods
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that meta update the local models to mimic local/personalized training. This leads to significant
performance improvement of CoPreFL compared with the baseline, as we will see in Section 4.

Remark 2. Although we described CoPreFL in two different distributed scenarios, CoPreFL is
applicable even when all data samples are centralized at the server during pre-training, to construct
a more robust initial model compared with naive pre-training. The server can split the dataset to
mimic either scenarios I or II, and directly apply the above training strategies.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and model. We evaluate the performance of our algorithm on CIFAR-100 (Krizhevsky,
2009), Tiny-ImageNet (Le & Yang, 2015), FEMNIST (Caldas et al., 2018) datasets, adhering to the
data splits provided in (Ravi & Larochelle, 2016; Park et al., 2021). We perform image classification
on the mentioned datasets using the ResNet-18 model (He et al., 2015). See Appendix B.1 for
detailed settings.

Pre-training phase. We distribute the pre-training dataset to |M | = 100 clients following either IID
or non-IID data distributions and select |m| = 20 participants out of the |M | clients to participate
in each FL round. Results with different |m| are reported in Appendix C. Each participant employs
80% of its local data as support samples and the remaining 20% as query samples. We set the
number of global rounds to T = 50, and each round of local training takes 5 iterations for each
participant. See Appendix B.2 for detailed hyperparameters and compute settings.

Downstream FL task and evaluation metrics. As illustrated in Figure 1, the final global model
of the pre-training phase is utilized as initializing each downstream FL task, where we consider
multiple downstream tasks to evaluate the overall performance. To generate each downstream FL
task, we randomly select 5 classes from each downstream datasets and fix the training procedure
at each downstream task to the commonly adopted FedAvg algorithm. We evaluate the final global
model’s performance using testing samples from each participant and report both the accuracy and
the variance of the accuracy distribution across participating clients for each FL task. Additionally,
we present the worst 10%, 20%, and 30% testing accuracies among all clients for each FL task,
aiming to evaluate the capability of each method in handling underperforming participants. The
detailed configurations for downstream FL task can be found in Appendix B.3.

Data distribution. In the IID setup, data samples from each class are distributed equally to
|M | = 100 clients for pre-training and |G| = 10 clients for downstream FL task. For the non-
IID setup, samples within each class are partitioned among |M | and |G| clients using a Dirichlet(α)
distribution for pre-training and downstream task, respectively, with α = 0.5 selected as is in the
literature (Morafah et al., 2022; Li et al., 2021).

Baselines for pre-training. We compare CoPreFL with various established FL algorithms, in-
cluding standard FedAvg (McMahan et al., 2017), FedMeta (Chen et al., 2018) which addresses the
unseen scenario through meta-learning, and q-FFL(q > 0) (Li et al., 2020) which aims at enhancing
performance fairness across clients. All of these schemes are adopted during the pre-training phase
to construct initial models. Across all FL algorithms, we maintain consistent settings for the number
of global rounds, local iterations, the chosen |m| participants, optimizer, and local learning rate.
When applying these baselines in scenario II, after each method completes its local iterations and
obtains its respective global model in each round, we proceed to further train the global model with
5 additional iterations, utilizing the server dataset. This extended training, optimized using the SGD
optimizer with a learning rate of 10−3, follows the hybrid training approach introduced in Yang
et al. (2023); Bian et al. (2023), where the server’s data is used to further refine the global model.
Subsequently, the server broadcasts the server-trained global model to each participant for the next
round. Similarly, we introduce a baseline that constructs the global model according to Algorithm 1
and then further performs multiple SGD iterations using server data. For differentiation, we denote
this baseline as “CoPreFL-SGD”, which is evaluated only for scenario II. Finally, we also see the
effects of random initialization and conventional centralized pre-training, in Table 5.

4.2 EXPERIMENTAL RESULTS

Results for scenario I. Tables 1 and 2 show test accuracies averaged over 10 different non-IID
FL downstream tasks, initialized with various pre-trained methods in scenario I on CIFAR-100 and
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Pre-training (Scenario I) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 84.20 57.15 68.43 71.83 74.38
FedMeta 83.80 42.64 72.30 73.79 75.47
q-FFL 82.60 45.56 70.46 73.41 75.14

CoPreFL (γ = 0.25) 84.36 38.56 73.66 75.63 77.40

Non-IID

FedAvg 78.96 64.80 62.70 67.00 69.80
FedMeta 82.45 48.72 68.97 72.41 74.35
q-FFL 80.01 88.92 64.39 67.48 70.30

CoPreFL (γ = 0.75) 83.29 34.69 71.58 73.20 74.59

Table 1: Scenario I (CIFAR-100): Average performance across 10 non-IID downstream FL tasks,
initialized with various FL pre-trained models.

Pre-training (Scenario I) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 79.45 35.40 64.86 68.61 70.78
FedMeta 81.68 65.61 65.96 69.17 71.59
q-FFL 82.65 39.69 70.65 74.14 76.27

CoPreFL (γ = 0.0) 83.79 34.93 72.59 75.05 76.76

Non-IID

FedAvg 82.94 37.21 68.99 72.29 74.40
FedMeta 81.03 37.58 69.44 71.55 72.93
q-FFL 84.11 43.96 73.87 76.05 77.37

CoPreFL (γ = 0.5) 85.23 35.40 76.77 78.46 79.86

Table 2: Scenario I (Tiny-ImageNet): Average performance across 10 non-IID downstream FL
tasks, initialized with various FL pre-trained model.

Tiny-ImageNet datasets. Our pre-trained method CoPreFL stands out by offering a robust ini-
tialization that is characterized by higher average accuracy and reduced variance across clients in
downstream FL tasks. Moreover, our method not only improves average performance and reduces
variance across all clients but also increases accuracies for the worst-performing clients, as indicated
by the Worst 10-30% metrics. This further highlights the advantage of balancing the two objective
functions (3) & (4), particularly in benefiting the worst-performing clients. In Appendix C.1, we pro-
vide additional results considering varying the number of participants during pre-training scenario I
and different data distributions in downstream FL tasks.

Results for scenario II. Table 3 displays the performance of various pre-trained methods trained
in scenario II. Our CoPreFL outperforms other baselines, demonstrating that utilizing server data
for meta-updates and striking a balance between objectives (3) and (4) with the server’s data can
still effectively align with goals (1) and (2). We observe that CoPreFL consistently outperforms
CoPreFL-SGD, indicating that conducting a few SGD iterations using server data in a central-
ized manner after meta-updating the global model might diminish the effectiveness of our designed
objectives. This further emphasizes the importance of performing meta-learning on server data, fol-
lowing the CoPreFL in Algorithm 2 for scenario II, to effectively address objective functions (3)
and (4). See Appendix C.2 for additional results considering different configurations in scenario II.

Fairness of CoPreFL. Figure 2 depicts the testing accuracy distributions of the final global model
on each client for 10 non-IID FL downstream tasks. We provide visualizations for our method, as
well as the methods with the second-best average accuracy and the second-lowest variance. Our
CoPreFL approach excels not only in achieving higher average accuracy compared to other pre-
training methods but also in establishing more centered (i.e., fairer) testing accuracy distributions
with reduced variance. Moreover, when considering the clients located on the left end of the distri-
bution in each pre-training method, our approach effectively shifts low-performing clients towards
right, signifying an enhancement in predictive accuracy for these clients. In Appendix C.3, we
provide additional comprehensive visual results across different scenarios and configurations.

Pre-training (Scenario II) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 81.79 41.73 69.84 73.47 75.11
FedMeta 82.29 47.75 71.69 74.17 75.71
q-FFL 82.40 40.32 73.96 75.30 76.59

CoPreFL-SGD (γ = 0.75) 82.90 38.94 73.02 75.60 77.18
CoPreFL (γ = 0.75) 85.68 27.14 75.36 77.25 78.49

Non-IID

FedAvg 82.82 49.00 69.71 72.54 74.58
FedMeta 82.69 48.44 68.84 71.82 74.14
q-FFL 82.14 73.10 68.22 70.64 73.77

CoPreFL-SGD (γ = 0.25) 83.63 41.73 69.76 73.46 75.64
CoPreFL (γ = 0.25) 86.63 31.58 73.05 75.82 77.58

Table 3: Scenario II (CIFAR-100): Average performance across 10 non-IID downstream FL tasks,
initialized with various FL pre-trained models.
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(a) Dataset: CIFAR-100; Scenario: I (b) Dataset: CIFAR-100; Scenario: II

nonIID pre-training nonIID fine-tuning
CIFAR100+tiny m=20

(c) Dataset: Tiny-ImageNet; Scenario: I (d) Dataset: Tiny-ImageNet; Scenario: II

Figure 2: The distributions of testing accuracy in non-IID FL downstream tasks under various non-
IID pre-training scenarios. CoPreFL achieves the best average accuracy and a more centralized
(i.e., fairer) distribution while also improving the accuracies of worst performing clients.

γ of CoPreFL Acc ↑ Variance ↓
0.0 83.11 24.70

0.25 84.04 35.88
0.5 85.23 35.40

0.75 85.19 39.31
1.0 86.33 39.81

Table 4: Effect of γ in non-IID scenario
I, using Tiny-ImageNet.

Effect of balancer γ in CoPreFL. Table 4 displays the
average performance across 10 non-IID FL downstream
tasks initialized with our CoPreFL method using differ-
ent balancers γ on Tiny-ImageNet. A larger γ implies
that the pre-trained model prioritizes the devices’ average
performance, whereas a smaller γ implies that the pre-
trained model aims to promote greater uniformity in the
training accuracy distribution. In Table 4, as the balancer of the pre-trained model increases, we
observe an increase in the average accuracy of downstream FL tasks but a decrease in fairness, in-
dicated by higher variance. The trend shows that we successfully establish a robust pre-training
environment that mimics downstream FL tasks and addresses the challenges related to unseen sce-
narios and unfair predictions. The design and control of objective functions (3) and (4) during the
pre-training phase can yield implicit benefits for achieving goals (1) and (2) when utilizing these
pre-trained models as an initialization for downstream FL tasks.

Pre-training Downstream: non-IID FL
Scenario Method Acc ↑ Variance ↓

I
Random 75.32 41.39

Centralized 81.30 69.44
CoPreFL 83.29 34.69

II
Random 77.50 53.00

Centralized 82.07 70.90
CoPreFL 86.63 31.58

Table 5: Comparison with other initialization
methods on CIFAR-100.

Other initialization methods. In addition to FL
algorithms, in Table 5, we consider other initial-
ization methods with random weights or a cen-
tralized pre-trained model. In scenario I, we col-
lect a centralized dataset from all the clients in the
pre-training phase, while in scenario II, we gather
the dataset from both the clients and the server
for centralized pre-training. While the centralized
method improves the accuracy of downstream FL
compared to random initialization, it introduces
significant variance across clients, resulting in fairness issues. Our method outperforms the cen-
tralized baseline, demonstrating that proper pre-training designs using FL, aligned with controlled
objectives (3) and (4), can indeed enhance FL itself through initialization. Additional results for
these initialization methods are provided in Appendix C.4 under different settings, consistently con-
firming the advantage of CoPreFL. In addition to the baselines introduced in Section 4, we also
include FedDyn (Acar et al., 2021), designed to address non-IID issues, for a detailed comparison.
Moreover, we also explore a scenario that involves pre-training with large public datasets. The detail
and the results can also be found in Appendix C.4.

Additional experimental results. A scenario where the downstream task contains some seen
classes from the pre-training phase is discussed in Appendix C.6. Moreover, the results for dif-
ferent downstream FL algorithms are presented in Appendix C.7. These additional results show the
superiority of our method.

5 CONCLUSION

We introduced CoPreFL, a collaborative pre-training method aimed at providing any unseen FL
task with a robust initialization. Our pre-training approach takes into account practical scenarios
where data may be distributed across the clients and the server during pre-training. CoPreFL lever-
ages meta-learning to empower the pre-trained model with the ability to handle unseen data while
striking a balance between average performance and fairness. Extensive experiments in various se-
tups demonstrate that our pre-training method serves as a dependable initialization for any FL task,
enabling them to achieve superior average performance and more fair predictions across the clients.
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Sanjiv Kumar, and H. B. McMahan. Adaptive federated optimization. The Ninth International
Conference on Learning Representations, abs/2003.00295, 2021.

11

https://api.semanticscholar.org/CorpusID:203591432
https://api.semanticscholar.org/CorpusID:214728308
https://api.semanticscholar.org/CorpusID:214728308
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:232417422
https://openreview.net/forum?id=ByexElSYDr
https://openreview.net/forum?id=ByexElSYDr
https://api.semanticscholar.org/CorpusID:59553531
https://api.semanticscholar.org/CorpusID:59553531
https://api.semanticscholar.org/CorpusID:252668691
https://api.semanticscholar.org/CorpusID:252668691
https://openreview.net/forum?id=Mpa3tRJFBb
https://openreview.net/forum?id=Mpa3tRJFBb
https://api.semanticscholar.org/CorpusID:245011397
https://api.semanticscholar.org/CorpusID:245011397
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:67413369
https://api.semanticscholar.org/CorpusID:67413369


Under review as a conference paper at ICLR 2024

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. The Third Conference on Machine
Learning and Systems, 2020. URL https://api.semanticscholar.org/CorpusID:
59316566.

Joel Stremmel and Arjun Singh. Pretraining federated text models for next word prediction. Future
of Information and Communication Conference, abs/2005.04828, 2021. URL https://api.
semanticscholar.org/CorpusID:218581361.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. The Eighth International Conference on Learning
Representations, abs/2002.06440, 2020. URL https://api.semanticscholar.org/
CorpusID:211132598.

Kun Yang, Shengbo Chen, and Cong Shen. On the convergence of hybrid server-clients collaborative
training. IEEE Journal on Selected Areas in Communications, 41:802–819, 2023. URL https:
//api.semanticscholar.org/CorpusID:255250634.

12

https://api.semanticscholar.org/CorpusID:59316566
https://api.semanticscholar.org/CorpusID:59316566
https://api.semanticscholar.org/CorpusID:218581361
https://api.semanticscholar.org/CorpusID:218581361
https://api.semanticscholar.org/CorpusID:211132598
https://api.semanticscholar.org/CorpusID:211132598
https://api.semanticscholar.org/CorpusID:255250634
https://api.semanticscholar.org/CorpusID:255250634


Under review as a conference paper at ICLR 2024

A DETAILED PROCEDURE FOR OUR COPREFL IN SCENARIO II

This section provides a detailed introduction to our CoPreFL in scenario II, as discussed in Sec-
tion 3.3. Similar to the goals of CoPreFL in scenario II, we still aim to balance between objective
functions (3) and (4), but in this scenario, the data used to perform meta-updates and control our
objectives is different. During each federated round t in the pre-training phase, participants down-
load the global model Φt−1 from the previous round (line 6 in Algorithm 2) . Subsequently, they
perform few local training iterations utilizing their respective local datasets Dp

j (line 7 in Algo-
rithm 2). This process leads to a training loss LDp

j
(Φt), defined as 1

|Dp
j |

∑
(x,y)∈Dp

j
ℓ(Φt−1(x), y),

where x represents the input (e.g., images), y denotes the true label, and ℓ(·) denotes the loss func-
tion (e.g.,cross-entropy loss). The local models are then updated based on this loss, yielding their
respective updated local models Φt

j (line 8 in Algorithm 2). Upon the completion of local training
by all participants, their models are transmitted to the server (line 10 in Algorithm 2), and the server
aggregates these models into a temporary global model Φt =

∑
j∈m µjΦ

t
j , which is weighted by

relative dataset sizes µj =
|Dp

j |∑
i∈m |Dp

i |
.

We then perform meta-updates for the temporary global model Φt using server’s dataset Ds. To start,
we first randomly divide the server’s dataset Ds into |m| equal partitions. Subsequently, the server
evaluates the temporary global model Φt using each subset Ds

j (line 12 in Algorithm 2), resulting
in the corresponding meta-loss LDs

j
(Φt) = 1

|Ds
j |

∑
(x,y)∈Ds

j
ℓ(Φt(x), y). The collective server’s

meta-loss, denoted as LDs(Φt) in line 14 of Algorithm 2, is determined by aggregating all the meta-
loss values obtained from Ds

j , and we also calculate the variance σ2
Ds = 1

m

∑
i∈m(LDs

i
(Φt) −

1
mLDs(Φt)) across server’s meta-losses to examine the performance distribution. We then tailor
a customized server meta-loss Lmeta(Φt) = γLDs(Φt) + (1 − γ)σ2

Ds(Φt) to achieve a balance
between optimizing for performance and fairness. Finally, in line 17 of Algorithm 2, we employ
the customized server meta-loss Lmeta(Φt) to update the temporary global model Φt, aligning it
with our controlled objective. The server then sends this meta-updated global model Φt to the
participants in the next round for initialization. After completing T federated rounds, we regard the
final global model ΦT as the pre-trained model in scenario II, which serves as the initialization for
the fine-tuning phase of the diverse FL tasks.

Algorithm 2 Our Pre-training Method CoPreFL (Pre-training Phase in Scenario II)
1: Input: M clients in the pre-training phase, with each client i holding their own dataset Dp

i ; the
server also holds a dataset Ds.

2: for Each communication round t = 1, 2, ..., T do
3: Randomly select a set of client m ⊂M to participate in learning
4: Randomly split server’s dataset Ds into |m| subsets
5: for Each participant j in parallel do
6: Downloads Φt−1 from the server
7: LDp

j
(Φt)← 1

|Dp
j |

∑
(x,y)∈Dp

j
ℓ(Φt−1(x), y) ▷ Get local loss using local dataset Dp

j

8: Φt
j ← Φt−1 - η∇LDp

j
(Φt) ▷ Perform SGD local update using local loss LDp

j

9: end for
10: Φt←

∑
j∈m

|Dp
j |∑

i∈m |Dp
i |
Φt

j ▷ Model aggregation to construct temporary global model
11: for Each split server’s dataset Ds

j in parallel, Server do
12: LDs

j
(Φt)← 1

|Ds
j |

∑
(x,y)∈Ds

j
ℓ(Φt(x), y) ▷ Server’s meta-loss corresponding to Ds

13: end for
14: Overall meta-loss on server: LDs(Φt) =

∑
j∈m LDs

j
(Φt)

15: Variance across server meta-losses: σ2
Ds(Φt) = 1

|m|
∑

j∈m(LDs
j
(Φt)− 1

|m|LDs(Φt))2

16: Customized server meta-loss: Lmeta(Φt) = γLDs(Φt) + (1− γ)σ2
Ds(Φt)

17: Φt← Φt - ζ∇Lmeta(Φt) ▷ Model updates using customized loss
18: end for
19: Output: A pre-trained model for downstream FL tasks: ΦT
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B DETAILED SETTINGS FOR DATASETS, HYPERPARAMETERS, AND
DOWNSTREAM TASK

B.1 DATASETS DETAILS

For CIFAR-100, the dataset is divided into 80 classes for pre-training and 20 classes for downstream
FL task, while for Tiny-ImageNet, the dataset is separated into 160 classes for pre-training and 40
classes for downstream FL task. This is to model a practical scenario where labels at downstream
tasks are not known and not available during pre-training. We randomly select 95% of the samples
from the pre-training dataset to form the dataset for clients, while the remaining 5% of samples con-
stitute the server dataset. For FEMNIST, we report the detailed settings and results in Appendix C.5.

B.2 HYPERPARAMETERS AND COMPUTE SETTINGS

For our method, the SGD optimizer with a learning rate of η = 10−3 and ζ = 10−3 is adopted
for both local and meta updates. Both local and meta learning rates are searched within the range
of [1e-2, 5e-3, 1e-3, 5e-4]. We searched for learning rates within the range of [1e-2, 5e-3, 1e-3,
5e-4] for local training of all FL pre-training baselines and selected 1e-3 as the optimal learning
rate for them. In scenario II, each FL baseline will continue to conduct a few SGD iterations using
the server’s data after constructing their global model. We searched for learning rates in the range
of [1e-2 and 1e-3] for this additional training and selected 1e-3 as the optimal learning rate for the
server. Regarding hyperparameters in the q-FFL baseline, we conducted experiments with q-values
of 1, 3, and 5 and reported the corresponding best statistics. We select a learning rate η from the
range [1e-2, 5e-3, 1e-3, 5e-4] for local updates in our CoPreFL and determined that 1e-3 provides
the best results. Additionally, for meta-updates in both scenarios, we search for the learning rate ζ
within the range [1e-2, 1e-3] and find that 1e-3 is the optimal value. In the case of the centralized
baseline mentioned in Section 4.2, we searched for the optimal learning rate within the range [1e-2,
5e-3, 1e-3, 5e-4, 1e-4], ultimately selecting 1e-3. We utilized the SGD optimizer for all updates
across all methods, and the batch size is set to be 32 for all experiments. In our simulations of
CoPreFL, we assessed various balancer values γ from the range [0.0, 0.25, 0.5, 0.75, 1.0] in all
scenarios and reported the best-performing value in our paper. We run all experiments on a 3-GPU
cluster of Tesla V100 GPUs, with each GPU having 32GB of memory.

B.3 DETAILS FOR DOWNSTREAM TASK

To generate each downstream FL task, we randomly select 5 classes out of the 20 classes from the
CIFAR-100 dataset and 40 classes from the Tiny-ImageNet dataset, and distribute the corresponding
data samples to |G| = 10 clients following either IID or non-IID data distributions. It is important
to note that these classes (20 and 40 classes) are distinct from those used in the pre-training phase.
Each participant in the downstream phase utilizes 80% of its local data as training samples, while the
remaining 20% is reserved for testing samples. To see the impact of different pre-training methods,
we fix the training procedure at each downstream task to the commonly adopted FedAvg algorithm.
We consider R = 50 FL rounds using the training set, involving 5 iterations per round for local
training using the SGD optimizer with a learning rate of 10−3. We evaluate the final global model’s
performance using testing samples from each participant and report both the accuracy and the vari-
ance of the accuracy distribution across |G| clients for each FL task. We consider a total of X = 10
downstream FL tasks, and the evaluation metrics are reported as the average across these X down-
stream FL tasks.

C ADDITIONAL EXPERIMENTS AND ANALYSES

C.1 DOWNSTREAM FL RESULTS WITH SCENARIO I PRE-TRAINING

This section provides supplementary results for pre-training scenario I, as discussed in Section 4.2.
We train pre-trained models using both IID and non-IID distributions, varying the number of par-
ticipants in each federated round during the pre-training phase. To be more specific, we specify the
number of participants |m| as 15, 20, 25, and 30 out of 100 clients to participate in FL during the
pre-training phase. Subsequently, we evaluate these pre-trained models by initializing them for IID
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and non-IID downstream FL tasks. Tables 6, 7, 8, and 9 display the average performance across 10
IID FL downstream tasks and Tables 10, 11, 12, and 13 show the average performance across 10
non-IID FL downstream tasks. In both cases, the downstream FL were initialized by pre-trained
models trained on 15, 20, 25, and 30 participants out of 100 clients, respectively, on the CIFAR-100
dataset. For the Tiny-ImageNet dataset, Tables 14, 15, 16, and 17 show the average performance
across 10 IID FL downstream tasks and Tables 18, 19, 20, and 21 display the average performance
across 10 non-IID FL downstream tasks. In both cases, the downstream FL were also initialized by
pre-trained models trained on 15, 20, 25, and 30 participants out of 100 clients, respectively. Across
these experimental results, considering different data distribution setup during the pre-training phase
and different datasets, our CoPreFL consistently demonstrates superiority over the baseline when
used as an initialization for various downstream FL tasks. By creating an environment that mim-
ics downstream FL tasks and specifically addressing the challenges encountered in these tasks, our
designed pre-training objectives (3) and (4) establish an ideal pre-trained model for FL. As initial-
ization for various unseen FL tasks, our CoPreFL provide downstream FL tasks with both better
average performance and fairer predictions across clients.

C.2 DOWNSTREAM FL RESULTS WITH SCENARIO II PRE-TRAINING

This section provides supplementary results for scenario II, where the server holds a small portion
of the dataset during the pre-training phase. We also consider varying numbers of participants |m|,
specifically 15, 20, 25, and 30 out of 100 clients, during the pre-training phase for these models.
Tables 22, 23, 24, and 25 display the average performance across 10 IID FL downstream tasks and
Tables 26, 27, 28, and 29 show the average performance across 10 non-IID FL downstream tasks.
In both cases, the downstream FL were initialized by pre-trained models trained on 15, 20, 25, and
30 participants out of 100 clients, respectively, on the CIFAR-100 dataset. For the Tiny-ImageNet
dataset, Tables 30, 31, 32, and 33 show the average performance across 10 IID FL downstream tasks
and Tables 34, 35, 36, and 37 display the average performance across 10 non-IID FL downstream
tasks. In both cases, the downstream FL were also initialized by pre-trained models trained on
15, 20, 25, and 30 participants out of 100 clients, respectively. It’s important to note that in this
scenario, FedAvg, FedMeta, and q-FFL undergo further training using server data through the SGD
optimizer after each method completes its local iterations and obtains its respective global model in
each round (Yang et al., 2023; Bian et al., 2023). Similarly, CoPreFL-SGD is trained using server
data with the SGD optimizer on Φt in line 17 of Algorithm 1, while CoPreFL follows Algorithm
2, utilizing server data for meta-updates. By incorporating meta-updates using server data to align
with our objectives (3) and (4), our pre-training method consistently outperforms other baselines,
leading to improved average accuracy and reduced variance. Comparing CoPreFLwith CoPreFL-
SGD strongly suggests that, rather than conducting a few SGD iterations using server data, which
may dilute our objectives, we recommend building pre-training objectives upon server data using
meta-updates.

C.3 TESTING ACCURACY DISTRIBUTION OF DOWNSTREAM FL TASKS

This section presents supplementary distribution results to evaluate the fairness of the pre-trained
models discussed in Section 4.2. For pre-trained models trained in scenario I, Figures 3 and 4 show
the testing accuracy distribution of IID and non-IID FL tasks on CIFAR-100 dataset, and Figures
5 and 6 display the respective distribution on Tiny-ImageNet dataset. Figures 7 and 8 present the
testing accuracy distribution of IID and non-IID FL tasks initialized by pre-trained models trained
in scenario II on CIFAR-100 dataset, and Figures 9 and 10 show the respective distribution on Tiny-
ImageNet dataset. Across our experimental results, which encompass different data distribution
setups and scenarios during the pre-training phase and various datasets, our CoPreFL consistently
enhances the fairness of testing accuracy distributions for diverse downstream FL tasks. In general,
distributions of FL tasks initialized by our CoPreFL tend to shift towards the right, indicating
improved prediction performance. Moreover, when analyzing clients positioned at the left end of the
distribution in each pre-training method, our approach effectively elevates underperforming clients
towards the right end, resulting in enhanced predictive accuracy for these clients.
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C.4 DIFFERENT INITIALIZATION METHODS

This section presents supplementary results with different initialization methods discussed in Sec-
tion 4.2, including random initialization and centralized model initialization for downstream FL.
Table 38 shows the performance of IID FL downstream tasks initialized by different pre-training
methods trained in two scenarios on CIFAR-100 dataset. Tables 39 and 40 present the performance
of IID and non-IID FL downstream tasks initialized by different pre-training methods trained on
Tiny-ImageNet dataset. We select |m| = 20 for CoPreFL in Tables 38, 39, and 40. Comparing
centralized and random initialization, we observe that the centralized method generally improves
the average accuracy of downstream FL but at the cost of higher variance in most cases. However,
our CoPreFL consistently enhances both average accuracy and fairness in various downstream FL
tasks, demonstrating that with proper FL designs as pre-trained model, FL can be improved through
initialization.

In addition to utilizing CIFAR-100 and Tiny-ImageNet datasets, where we partition our data for
pre-training and downstream tasks, we also explore a scenario where public large datasets are avail-
able for pre-training phase. We conducted experiments using pre-trained models with the ImageNet
dataset (Deng et al., 2009), a widely used large public dataset for image classification. We sam-
pled 200 images for each of the 1000 classes in ImageNet 1K. Both a centralized model and our
proposed CoPreFL were pre-trained using ImageNet 1K, and we initialized downstream FL tasks
using these methods. For the pre-training phase, we implemented a centralized model with the SGD
optimizer and a learning rate of 1e-3, training the model for 50 epochs. In our proposed method, we
distributed all the data across |M | = 100 clients, sampling |m| = 20 clients in each round, and con-
ducted CoPreFL for 50 rounds. Table 41 shows the performance of non-IID FL downstream tasks
on CIFAR-100 dataset, where the downstream tasks are initialized by different methods trained
on ImageNet dataset. It’s important to note that there must be overlapping classes between Ima-
geNet 1K and the 20-class downstream dataset in CIFAR-100. The results indicate that employing
a large public dataset for pre-training can enhance overall accuracy performance. However, the
centralized method still introduces larger performance variance in downstream FL compared to our
method.

Additionally, we establish a non-IID-related baseline for the pre-training phase for a detailed com-
parison. Table 42 presents the comparison between FedDyn (with an α parameter set to 0.01) and
our CoPreFL. We can see that, despite its consideration of non-IIDness in design, FedDyn cannot
provide superiority over our method in downstream FL tasks due to the absence of considerations
for unseen adaptation and performance fairness during the pre-training phase.

Furthermore, we introduce a personalized FL baseline, Per-FedAvg (Fallah et al., 2020), during the
pre-training phase to offer a comparison with another FL approach that incorporates meta-learning.
We follow a two-step gradient descent for local client training introduced in Per-FedAvg, while
utilizing the final global model as the initialization for our downstream FL task. Table 49 presents a
comparison between our method and Per-FedAvg, with the results demonstrating the superiority of
our method.

C.5 ADDITIONAL RESULTS FOR FEMNIST DATASET

We also consider the FEMNIST dataset, widely used in FL research, following the data partition
provided in (Park et al., 2021). We divide the 62 classes into 52 alphabet classes for the pre-training
phase, reserving the remaining 10 digit classes for downstream FL tasks. Instead of using a ResNet-
18 model, we employ a model consisting of two 3×3 convolutional layers followed by two linear
layers. We fixed the total number of clients as |M | = 100 for pre-training and |G| = 10 for
downstream FL tasks. During the pre-training phase, we set the number of participants |m| = 20
and the federated round T = 50 for each pre-trained method. We use the same learning rate and
optimizer introduced in Appendix B.2. For downstream tasks, we randomly select 5 classes from
10 classes for downstream task to conduct each FL task using FedAvg, and we perform X = 10 FL
tasks with federated round R = 10. Tables 43 and 44 display the averaged performance of 10 IID
and 10 non-IID FL downstream tasks, initialized by various pre-training methods trained in scenario
I, on the FEMNIST dataset. For scenario II, Tables 45 and 46 show the performance of IID and
non-IID downstream FL tasks. The results also demonstrate that our proposed CoPreFL serves as
a robust initialization for various FL setups, benefiting both performance and fairness.
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C.6 RESULTS FOR BOTH UNSEEN/SEEN CLASSES IN DOWNSTREAM FL TASKS

In Table 47, we consider a scenario where the downstream task contains some overlapped classes
with the pre-training phase. Specifically, we continue to use the data from 80 classes in the CIFAR-
100 dataset for pre-training. Then, we sample 10 classes from this 80-class pre-training dataset and
10 classes from the original 20-class downstream dataset for this scenario. This results in a new
downstream dataset with 50% of seen data. We randomly select 5 classes from this new downstream
dataset for each FL task, repeating the process 10 times and averaging the performance. The results
demonstrate that each pre-trained model performs better in this seen/unseen downstream scenario
compared to the results in Table 1. The observed trend aligns consistently with the findings in
Tables 1, confirming the advantage of the proposed method.

C.7 RESULTS FOR DIFFERENT DOWNSTREAM FL TASK

In addition to the general downstream FL tasks built by FedAvg, we consider FedProx, a more
advanced FL algorithm that addresses heterogeneity compared to FedAvg, to examine the robust-
ness and generalizability of our pre-trained method. In Table 48, the results demonstrate that our
pre-trained method maintains superiority in downstream FedProx compared to other pre-training
methods. It’s important to note that the choice of FedAvg as our downstream task is made to min-
imize the varying impact introduced by other FL algorithms. Comparing the pre-training + down-
stream pairs, the improvement of CorPreFL + FedAvg (in Table 1) over Centralized + FedProx (in
Table 48) shows that a better initialization, which considers the distributed scenario and balances
fairness/performance in the pre-training phase, could potentially benefit the inferior downstream FL
algorithm.

C.8 KEY APPLICATIONS

Consider a healthcare application where each client, such as a hospital or an individual patient, aims
to build a comprehensive global model capable of classifying a wide range of diseases. However,
individual clients may possess limited types of diseases in their local datasets – for instance, one
client may have data on diseases A and B but lacks information on diseases C and D. In this con-
text, federated learning becomes essential. Clients need to collaborate to construct a global model
that not only reflects the diseases available locally but also incorporates information about diseases
not present in their individual datasets, ensuring a more robust and universally applicable healthcare
model. Similarly, in the domain of autonomous vehicles, each self-driving car may strive to develop
a global model for scenario detection in various weather conditions. However, individual cars might
encounter limited weather scenarios locally – one car might navigate through a desert environment,
while another faces challenges in a snowy storm. Through federated learning, these cars can collec-
tively construct a global model that accounts for a broad spectrum of weather conditions, ensuring
robust scenario detection capabilities for all vehicles involved.

As noted in Remark 2, the server can intentionally partition the centralized dataset and implement
our scheme, utilizing multiple computing units available at the server, to obtain a pre-trained model.
The advantage of this approach, compared to simple centralized training, lies in mitigating side ef-
fects such as performance biases and the substantial variance associated with centralized training.
This phenomenon stems from the lack of generalizability in the model’s design. When a model
undergoes pre-training in a centralized manner based on SGD, it becomes rigidly bound to the
knowledge in the pre-training dataset. This fixation presents a challenge in adapting the model to
the diverse clients that may possess new or unseen data in downstream tasks. Such variations can
arise from factors like the time-varying environment or new clients joining the system, as exem-
plified in the aforementioned applications: classifying different scenarios based on the self-driving
car’s environment, identifying diverse diseases based on patient interests, or enabling face/speech
recognition for new phone users.
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Pre-training (Scenario I, |m| = 15) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.01 15.44 78.91 80.55 81.41
FedMeta 87.09 14.67 81.45 82.42 83.15
q-FFL 87.25 13.25 80.85 81.52 82.26

CoPreFL (γ = 0.5) 87.84 11.49 82.61 83.52 84.44

Non-IID

FedAvg 85.85 15.37 78.91 80.55 81.41
FedMeta 86.84 12.25 81.45 82.42 83.15
q-FFL 86.37 13.54 80.85 81.52 82.26

CoPreFL (γ = 0.25) 86.90 8.70 81.52 82.58 83.21

Table 6: Average performance across 10 IID downstream FL tasks, initialized with various FL pre-
trained methods using 15 out of 100 participants in scenario I, on the CIFAR-100 dataset.

Pre-training (Scenario I, |m| = 20) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.34 12.46 80.48 81.64 82.51
FedMeta 86.70 14.52 81.33 82.06 82.75
q-FFL 86.95 11.97 80.48 81.58 82.51

CoPreFL (γ = 0.5) 87.54 10.18 81.94 82.97 83.84

Non-IID

FedAvg 86.04 14.36 80.85 81.39 82.02
FedMeta 86.15 16.16 79.52 81.27 82.18
q-FFL 86.30 17.14 80.24 81.58 82.46

CoPreFL (γ = 0.25) 86.32 14.14 81.45 82.20 82.75

Table 7: Average performance across 10 IID downstream FL tasks, initialized with various FL pre-
trained methods using 20 out of 100 participants in scenario I, on the CIFAR-100 dataset.

Pre-training (Scenario I, |m| = 25) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.68 11.36 81.58 82.79 83.68
FedMeta 87.10 13.62 81.45 82.61 83.23
q-FFL 87.07 17.89 80.48 81.82 82.59

CoPreFL (γ = 0.0) 88.13 9.30 82.85 83.94 84.75

Non-IID

FedAvg 86.78 11.90 81.09 81.82 82.55
FedMeta 85.41 15.05 79.15 79.94 80.81
q-FFL 85.92 12.11 79.03 80.55 81.49

CoPreFL (γ = 0.0) 86.84 11.16 82.06 82.85 83.43

Table 8: Average performance across 10 IID downstream FL tasks, initialized with various FL pre-
trained methods using 25 out of 100 participants in scenario I, on the CIFAR-100 dataset.

Pre-training (Scenario I, |m| = 30) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 86.52 13.54 80.85 81.76 82.55
FedMeta 87.65 13.47 81.58 82.91 83.64
q-FFL 86.40 15.68 79.27 80.12 81.45

CoPreFL (γ = 0.0) 87.90 11.16 82.67 83.58 84.36

Non-IID

FedAvg 86.78 12.32 80.85 81.76 82.55
FedMeta 85.87 17.22 81.58 82.09 82.64
q-FFL 85.77 13.40 79.27 80.12 81.45

CoPreFL (γ = 0.5) 87.04 9.18 81.70 82.12 82.91

Table 9: Average performance across 10 IID downstream FL tasks, initialized with various FL pre-
trained methods using 30 out of 100 participants in scenario I, on the CIFAR-100 dataset.
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Pre-training (Scenario I, |m| = 15) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 81.46 62.09 68.87 71.12 72.76
FedMeta 81.20 63.84 69.39 71.52 73.14
q-FFL 83.45 39.94 69.95 73.66 75.43

CoPreFL (γ = 0.75) 84.79 37.09 72.71 74.80 76.75

Non-IID

FedAvg 83.76 51.84 69.50 72.80 74.30
FedMeta 82.65 39.19 69.39 72.76 74.87
q-FFL 82.00 53.00 70.78 73.03 74.22

CoPreFL (γ = 0.25) 84.55 38.07 71.47 73.40 75.20

Table 10: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 15 out of 100 participants in scenario I, on the CIFAR-100 dataset.

Pre-training (Scenario I, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 84.20 57.15 68.43 71.83 74.38
FedMeta 83.80 42.64 72.30 73.79 75.47
q-FFL 82.60 45.56 70.46 73.41 75.14

CoPreFL (γ = 0.25) 84.36 38.56 73.66 75.63 77.40

Non-IID

FedAvg 78.96 64.80 62.70 67.00 69.80
FedMeta 82.45 48.72 68.97 72.41 74.35
q-FFL 80.01 88.92 64.39 67.48 70.30

CoPreFL (γ = 0.75) 83.29 34.69 71.58 73.20 74.59

Table 11: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 20 out of 100 participants in scenario I, on the CIFAR-100 dataset.

Pre-training (Scenario I, |m| = 25) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 84.02 51.98 71.26 73.21 75.57
FedMeta 82.44 55.06 68.53 71.73 73.95
q-FFL 82.63 47.20 70.52 72.42 74.01

CoPreFL (γ = 0.75) 85.60 37.45 74.42 76.53 78.43

Non-IID

FedAvg 82.01 39.82 70.75 73.02 74.63
FedMeta 84.02 39.56 71.86 75.17 76.80
q-FFL 82.18 46.79 70.53 72.43 73.61

CoPreFL (γ = 0.25) 85.72 29.38 75.81 77.24 78.54

Table 12: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 25 out of 100 participants in scenario I, on the CIFAR-100 dataset.

Pre-training (Scenario I, |m| = 30) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 79.60 83.36 62.68 65.87 68.57
FedMeta 79.90 48.02 67.01 69.69 71.46
q-FFL 83.02 52.27 70.64 72.71 74.50

CoPreFL (γ = 0.75) 83.48 45.16 70.80 72.72 74.59

Non-IID

FedAvg 81.79 50.84 69.70 72.08 74.20
FedMeta 82.61 43.43 71.84 73.30 74.68
q-FFL 82.68 54.17 68.68 72.08 74.06

CoPreFL (γ = 0.75) 83.48 40.20 72.83 74.29 75.80

Table 13: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 30 out of 100 participants in scenario I, on the CIFAR-100 dataset.
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Pre-training (Scenario I, |m| = 15) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 84.27 16.48 77.20 78.43 79.27
FedMeta 84.15 19.27 78.50 79.65 80.66
q-FFL 84.24 17.64 77.20 78.86 79.99

CoPreFL (γ = 0.0) 85.05 15.21 79.08 80.38 81.19

Non-IID

FedAvg 85.19 15.13 77.78 79.29 80.38
FedMeta 85.35 15.60 78.50 80.01 81.00
q-FFL 85.91 15.76 78.22 80.38 81.12

CoPreFL (γ = 0.0) 86.39 10.63 79.08 80.45 81.24

Table 14: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 15 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.

Pre-training (Scenario I, |m| = 20) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.74 17.39 77.20 78.79 79.80
FedMeta 85.56 17.64 77.92 79.51 80.57
q-FFL 84.64 21.07 78.79 79.74 80.91

CoPreFL (γ = 0.5) 86.03 13.99 79.08 80.09 81.24

Non-IID

FedAvg 85.43 17.31 77.49 79.65 80.76
FedMeta 84.16 16.89 77.20 79.73 81.05
q-FFL 85.83 19.18 78.07 79.37 80.62

CoPreFL (γ = 0.5) 86.00 16.16 79.37 80.30 81.19

Table 15: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.

Pre-training (Scenario I, |m| = 25) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.24 19.71 78.35 79.87 81.05
FedMeta 85.19 22.00 78.21 79.73 80.71
q-FFL 85.26 16.89 78.50 79.94 81.00

CoPreFL (γ = 0.75) 85.74 12.81 79.84 80.68 81.49

Non-IID

FedAvg 85.47 14.36 77.63 79.29 80.33
FedMeta 85.74 17.64 77.92 79.80 81.10
q-FFL 85.82 17.64 79.08 80.52 81.58

CoPreFL (γ = 0.0) 86.25 12.96 79.87 80.99 81.68

Table 16: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 25 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.

Pre-training (Scenario I, |m| = 30) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.71 14.90 79.08 80.66 81.53
FedMeta 85.48 15.92 79.51 80.16 81.19
q-FFL 85.95 21.25 77.34 78.93 80.13

CoPreFL (γ = 0.75) 86.05 14.90 80.31 81.49 82.27

Non-IID

FedAvg 85.64 21.07 75.90 77.99 79.32
FedMeta 85.90 17.89 80.23 81.10 81.87
q-FFL 86.49 14.75 78.79 80.16 81.24

CoPreFL (γ = 0.0) 86.51 14.06 80.74 81.35 82.16

Table 17: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 30 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.
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Pre-training (Scenario I, |m| = 15) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 78.88 64.16 67.03 68.42 69.95
FedMeta 82.62 43.16 70.76 73.48 74.48
q-FFL 83.58 49.70 67.11 71.38 73.78

CoPreFL (γ = 0.5) 83.83 41.22 73.28 74.39 75.50

Non-IID

FedAvg 82.19 38.32 72.64 73.90 75.38
FedMeta 81.45 53.73 68.42 71.17 72.98
q-FFL 82.85 32.26 73.89 76.14 77.28

CoPreFL (γ = 0.25) 83.65 25.81 75.41 76.45 77.73

Table 18: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 15 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.

Pre-training (Scenario I, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 79.45 35.40 64.86 68.61 70.78
FedMeta 81.68 65.61 65.96 69.17 71.59
q-FFL 82.65 39.69 70.65 74.14 76.27

CoPreFL (γ = 0.0) 83.79 34.93 72.59 75.05 76.76

Non-IID

FedAvg 82.94 37.21 68.99 72.29 74.40
FedMeta 81.03 37.58 69.44 71.55 72.93
q-FFL 84.11 43.96 73.87 76.05 77.37

CoPreFL (γ = 0.5) 85.23 35.40 76.77 78.46 79.86

Table 19: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.

Pre-training (Scenario I, |m| = 25) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 83.71 50.41 69.91 73.50 75.40
FedMeta 84.19 42.90 73.77 76.22 77.77
q-FFL 80.11 55.20 65.45 68.54 70.72

CoPreFL (γ = 0.0) 84.29 36.60 76.02 77.56 78.95

Non-IID

FedAvg 79.08 55.80 66.80 69.06 71.38
FedMeta 81.58 38.07 70.86 72.83 74.39
q-FFL 83.16 45.56 72.39 75.29 77.09

CoPreFL (γ = 0.25) 83.87 25.60 75.16 76.87 78.05

Table 20: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 25 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.

Pre-training (Scenario I, |m| = 30) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 80.37 43.56 69.27 70.91 72.44
FedMeta 80.51 44.09 68.05 70.74 72.18
q-FFL 81.89 45.97 68.85 72.07 73.99

CoPreFL (γ = 0.0) 83.17 31.81 71.16 73.64 75.49

Non-IID

FedAvg 82.73 42.51 72.90 74.84 76.50
FedMeta 82.58 34.81 71.67 74.39 75.85
q-FFL 83.39 38.07 72.60 74.97 76.57

CoPreFL (γ = 0.75) 84.25 30.11 76.18 77.54 78.73

Table 21: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 30 out of 100 participants in scenario I, on the Tiny-ImageNet dataset.
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Pre-training (Scenario II, |m| = 15) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.02 12.82 82.42 83.33 84.04
FedMeta 87.07 10.76 81.94 82.73 83.43
q-FFL 87.27 13.69 81.21 82.30 82.95

CoPreFL-SGD (γ = 0.25) 87.87 13.32 82.73 83.58 84.06
CoPreFL (γ = 0.25) 88.58 8.70 83.39 83.88 84.69

Non-IID

FedAvg 86.22 15.44 79.15 80.36 81.54
FedMeta 86.09 11.42 80.12 81.03 81.98
q-FFL 86.56 15.29 78.42 80.00 81.37

CoPreFL-SGD (γ = 0.75) 86.73 12.46 80.61 81.76 82.63
CoPreFL (γ = 0.75) 87.42 9.06 81.21 82.30 82.95

Table 22: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 15 out of 100 participants in scenario II, on the CIFAR-100 dataset.

Pre-training (Scenario II, |m| = 20) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.28 15.21 80.00 81.21 82.10
FedMeta 87.27 12.46 81.45 82.12 82.95
q-FFL 86.84 12.74 80.73 82.12 82.87

CoPreFL-SGD (γ = 0.5) 87.67 12.32 81.82 83.09 83.92
CoPreFL (γ = 0.5) 88.10 9.30 83.52 84.30 85.05

Non-IID

FedAvg 86.39 17.31 79.64 80.79 81.78
FedMeta 86.32 12.46 80.61 81.45 82.26
q-FFL 86.17 16.24 79.27 81.09 82.02

CoPreFL-SGD (γ = 0.25) 86.63 11.76 81.21 82.00 82.46
CoPreFL (γ = 0.25) 87.02 10.50 81.70 82.42 83.23

Table 23: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario II, on the CIFAR-100 dataset.

Pre-training (Scenario II, |m| = 25) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.31 14.90 79.39 81.64 82.75
FedMeta 86.81 10.89 80.97 82.30 83.07
q-FFL 87.36 17.47 80.73 81.76 82.87

CoPreFL-SGD (γ = 0.5) 87.98 11.22 82.55 83.15 83.92
CoPreFL (γ = 0.5) 88.67 9.98 83.88 84.55 85.29

Non-IID

FedAvg 86.37 15.44 78.79 80.12 81.25
FedMeta 85.49 16.89 79.27 80.36 81.25
q-FFL 85.67 17.06 80.61 81.45 81.98

CoPreFL-SGD (γ = 0.75) 86.40 13.10 80.62 81.45 82.34
CoPreFL (γ = 0.75) 87.32 11.22 82.42 83.27 83.84

Table 24: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 25 out of 100 participants in scenario II, on the CIFAR-100 dataset.

Pre-training (Scenario II, |m| = 30) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 87.51 13.76 82.55 83.58 84.20
FedMeta 87.25 12.39 81.70 82.55 83.03
q-FFL 86.78 13.76 81.21 82.06 82.79

CoPreFL-SGD (γ = 0.75) 87.75 13.40 81.52 82.94 83.70
CoPreFL (γ = 0.75) 88.27 9.06 84.06 84.55 85.05

Non-IID

FedAvg 86.07 11.09 80.61 81.64 82.38
FedMeta 86.25 12.96 79.03 80.36 81.66
q-FFL 85.50 15.29 77.58 79.39 80.57

CoPreFL-SGD (γ = 0.5) 86.47 10.96 80.36 81.36 82.00
CoPreFL (γ = 0.5) 87.54 10.96 81.09 81.67 82.40

Table 25: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 30 out of 100 participants in scenario II, on the CIFAR-100 dataset.
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Pre-training (Scenario II, |m| = 15) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 84.02 46.79 71.01 74.53 76.81
FedMeta 83.47 34.11 73.68 75.20 76.35
q-FFL 85.03 35.64 74.04 76.39 78.12

CoPreFL-SGD (γ = 0.75) 85.04 35.64 74.61 76.40 78.34
CoPreFL (γ = 0.75) 85.08 31.70 74.61 76.87 78.63

Non-IID

FedAvg 82.91 41.99 71.90 75.23 76.81
FedMeta 78.77 70.39 65.13 67.47 69.28
q-FFL 80.94 49.42 69.57 71.46 72.86

CoPreFL-SGD (γ = 0.25) 83.42 40.20 73.09 74.54 76.29
CoPreFL (γ = 0.25) 83.83 39.31 74.26 76.42 78.10

Table 26: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 15 out of 100 participants in scenario II, on the CIFAR-100 dataset.

Pre-training (Scenario II, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 81.79 41.73 69.84 73.47 75.11
FedMeta 82.29 47.75 71.69 74.17 75.71
q-FFL 82.40 40.32 73.96 75.30 76.59

CoPreFL-SGD (γ = 0.75) 82.90 38.94 73.02 75.60 77.18
CoPreFL (γ = 0.75) 85.68 27.14 75.36 77.25 78.49

Non-IID

FedAvg 82.82 49.00 69.71 72.54 74.58
FedMeta 82.69 48.44 68.84 71.82 74.14
q-FFL 82.14 73.10 68.22 70.64 73.77

CoPreFL-SGD (γ = 0.25) 83.63 41.73 69.76 73.46 75.64
CoPreFL (γ = 0.25) 86.63 31.58 73.05 75.82 77.58

Table 27: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 20 out of 100 participants in scenario II, on the CIFAR-100 dataset.

Pre-training (Scenario II, |m| = 25) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 80.53 62.57 66.51 68.54 70.78
FedMeta 82.37 45.97 70.68 73.40 75.21
q-FFL 82.06 48.44 71.08 73.03 74.71

CoPreFL-SGD (γ = 0.25) 82.62 75.86 68.12 70.73 72.51
CoPreFL (γ = 0.25) 85.05 33.99 75.12 76.74 77.79

Non-IID

FedAvg 84.06 40.07 71.11 73.36 75.67
FedMeta 81.40 47.33 67.41 70.87 72.49
q-FFL 82.30 55.06 67.82 71.53 73.70

CoPreFL-SGD (γ = 0.5) 84.25 53.88 71.62 73.48 75.92
CoPreFL (γ = 0.5) 84.92 39.82 75.04 77.45 78.93

Table 28: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 25 out of 100 participants in scenario II, on the CIFAR-100 dataset.

Pre-training (Scenario II, |m| = 30) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 82.70 62.09 66.99 71.18 73.18
FedMeta 83.00 39.94 71.16 73.43 75.52
q-FFL 82.81 44.09 71.82 73.68 75.31

CoPreFL-SGD (γ = 0.25) 85.05 37.33 75.16 76.79 78.21
CoPreFL (γ = 0.25) 85.78 35.88 75.26 78.60 80.55

Non-IID

FedAvg 81.14 71.23 65.42 69.17 70.99
FedMeta 78.98 64.48 63.97 66.89 69.06
q-FFL 79.87 70.06 63.96 67.47 70.16

CoPreFL-SGD (γ = 0.75) 83.21 37.94 72.75 74.53 76.01
CoPreFL (γ = 0.75) 85.11 36.84 72.66 75.63 77.47

Table 29: Average performance across 10 non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 30 out of 100 participants in scenario II, on the CIFAR-100 dataset.
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Pre-training (Scenario II, |m| = 15) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.79 16.16 77.34 78.37 80.17
FedMeta 85.88 17.47 77.49 78.93 80.33
q-FFL 85.24 15.60 77.38 78.37 80.23

CoPreFL-SGD (γ = 0.75) 85.37 14.82 77.49 79.00 80.33
CoPreFL (γ = 0.75) 86.64 14.59 80.23 81.17 82.06

Non-IID

FedAvg 85.17 16.56 78.21 79.73 80.52
FedMeta 85.76 18.40 78.93 80.52 81.39
q-FFL 86.29 18.06 78.79 80.38 81.58

CoPreFL-SGD (γ = 0.25) 85.49 13.84 79.65 80.66 82.07
CoPreFL (γ = 0.25) 86.68 12.67 80.09 81.02 82.36

Table 30: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 15 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

Pre-training (Scenario II, |m| = 20) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.08 14.29 78.21 79.44 80.52
FedMeta 85.39 19.89 78.33 79.30 80.48
q-FFL 85.41 20.70 77.63 79.22 80.28

CoPreFL-SGD (γ = 0.75) 85.57 17.89 78.64 80.01 80.95
CoPreFL (γ = 0.75) 86.77 12.25 80.52 81.17 81.96

Non-IID

FedAvg 85.15 20.98 79.04 80.45 81.34
FedMeta 85.38 14.82 78.79 80.59 81.58
q-FFL 85.46 19.71 78.81 80.11 81.97

CoPreFL-SGD (γ = 0.75) 85.57 18.75 79.65 81.10 82.06
CoPreFL (γ = 0.75) 86.74 12.82 80.66 81.60 82.49

Table 31: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

Pre-training (Scenario II, |m| = 25) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.99 16.65 78.50 79.73 80.66
FedMeta 85.58 19.89 78.21 79.80 80.81
q-FFL 85.66 17.22 78.07 79.73 80.71

CoPreFL-SGD (γ = 0.5) 86.33 15.44 80.63 81.35 82.28
CoPreFL (γ = 0.5) 86.72 15.29 80.94 81.59 82.20

Non-IID

FedAvg 85.50 16.48 78.35 79.80 80.86
FedMeta 86.57 17.81 78.93 79.80 80.86
q-FFL 86.45 14.82 79.08 80.74 81.96

CoPreFL-SGD (γ = 0.5) 86.61 13.62 79.37 80.45 81.19
CoPreFL (γ = 0.5) 87.16 10.43 80.38 81.39 82.20

Table 32: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 25 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

Pre-training (Scenario II, |m| = 30) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 85.27 14.90 77.92 79.15 80.04
FedMeta 85.61 13.54 78.07 79.87 81.14
q-FFL 85.34 17.22 80.37 81.39 82.15

CoPreFL-SGD (γ = 1.0) 85.61 12.25 79.94 80.74 81.29
CoPreFL (γ = 1.0) 86.62 11.69 81.24 81.89 82.64

Non-IID

FedAvg 85.70 20.61 78.64 80.09 81.19
FedMeta 85.44 16.56 79.08 80.38 81.34
q-FFL 85.54 17.56 79.22 80.66 81.67

CoPreFL-SGD (γ = 0.5) 85.79 14.21 79.65 80.59 81.43
CoPreFL (γ = 0.5) 86.15 13.25 80.66 81.89 82.68

Table 33: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 30 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.
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Pre-training (Scenario II, |m| = 15) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 82.50 39.06 70.33 73.19 75.15
FedMeta 81.57 62.57 67.65 70.95 72.83
q-FFL 82.31 48.16 70.00 72.07 73.99

CoPreFL-SGD (γ = 0.75) 83.11 38.94 72.06 73.63 75.29
CoPreFL (γ = 0.75) 84.68 33.76 73.84 75.50 77.35

Non-IID

FedAvg 80.19 53.00 67.13 69.67 71.36
FedMeta 81.94 56.40 67.15 71.39 73.39
q-FFL 81.64 54.46 69.58 71.65 73.02

CoPreFL-SGD (γ = 0.25) 83.57 41.22 71.46 73.45 75.41
CoPreFL (γ = 0.25) 84.26 28.52 73.61 75.55 76.79

Table 34: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 15 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

Pre-training (Scenario II, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 81.91 77.97 64.37 71.67 74.51
FedMeta 81.58 38.56 70.94 71.82 73.09
q-FFL 82.17 48.58 70.22 72.66 74.24

CoPreFL-SGD (γ = 0.5) 82.32 42.25 71.61 73.31 74.62
CoPreFL (γ = 0.5) 84.48 35.64 73.66 74.75 76.21

Non-IID

FedAvg 82.87 48.16 68.94 72.91 75.28
FedMeta 84.19 49.70 70.41 72.63 74.74
q-FFL 83.51 44.22 69.91 73.71 76.01

CoPreFL-SGD (γ = 0.5) 84.30 36.24 72.83 75.64 77.37
CoPreFL (γ = 0.5) 84.72 24.80 75.84 77.31 78.50

Table 35: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

Pre-training (Scenario II, |m| = 25) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 83.42 44.36 70.04 72.88 75.10
FedMeta 80.66 45.29 68.38 70.89 73.05
q-FFL 83.60 34.93 74.41 75.86 77.29

CoPreFL-SGD (γ = 0.75) 84.49 46.51 72.66 74.48 75.97
CoPreFL (γ = 0.75) 84.81 32.15 76.65 77.97 79.12

Non-IID

FedAvg 79.44 64.80 65.35 68.25 70.19
FedMeta 81.22 48.58 69.53 71.87 73.52
q-FFL 82.14 41.60 72.32 74.56 76.31

CoPreFL-SGD (γ = 0.5) 82.88 35.64 71.25 73.00 74.32
CoPreFL (γ = 0.5) 84.02 24.01 75.49 77.02 78.17

Table 36: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 25 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

Pre-training (Scenario II, |m| = 30) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 83.63 42.25 71.27 73.56 75.00
FedMeta 83.41 39.82 72.34 72.81 73.15
q-FFL 82.98 63.68 62.50 65.62 68.31

CoPreFL-SGD (γ = 0.25) 83.66 42.90 71.84 74.30 75.70
CoPreFL (γ = 0.25) 84.26 39.31 73.77 75.91 77.58

Non-IID

FedAvg 83.24 42.25 69.06 73.39 75.31
FedMeta 81.61 47.89 69.38 72.47 74.39
q-FFL 81.92 51.55 69.73 72.17 74.38

CoPreFL-SGD (γ = 0.0) 83.37 46.38 72.17 74.15 75.53
CoPreFL (γ = 0.0) 85.45 38.32 74.43 75.90 77.45

Table 37: Average performance across 10 non-IID downstream FL tasks, initialized with various FL
pre-trained methods using 30 out of 100 participants in scenario II, on the Tiny-ImageNet dataset.

25



Under review as a conference paper at ICLR 2024

Sc1, IIDCIFAR100

Scenario I can be deleted and mention it in caption

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 3: The distributions of testing accuracy in IID FL downstream tasks under various pre-
training setups in scenario I on the CIFAR-100 dataset.Sc1, nonIIDCIFAR100

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 4: The distributions of testing accuracy in non-IID FL downstream tasks under various pre-
training setups in scenario I on the CIFAR-100 dataset.

TinyIMG IID down, sc1

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 5: The distributions of testing accuracy in IID FL downstream tasks under various pre-
training setups in scenario I on the Tiny-ImageNet dataset.

TinyIMG

TinyIMG nonIID down, sc1

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 6: The distributions of testing accuracy in non-IID FL downstream tasks under various pre-
training setups in scenario I on the Tiny-ImageNet dataset

Sc2, IIDCIFAR100

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 7: The distributions of testing accuracy in IID FL downstream tasks under various pre-
training setups in scenario II on the CIFAR-100 dataset.
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Sc2, nonIIDCIFAR100

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 8: The distributions of testing accuracy in non-IID FL downstream tasks under various pre-
training setups in scenario II on the CIFAR-100 dataset

TinyIMG

TinyIMG IID down, sc2

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 9: The distributions of testing accuracy in IID FL downstream tasks under various pre-
training setups in scenario II on the Tiny-ImageNet dataset.

TinyIMG

TinyIMG nonIID down, sc2

(a) Pre-training: 20 clients IID FL (b) Pre-training: 20 clients Non-IID FL (c) Pre-training: 30 clients IID FL (d) Pre-training: 30 clients Non-IID FL

Figure 10: The distributions of testing accuracy in non-IID FL downstream tasks under various
pre-training setups in scenario II on the Tiny-ImageNet dataset.

27



Under review as a conference paper at ICLR 2024

Pre-training Downstream: IID FL
Scenario Method Acc ↑ Variance ↓

I
Random 78.03 16.17

Centralized 83.17 17.93
CoPreFL 86.32 14.14

II
Random 78.21 16.44

Centralized 84.39 15.92
CoPreFL 87.02 10.50

Table 38: Average performance of IID FL tasks,
initialized by different methods pre-trained in two
scenarios, on CIFAR-100.

Pre-training Downstream: IID FL
Scenario Method Acc ↑ Variance ↓

I
Random 81.29 18.33

Centralized 83.81 19.03
CoPreFL 86.00 16.16

II
Random 83.16 16.08

Centralized 84.36 17.89
CoPreFL 86.74 12.82

Table 39: Average performance of IID FL tasks,
initialized by different methods pre-trained in two
scenarios, on Tiny-ImageNet.

Pre-training Downstream: non-IID FL
Scenario Method Acc ↑ Variance ↓

I
Random 75.50 54.88

Centralized 83.19 42.69
CoPreFL 85.23 35.40

II
Random 76.23 61.62

Centralized 82.39 39.31
CoPreFL 84.72 24.80

Table 40: Average performance of non-IID FL
tasks, initialized by different methods pre-trained
in two scenarios, on Tiny-ImageNet.

Pre-training Downstream: non-IID FL
Method Acc ↑ Variance ↓

Centralized 86.75 67.34
CoPreFL 87.96 30.79

Table 41: Average performance of non-IID FL
tasks, initialized by different pre-trained models.
Note that ImageNet is used for pre-training, while
CIFAR-100 is used for downstream FL.
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Pre-training (Scenario I, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID FedDyn 83.15 40.13 69.55 71.32 73.95
CoPreFL (γ = 0.25) 84.36 38.56 73.66 75.63 77.40

Non-IID FedDyn 81.23 53.17 68.39 70.23 72.46
CoPreFL (γ = 0.75) 83.29 34.69 71.58 73.20 74.59

Table 42: Comparison with Non-IID related method.

Pre-training (Scenario I, |m| = 20) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 86.84 2.43 76.88 79.87 81.47
FedMeta 82.16 2.31 75.32 75.97 76.62
q-FFL 79.91 3.09 76.62 77.40 77.83

CoPreFL (γ = 0.75) 91.59 1.61 86.75 87.40 88.31

Non-IID

FedAvg 83.84 2.13 75.97 77.88 80.79
FedMeta 86.71 1.61 74.69 77.82 78.21
q-FFL 79.85 2.53 69.22 71.95 74.94

CoPreFL (γ = 0.5) 89.01 1.46 81.29 83.55 84.24

Table 43: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario I, on the FEMNIST dataset.

Pre-training (Scenario I, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 75.04 16.16 70.75 71.65 72.19
FedMeta 69.61 6.81 59.19 62.35 64.54
q-FFL 70.47 19.30 58.31 61.66 63.67

CoPreFL (γ = 0.5) 78.38 6.70 72.77 74.54 75.35

Non-IID

FedAvg 70.74 28.58 65.06 66.20 66.99
FedMeta 64.02 33.29 60.91 61.57 62.07
q-FFL 68.04 31.55 58.09 60.57 61.72

CoPreFL (γ = 0.5) 72.65 24.89 67.49 68.40 69.32

Table 44: Average performance across 10 Non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 20 out of 100 participants in scenario I, on the FEMNIST dataset.

Pre-training (Scenario II, |m| = 20) Downstream: IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 86.70 6.86 75.24 77.94 80.58
FedMeta 81.29 3.42 70.82 72.10 74.87
q-FFL 87.07 2.85 79.16 83.52 83.72

CoPreFL-SGD (γ = 0.5) 86.31 5.33 77.16 79.72 81.23
CoPreFL (γ = 0.5) 90.33 2.22 82.03 83.54 84.09

Non-IID

FedAvg 85.24 7.78 77.01 79.25 80.52
FedMeta 83.52 5.76 71.44 75.37 77.76
q-FFL 87.11 10.24 74.83 75.52 76.44

CoPreFL-SGD (γ = 0.25) 87.05 11.22 73.30 76.42 79.76
CoPreFL (γ = 0.25) 89.01 5.47 79.63 81.22 82.71

Table 45: Average performance across 10 IID downstream FL tasks, initialized with various FL
pre-trained methods using 20 out of 100 participants in scenario II, on the FEMNIST dataset.
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Pre-training (Scenario I, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

IID

FedAvg 71.25 15.28 54.99 58.71 60.31
FedMeta 73.29 16.89 61.39 65.22 66.17
q-FFL 77.93 8.88 65.91 66.74 68.03

CoPreFL-SGD (γ = 0.0) 76.19 9.30 66.07 66.62 67.80
CoPreFL (γ = 0.0) 82.33 7.95 68.31 70.37 72.19

Non-IID

FedAvg 66.31 21.06 44.79 50.93 53.29
FedMeta 71.49 13.10 58.31 59.27 61.33
q-FFL 74.99 29.26 61.20 63.98 65.01

CoPreFL-SGD (γ = 0.75) 72.66 29.05 58.71 61.29 63.32
CoPreFL (γ = 0.75) 79.31 9.55 63.29 65.33 66.92

Table 46: Average performance across 10 Non-IID downstream FL tasks, initialized with various
FL pre-trained methods using 20 out of 100 participants in scenario II, on the FEMNIST dataset.

Pre-training (Scenario I) Downstream: Non-IID FL
Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

Centralized 82.63 63.57 67.35 69.22 70.38
FedAvg 80.19 51.35 68.72 70.15 72.33
FedMeta 83.14 39.85 67.29 71.35 73.81
q-FFL 81.34 47.98 69.22 70.35 72.37

CoPreFL (γ = 0.5) 84.79 30.51 70.83 72.66 74.10

Table 47: Average performance across 10 non-IID downstream FL tasks, initialized with centralized
model and various non-IID FL pre-trained models, encompassing both seen and unseen classes.

Pre-training (Scenario I) Downstream: Non-IID FedProx
Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

Centralized 82.39 51.46 70.33 71.28 73.52
FedAvg 79.53 46.15 63.17 69.74 71.59
FedMeta 81.77 63.12 63.58 68.19 70.28
q-FFL 83.19 52.12 67.41 70.59 72.33

CoPreFL (γ = 0.25) 84.31 30.55 70.19 73.88 75.13

Table 48: Average performance across 10 non-IID downstream FedProx tasks, initialized with cen-
tralized model and various non-IID FL pre-trained models.

Pre-training (Scenario I, |m| = 20) Downstream: Non-IID FL
Distribution Method Acc ↑ Variance ↓ Worst 10% ↑ Worst 20% ↑ Worst 30% ↑

Non-IID Per-FedAvg 81.58 49.73 67.21 71.05 72.39
CoPreFL (γ = 0.75) 83.29 34.69 71.58 73.20 74.59

Table 49: Comparison with personalized FL method.
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