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Abstract

We consider the problem of recovering the support of a sparse signal using noisy
projections. While extensive work has been done on the dense measurement
matrix setting, the sparse setting remains less explored. In this work, we establish
sufficient conditions on the sample size for successful sparse recovery using
sparse measurement matrices. Bringing together our result with previously known
necessary conditions, we discover that, in the high-SNR regime where ds/p →
+∞, sparse recovery using a sparse design exhibits a phase transition at an
information-theoretic threshold of nSP

INF = Θ(s log (p/s) / log (ds/p)) for the
number of measurements, where p denotes the signal dimension, s the number
of non-zero components of the signal, and d the expected number of non-zero
components per row of measurement. This expression makes the price of sparsity
explicit: restricting each measurement to d non-zeros inflates the required sample
size by a factor of log s/ log (ds/p), revealing a precise trade-off between sampling
complexity and measurement sparsity. Additionally, we examine the effect of
sparsifying an originally dense measurement matrix on sparse signal recovery. We
prove in the regime of s = αp and d = ψp with α,ψ ∈ (0, 1) and ψ small that a
sample of size nSp-ified

INF = Θ
(
p/ψ2

)
is sufficient for recovery, subject to a certain

uniform integrability conjecture, the proof of which is work in progress.

1 Introduction

In recent years, sparse signal recovery has gained significant attention, motivated by applications in
compressive sensing [7, 2, 5]; signal denoising [3]; sparse regression [13]; data stream computing
[4, 11, 14]; combinatorial group testing [6]; etc. Practical examples range from the single-pixel
camera, MRI scanners and radar remote-sensing systems to error-correction schemes in digital
communications and widely used image-compression formats [7, Chap. 1].

The problem can be formulated as follows. Consider a signal β⋆ ∈ Rp, unknown but a priori s-sparse
for some given s ≤ p, a random measurement matrix X ∈ Rn×p (also referred to as design, features
or data) and a noise vector Z ∼ N (0, σ2In), where n ∈ N denotes the sample size and σ2 > 0 a
fixed constant. An vector of observations (also known as labels or annotations) is given by:

Y := Xβ⋆ + Z.

Sparse recovery refers to reconstructing β⋆ given X and Y . Intuitively, this problem can be reduced
to recovering the support S⋆ of β⋆, i.e. the set of indices of its non-zero components. In fact, once
the support S⋆ is identified, the full signal can be estimated using the corresponding columns of X
via the closed-form maximum-likelihood estimator formula βMLE = X+

S⋆Y , where X+
S⋆ denotes the

Moore-Penrose pseudoinverse of the submatrix formed by the columns of X with indices in S⋆ [10].
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Traditionally, X is considered to be a dense random matrix with sub-Gaussian entries. Previous
works have shown that the complexity of the problem in terms of required sample size exhibits two
phase transitions at two thresholds nINF < nALG, yielding three regimes:

• n < nINF: impossibility of recovery. Reeves et al. [16] show that if n ≤ (1− ε)nINF then the
recovery of any fraction of the support of the signal is impossible.

• nINF < n < nALG: super-polynomial complexity. Gamarnik and Zadik [8] show that if n ≥
(1 + ε)nINF then the maximum-likelihood estimator (MLE) recovers the support of β⋆. Although
solvable, the problem is widely believed to be algorithmically hard since the MLE exhibits an
Overlap Gap Property (OGP) [8].

• n > nALG: polynomial-time recovery. Wainwright [18] shows that if n ≥ (1 + ε)nALG then the
Lasso [17] succeeds in recovering the support of β⋆.

1.1 Sparse measurement setting

While dense matrices offer an optimal sample size, they are costly in terms of storage and computation.
Sparse measurement matrices, where the number of non-zero entries per measurement vector scales
significantly smaller than the signal dimension, mitigate these costs: they require significantly less
storage and allow for more efficient computations, as matrix-vector multiplications and incremental
updates can be performed faster. In addition, they enable efficient signal recovery algorithms by
taking advantage of the structural properties of the problem [9]. However, this sparsity comes at
the cost of increased sampling complexity [19]. This raises the following key question: How does
measurement sparsity trade off with sampling complexity?

Some of the prior studies have explored this sparse measurement setting. Wang et al. [19] establish
necessary conditions for sparse recovery for various measurement sparsity regimes. Let d denote
the expected number of non-zero components of a row of X . Their work reveals three regimes of
behavior depending on ds/p, the expected number of non-zero components of β⋆ that align with
non-zero components of a row of X . The three regimes are: ds/p → +∞, ds/p = τ for some
constant τ > 0, and ds/p → 0. They show that in each regime, the number of samples n must
exceed a specific information-theoretic lower bound for any algorithm to reliably recover the signal’s
support. In particular, in the first regime, where ds/p→ +∞, the necessary condition threshold of
[19] is the same as the one of the dense case, while it increases dramatically in the third case, where
ds/p → 0. They work with entries rescaled so that Var (Xβ⋆) matches the dense case, while we
keep Var (Xij) = 1. The settings are equivalent since any scaling of X can be accounted for in β⋆.

In this work, we examine the opposite question: how many samples are enough to guarantee a
reliable recovery? For simplicity, we assume the signal is binary, i.e. β⋆ ∈ {0, 1}p. Note that in
this case, recovering the support is equivalent to recovering the signal. This assumption is very
common in the literature [1, 16, 8]. Intuitively, detecting a component of size 1 is at least as hard as
detecting a stronger component, so the resulting thresholds are representative of signals with non-zero
entries bounded away from zero by 1, i.e. β⋆ ∈

{
β ∈ Rp : ∥β∥0 = s and minj∈[p] : βj ̸=0 |βj | ≥ 1

}
.

Our first main result (Theorem 1) states that in the high signal-to-noise ratio (SNR) regime where
ds/p→ +∞, if the number of samples n is larger than a threshold given by:

nSP
INF = Θ

(
s log (p/s)

log (ds/p)

)
, (1)

then the MLE asymptotically recovers the support of the signal. The proof uses large deviation
techniques to bound the probability that a different support has a lower error than the true one, and a
union bound over such supports. Bringing our result together with the necessary condition shown by
Wang et al. [19], we reveal that the problem exhibits a phase transition – similar to the one known
in the dense case – at the information-theoretic threshold nSP

INF. In fact, if there exists a constant
ε > 0 such that n ≤ (1− ε)nSP

INF then it is information-theoretically impossible to ensure a reliable
recovery of the support of the signal, and if there exists a constant ε > 0 such that n ≥ (1 + ε)nSP

INF
then the MLE ensures a reliable recovery of the support. Our findings therefore answer the question
of exactly how much data is needed for recovery. However, we note that the recovery that we show in
the sufficiency statement holds in a weaker sense than the non-recovery in the necessity statement.
We call the amount of additional observations in the sparsification setting compared to the dense one
price of sparsity. Precisely, restricting each measurement to d non-zeros inflates the required sample
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size by a factor of Γ = Θ(log s/ log (ds/p)), quantifying the sampling complexity vs. measurement
sparsity trade-off.

Regarding the computational complexity, Omidiran and Wainwright [15] show that the Lasso
performs as well in the sparse setting as in the dense setting, assuming a slow decay of sparsity. They
show that, under some slow sparsity assumption, it is sufficient for the sample size n to be larger than
the algorithmic threshold of the dense setting discussed above, given by:

nALG = 2s log (p− s) ,

specifically for the Lasso to ensure a reliable polynomial time recovery of β⋆. Although the sparsity
assumption under which this result holds allows for the density rate d/p to go to 0 as p → +∞, it
still doesn’t allow the measurements to be very sparse. In fact, it requires that:

d/p = ω
(
s−1/3

)
and d/p = ω

((
log log (p− s)

log (p− s)

)1/3
)
. (2)

This raises a question about what happens in a more sparse regime. Although we don’t address the
algorithmic threshold, i.e. the question of polynomial-time recovery, we discover herein a sufficient
condition for recovery that allows for more sparsity, allowing for future investigation in this direction.

1.2 Sparsification

The applications of the signal recovery problem [7, Chapter 1] considered in this paper can be broadly
categorized into two classes:

- Applications where X is designed, e.g. involving signal compression and reconstruction.
- Applications where X is observed, e.g. sparse regression, signal denoising, and error correction.

In light of this categorization, we note that measuring the trade-off between measurement sparsity
and sampling complexity is particularly useful for the first class of problems. It provides practitioners
with an exact description of how the measurement matrix should be designed, in terms of size and
sparsity, to optimize the computational cost of signal recovery. However, this is rendered useless in
the second class of problems when the measurement matrix is observed and dense. This motivates the
second key question: given an initially dense measurement matrix, is there a way to make it sparse
and still aim to recover the original signal?

This setting, in which the observations are generated with a dense measurement matrix, but the
signal is recovered using a sparsified version of it, is closely related to the “missing covariates”
or “missing-at-random” framework studied in high-dimensional statistics. Prior work by Loh and
Wainwright [12], established algorithmic ℓ2-error bounds for regression under this model, assuming
dense Gaussian designs and a constant missingness rate. Our analysis in Section 3 complements
this line of research by focusing instead on information-theoretic support-recovery thresholds and
deriving the precise sample complexity cost incurred by sparsification in this regime.

In our examination of the sparsification question, we focus on the linear sparsity and linear sparsification
regime where s = αp and d = ψp for constant α,ψ ∈ (0, 1). Specifically, our second main result
(Theorem 3) states that if the number of samples n is larger than a threshold given by:

2h (α) p

log
(
1 + δψ2

(1−ψ)(2−δ(1−ψ))

) , (3)

then the minimizer of the mean squared error (MSE) based on sparsified measurements and accordingly-
rescaled observations asymptotically recovers the true support up to error fraction δ ∈ (0, 1). In
particular, support recovery is possible for arbitrarily aggressive sparsification, i.e. arbitrarily small ψ.
In the strong-sparsification regime where ψ → 0, the sufficient threshold (3) effectively writes:

nSp-ified
INF = Θ

(
p

ψ2

)
. (4)

We call the amount of additional observations in the sparsification setting compared to the dense one
price of sparsification. Unlike the price of sparsity, it is not due to the sparsity of the measurements
but rather to a bias in the observations. We also interpret our result as providing an expression of the
sparsification budget: the level up to which one could sparsify their data and still recover the true
signal. Based on our result, this has order Θ

(√
p/n

)
when n = Ω(p).
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1.3 Contributions

To the best of our knowledge, this work is the first to address the following:

1. Establish a necessary and sufficient condition for sparse recovery in the sparse setting.
2. Provide a sufficient condition for sparse recovery after sparsifying an originally dense design,

conditional on a mild uniform-integrability conjecture.

1.4 Outline and Notations

We organize the rest of the paper as follows. Section 2 studies the sparse measurement setting. Section
3 examines recovery after sparsifying an originally dense measurement matrix. Section 4 concludes
and sketches future work directions.

Throughout this document, we will use the following notations:

• We denote by h (·) the binary entropy: h (x) = −x log x− (1− x) log (1− x), x ∈ (0, 1).

• We call ℓ0-norm the number of non-zero coordinates of x ∈ Rd, that is ∥x∥0 :=
∑d
i=1 1 (xi ̸= 0).

2 Sparse Recovery using Sparse Measurements

2.1 Setting

Let n, p, s, d ∈ N such that d, s ≤ p. We define a sparse Gaussian matrix in Rn×p as follows.
Definition 2.1 (Sparse Gaussian matrix). We call X = [Xij ]i∈[n],j∈[p] ∈ Rn×p a sparse Gaussian
matrix with parameter d if for all i ∈ [n], j ∈ [p] we have:

Xij = BijNij ,

where (Bij)i∈[n],j∈[p]

i.i.d.∼ Ber (d/p) and (Nij)i∈[n],j∈[p]

i.i.d.∼ N (0, 1) are mutually independent.

Remark 2.1. Note that d is the expected number of non-zero components per row of X . In our
setting, we think of d as being of smaller order of magnitude than p. In particular, d = o (p).

Let X be a sparse Gaussian random matrix of parameter d, and Z be a random vector in Rn such that
Z ∼ N

(
0, σ2In

)
, with σ > 0 a fixed constant. Let β⋆ ∈ {0, 1}p be a deterministic vector such that

∥β⋆∥0 = s. We define the random vector Y as:

Y := Xβ⋆ + Z. (5)

Of particular interest is the signal-to-noise ratio (SNR), known to be an important quantity for
characterizing the difficulty of sparse recovery problems [19, 16]. It’s defined as follows:

SNR :=
E∥Xβ⋆∥22
E∥Z∥22

=
ds

pσ2
. (6)

The maximum likelihood estimator (MLE) of β⋆ is defined by the random vector:

β̂ := argmin
β∈{0,1}p, ∥β∥0=s

∥Y −Xβ∥22 . (7)

We are interested in the minimum number of samples n required so that the MLE (7) asymptotically
recovers the true signal β⋆. We formalize the problem as follows.

2.2 Problem

We start by defining the support of a vector and the symmetric difference of supports.
Definition 2.2 (Support). Let u ∈ Rp. We call support of u the set of indices of the non-zero
components of u and denote it Supp (u) := {i ∈ [p] : ui ̸= 0}. Note that |Supp (u)| = ∥u∥0.
Definition 2.3 (Symmetric difference). We call symmetric difference between two sets S1 and S2 the
set of elements in one but not the other and denote it S1 △S2 :=

(
S1 ∪ S2

)
\
(
S1 ∩ S2

)
.
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We formalize the problem we address below as follows: given an error tolerance δ ∈ (0, 1), we wish
to determine the minimum number of samples n as a function of p, s and d required so that:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
−→ 1, as n, p, s, d→ +∞.

2.3 Results

Our first main result, Theorem 1, provides a sufficient condition on the sample size for reliable support
recovery when using sparse measurements.
Theorem 1 (Sufficient conditions for sparse recovery using sparse measurement matrices). Suppose
p, s, d → +∞, d = o (p) and ds = ω (p) (i.e. SNR → +∞). Let δ ∈ (0, 1). We consider two
different regimes.

1. Assume s = o (p). Let

n⋆slin :=
2s log (p/s)

log (ds/p) + log (δ/(2σ2))
.

If there exists ε > 0 such that n ≥ (1 + ε)n⋆slin, then the MLE β̂ recovers β⋆ up to error δ w.h.p.:

PX,Z
(∣∣∣Supp (β⋆)△ Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

(
− εs log (p/s) + o

(
s log (p/s)

))
,

as n, p, s, d→ +∞.

2. Assume there exists a constant α ∈ (0, 1) such that s = αp. Let:

n⋆lin :=
2h (α) p

log d+ log (δα/(2σ2))
,

where h (·) denote the entropy function. If there exists ε > 0 such that n ≥ (1 + ε)n⋆lin, then the
MLE β̂ recovers β⋆ up to error δ w.h.p.:

PX,Z
(∣∣∣Supp (β⋆)△ Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

(
− εh (α) p+ o (p)

)
,

as n, p, s, d→ +∞.

The proof of Theorem 1, given in appendix A.1, uses large deviation techniques to bound the
probability of a high-error support to have a lower MSE than the true one, then a union bound over
such supports. We give below a brief proof sketch of Theorem 1.

Proof sketch. Let S denote the set of supports of cardinality s and S⋆ = Supp (β⋆). For any S ∈ S ,
we denote by 1S the vector in {0, 1}p such that [1S ]i = 1 (i ∈ S) for all i ∈ [p]. We define the loss
function L over S such that L (S) := ∥Y −X1S∥22, so that Supp

(
β̂
)
= argminS∈S L (S). As

p gets large, the event “L (S) < L (S⋆)” for any S such that |S△S⋆| ≥ 2δs is a rare event. The
Chernoff bound yields:

logP
(
L (S) < L (S⋆)

)
≤ n

2

(
log

(
2σ2p

δds

)
+ o (1)

)
.

This step involves most of the technical work. Then, by union bound:

P
(∣∣∣Supp

(
β̂
)
△S⋆

∣∣∣ < 2δs
)
≥ 1−

∑
S : |S△S⋆|≥2δs

P (L (S) < L (S⋆)) ≥ 1−
(
p

s

)(
2σ2p

δds

)n/2
.

Solving for n, we obtain a critical threshold of n⋆ = log (ps)
log(ds/p)+log(δ/(2σ2)) . We conclude.

Bringing together Theorem 1 with the necessary conditions shown by Wang et al. in [19], we obtain
the following corollary.
Corollary 2 (Information-theoretic phase transition). The sparse recovery in the sparse setting
problem exhibits a phase transition at an information-theoretic threshold nSP

INF.
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1. In the first regime considered above, the expression of nSP
INF is given by:

nSP
INF :=

2s log (p/s)

log (ds/p)
.

2. In the second regime considered above, the expression of nSP
INF is given by:

nSP
INF :=

2h (α) p

log d
.

Specifically, in each of these regimes:

(i) If there exists ε > 0 such that n ≤ (1− ε)nSP
INF then, as n, p, s, d→ +∞, there exists no decoder

g : Rn → {β ∈ {0, 1}p : ∥β∥0 = s} such that:

max
β⋆∈{0,1}p, ∥β⋆∥0=s

PX,Z
(
g (Y ) ̸= Supp (β⋆)

)
→ 0.

In this sense, it is information-theoretically impossible to ensure an asymptotically reliable recovery.

(ii) If there exists ε > 0 such that n ≥ (1 + ε)nSP
INF, then as n, p, s, d→ +∞:∣∣∣Supp

(
β̂
)
△ Supp (β⋆)

∣∣∣
2s

−→ 0,

in probability. In this sense, the MLE (7) ensures an asymptotically reliable recovery.

The proof of Corollary 2 is given in appendix A.2. Statement (i) is due to Wang et al. [19], while
statement (ii) follows from Theorem 1 and is the main contribution of this section.
Remark 2.2 (Limitations). We note that the definition of “recovery” is not the same in statements (i)
and (ii) of Corollary 2. The necessity statement (i) is about the impossibility a vanishing probability
of exact equality of supports, which is stronger than the sufficiency statement of vanishing rescaled
error in (ii). In particular, it is possible in theory that both statements hold simultaneously. To the best
of our knowledge, the literature on the dense setting also suffers from this gap (see [8, 18]). While
Reeves et al. [16] establish a clean information-theoretic phase transition in the dense setting (using
the same definition of “recovery” for both bounds), their analysis considers different problem settings
and convergence guarantees than ours.

We interpret Theorem 1 and Corollary 2 as follows.

• Phase transition. For simplicity, we only discuss the sublinear sparsity regime, defined by s = o (p).
Previous works on sparse recovery in the dense case ([16],[8]) have shown the existence of an
information-theoretic threshold:

nINF =
2s log (p/s)

log s
, (8)

at which the complexity of support recovery in terms of sample size exhibits a phase transition, where
the recovery of any fraction of the support is impossible for n ≤ (1− ε)nINF, and full recovery
is guaranteed by the MLE for n ≥ (1 + ε)nINF. In light of this, we ask if the support recovery
problem for the class of sparse measurement matrices described above exhibits a similar behavior.
In Corollary 2, we show that indeed, it exhibits a similar phase transition at an information-theoretic
threshold given by:

nSP
INF =

2s log (p/s)

log (ds/p)
. (9)

In Table 1, we summarize these information-theoretic thresholds alongside known algorithmic
thresholds for the sublinear sparsity regime

(
s = o (p)

)
, highlighting the comparison between

dense and sparse measurements in the high-SNR setting.
• Price of Sparsity. In particular, we notice that nSP

INF ≥ nINF. This confirms the intuition that sparse
recovery requires more samples in the sparse measurement case: in fact, due to the sparsity of the
measurement matrix, there is a low probability for the coefficient of a component of the signal at a
given observation to be non-zero, and hence the need for a larger sample size for recovery. In light
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Table 1: Comparison of Sample Complexity Thresholds for Sublinear Sparsity
(
s = o (p)

)
.

Measurement Info-Theoretic
Necessary

Info-Theoretic
Sufficient

Algorithmic
Necessary

Algorithmic
Sufficient

Dense 2s log(p/s)
log s [16, 19] 2s log(p/s)

log s [8, 16] 2s log(p− s) [8] 2s log(p− s) [18]

Sparse,
high SNR

2s log(p/s)
log(ds/p) [19] 2s log(p/s)

log(ds/p) (Thm 1) Unknown 2s log(p− s) [15]†

†Holds under the slow decay of sparsity assumption in [15], see (2).

of this, Corollary 2 is to be interpreted as providing an exact value for the price of sparsity, i.e. the
extra amount of observations required in the sparse setting compared to the dense one, which is
given by:

Γ :=
nSP

INF
nINF

=
log s

log (ds/p)
> 1.

• Dependence on d and s. Note that the expression of the price of sparsity heavily depends on the
regimes of d and s. The smaller the density rate d/p, the more “expensive” the desired sparsity of
the measurements is, as suggested by the expression of Γ. In particular, Γ could take any value in
(1,+∞), depending on the regimes of d and s w.r.t. p.
Example 2.1. Consider the setting where s = pα, d = pβ with α, β ∈ (0, 1) such that α+ β > 1.
Then Γ = α/ (α+ β − 1) ∈ (1,+∞) , which goes to 1 when β goes to 1 (low measurement
sparsity), and goes to +∞ when α is fixed and β goes to 1− α (high measurement sparsity).

• Measurement sparsity vs. Sampling complexity trade-off. In this context, we conclude the
existence of a measurement sparsity vs. sampling complexity trade-off, which can also be interpreted
as a trade-off between sampling complexity and computational cost. We consider an example that
highlights this trade-off.
Example 2.2. Let ψ : [e,+∞) −→ [e,+∞) such that ψ (x) = x/ log x. Consider two mea-
surement matrices: X1 a dense Gaussian in Rn1×p and X2 a sparse Gaussian Rn2×p with
only d = min

(
po(1), ψ−1 (o (ψ (p)))

)
expected non-zero entries per row; and an s-sparse signal

β⋆ ∈ Rp, in the linear sparsity regime where s = αp for constant α ∈ (0, 1). On one hand, the
number of samples required for reliable recovery raises from n1 = nINF = Θ

(
p/ log p

)
in the

dense case to n2 = nSP
INF = Θ

(
p/ log d

)
in the sparse one. On the other hand the computational

cost of recovery the support is better in the sparse case, as matrix-vector multiplication cost drops
from n1p = Θ

(
p2/ log p

)
to n2d = Θ

(
pd/ log d

)
. This highlights a trade-off between sampling

complexity and computational cost. Proofs of these statements are given in appendix A.3.
• Allowing for more sparsity. Note that the sparsity assumption under which Theorem 1 guarantees

reliable recovery when there exists ε > 0 such that n ≥ (1 + ε)nSP
INF, which is:

ds/p→ +∞, (10)
is weaker than the sparsity assumption of the sufficient algorithmic threshold of Omidiran and
Wainwright [15] which guarantees polynomial-time recovery if there exists ε > 0 such that
n ≥ (1 + ε)nALG. As they show, this holds under the assumption that:(

d

p

)3

min

{
s,

log log (p− s)

log (p− s)

}
→ +∞.

For example, when s = Θ(p), this requires that d = ω
(
p2/3

)
, while our result holds under the

weaker assumption of d = ω (1). Our result allows for a significantly better sparsity, but this comes
at the cost of potential super-polynomial computational complexity, since computing the MLE (7)
is exponential-time in general.

3 Improving Sparse Recovery via Sparsification

3.1 Setting

Let n, p, s, d ∈ N and β⋆ ∈ {0, 1}p s-sparse, defined as in Section 2.1. Let X ∈ Rn×p such that
(Xi,j)i∈[n],j∈[p]

i.i.d.∼ N (0, 1) and Z ∼ N
(
0, σ2In

)
, with σ > 0 constant. Let Y := Xβ⋆+Z ∈ Rn.
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Let (Bij)i∈[n],j∈[p]

i.i.d.∼ Ber (d/p). We define the following sparsified version of X:

X̃ ∈ Rn×p such that X̃ij := BijXij , ∀ i ∈ [n], j ∈ [p]. (11)
In addition, we define a rescaled version of Y as follows:

Ỹ :=
d

p
Y ∈ Rn. (12)

An estimator of β⋆ is defined by the random vector:

β̂ := argmin
β∈{0,1}p, ∥β∥0=s

∥∥∥Ỹ − X̃β
∥∥∥2
2
. (13)

That is, the observations are generated with a dense measurement matrix (X), but the signal is
recovered using a sparsification of that matrix (X̃). We formalize the problem we address below as
follows: given an error tolerance δ ∈ (0, 1), we wish to determine the minimum number of samples n
in terms of p, s and d required so that:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
−→ 1, as n, p, s, d→ +∞.

3.2 Results

Our second main result, Theorem 3, provides a sufficient condition on the sample size for reliable
support recovery after sparsifying an originally dense measurement matrix.
Theorem 3 (Sufficient conditions for sparse recovery using sparsified measurements). Suppose that
p→ +∞ and there exist α,ψ ∈ (0, 1) such that s = αp and d = ψp. Let δ ∈ (0, 1). Let:

n⋆Sp-ified :=
2h (α) p

log
(
1 + δψ2

(1−ψ)(2−δ(1−ψ))

) . (14)

If there exists ε > 0 such that n ≥ (1 + ε)n⋆Sp-ified, then, under Conjecture B.1, β̂ recovers β⋆ up to
error δ w.h.p.:

P
(∣∣∣Supp (β⋆)△ Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

(
−εh (α) p+ o (p)

)
,

as n, p, s, d→ +∞.
Remark 3.1 (Limitations). We show that this result holds under a mild uniform-integrability
conjecture. The statement of the conjecture is deferred to appendix B (Conjecture B.1) as it requires
delving into technical details of the proof. We expect it to follow from standard concentration bounds
as all relevant random terms are sub-Gaussian, and verification is work in progress.

The proof of Theorem 3 is given in appendix B. It follows the same general outline as the proof
of Theorem 1, but is much more technically involved. In particular, deriving the large-deviation
bound is harder because the MSE no longer decomposes neatly: Ỹ does not correspond to the true
observations of the sparsified data but rather to a rescaling of the original observations (12). Instead
of repeating a sketch here, we simply refer the reader back to the earlier proof sketch (see section 2.3).
We interpret Theorem 3 as follows.

• Arbitrary sparsification rate. According to Theorem 3, support recovery is possible for arbitrarily
aggressive sparsification, i.e. arbitrarily small ψ, provided a large enough sample size.

• Strong-sparsification regime. In the strong-sparsification regime where ψ → 0, the denominator
of n⋆Sp-ified in (14) is effectively δψ2/ (2− δ), and hence the sufficient condition upper bound writes:

nSp-ified
INF =

2 (2− δ)h (α) p

δψ2
= Θ

(
p

ψ2

)
. (15)

• Price of Sparsification. We interpret our result as providing a value for the price of sparsification, i.e.
the extra amount of observations required due to the information loss resulting from sparsification.
In the linear sparsity and strong-sparsification regime, it writes:

ΓSp-cation :=
nSp-ified

INF
nINF

=
Θ
(
p/ψ2

)
Θ(p/ log p)

= Θ

(
log p

ψ2

)
.
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Unlike the intrinsically-sparse-observations setting studied in Section 2, this extra amount of
required observations is not due to the sparsity of the measurements. In fact, one can check
from (24) that in the linear sparsity regime where d = Θ(p), the price of sparsity is constant (i.e.
Γ = Θ(1)). Instead, the price of sparsification is due to a bias in the observations that we explain
by the fact that the sparsified observations Ỹ were not obtained as noisy projections of the true
signal as in the original model (5), but rather via a naïve rescaling of the original observations (12).
By simply rescaling the observations we did not discard the information in Y coming from the
nullified components of X , hence introducing a bias.

• Sparsification budget. Given dense data and a fixed large enough sample size n, by up to how
much could we sparsify the data and still get recovery? We call this the sparsification budget.
According to our result (15), its expression in the strong-sparsification regime is given by:

ψbudget = Θ
(√

p/n
)
.

In particular, the above expression only makes sense when n = Ω(p), below which Theorem 3
does not hold.

4 Conclusion and Future Work

In the first part of this paper, we have studied the problem of recovery of a binary signal β⋆ ∈ {0, 1}p
based on a sparse measurement matrix and noisy observations. Our main result is that, if the
measurements have density rate d/p then, assuming that the measurements and the signal are together
not too sparse – in particular if ds = ω (p), i.e. high-SNR regime – it is possible to recover the
true support asymptotically when the sample size is larger than the threshold given by Theorem 1.
Combining our work with the necessary conditions of Wang el al. [19], we reveal an information-
theoretic phase transition. The expression of the phase-transition threshold makes the price of sparsity
explicit, revealing a precise trade-off between sampling complexity and measurement sparsity. In
the following, we present a quick summary of all – to the best of our knowledge – results on sparse
recovery in the sparse measurement setting, along with some future work directions.

• Information-theoretic threshold, sufficient conditions. In Theorem 1, we establish a sufficient
condition for reliable recovery. However, this result is conditional on the high-SNR (ds/p→ +∞)
assumption. This raises the question of sufficient conditions when the measurements and signal are
even more sparse.

• Informational-theoretic threshold, necessary conditions.
– Wang et al. [19] have studied this problem. Their work reveals three regimes of behavior

depending on the scaling of the expected number of non-zeros of β⋆ aligning with non-zeros of a
row of X: ds/p = ω (1), ds/p→ τ for some τ > 0, and ds/p = o (1). For their model, where
the variance of the non-zero components of X scales in a way that makes the second moment of
the projected signalXβ⋆ remain the same as in the dense case: the necessary condition threshold
is on the order of magnitude of the one in the dense case in the regime where ds/p = ω (1),
while it increases dramatically in the regime where ds/p = o (1).

– In the dense setting, Reeves et al. [16] have shown that even the recovery of a fixed fraction of
the support is information theoretically impossible below the phase transition threshold: this is
what they call the all-or-nothing property. It would be interesting to extend this property to the
sparse setting.

• Algorithmic threshold, sufficient conditions. Omidiran and Wainwright [15] have shown that under
a low-sparsity assumption on the measurements, the sufficient condition of the dense setting, i.e.
n ≥ (1 + ε)nALG, is sufficient for the sparse setting as well. It would be interesting to explore the
question of polynomial-time recovery in a stronger sparsity regime.

• Algorithmic threshold, necessary conditions. Although we cannot really hope to provide necessary
conditions for polynomial-time recovery – unless conditionally on P ̸= NP – it would be interesting
to provide a threshold under which the problem is believed to be algorithmically hard, as done by
Gamarnik and Zadik [8] in the dense setting.

In the second part of this paper, we have studied the problem of recovering the signal based on
sparsified – but originally dense – measurements and accordingly-rescaled observations. Our main
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result is that, in the linear sparsity and linear sparsification regime where s = αp and d = ψp for
constant α,ψ ∈ (0, 1), it is possible to recover the true support asymptotically when the sample
size is larger than a threshold given by Theorem 3. This reveals that support recovery is possible
for arbitrarily aggressive sparsification provided a large enough sample size, and provides an upper
bound on the price of sparsification.

Nevertheless, we believe that the sparsification problem is infeasible for strong enough regimes of
sparsification. In particular, we conjecture that the recovery is information-theoretically impossible
no matter the sample size in the sub-linear sparsification regime where d = o (p). We leave the
exploration of this regime for future work.
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A Sparse Recovery using Sparse Measurements: Proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. For any i ∈ [n], we denote by Xi := (Xij)j∈[p], Bi := (Bij)j∈[p], Ni :=

(Nij)j∈[p]. We denote by S⋆ := Supp (β⋆) the support of β⋆. Let S := {S ⊂ [p] : |S| = s}. We
define the function:

L : S −→ [0,+∞)

S 7−→ ∥Y −X1S∥22 ,

where 1S denotes the vector in {0, 1}p such that [1S ]j = 1 (j ∈ S) for all j ∈ [p]. Note that, since
X and Y are random, L(S) is a random variable for every S ∈ S. In addition, note that:

L(S) = ∥Z∥22 + ∥X (1S⋆ − 1S)∥22 + 2⟨Z,X (1S⋆ − 1S)⟩ ∀ S ∈ S,
and, in particular:

L(S⋆) = ∥Z∥22 =

n∑
i=1

Z2
i .

Fix S ∈ S such that M := |S△S⋆| /2 ≥ δs, and let U := S⋆ \ S, V := S \ S⋆. Note that
|U | = |V | =M . We define:

∆ := L(S)− L(S⋆).

Proposition A.1. As n, p, s, d→ +∞:

P (∆ ≤ 0) ≤
(
2σ2p

δds

)n/2
eo(n).

Proof. See appendix A.1.1.

Hence, we obtain:

P
(
∥Y −X1S∥22 ≤ ∥Y −X1S⋆∥22

)
≤
(
2σ2p

δds

)n/2
eo(n), (16)

for any S ∈ {0, 1}p such that |S| = s and |S△S⋆| ≥ 2δs.

Using (16) and the union bound over the set of supports S s.t. |S△S⋆| ≥ 2δs, we obtain:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ PX,Z

(
∥Y −X1S∥22 > ∥Y −X1S⋆∥22 ,∀S : |S△S⋆| ≥ 2δs

)
= 1− PX,Z

(
∃S : |S△S⋆| ≥ 2δs, ∥Y −X1S∥22 ≤ ∥Y −X1S⋆∥22

)
U.B.
≥ 1−

∑
S : |S△S⋆|≥2δs

PX,Z
(
∥Y −X1S∥22 ≤ ∥Y −X1S⋆∥22

)

≥ 1−
(
p

s

)(
2σ2p

δds

)n/2
eo(n).

First regime: s = o (p). Using the Corollary of Stirling:

log

(
p

s

)
= s log (p/s) (1 + o (1)) ,

in the RHS of the inequality above, we obtain:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

[
s log (p/s) (1 + o (1))− n

2

(
log

(
δds

2σ2p

)
+ o (1)

)]
.
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Let n⋆slin := 2s log(p/s)
log(ds/p)+log(δ/(2σ2)) . Then if n ≥ (1 + ε)n⋆slin for some constant ε > 0, we have:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

[
s log (p/s) (1 + o (1))− (1 + ε)n⋆slin

2

(
log

(
δds

2σ2p

)
+ o (1)

)]
= 1− exp

[
s log (p/s)

(
−ε+ o (1)− 1 + ε

log (ds/p) + log (δ/(2σ2))
o (1)

)]
= 1− exp

(
s log (p/s)

(
− ε+ o (1)

))
.

Hence, as n, p, s, d→ +∞:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

(
− εs log (p/s) + o

(
s log (p/s)

))
−→ 1.

Second regime: s = αp , α ∈ (0, 1). Using the Corollary of Stirling:

log

(
p

s

)
= ph (α) (1 + o (1)) ,

we get:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

[
ph (α) (1 + o (1))− n

2

(
log

(
δds

2σ2p

)
+ o (1)

)]
.

Similarly to above, we take n⋆lin := 2H(α)p
log d+log(δα/(2σ2)) . If n ≥ (1 + ε)n⋆lin for some constant ε > 0,

then we obtain, as p, s, d→ +∞:

PX,Z
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

(
− εh (α) p+ o (p)

)
−→ 1,

concluding the proof.

A.1.1 Proof of Proposition A.1

Proof of Proposition A.1. We have:
∆ := L(S)− L(S⋆)

= ∥X (1S⋆ − 1S)∥22 + 2⟨Z,X (1S⋆ − 1S)⟩

=

n∑
i=1

⟨Xi,1S⋆ − 1S⟩2 + 2

n∑
i=1

Zi⟨Xi,1S⋆ − 1S⟩.

We denote by (∆i)i∈[n] the terms of the sum in the above expression, that is:

∆i := ⟨Xi,1S⋆ − 1S⟩2 + 2Zi⟨Xi,1S⋆ − 1S⟩.
Note that (∆i)i∈[n] are i.i.d. and ∆ =

∑n
i=1 ∆i.

Now using the Chernoff bound:
P (∆ ≤ 0) = P (−∆ ≥ 0) = inf

θ≥0
P
(
e−θ∆ ≥ 1

)
≤ inf
θ≥0

M−∆i(θ)
n. (17)

We now study the moment generating function of −∆i, i.e. M−∆i
(·). We have:

M−∆i
(θ) = EXi,Zi

[
e−θ[⟨Xi,1S⋆−1S⟩2+2Zi⟨Xi,1S⋆−1S⟩]

]
= EXi

[
e−θ⟨Xi,1S⋆−1S⟩2EZi

[
e−2θZi⟨Xi,1S⋆−1S⟩∣∣Xi

]]
= EXi

[
e−θ⟨Xi,1S⋆−1S⟩2MZi|Xi

(−2θ⟨Xi,1S⋆ − 1S⟩)
]

= EXi

[
e−θ⟨Xi,1S⋆−1S⟩2e

1
2 (−2θ⟨Xi,1S⋆−1S⟩)2σ2

]
= EXi

[
e(−θ+2θ2σ2)⟨Xi,1S⋆−1S⟩2

]
= EXi

[
e(−θ+2θ2σ2)(

∑
j∈U Xij−

∑
j∈V Xij)

2]
.
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Plugging this expression into (17), we obtain:

logP (∆ ≤ 0) ≤ n inf
θ≥0

logEXi

[
e(−θ+2θ2σ2)(

∑
j∈U Xij−

∑
j∈V Xij)

2]
.

Studying the function θ 7→ −θ + 2θ2σ2 on R≥0 leads to the change of variable:

inf
θ≥0

logEXi

[
e(−θ+2θ2σ2)(

∑
j∈U Xij−

∑
j∈V Xij)

2]
(18)

= inf
θ∈(−∞,1/(8σ2)]

logEXi

[
e−θ(

∑
j∈U Xij−

∑
j∈V Xij)

2]
, (19)

One can check that the function θ 7→ logEXi

[
e−θ(

∑
j∈U Xij−

∑
j∈V Xij)

2]
is non-increasing over

(−∞, 1/
(
8σ2
)
]. Hence (19) is equal to:

logEXi

[
e−(

∑
j∈U Xij−

∑
j∈V Xij)

2
/(8σ2)

]
.

Therefore, the Chernoff bound yields:

logP (∆ ≤ 0) ≤ n logEXi

[
e−(

∑
j∈U Xij−

∑
j∈V Xij)

2
/(8σ2)

]
. (20)

Since U ∩ V = ∅, we have: ∑
j∈U

Xij −
∑
j∈V

Xij
d
=

∑
j∈U∪V

Xij .

Therefore:

E
[
e−(

∑
j∈U Xij−

∑
j∈V Xij)

2
/(8σ2)

]
= E

[
e−(

∑
j∈U∪V Xij)

2
/(8σ2)

]
= E

[
e−(

∑
j∈U∪V BijNij)

2
/(8σ2)

]
= EBi

[
ENi

[
e−(

∑
j∈U∪V BijNij)

2
/(8σ2) ∣∣Bi]]

= EBi

ENi

e−
(∑

j∈U∪V BijNij√∑
j∈U∪V Bij

)2

×
∑

j∈U∪V Bij

8σ2

∣∣∣∣∣Bi

 .

In addition, conditionally on Bi, we have:

Γ :=

∑j∈U∪V BijNij√∑
j∈U∪V Bij

2

d
= χ2(1).

Its MGF is:
E
[
etΓ |Bi

]
=MΓ|Bi

(t) =
1√

1− 2t
, for t < 1/2.

Hence:

EBi

ENi

e−
(∑

j∈U∪V BijNij√∑
j∈U∪V Bij

)2

×
∑

j∈U∪V Bij

8σ2

∣∣∣∣∣Bi

 = EBi

[
MΓ|Bi

(
−
∑
j∈U∪V Bij

8σ2

)]

= EBi

 2σ√
4σ2 +

∑
j∈U∪V Bij

 .
Let U[δs] and V[δs] respectively denote the sets of δs smallest elements of U and V . Note that this
definition is legitimate since |U | = |V | =M ≥ δs. Since Bij ≥ 0 for all j ∈ U ∪ V , we have:∑

j∈U∪V
Bij ≥

∑
j∈U[δs]∪V[δs]

Bij ,

14



and hence:

EBi

 2σ√
4σ2 +

∑
j∈U∪V Bij

 ≤ EBi

 2σ√
4σ2 +

∑
j∈U[δs]∪V[δs]

Bij

 .
Therefore, we get:

E
[
e−(

∑
j∈U Xij−

∑
j∈V Xij)

2
/(8σ2)

]
≤ EBi

 2σ√
4σ2 +

∑
j∈U[δs]∪V[δs]

Bij

 ,
and plugging this into (20) yields:

logP (∆ ≤ 0) ≤ n log

EBi

 2σ√
4σ2 +

∑
j∈U[δs]∪V[δs]

Bij

 . (21)

Now note that, for any i ∈ [n]: ∑
j∈U[δs]∪V[δs]

Bij
d
= Bin

(
2δs,

d

p

)
,

In addition, since d = o (p) and ds/p→ +∞, we have:

Lemma A.1. For any i ∈ [n], the following holds: as p→ +∞,

1√
2δds/p

 ∑
j∈U[δs]∪V[δs]

Bij − 2δds/p

 dist−→ N (0, 1) .

Proof. The proof is a simple adaptation of the proof of the Central Limit Theorem. See appendix
A.1.2.

Hence, there exists a choice of the underlying probability space and random variables (Bij)i∈[n],j∈[p]

for which the random variable above converges almost surely and:

N := lim
p→+∞

1√
2δds/p

 ∑
j∈U[δs]∪V[δs]

Bij − 2δds/p

 ∼ N (0, 1) .

The above yields:
2σ√

4σ2 +
∑
j∈U[δs]∪V[δs]

Bij
=

2σ√
4σ2 + 2δds/p+

√
2δds/pN + o

(√
ds/p

) .
Let:

Vp :=
2σ
√
ds/p√

4σ2 +
∑
j∈U[δs]∪V[δs]

Bij
.

Then we have:

Vp =
2σ
√
ds/p√

4σ2 + 2δds/p+
√
2δds/pN + o

(√
ds/p

)
=

2σ√
2δ + 4σ2

ds/p +
√

2δ
ds/pN + o

(
1
/√

ds/p
) .

Since ds/p→ +∞ as p→ +∞, the above yields:

Vp −→
2σ√
2δ

=

√
2σ2

δ
.

In addition, we note the following:
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Lemma A.2. Vp is uniformly integrable, that is: there exists p′ ∈ N such that

lim
T→+∞

sup
p≥p′

E
[
|Vp|1{|Vp|>T}

]
= 0.

Proof. See appendix A.1.3.

Therefore, we get:

lim
p→+∞

E [Vp] =

√
2σ2

δ
.

Hence, we write:

EBi

 2σ√
4σ2 +

∑
j∈U[δs]∪V[δs]

Bij

 =

√
2σ2p

δds
+ o

((
ds

p

)−1/2
)
.

We conclude:

logP (∆ ≤ 0) ≤ n log

EBi

 2σ√
4σ2 +

∑
j∈U[δs]∪V[δs]

Bij


= n log

(√
2σ2p

δds
+ o

((
ds

p

)−1/2
))

= n

(
log

(√
2σ2p

δds

)
+ log

(
1 + o (1)

))

= n

(
log

(√
2σ2p

δds

)
+ o (1)

)

= n log

(√
2σ2p

δds

)
+ o(n),

which yields the desired result:

P (∆ ≤ 0) ≤
(
2σ2p

δds

)n/2
eo(n).

A.1.2 Proof of Lemma A.1

Proof of Lemma A.1. Let:

Np :=
1√

2δds/p

 ∑
j∈U[δs]∪V[δs]

Bij − 2δds/p

 .
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Its characteristic function writes:

ΦNp
(t)

= E
[
eitNp

]
= e−it

√
2δds/p

(
E
[
exp

(
itBij/

√
2δds/p

)])2δs
= e−it

√
2δds/p

(
1− d/p+ d/p exp

(
it/
√
2δds/p

))2δs
= e−it

√
2δds/p

(
1 + d/p

(
exp

(
it/
√

2δds/p
)
− 1
))2δs

= e−it
√

2δds/p

(
1 + d/p

(
it√

2δds/p
− t2

4δds/p
+O

(
−it3

(2δds/p)
3/2

)))2δs

= e−it
√

2δds/p

(
1 + d/p

(
it√

2δds/p
− t2

4δds/p
+O

(
1

(2δds/p)
3/2

)))2δs

= exp

(
−it
√
2δds/p+ 2δs log

(
1 + d/p

(
it√

2δds/p
− t2

4δds/p
+O

(
1

(2δds/p)
3/2

))))

= e−it
√

2δds/p exp

(
2δs

(
d/p

(
it√

2δds/p
− t2

4δds/p
+O

(
1

(2δds/p)
3/2

))
+O

(
d

sp

)))

= exp

(
−it
√
2δds/p+ it

√
2δds/p− t2/2 +O

(
1√

2δds/p

)
+O

(
2δd

p

))
= exp

(
−t2/2 + o (1)

) p→+∞−→ exp
(
−t2/2

)
= ΦN (0,1) (t) ,

for all t ∈ R. The result follows.

A.1.3 Proof of Lemma A.2

Proof of Lemma A.2. Fix T > 2. We have:

Vp =
2σ
√
ds/p√

4σ2 +
∑
i∈U[δs]∪V[δs]

Bij
=

2σ√
2δ + 4σ2

ds/p +
√

2δ
ds/pN + o

(
1√
ds/p

) .
By total probability, we have:

E [|Vp|1 {|Vp| > T}] = E
[
|Vp|1 {|Vp| > T}

∣∣N ≥ − (ds/p)
1/4
]
P
(
N ≥ − (ds/p)

1/4
)

+ E
[
|Vp|1 {|Vp| > T}

∣∣N < − (ds/p)
1/4
]
P
(
N < − (ds/p)

1/4
)
.

Let
Ξ1 := E

[
|Vp|1 {|Vp| > T}

∣∣N ≥ − (ds/p)
1/4
]
P
(
N ≥ − (ds/p)

1/4
)
,

and
Ξ2 := E

[
|Vp|1 {|Vp| > T}

∣∣N < − (ds/p)
1/4
]
P
(
N < − (ds/p)

1/4
)
,

so that E [|Vp|1 {|Vp| > T}] = Ξ1 + Ξ2. We address the two terms separately.

• First case: N ≥ − (ds/p)
1/4. We have:

4σ2

ds/p
+

√
2δ

ds/p
N + o

(
1√
ds/p

)
≥ 4σ2

ds/p
−

√
2δ

(
ds

p

)−1/4

+ o

(
1√
ds/p

)
.
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The RHS above goes to 0 as p → +∞, and therefore it is ≥ −δ for p large enough, say for all
p ≥ p1 for some p1 ∈ N. Hence we have:

|Vp| = Vp =
2σ√

2δ + 4σ2

ds/p +
√

2δ
ds/pN + o

(
1√
ds/p

) ≤ 2σ√
δ
,

for all p ≥ p1. In addition, this implies:

1 {|Vp| > T} ≤ 1

{(
2σ√
δ

)
> T

}
.

In addition, we have:
P
(
N ≥ − (ds/p)

1/4
)
≤ 1,

which all together yield:

Ξ1 ≤ 2σ√
δ
1

{(
2σ√
δ

)
> T

}
.

• Second case: N < − (ds/p)
1/4. We have:

|Vp| = Vp =
2σ
√
ds/p√

4σ2 +
∑
i∈U[δs]∪V[δs]

Bij
≤
√
ds/p,

which also implies:

1 {|Vp| > T} ≤ 1
{√

ds/p > T
}
= 1

{
T 2 <

ds

p

}
.

In addition, by Gaussian tail bounds we have:

P
(
N < − (ds/p)

1/4
)
≤ e−

√
ds/p

2 ,

for p large enough, say for all p ≥ p2 for some p2 ∈ N. Therefore:

Ξ2 ≤
√
ds/p e−

√
ds/p

2 1

{
T 2 <

ds

p

}
.

Note that the term
√
ds/p e−

√
ds/p

2 is decreasing as ds/p increases (we have ds/p > T 2 > 2).
Therefore:

Ξ2 ≤ T e−T/2 1

{
T 2 <

ds

p

}
≤ T e−T/2.

We hence conclude that:

E [|Vp|1 {|Vp| > T}] = Ξ1 + Ξ2 ≤ 2σ√
δ
1

{(
2σ√
δ

)
> T

}
+ T e−T/2,

for all p ≥ p′ := p1 ∨ p2. Therefore we have:

sup
p≥p′

E
[
|Vp|

2σ√
δ
1 {|Vp| > T}

]
≤ 2σ√

δ
1

{(
2σ√
δ

)
> T

}
+ T e−T/2.

This holds for any T > 2. Taking T to +∞, the result follows:

lim
T→+∞

sup
p≥p′

E [|Vp|1 {|Vp| > T}] = 0.

18



A.2 Proof of Corollary 2

Proof of Corollary 2. This proof relies on bringing together Theorem 1 with the following result
from Wang et al. [19].

Theorem 4 (Necessary condition for sparse ensembles, Corollary 2 of [19]). Let the measurement
matrix X ∈ Rn×p be drawn with i.i.d. elements from the following distribution:

Xij =

{
N
(
0, 1γ

)
, w.p. γ

0, w.p. 1− γ
, for all i ∈ [n], j ∈ [p]; (22)

where γ ∈ (0, 1]. Let λ > 0 and

Cp,s (λ) :=
{
β ∈ Rp

∣∣ |Supp (β)| = s, min
i∈Supp(β)

|βi| = λ

}
.

Assume that σ2 = 1. Then, in the regime where γs→ +∞, a necessary condition for asymptotically
reliable recovery over the signal class Cp,s (λ) is given by:

n >
log
(
p
s

)
− 1

1
2 log (1 + sλ2)

.

Note that, while Theorem 4 is not stated on the exact same signal space Cp,s (λ) in [19] but rather on
the larger: {

β ∈ Rp
∣∣ |Supp (β)| = s, min

i∈Supp(β)
|βi| ≥ λ

}
,

it follows directly from their result on “restricted ensembles” where the signal components under
consideration are set exactly to λ (see section III.A. in [19]). We now proceed to prove Corollary 2.

(i) We show that (i) holds using Theorem 4, but this requires adapting our problem to the framework
used by Wang et al. in [19]. In fact, note that the model used in Theorem 4 is different from the one
we use in this paper, that we defined in (5). In their model, Wang et al. [19] rescale the non-zero
components of X by multiplying them by 1/

√
γ, and require that the noise variance is σ2 = 1.

Therefore, we cannot directly use Theorem 4 in our setting. However, this difference can be fixed
by a simple rescaling of our model. Note that our model defined by (5), where X follows the sparse
Gaussian distribution defined in Definition 2.1 and Z ∼ N

(
0, σ2In

)
, can be equivalently written

as:
Y0 = X0β

⋆
0 + Z0,

where:

Y0 :=
1

σ
Y, X0 :=

1√
d/p

X, β⋆0 :=

√
d/p

σ
β⋆, and Z0 :=

1

σ
Z ∼ N (0, In) .

Hence, it is a particular case of the model defined in (22), with:

γ := d/p and λ :=

√
γ

σ
.

In addition, the regime we consider of d = ω (p/s) corresponds exactly to the regime considered
in Theorem 4 where γs → +∞. Therefore, using Theorem 4, a necessary condition for an
asymptotically reliable recovery of β⋆ in the considered regime is given by:

n >
log
(
p
s

)
− 1

1
2 log (1 + sλ2)

=
2 log

(
p
s

)
− 2

log (1 + ds/ (pσ2))
=

2 log
(
p
s

)
log (ds/p)

(1 + o (1)) . (23)
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First regime: s = o (p). Using the Corollary of Stirling:

log

(
p

s

)
= s log (p/s) (1 + o (1)) ,

the necessary condition (23) writes:

n >
2s log (p/s)

log (ds/p)
(1 + o (1)) .

Let:
nSP

INF :=
2s log (p/s)

log (ds/p)
.

Assume there exists ε > 0 such that n ≤ (1− ε)nSP
INF. We know that, for large enough n, p, s, d we

have:
n ≤ (1− ε)nSP

INF <
2s log (p/s)

log (ds/p)
(1 + o (1)) ,

which contradicts the necessary condition. Therefore, it is information-theoretically impossible to
ensure a reliable recovery of the support of β⋆.

Second regime: s = αp. Using the Corollary of Stirling:

log

(
p

s

)
= ph (α) (1 + o (1)) ,

the necessary condition (23) writes:

n >
2h (α) p

log d
(1 + o (1)) .

Let:
nSP

INF :=
2h (α) p

log d
.

Similarly to above, we conclude that if there exists ε > 0 such that n ≤ (1− ε)nSP
INF then it is

information-theoretically impossible to ensure a reliable recovery of the support of β⋆.

(ii) We show that (ii) holds using Theorem 1.

First regime: s = o (p). Let δ > 0 and:

n⋆slin :=
2s log (p/s)

log (ds/p) + log (δ/(2σ2))
.

Note that:
nSP

INF =
2s log (p/s)

log (ds/p)
= n⋆slin (1 + o (1)) .

Assume there exists ε such that n ≥ (1 + ε)nSP
INF. Then:

n ≥ (1 + ε) (1 + o (1))n⋆slin = (1 + ε+ o (1))n⋆slin ≥
(
1 + ε/2

)
n⋆slin,

for n, p, s, d large enough. Using Theorem 1, we have:

PX,Z
(

1

2s

∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < δ

)
≥ 1− exp

(
− εs log (p/s) + o

(
s log (p/s)

))
.

Therefore, we obtain:

PX,Z
(

1

2s

∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < δ

)
−→ 1,

as n, p, s, d→ +∞. Since this holds for all δ > 0, we conclude:

Supp
(
β̂
)
△Supp (β⋆)

2s
−→ 0,

in probability, as n, p, s, d→ +∞.
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Second regime: s = αp. Let δ > 0 and:

n⋆lin :=
2h (α) p

log d+ log (δα/(2σ2))
.

Note that:

nSP
INF =

2h (α) p

log d
= n⋆lin (1 + o (1)) .

Assume there exists ε such that n ≥ (1 + ε)nSP
INF. Then:

n ≤ (1 + ε) (1 + o (1))n⋆lin = (1 + ε+ o (1))n⋆lin ≥
(
1 + ε/2

)
n⋆lin,

for n, p, s, d large enough. Using Theorem 1, we have:

PX,Z
(

1

2s

∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < δ

)
≥ 1− exp

(
− εh (α) p+ o (p)

)
.

Therefore, we obtain:

PX,Z
(

1

2s

∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < δ

)
−→ 1,

as n, p, s, d→ +∞. Since this holds for all δ > 0, we conclude:

Supp
(
β̂
)
△Supp (β⋆)

2s
−→ 0,

in probability, as n, p, s, d→ +∞.

A.3 Proof of Example 2.2

Proof of Example 2.2. We have d = min
(
po(1), ψ−1 (o (ψ (p)))

)
, hence:{

log d/ log p = o (1)

ψ (d) /ψ (p) = o (1)
.

In addition:
n1 = nINF = Θ

(
p/ log p

)
, n2 = nSP

INF = Θ
(
p/ log d

)
.

Therefore, we have:
n2
n1

=
Θ(p/ log d)

Θ (p/ log p)
= Θ

(
log p

log d

)
= ω (1) ,

On one hand, the number of samples required for reliable recovery is better in the dense case:

n1 = Θ
(
p/ log p

)
= o
(
p/ log d

)
= o (n2) . (24)

On the other hand, the computational cost of recovering the support is better in the sparse case. In
fact, matrix-vector multiplications are made easier by sparsity: in the dense case, multiplying X1

with a vector in Rp costs:
n1p = Θ

(
p2/ log p

)
real number multiplications, while multiplying X2 with a vector in Rp costs

n2d = Θ
(
pd/ log d

)
= pΘ

(
ψ (d)

)
= po

(
ψ (p)

)
= o
(
p2/ log p

)
= o (n1p) , (25)

real number multiplications. This highlights the trade-off between sampling complexity and
computational cost.
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B Improving Sparse Recovery via Sparsification: Proof of Theorem 3

Proof of Theorem 3. Let S := {S ∈ [p] : |S| = s}. We define the error function:

L : S −→ [0,+∞)

S 7−→
∥∥∥Ỹ − X̃1S

∥∥∥2
2
.

Note that:

L(S) =
∥∥∥Ỹ − X̃1S

∥∥∥2
2

=

∥∥∥∥dpY − X̃1S

∥∥∥∥2
2

=

∥∥∥∥dp (X1S⋆ + Z)− X̃1S

∥∥∥∥2
2

=

∥∥∥∥dpX1S⋆ − X̃1S +
d

p
Z

∥∥∥∥2
2

.

In particular, we have:

L(S⋆) =

∥∥∥∥(dpX − X̃

)
1S⋆ +

d

p
Z

∥∥∥∥2
2

.

Let S ∈ S. We define A (S) := S⋆ \ S, B (S) := S \ S⋆, C (S) := S⋆ ∩ S and M (S) := |A| =
|B| = |S⋆△S| /2. Note that |C| = s−M . We are interested in bounding the following probability:

P (L (S)− L (S⋆) ≤ 0) .

Note that the term above only depends on S through M . In fact, for any S, S′ ∈ S such that
|S△S⋆| = |S′ △S⋆| we have L (S)

d
= L (S′). In light of this, we define a family of random

variables (∆ (η))ηs∈[s] indexed by the rescaled symmetric difference η = M/s as L (S)− L (S⋆)

for some S such that |S△S⋆| = 2M , that is:

For any η ∈
{
i

s
: i ∈ [s]

}
, ∆(η) := L (S)− L (S⋆) , for some S s.t. |S△S⋆| = 2ηs.

We extend the notation above to η ∈ [0, 1] by defining ∆(η) := ∆
(

⌈ηs⌉
s

)
.

Proposition B.1. Let η ∈ (0, 1] and S ∈ S such that S△S⋆ = ⌈ηs⌉. For any θ ∈ (0,+∞), define:

γ (θ) := 2d2θσ2/p2.

LetB ∈ {0, 1}p denote a random vector such thatBj
i.i.d.∼ Ber (d/p). For any θ ∈ (0,+∞), we define

the following random variables:

σ2
U (θ,B) := θ2

∑
j∈A(S)∪B(S)

Bj ,

σ2
V (θ,B) :=

4d2s

p2
+

((
1 + γ (θ)

)2 − 4d
(
1 + γ (θ)

)
p

) ∑
j∈A(S)

Bj

+
(
1− γ (θ)

)2 ∑
j∈B(S)

Bij + 4

(
1− 2d

p

) ∑
j∈C(S)

Bj ,

Cov(U,V ) (θ,B) := θ

(1 + γ (θ)− 2d

p

) ∑
j∈A(S)

Bj −
(
1− γ (θ)

) ∑
j∈B(S)

Bj

 ,

ρ (θ,B) :=
Cov(U,V ) (θ,B)

σU (θ,B)σV (θ,B)
.
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In addition, for any θ ∈ (0,+∞) we define the random variable:

f (θ,B) :=


1

σU (θ,B)σV (θ,B)

√(
1

σU (θ,B)σV (θ,B)
−ρ(θ,B)

)2
−1

if 1
σU (θ,B)σV (θ,B) − ρ (θ,B) > 1,

+∞ else.
(26)

Then we have:
P (∆ (η) ≤ 0) ≤

(
inf
θ>0

EB
[
f (θ,B)

])n
Proof. See section B.1.

Now recall that s and d are both linear in p. In particular, there exist α,ψ ∈ (0, 1) such that:{
s = αp

d = ψp
.

We have:
γ (θ) = 2d2θσ2/p2 = 2σ2ψ2θ. (27)

Proposition B.2. We define:

C⋆ (η) :=
ψ

(1− ψ) (2− η (1− ψ))
> 0.

Define the function:

ξ : N −→ (0,+∞)

p 7−→ C⋆ (η)

2αψp
.

Consider the random vector B ∈ {0, 1}p : Bj
i.i.d.∼ Ber (ψ). We define the random variable:

Hp (B) = f (ξ (p) , B) .

Then the following hold:

(i) Hp (B)
a.s.−→
√

1
1+ηψC⋆(η) as p→ +∞.

(ii) P (∆ (η) ≤ 0) ≤
(
EB [Hp (B)]

)n
.

Proof. See section B.2.

Conjecture B.1. The exists p0 such that (Hp (B))p≥p0 is uniformly integrable, that is:

lim
T→+∞

sup
p≥p0

EB
[
Hp (B)1

(
Hp (B) > T

)]
= 0.

Hence we have Hp (B)
a.s.−→
√

1
1+ηψC⋆(η) , which by Conjecture B.1 yields:

lim
p→+∞

EB [Hp (B)] =

√
1

1 + ηψC⋆ (η)
.

Therefore, we obtain:

EB [Hp (B)] =

√
1

1 + ηψC⋆ (η)
+ o (1) .
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Thus, by Proposition B.2 we have:

1

n
log
(
P (∆ (η) ≤ 0)

)
≤ log

(
EB [Hp (B)]

)
= log

(√
1

1 + ηψC⋆ (η)
+ o (1)

)

= −1

2
log
(
1 + ηψC⋆ (η)

)
+ o (1) .

Hence:

P (∆ (η) ≤ 0) ≤
(
1 + ηψC⋆ (η)

)−n/2
eo(n).

Taking the union bound:

P
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ P

(∥∥∥Ỹ − X̃1S

∥∥∥2
2
>
∥∥∥Ỹ − X̃1S⋆

∥∥∥2
2
, ∀S : |S△S⋆| ≥ 2δs

)
= 1− P

(
∃S : |S△S⋆| ≥ 2δs,

∥∥∥Ỹ − X̃1S

∥∥∥2
2
≤
∥∥∥Ỹ − X̃1S⋆

∥∥∥2
2

)
= 1−

∑
S : |S△S⋆|≥2δs

P
(∥∥∥Ỹ − X̃1S

∥∥∥2
2
≤
∥∥∥Ỹ − X̃1S⋆

∥∥∥2
2

)
= 1−

∑
η∈{i/s : i∈[s]} : η≥δ

∑
S : |S△S⋆|=2ηs

P (L (S) ≤ L (S⋆))

= 1−
∑

η∈{i/s : i∈[s]} : η≥δ

∑
S : |S△S⋆|=2ηs

P (∆ (η) ≤ 0)

≥ 1−
(
p

s

) ∑
η∈{i/s : i∈[s]} : η≥δ

(
1 + ηψC⋆ (η)

)−n/2
eo(n).

In addition, we have:∑
η∈{i/s : i∈[s]} : η≥δ

(1 + ηψC⋆ (η))
−n/2 ≤

∑
η∈{i/s : i∈[s]} : η≥δ

(1 + δψC⋆ (δ))
−n/2 (28)

≤ s (1 + δψC⋆ (δ))
−n/2

. (29)

where (28) holds because the term inside the sum is non-increasing in η, and (29) holds because the
cardinality of the index set of the sum is upper bounded by s. Therefore:

P
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1−

(
p

s

)
s
(
1 + δψC⋆ (δ)

)−n/2
eo(n)

= 1− exp

[
ph (α)

(
1 + o (1)

)
+ log s− n

(
1

2
log
(
1 + δψC⋆ (δ)

)
+ o (1)

)]
= 1− exp

[
ph (α)

(
1 + o (1)

)
− n

(
1

2
log
(
1 + δψC⋆ (δ)

)
+ o (1)

)]
.

We define:

n⋆ :=
2h (α) p

log
(
1 + δψC⋆ (δ)

) .
24



Let ε > 0. Then if n ≥ (1 + ε)n⋆, we have:

P
(∣∣∣Supp (β⋆)△Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

[
ph (α)

(
1 + o (1)

)
− n

(
1

2
log
(
1 + δψC⋆ (δ)

)
+ o (1)

)]
= 1− exp

[
ph (α)

(
−ε+ o (1)

)]
p→+∞−→ 1.

B.1 Proof of Proposition B.1

Proof of Proposition B.1. Since η and S are fixed, we will simplify notations in this proof as follows:
we will write ∆ for ∆(η), and A,B,C,M respectively for A (S) , B (S) , C (S) ,M (S). We have:

∆ = L(S)− L(S⋆)

=

∥∥∥∥dpX1S⋆ − X̃1S +
d

p
Z

∥∥∥∥2
2

−
∥∥∥∥(dpX − X̃

)
1S⋆ +

d

p
Z

∥∥∥∥2
2

=
∥∥∥X̃1S∥∥∥2

2
−
∥∥∥X̃1S⋆

∥∥∥2
2
+ 2

d

p
⟨X1S⋆ + Z, X̃ (1S⋆ − 1S)⟩

=

n∑
i=1

⟨X̃i,1S⟩2 −
n∑
i=1

⟨X̃i,1S⋆⟩2 + 2
d

p

n∑
i=1

(⟨Xi,1S⋆⟩+ Zi)
(
⟨X̃i,1S⋆⟩ − ⟨X̃i,1S⟩

)
=

n∑
i=1

(
⟨X̃i,1S⟩2 − ⟨X̃i,1S⋆⟩2 + 2

d

p
(⟨Xi,1S⋆⟩+ Zi)

(
⟨X̃i,1S⋆⟩ − ⟨X̃i,1S⟩

))
Let:

∆i := ⟨X̃i,1S⟩2 − ⟨X̃i,1S⋆⟩2 + 2
d

p
(⟨Xi,1S⋆⟩+ Zi)

(
⟨X̃i,1S⋆⟩ − ⟨X̃i,1S⟩

)
.

So that ∆ =
∑n
i=1 ∆i. Now using the Chernoff bound:

P (∆ ≤ 0) = P (−∆ ≥ 0) = inf
θ≥0

P
(
e−θ∆ ≥ 1

)
≤ inf
θ≥0

M−∆i
(θ)n. (30)

We have:

∆i = ⟨X̃i,1S⟩2 − ⟨X̃i,1S⋆⟩2 + 2
d

p
(⟨Xi,1S⋆⟩+ Zi)

(
⟨X̃i,1S⋆⟩ − ⟨X̃i,1S⟩

)
=

∑
j∈S

X̃ij

2

−

∑
j∈S⋆

X̃ij

2

+ 2
d

p

∑
j∈S⋆

Xij + Zi

∑
j∈S⋆

X̃ij −
∑
j∈S

X̃ij


= −

∑
j∈S⋆

X̃ij −
∑
j∈S

X̃ij

∑
j∈S⋆

X̃ij +
∑
j∈S

X̃ij − 2
d

p

∑
j∈S⋆

Xij


+ 2

d

p
Zi

∑
j∈S⋆

X̃ij −
∑
j∈S

X̃ij


Then:

∆i = −

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

∑
j∈A

X̃ij +
∑
j∈B

X̃ij + 2
∑
j∈C

X̃ij − 2
d

p

∑
j∈S⋆

Xij


+ 2

d

p
Zi

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

 .
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Let:

Ki := −

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

 ∑
j∈A(S)

X̃ij +
∑

j∈B(S)

X̃ij + 2
∑

j∈C(S)

X̃ij − 2
d

p

∑
j∈S⋆

Xij ,


so that:

∆i = Ki + 2
d

p
Zi

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

 .

The MGF of −∆i can be expressed as:

M−∆i (θ) = E [exp (−∆iθ)]

= EXi,Bi

EZi

exp
−θ

Ki + 2
d

p
Zi

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

∣∣∣∣Xi, Bi


= EXi,Bi

e−θKiEZi

exp
−2dθ

p
Zi

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

∣∣∣∣Xi, Bi


= EXi,Bi

e−θKiMZi |Xi,Bi

−2dθ

p

∑
j∈A

X̃ij −
∑
j∈B

X̃ij


= EXi,Bi

e−θKi exp

1

2

−2dθ

p

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

2

σ2




= EXi,Bi

exp
−θKi +

2d2θ2σ2

p2

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

2



Thus, by the tower rule:

M−∆i (θ) = EBi

EXi

exp
−θKi +

2d2θ2σ2

p2

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

2
∣∣∣∣∣Bi


 . (31)

Fix θ > 0. Then:

− θKi +
2d2θ2σ2

p2

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

2

= θ

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

∑
j∈A

X̃ij +
∑
j∈B

X̃ij + 2
∑
j∈C

X̃ij − 2
d

p

∑
j∈S⋆

Xij


+

2d2θ2σ2

p2

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

2

= θ

∑
j∈A

BijXij −
∑
j∈B

BijXij

×

∑
j∈A

((
1 + γ (θ)

)
Bij −

2d

p

)
Xij +

∑
j∈B

(1− γ (θ))BijXij + 2
∑
j∈C

(
Bij −

d

p

)
Xij

 ,
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where γ (θ) = 2d2θσ2/p2. Since θ is fixed for now, we simplify the notation γ (θ) by simply writing
γ. Let:U := θ

(∑
j∈ABijXij −

∑
j∈B BijXij

)
V :=

∑
j∈A

(
(1 + γ)Bij − 2d

p

)
Xij +

∑
j∈B (1− γ)BijXij + 2

∑
j∈C

(
Bij − d

p

)
Xij

,

so that:

−θKi +
2d2θ2σ2

p2

∑
j∈A

X̃ij −
∑
j∈B

X̃ij

2

= UV. (32)

Plugging (32) in (31), we obtain:

M−∆i
(θ) = EBi

[
EXi

[
eUV | Bi

]]
. (33)

Note that, conditionally on Bi, we have:

U
d
= N

0, θ2
∑

j∈A∪B
B2
ij

 , (34)

and:

V
d
= N

0,
∑
j∈A

(
(1 + γ)Bij −

2d

p

)2

+
∑
j∈B

(1− γ)
2
B2
ij + 4

∑
j∈C

(
Bij −

d

p

)2
 . (35)

Let: σ
2
U := θ2

∑
j∈A∪B B

2
ij

σ2
V :=

∑
j∈A

(
(1 + γ)Bij − 2d

p

)2
+
∑
j∈B (1− γ)

2
B2
ij + 4

∑
j∈C

(
Bij − d

p

)2 .

Note that:
σ2
U = θ2

∑
j∈A∪B

Bij ,

and

σ2
V =

∑
j∈A

(
(1 + γ)Bij −

2d

p

)2

+
∑
j∈B

(1− γ)
2
B2
ij + 4

∑
j∈C

(
Bij −

d

p

)2

=
∑
j∈A

(
(1 + γ)

2
B2
ij −

4d (1 + γ)

p
Bij

)
+

4d2

p2
M +

∑
j∈B

(1− γ)
2
B2
ij

+ 4
∑
j∈C

(
B2
ij −

2d

p
Bij

)
+

4d2

p2
(s−M)

=
4d2s

p2
+
∑
j∈A

(
(1 + γ)

2 − 4d (1 + γ)

p

)
Bij +

∑
j∈B

(1− γ)
2
Bij + 4

∑
j∈C

(
1− 2d

p

)
Bij

=
4d2s

p2
+

(
(1 + γ)

2 − 4d (1 + γ)

p

)∑
j∈A

Bij + (1− γ)
2
∑
j∈B

Bij + 4

(
1− 2d

p

)∑
j∈C

Bij .

In addition, we have:

Cov (U, V ) = θ

∑
j∈A

(
(1 + γ)Bij −

2d

p

)
Bij −

∑
j∈B

(1− γ)B2
ij


= θ

(1 + γ − 2d

p

)∑
j∈A

Bij − (1− γ)
∑
j∈B

Bij

 .
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Lemma B.1. Let N1
d
= N

(
0, σ2

1

)
, N2

d
= N

(
0, σ2

2

)
and ρ := corr (N1, N2). Then:

E
[
eN1N2

]
=


1

σ1σ2

√(
1

σ1σ2
−ρ
)2

−1

if 1
σ1σ2

− ρ > 1,

+∞ else.

Proof. See section B.1.1.

Now using Lemma B.1 with Gaussian random variables U and V , we conclude that:

EXi

[
eUV | Bi

]
= f (θ,Bi) , (36)

with f (·, ·) defined in (26). Plugging this into (33), we obtain:
M−∆i

(θ) = EBi
[f (θ,Bi)] . (37)

LetB ∈ {0, 1}p be a random vector such thatBj
i.i.d.
= Ber (d/p). Note thatB d

= Bi. Then (37) yields:
M−∆i

(θ) = EB [f (θ,B)] .

Plugging this into the Chernoff bound (30), we conclude:

P (∆ ≤ 0) ≤
(
inf
θ>0

EB
[
f (θ,B)

])n
.

B.1.1 Proof of Lemma B.1

Proof of Lemma B.1. We have:

E
[
eN1N2

]
=

∫
x∈R

∫
y∈R

exy

2πσ1σ2
√
1− ρ2

exp

(
− 1

2 (1− ρ2)

((
x

σ1

)2

− 2ρ

(
x

σ1

)(
y

σ2

)
+

(
y

σ2

)2
))

dydx

=

∫
x∈R

∫
y∈R

1

2πσ1σ2
√
1− ρ2

exp

(
xy − 1

2 (1− ρ2)

((
x

σ1

)2

− 2ρ

(
x

σ1

)(
y

σ2

)
+

(
y

σ2

)2
))

dydx

=

∫
x∈R

∫
y∈R

1

2π
√
1− ρ2

exp

(
σ1σ2xy −

x2 − 2ρxy + y2

2 (1− ρ2)

)
dydx

=

∫
x∈R

∫
y∈R

2
(
1− ρ2

)
2π
√
1− ρ2

exp
(
2σ1σ2

(
1− ρ2

)
xy − x2 + 2ρxy − y2

)
dydx

=

∫
x∈R

∫
y∈R

√
1− ρ2

π
exp

(
2σ1σ2

(
1− ρ2

)
xy − x2 + 2ρxy − y2

)
dydx

Therefore:

E
[
eN1N2

]
=

√
1− ρ2

π

∫
x∈R

∫
y∈R

e2σ1σ2(1−ρ2)xy−x2+2ρxy−y2dydx

=

√
1− ρ2

π

∫
x∈R

∫
y∈R

e
−(y−x(σ1σ2(1−ρ2)+ρ))

2
+x2

(
(σ1σ2(1−ρ2)+ρ)

2−1
)
dydx

=

√
1− ρ2

π

∫
x∈R

e
x2
(
(σ1σ2(1−ρ2)+ρ)

2−1
) ∫

y∈R
e−(y−x(σ1σ2(1−ρ2)+ρ))

2

dydx

=

√
1− ρ2

π

∫
x∈R

e
x2
(
(σ1σ2(1−ρ2)+ρ)

2−1
) ∫

y∈R

√
π ΦN(x(σ1σ2(1−ρ2)+ρ),1/

√
2)(y) dydx

=

√
1− ρ2

π

∫
x∈R

exp
(
x2
((
σ1σ2

(
1− ρ2

)
+ ρ
)2 − 1

))√
πdx.
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Hence we obtain:

E
[
eN1N2

]
=

√
1− ρ2√
π

∫
x∈R

exp
(
x2
((
σ1σ2

(
1− ρ2

)
+ ρ
)2 − 1

))
dx.

Let ξ := σ1σ2
(
1− ρ2

)
+ ρ. Note that, if ξ ≥ 1, the above explodes to +∞. However, if ξ < 1, the

above yields:

E
[
eN1N2

]
=

√
1− ρ2√
π

∫
x∈R

exp
(
x2
(
ξ2 − 1

))
dx

=

√
1− ρ2

√
π
√
1− ξ2

∫
x∈R

exp
(
−x2

)
dx

=

√
1− ρ2

√
π
√
1− ξ2

∫
x∈R

√
π ΦN(0,1/

√
2) (x) dx

=

√
1− ρ2√
1− ξ2

.

Plugging the expression of ξ in the above, we obtain:

E
[
eN1N2

]
=

√
1− ρ2√

1− ρ2 − σ2
1σ

2
2 (1− ρ2)

2 − 2ρ (1− ρ2)σ1σ2

=
1√

1− σ2
1σ

2
2 (1− ρ2)− 2ρσ1σ2

=
1√

1 + ρ2σ2
1σ

2
2 − 2ρσ1σ2 − σ2

1σ
2
2

=
1√

(ρσ1σ2 − 1)
2 − σ2

1σ
2
2

=
1

σ1σ2

√(
1

σ1σ2
− ρ
)2

− 1

.

In addition, note that:

ξ < 1 ⇐⇒ σ1σ2
(
1− ρ2

)
+ ρ < 1

⇐⇒ σ1σ2 (1 + ρ) (1− ρ) < 1− ρ

⇐⇒ σ1σ2 (1 + ρ) < 1

⇐⇒ 1 <
1

σ1σ2
− ρ.

B.2 Proof of Proposition B.2

Proof of Proposition B.2. Fix η ∈ (0, 1]. To simplify notations, we will write C⋆ instead of C⋆ (η).
All asymptotic statements are as p→ +∞.

We start by showing (i). First, we note the following.

Lemma B.2.∑
j∈A(S)

Bj = ηαψp
(
1 + o (1)

)
,
∑

j∈B(S)

Bj = ηαψp
(
1 + o (1)

)
,
∑

j∈C(S)

Bj = (1− η)αψp
(
1 + o (1)

)
.

Proof. See section B.2.1.

29



Next, plugging the expressions given by Lemma B.2 into the expressions of σ2
U (θ,B), σ2

V (θ,B) and
Cov(U,V ) (θ,B) given in the statement of Proposition B.1, we obtain the following.

Proposition B.3. We have:
σ2
U (θ,B) = 2ηαψpθ2

(
1 + o (1)

)
σ2
V (θ,B) = 2αψp

[
2− 2ψ + η

(
(ψ − γ (θ))

2 − (1− ψ)
2
)] (

1 + o (1)
)

Cov(U,V ) (θ,B) = 2ηαψpθ (γ (θ)− ψ)
(
1 + o (1)

) .

Proof. See section B.2.2.

Plugging ξ (p) in the expression of γ (·) given by (27), we obtain:

γ (ξ (p)) = 2σ2ψ2ξ (p) =
2σ2ψ2C⋆

2αψp
=
σ2ψC⋆

αp
= o (1) .

Therefore, we have by Proposition B.3:

σ2
U (ξ (p) , B)σ2

V (ξ (p) , B) = 4ηα2ψ2p2
(

C⋆

2αψp

)2 (
2− 2ψ + η

(
(ψ − γ (ξ (p)))

2 − (1− ψ)
2
))(

1 + o (1)
)

= ηC⋆2
(
2− 2ψ + η

(
(ψ − o (1))

2 − (1− ψ)
2
))(

1 + o (1)
)

= ηC⋆2
(
2− 2ψ + η (2ψ − 1)

)(
1 + o (1)

)
a.s.−→ ηC⋆2

(
2− 2ψ + 2ηψ − η

)
.

Note that the above is > 0 because η (1− 2ψ) < 2 (1− ψ), which follows from the facts that η ≤ 1
and ψ ∈ (0, 1). In addition, by Proposition B.3:

Cov(U,V ) (ξ (p) , B) = 2ηαψp

(
C⋆

2αψp

)(
γ (ξ (p))− ψ

)(
1 + o (1)

)
= ηC⋆

(
o (1)− ψ

)(
1 + o (1)

)
a.s.−→ −ηψC⋆.

Bringing these together, we obtain:

lim
p→+∞

{(
1− Cov(U,V ) (ξ (p) , B)

)2
−
(
σ2
U (ξ (p) , B)σ2

V (ξ (p) , B) + 1 + ηψC⋆
)}

=
(
1 + ηψC⋆

)2
− η
(
2− 2ψ + 2ηψ − η

)
C⋆2 − ηψC⋆ − 1

= η2ψ2C⋆2 + 2ηψC⋆ + 1− η
(
2− 2ψ + 2ηψ − η

)
C⋆2 − ηψC⋆ − 1

=
(
η2ψ2 − 2η + 2ηψ − 2η2ψ + η2

)
C⋆2 + ηψC⋆

= ηC⋆

(
− (1− ψ)

(
2− η (1− ψ)

)
C⋆ + ψ

)
= 0.
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In addition:

lim
p→+∞

{
1

σU (ξ (p) , B)σV (ξ (p) , B)
− ρ (ξ (p) , B)

}2

= lim
p→+∞

{
1− Cov(U,V ) (ξ (p) , B)

σU (ξ (p) , B)σV (ξ (p) , B)

}2

=

(
1 + ηψC⋆

)2
η
(
2− 2ψ + 2ηψ − η

)
C⋆2

= 1 +

(
1 + ηψC⋆

)2
− η
(
2− 2ψ + 2ηψ − η

)
C⋆2

η
(
2− 2ψ + 2ηψ − η

)
C⋆2

= 1 +
1 + ηψC⋆(

1 + ηψC⋆
)2

−
(
1 + ηψC⋆

)
= 1 +

1

ηψC⋆
> 1.

Therefore, there exists p′ ∈ N such that, for all p ≥ p′ we have:{
1

σU (ξ (p) , B)σV (ξ (p) , B)
− ρ (ξ (p) , B)

}2

> 1.

Then note that, for all p ≥ p′ we have:
1

σU (ξ (p) , B)σV (ξ (p) , B)
− ρ (ξ (p) , B) > 1,

and hence:

f (ξ (p) , B) =
1

σU (ξ (p) , B)σV (ξ (p) , B)

√(
1

σU (ξ(p),B)σV (ξ(p),B) − ρ (ξ (p) , B)
)2

− 1

=
1√(

1− Cov(U,V ) (ξ (p) , B)
)2

− σ2
U (ξ (p) , B)σ2

V (ξ (p) , B)

a.s.−→
√

1

1 + ηψC⋆
.

Therefore, we conclude that (i) holds. We now show (ii). We have:

inf
θ>0

EB
[
f (θ,B)

]
≤ EB

[
f (ξ (p) , B)

]
= EB [Hp (B)] .

Plugging this into the Chernoff bound obtained in Proposition B.1, we obtain:

P (∆ ≤ 0) ≤
(
inf
θ>0

EB
[
f (θ,B)

])n
≤
(
EB [Hp (B)]

)n
.

B.2.1 Proof of Lemma B.2

Proof of Lemma B.2. We know that Bj
i.i.d.∼ Ber (ψ). Therefore:∑

j∈A(S)

Bj = |A (S)|ψ +
√

|A (S)|ψNA + o
(√

|A (S)|ψ
)
,

where NA ∼ N (0, 1). In addition, we have:

|A (S)| = ⌈ηs⌉ = ηs
(
1 + o (1)

)
.
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Hence: ∑
j∈A(S)

Bj = ηαψp
(
1 + o (1)

)
.

Similarly, we have:

∑
j∈B(S)

Bj = ηαψp
(
1 + o (1)

)
and

∑
j∈C(S)

Bj = (1− η)αψp
(
1 + o (1)

)
.

B.2.2 Proof of Proposition B.3

Proof of Proposition B.3. We have by Proposition B.1:

σ2
U (θ,B) = θ2

∑
j∈A(S)∪B(S)

Bj ,

σ2
V (θ,B) =

4d2s

p2
+

((
1 + γ (θ)

)2 − 4d
(
1 + γ (θ)

)
p

) ∑
j∈A(S)

Bj

+
(
1− γ (θ)

)2 ∑
j∈B(S)

Bij + 4

(
1− 2d

p

) ∑
j∈C(S)

Bj ,

Cov(U,V ) (θ,B) = θ

(1 + γ (θ)− 2d

p

) ∑
j∈A(S)

Bij −
(
1− γ (θ)

) ∑
j∈B(S)

Bij

 .

Now by Lemma B.2 we have:


∑
j∈A(S)Bj = ηαψp

(
1 + o (1)

)∑
j∈B(S)Bj = ηαψp

(
1 + o (1)

)∑
j∈C(S)Bj = (1− η)αψp

(
1 + o (1)

) .

Hence, the expression of σ2
U (θ,B) writes:

σ2
U (θ,B) = θ2

∑
j∈A(S)

Bj + θ2
∑

j∈B(S)

Bj

= θ2ηαψp
(
1 + o (1)

)
+ θ2ηαψp

(
1 + o (1)

)
= 2ηαψpθ2

(
1 + o (1)

)
.
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The expression of σ2
V (θ,B) writes:

σ2
V (θ,B)

=
4d2s

p2
+

((
1 + γ (θ)

)2 − 4d
(
1 + γ (θ)

)
p

) ∑
j∈A(S)

Bj

+
(
1− γ (θ)

)2 ∑
j∈B(S)

Bij + 4

(
1− 2d

p

) ∑
j∈C(S)

Bj

= 4αψ2p+
(
1 + γ (θ)

)
(1 + γ (θ)− 4ψ) ηαψp

(
1 + o (1)

)
+
(
1− γ (θ)

)2
ηαψp

(
1 + o (1)

)
+ 4 (1− 2ψ) (1− η)αψp

(
1 + o (1)

)
= αψp

(
4ψ + η

(
1 + γ (θ)

)(
1 + γ (θ)− 4ψ

)
+ η
(
1− γ (θ)

)2
+ 4 (1− 2ψ) (1− η)

)(
1 + o (1)

)
= αψp

(
4− 4ψ + η

((
1 + γ (θ)

)2
+
(
1− γ (θ)

)2 − 4ψ
(
1 + γ (θ)

)
− 4 (1− 2ψ)

))(
1 + o (1)

)
= αψp

(
4− 4ψ + η

(
2 + 2γ (θ)

2 − 4ψγ (θ) + 4ψ − 4
))(

1 + o (1)
)

= 2αψp

(
2− 2ψ + η

(
γ (θ)

2 − 2ψγ (θ) + 2ψ − 1
))(

1 + o (1)
)

= 2αψp

(
2− 2ψ + η

(
γ (θ)

2 − 2ψγ (θ) + ψ2 − ψ2 + 2ψ − 1
))(

1 + o (1)
)

= 2αψp

[
2− 2ψ + η

((
ψ − γ (θ)

)2 − (1− ψ
)2)](

1 + o (1)
)
.

The expression of Cov(U,V ) (θ,B) writes:

Cov(U,V ) (θ,B) = θ

(1 + γ (θ)− 2d

p

) ∑
j∈A(S)

Bij −
(
1− γ (θ)

) ∑
j∈B(S)

Bij


= θ

((
1 + γ (θ)− 2ψ

)
ηαψp

(
1 + o (1)

)
−
(
1− γ (θ)

)
ηαψp

(
1 + o (1)

))
= ηαψpθ

((
1 + γ (θ)− 2ψ

)
−
(
1− γ (θ)

))(
1 + o (1)

)
= 2ηαψpθ

(
γ (θ)− ψ

)(
1 + o (1)

)
,

as desired.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Theorem 1, Corollary 2 and Theorem 3 clearly state the main claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations where discussed:

• Briefly in the introduction (section 1).
• Thoroughly in Remark 2.2 and Remark 3.1.
• Future work directions in the conclusion (section 4).

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Complete proofs of theoretical results are provided: for Theorem 1 in appendix
A.1, for Corollary 2 in appendix A.2, for Example 2.2 in appendix A.3, and for Theorem 3
in appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments. In order to observe our results we
need the dimension p of the problem to be large, which cannot be ran experimentally since
computing the MLE (7), (13) is exponential-time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The main positive societal impact of our work is reducing computational cost
in a range of applications via the measurement sparsity vs. computational cost trade-off.
Applications of the sparse recovery problem are discussed in the introduction and an example
of computational cost reduction is given in Example 2.2.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets. Previous theoretical results are properly
credited to their authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

38



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets. We provide our interpretation of the
theoretical results in sections 2 and 3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

39

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Sparse measurement setting
	Sparsification
	Contributions
	Outline and Notations

	Sparse Recovery using Sparse Measurements
	Setting
	Problem
	Results

	Improving Sparse Recovery via Sparsification
	Setting
	Results

	Conclusion and Future Work
	Sparse Recovery using Sparse Measurements: Proofs
	Proof of Theorem 1
	Proof of Proposition A.1
	Proof of Lemma A.1
	Proof of Lemma A.2

	Proof of Corollary 2
	Proof of Example 2.2

	Improving Sparse Recovery via Sparsification: Proof of Theorem 3
	Proof of Proposition B.1
	Proof of Lemma B.1

	Proof of Proposition B.2
	Proof of Lemma B.2
	Proof of Proposition B.3



