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Abstract001

Multi-modal large language models (MLLMs)002
have achieved remarkable success in fine-003
grained visual understanding across a range004
of tasks. However, they often encounter signifi-005
cant challenges due to inadequate alignment for006
fine-grained knowledge, which restricts their007
ability to accurately capture local details and at-008
tain a comprehensive global perception. While009
recent advancements have focused on aligning010
object expressions with grounding information,011
they typically lack explicit integration of object012
images, which contain affluent information be-013
yond mere texts or coordinates. To bridge this014
gap, we introduce a novel fine-grained visual015
knowledge alignment method that effectively016
aligns and integrates multi-scale knowledge of017
objects, including texts, coordinates, and im-018
ages. This innovative method is underpinned019
by our multi-scale fine-grained enhancement020
data synthesis pipeline, which provides over021
300K essential training data to enhance align-022
ment and improve overall performance. Fur-023
thermore, we present TinyGroundingGPT, a024
series of compact models optimized for high-025
level alignments. With a scale of approximately026
3B parameters, TinyGroundingGPT achieves027
outstanding results in grounding tasks while028
delivering performance comparable to larger029
MLLMs in complex visual scenarios.030

1 Introduction031

Recent advancements in multi-modal large lan-032

guage models (MLLMs) have showcased remark-033

able capabilities in multi-modal understanding, rea-034

soning, and interaction, garnering unprecedented035

attention (Touvron et al., 2023; Chen et al., 2023a;036

Peng et al., 2023; Bai et al., 2023; Wang et al.,037

2023; Chen et al., 2024b). MLLM research in038

fine-grained visual understanding has advanced039

significantly, particularly through early contribu-040

tions from Shikra (Chen et al., 2023a) and Kosmos-041

2 (Peng et al., 2023) in textually formatting po-042

Figure 1: The comparison of alignment for multi-scale
object representations. The C, T, I denote object coordi-
nates, texts and images respectively. The “X-Y” denote
MLLMs handle input “X” and output “Y”.

sitional vocabularies or object coordinates. Sub- 043

sequent studies aimed at improving model perfor- 044

mance primarily focused on common strategies, in- 045

cluding parameter enlargement (Chen et al., 2023a; 046

Peng et al., 2023; Li et al., 2024c; Bai et al., 2023) 047

and dataset enrichment (Chen et al., 2023b; Bai 048

et al., 2023; Wang et al., 2023; Chen et al., 2024b). 049

Additionally, there is a growing interest in develop- 050

ing efficient, smaller fine-grained MLLMs (Li et al., 051

2024a; Hu et al., 2024; Yao et al., 2024; Zhu et al., 052

2023; Zhou et al., 2024) for real-world applica- 053

tions. Regardless of methods used, the core of fine- 054

grained models lies in achieving better alignment 055

between object texts and visual features, encom- 056

passing both coordinate and semantic information. 057

While effective, these methods face a significant 058

challenge, i.e., the lack of fine-grained alignments. 059

Visual objects typically encompass multi-scale rep- 060

resentations with varying levels of information, in- 061

cluding coordinates, texts, and images, as illus- 062

trated in Fig. 1. In this context, coordinates provide 063

low-level object grounding information, texts offer 064

primary descriptions that may not capture every 065

detail, and images convey high-level information 066

that extends beyond words. Most fine-grained mod- 067

els (Chen et al., 2023a; You et al., 2023; Li et al., 068
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Figure 2: Illustration of the proposed multi-modal fine-grained visual knowledge alignment method. It adopts a
three-stage training strategy that progresses from easy to hard and the multi-scale fine-grained enhancement data
synthesis pipeline constructs over 300K fine-grained alignment data.

2024c) primarily focus on alignments between ob-069

ject texts and coordinates (i.e., T-C and C-T), often070

neglecting direct interactions with object images.071

Although recent models like Qwen2-VL (Wang072

et al., 2024a) and InternVL2 (Chen et al., 2024b)073

can process multiple image inputs and understand074

relationships between the main image and object075

images (T-I), they still struggle to establish explicit076

alignments among object texts, coordinates, and077

images. This limitation can lead to hallucinations078

and insufficient grounding capabilities (Chen et al.,079

2024a).080

To achieve high-level alignments and inte-081

grate multi-granularity knowledge, as illustrated in082

Fig. 2(a), we introduce a fine-grained visual knowl-083

edge alignment method that effectively aligns ob-084

ject texts, coordinates, and images across multiple085

scales. Our method adopts a three-stage training086

strategy that progresses from easy to hard: 1) Ob-087

ject and Relation Perception Pretraining: To de-088

velop a foundational understanding of object texts089

and images, we implement a progressive train-090

ing approach for MLLMs based on a pretrained091

LLM. 2) Multi-scale Fine-grained Local Knowl-092

edge Alignment: To attain fine-grained visual un-093

derstanding and share multi-scale object knowl-094

edge, we conduct data-driven high-level alignments095

among object text descriptions, bounding box co-096

ordinates, and image features. 3) Detailed Global097

Knowledge Alignment: To enhance the model’s 098

global understanding by integrating fine-grained 099

knowledge, we guide the MLLMs to bridge differ- 100

ent objects with multi-scale representations. To 101

support this method, we propose a multi-scale 102

fine-grained enhancement data synthesis pipeline 103

(see Fig. 2(b)) that constructs alignment data from 104

both local and global perspectives. Leveraging this 105

framework, we propose TinyGroundingGPT, which 106

requires less storage for deployment while outper- 107

forming larger models across multiple benchmarks, 108

particularly in grounding tasks. Our contributions 109

can be summarized as follows: 110

• We introduce a fine-grained visual knowledge 111

alignment method that enables the model to 112

progressively enhance its fine-grained visual 113

understanding through both global and local 114

multi-scale object alignments. 115

• We develop a multi-scale fine-grained en- 116

hancement data synthesis pipeline that lever- 117

ages open-source datasets and advanced mod- 118

els to generate over 300K essential training 119

data for fine-grained alignment. 120

• We introduce TinyGroundingGPT, a series of 121

compact models with 1.5B and 3B parame- 122

ters, which excel in multi-modal understand- 123

ing and grounding capabilities, achieving per- 124

formance comparable to larger 7B MLLMs. 125
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2 Related Works126

Multi-modal Large Language Models Recent127

progress in large language models (LLMs) such128

as ChatGPT and LLaMA (Touvron et al., 2023)129

has spurred the development of multi-modal LLMs.130

Notable models like GPT-4V (OpenAI, 2023) have131

demonstrated strong multi-modal capabilities in132

visual tasks. Early open-source models, includ-133

ing BLIP-2 (Li et al., 2023a), MiniGPT-4 (Zhu134

et al., 2023), and LLaVA (Liu et al., 2024), lever-135

age pre-trained LLMs and perform well in visual136

question answering. Subsequent models, such as137

Qwen-VL (Bai et al., 2023), InternVL (Chen et al.,138

2024b), and MiniCPM-V (Yao et al., 2024), further139

enhance capabilities through dynamic resolution,140

expanded training data, and reinforcement learning,141

achieving notable results in OCR and grounding142

while improving response credibility.143

However, the high parameter counts of MLLMs144

lead to significant training and deployment costs,145

limiting their widespread use. To address this,146

lightweight LLMs such as Mini-Gemini (Li et al.,147

2024a), MobileVLM (Chu et al., 2024), and148

MiniCPM-V (Yao et al., 2024) have been devel-149

oped. These models, combined with optimized150

structures and training strategies, achieve perfor-151

mance comparable to larger models. Additionally,152

studies (Hsieh et al., 2023; Wang et al., 2024b; Shu153

et al., 2024) have explored distilling capabilities154

from larger models to enable smaller models to155

acquire complex reasoning abilities.156

Fine-grained Multi-modal Models Recent157

works have focused on MLLMs for fine-grained un-158

derstanding, with applications in tasks like ground-159

ing and OCR. Methods such as Shikra (Chen et al.,160

2023a) and Kosmos-2 (Peng et al., 2023) enhanced161

visual grounding by constructing datasets with co-162

ordinate information, often converting visual tasks163

into instruction-following formats using templates.164

Other approaches integrated additional visual165

components, like GLaMM (Rasheed et al., 2024)166

and LLaVA-Grounding (Zhang et al., 2023b),167

or extracted regional features as supplementary168

inputs, as seen in Ferret (You et al., 2023), NExT-169

Chat (Zhang et al., 2023a), and GPT4RoI (Zhang170

et al., 2023c). GroundingGPT (Li et al., 2024c)171

extended support for multi-modal grounding172

tasks. Models like VisionLLMv2 (Wu et al., 2024)173

and UnifiedMLLM (Li et al., 2024b) expanded174

capabilities for various visual tasks, including175

image editing and segmentation. For fine-grained176

tasks, models such as LLaVA-UHD (Xu et al., 177

2024) and Qwen2-VL (Wang et al., 2024a) 178

explored dynamic high-resolution techniques, 179

improving OCR results. However, these models 180

often lack systematic alignment among object texts, 181

coordinates, and images, limiting the integration of 182

multi-scale representations. 183

3 Method 184

In this paper, we first introduce a novel fine-grained 185

visual knowledge alignment method that harnesses 186

the potential of MLLMs by aligning object texts, 187

coordinates, and images across multiple scales, 188

as shown in Fig. 2(a). Our method consists of 189

three training stages that progress from easy to 190

hard: (a) Object and Relation Perception Pretrain- 191

ing, which enables the model to understand mul- 192

timodal inputs, identifying objects in images and 193

their interrelations. (b) Multi-scale Fine-grained 194

Local Knowledge Alignment by which the model 195

is guided to achieve multi-scale, fine-grained align- 196

ments, accommodating diverse inputs such as ob- 197

ject texts, coordinates, and images. (c) Detailed 198

Global Knowledge Alignment which focuses on 199

model training for global alignment and under- 200

standing, further integrating fine-grained informa- 201

tion and bridging different objects with multi-scale 202

representations. To support this high-level align- 203

ment, we then propose a multi-scale fine-grained 204

enhancement data synthesis pipeline, as illustrated 205

in Fig 2(b), which generates multi-scale alignment 206

datasets from both global and local perspectives. 207

Building on this framework, we propose Tiny- 208

GroundingGPT, which requires less storage for 209

deployment while outperforming larger parameter 210

models across multiple benchmarks, particularly in 211

hallucination evaluation and grounding tasks. 212

3.1 Fine-grained Visual Knwoledge 213

Alignment 214

We elaborate the three training stages in our fine- 215

grained visual knowledge alignment method below. 216

217

Object and Relation Perception Pretraining In 218

this stage, we aim for the model to comprehend 219

multi-modal inputs, recognizing the objects present 220

in the image and the relationships among them, 221

which forms the foundation for subsequent reason- 222

ing and grounding tasks. Throughout the training 223

process, we initially keep the LLM and encoder 224

frozen, training only the projector to connect the 225
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Figure 3: The model architecture of our proposed TinyGroundingGPT. It utilizes multi-scale visual encoders and
supports queries regarding different object representations. Object images are cropped and zoomed from the input
image according to the input coordinates.

text and image semantic spaces. Subsequently, we226

train both the LLM and the projector to enhance227

the understanding of objects and their relationships.228

We utilize LLaVA-Pretrain-595k (Liu et al., 2024)229

and each sample is accompanied by a sampled230

instruction that requires the model to provide a231

concise description of the image.232

233

Multi-scale Fine-grained Local Knowledge234

Alignment After the initial training stage, where235

the model learns to recognize objects and their236

relationships, it still lacks the grounding capabil-237

ity to accurately locate these objects in images238

and to integrate different representations of a sin-239

gle object. In this stage, we therefore train the240

model to achieve fine-grained alignments among241

object texts, coordinates, and images, fully shar-242

ing their multi-scale knowledge for each rep-243

resentation. We utilize original visual ground-244

ing datasets such as RefCOCO (Kazemzadeh245

et al., 2014), RefCOCO+ (Kazemzadeh et al.,246

2014), RefCOCOg (Mao et al., 2016) and Visual247

Genomes (Krishna et al., 2017), along with a de-248

veloped multi-scale fine-grained enhancement data249

synthesis pipeline (details provided in the following250

subsection) to construct a fine-grained grounding251

dataset. The instances in the training data can be252

categorized into three classes:253

• Object Texts and Coordinates Alignment:254

The model refers to corresponding coordi-255

nates for a given object text description or256

describes a region based on input coordinates.257

• Object Images and Coordinates Alignment:258

Given an augmented object image, the model259

identifies its location within the image. When260

provided with coordinates, the model selects261

the most relevant object images.262

• Object Texts and Images Alignment: The263

model selects the most relevant augmented 264

object image based on the input question or 265

answers inquiries about the relationships in- 266

volving augmented object images. 267

Throughout the training process, we train both 268

the LLM and the projector. Afterwards, the 269

model can effectively perform fine-grained image 270

understanding by achieving high-level alignments 271

among object texts, images, and coordinates, 272

while sharing multi-scale knowledge across each 273

representation. 274

275

Detailed Global Knowledge Alignment Despite 276

achieving a fine-grained understanding of multi- 277

modal data in the previous stage, the model lacks 278

systematic training for global image comprehen- 279

sion and the ability to connect different objects 280

with varied representations. Specifically, in the 281

previous stage, only the representations of individ- 282

ual objects in each training sample were aligned. 283

In this stage, our goal is to further align and inte- 284

grate multiple objects within a single image in- 285

put to enhance global knowledge learning. To 286

achieve this, in addition to utilizing common im- 287

age annotation datasets for instruction tuning, in- 288

cluding LLaVA-v1.5-mix665k (Liu et al., 2024) 289

and ShareGPT4V (Chen et al., 2023b), we con- 290

struct a global grounding dataset with high-level 291

fine-grained alignments based on Flickr30K Enti- 292

ties (Plummer et al., 2015): 1) Multi-round Ground- 293

ing Conversation Data: This dataset guides the 294

model to achieve a global understanding of the 295

image through multi-round conversations, requir- 296

ing it to combine fine-grained knowledge and thor- 297

oughly explore the relationships among different 298

representations of various objects. 2) Grounding 299

Description Data: This dataset prompts the model 300

to provide a detailed description of the image to 301
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connect multi objects in one-round conversations,302

where the generated object texts are enhanced with303

coordinates to confirm their existence and effec-304

tively integrate grounding information.305

This method enables us to leverage the fine-306

grained grounding alignment learned in the sec-307

ond stage to enhance the model’s global grounding308

alignment. Additionally, we train both the LLM309

and the projector in this stage.310

3.2 Multi-scale Fine-grained Enhancement311

Data Synthesis Pipeline312

As shown in Fig. 2(b), we develop a multi-scale313

fine-grained enhancement data synthesis pipeline,314

and construct a multi-scale fine-grained grounding315

dataset (in Stage2) as well as a global grounding316

dataset (in Stage3). Specifically, given an image,317

we perform the following steps:318

Object Recognition We employ expert models or319

MLLMs for object detection in input images, gen-320

erating a list of identified objects, referred to as L1.321

A prompt example for GPT-4V (OpenAI, 2023) is322

provided in Appendix Fig.7.323

Object Grounding Beyond object text and coordi-324

nate pairs in original datasets such as RefCOCO,325

we apply grounding models to obtain bounding326

box coordinates. In this paper, we employ Ground-327

ingDINO (Liu et al., 2023b) to locate objects in L1328

and filter out those with low confidence, resulting329

in an object bounding box dictionary S1.330

Relationship Extraction To uncover the relation-331

ships between objects for subsequent QA gener-332

ation, we instruct GPT-4V to identify potential333

connections among objects. As shown in Ap-334

pendix Fig. 7, given the object list L1, GPT-4V335

generates a list L2 containing triples in the format336

(object1, relation, object2).337

QA Generation Based on above L1, S1 and L2, we338

use task-specific prompts for GPT-4V to generate339

different kinds of datasets (we provide case exam-340

ples in Appendix Figs. 8 and 9): (1) 256K Addi-341

tional Multi-scale Fine-grained Grounding Dataset:342

Compared to previous works (Li et al., 2024c; Chen343

et al., 2023a) that focused solely on the alignment344

between object texts and coordinates, we enhance345

the alignment format by constructing an additional346

multi-scale, fine-grained dataset. This dataset incor-347

porates object images, texts, and coordinates, facil-348

itating more fine-grained image understanding and349

multi-scale alignment. Details can be seen in Ap-350

pendix Fig. 10. (2) 57K Global Grounding Dataset:351

To enhance the global alignment and bridge ob-352

jects with various representations, we construct two 353

kinds of datasets: 1) 28K Multi-round Grounding 354

Conversation: This dataset includes multi-turn dia- 355

logue formats, focusing on point-to-point questions 356

about local details. 2) 29K Grounding Description: 357

This dataset features single-turn dialogue formats, 358

emphasizing an understanding of overall image de- 359

scriptions with fine-grained grounding information. 360

See details in Appendix Figs. 11 and 12. 361

Filter We filter out QAs that contain object images 362

with areas that are either too large or too small, 363

as well as those with high Intersection over Union 364

among object images in the options. Additionally, 365

we exclude QAs related to objects with low confi- 366

dence or those with an excessive number of bound- 367

ing boxes. This helps avoid low-resolution noise 368

or image reference ambiguity. Finally, we exclude 369

low-quality QAs with the assistance of GPT-4V. 370

3.3 TinyGroundingGPT 371

Using our proposed alignment method and synthe- 372

sis data, we train TinyGroundingGPT to demon- 373

strate the effectiveness of our method. Fig. 3 il- 374

lustrates the overall architecture of TinyGround- 375

ingGPT. Images in various formats are processed 376

through multi-scale vision encoders to extract fea- 377

tures. Specifically, we use the pre-trained vi- 378

sual encoders ViT-L/14 (Radford et al., 2021) and 379

DINOv2-L/14 (Oquab et al., 2023) to extract image 380

features, concatenating them to combine the global 381

perception of CLIP and the local fine-grained un- 382

derstanding of DINOv2 (Jiang et al., 2023). These 383

features are then mapped to the LLM embedding 384

space using an MLP. In TinyGroundingGPT, the 385

input supports both global images and object im- 386

ages, each represented by different special tokens: 387

< image > and < object >. These object images 388

are cropped and zoomed from the global image 389

based on the corresponding coordinates. We also 390

support the input and output of object bounding box 391

coordinates < loc >, represented in the text format 392

[x1, y1, x2, y2] with values in [0.000, 1.000]. 393

4 Experiments 394

4.1 Experimental Setup 395

We employ Qwen2.5-3B and Qwen2.5-1.5B (Yang 396

et al., 2024) as the language models for our Tiny- 397

GroundingGPT. During the training process, all 398

images were padded to a square shape and resized 399

to a resolution of 336 × 336. For more details on 400

hyper-parameter settings, training processes and 401
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Type Model LLM Size RefCOCO RefCOCO+ RefCOCOg Avgval testA testB val testA testB val test

Specialist
UNITER (Chen et al., 2020) - 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67 76.17

MDETR (Kamath et al., 2021) - 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 81.81
UniTAB (Yang et al., 2022) - 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97 80.89

Generalist

KOSMOS-2 (Peng et al., 2023) 1.6B 52.32 57.42 47.26 45.48 50.73 42.24 60.57 61.65 52.21
Shikra (Chen et al., 2023a) 7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 82.93

NExT-Chat* (Zhang et al., 2023a) 7B 85.50 90.00 77.90 77.20 84.50 68.00 80.10 79.80 80.38
Ferret* (You et al., 2023) 7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76 83.91

GroundingGPT (Li et al., 2024c) 7B 88.02 91.55 82.47 81.61 87.18 73.18 81.67 81.99 83.46
InternVL2+ (Chen et al., 2024b) 2B 82.3 88.2 75.9 73.5 82.8 63.3 77.6 78.3 77.74
Qwen2-VL+ (Wang et al., 2024a) 2B 87.6 90.6 82.3 79.0 84.9 71.0 81.2 80.3 82.11

Generalist TinyGroundingGPT 3B 89.16 92.24 85.38 81.70 87.16 75.09 83.27 84.08 84.76
1.5B 86.76 90.42 81.81 78.86 84.65 70.24 79.88 80.04 81.58

Table 1: Performance comparison on the referring expression comprehension(REC) task. "*" indicates that the
model employs additional image region perception modules and "+" indicates that the model uses dynamic high-
resolution. The best results are highlighted in bold, while the second-best results are underlined.

datasets, please refer to the Appendix A.1 and A.2.402

4.2 Image Grounding Evaluation403

To evaluate the image grounding capability of Tiny-404

GroundingGPT, we conducted experiments on the405

Reference Expression Understanding (REC) task,406

which involves locating the bounding box for a407

given text reference. We utilized three datasets:408

RefCOCO, RefCOCO+, and RefCOCOg. We com-409

pared TinyGroundingGPT against various baseline410

models, including end-to-end multi-modal models411

such as UNITER (Chen et al., 2020), MDETR (Ka-412

math et al., 2021), and UniTAB (Yang et al., 2022),413

as well as LLM-based models like KOSMOS-2,414

Shikra, NExTChat, Ferret, and GroundingGPT.415

Additionally, smaller models such as InternVL2416

and Qwen2-VL were included. We used a uni-417

fied prompt formatted as “Output the coordinate of418

< exp >”, where “< exp >” represents the refer-419

ence expression. As shown in Table 1, TinyGround-420

ingGPT demonstrates strong performance across421

all datasets, even with smaller LLM sizes (3B and422

1.5B), matching or exceeding the performance of423

specialized fine-tuned models and larger MLLMs424

with additional image perception modules. Notably,425

the 3B model achieved state-of-the-art results on426

several benchmarks, attaining the highest average427

accuracy. Furthermore, TinyGroundingGPT-1.5B428

showed comparable grounding results, outperform-429

ing Next-Chat-7B on nearly all test sets.430

4.3 Image Understanding Evaluation431

We evaluated TinyGroundingGPT on seven bench-432

marks, providing a comprehensive assessment of433

its performance across various metrics. As shown434

in Table 2, TinyGroundingGPT-3B achieves results 435

comparable to models such as MiniCPM-V-2 and 436

InternVL-2, which utilize dynamic high resolution 437

or enriched training data. Compared to models 438

with similar fine-tuning data, including LLaVA- 439

1.5, GroundingGPT, TinyLLaVA, and LLaVA- 440

Phi, TinyGroundingGPT-3B demonstrates superior 441

image understanding capabilities on the VQAv2, 442

GQA, SQA, and POPE benchmarks, achieving in- 443

creases of 2.6% on MMB and 1.2% on GQA over 444

GroundingGPT-7B. Notably, TinyGroundingGPT- 445

1.5B outperforms LLaVA-Phi, despite its larger 446

parameter count, on most benchmarks. We further 447

evaluated the MLLMs for object hallucination on 448

the POPE benchmark, with more details provided 449

in Appendix A.3. Overall, TinyGroundingGPT, op- 450

timized by our multi-scale visual knowledge align- 451

ment method, achieved impressive results across 452

multiple evaluation sets. 453

4.4 Ablation Study 454

Ablation Study on Additional Multi-scale 455

Fine-grained Grounding Dataset. In Stage 2, 456

compared to traditional methods that rely solely 457

on alignment datasets for object texts and coor- 458

dinates, we utilized our constructed multi-scale 459

fine-grained grounding datasets for TinyGround- 460

ingGPT, enabling multi-scale alignment among 461

object texts, images, and coordinates. The 462

ablation study in Table 3 shows that our proposed 463

multi-scale fine-grained alignment outperforms 464

traditional referring data that only aligns object 465

texts with coordinates. For both the 3B and 1.5B 466

TinyGroundingGPT models, our method enhanced 467

performance on the RefCOCO, RefCOCO+, and 468
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Models LLM Size VQAv2 GQA SQAI POPE MMEP MMB LLaVAW

BLIP-2 (Li et al., 2023a) 13B 41.0 41 61 85.3 1293.8 - 38.1
InstructBLIP (Dai et al., 2023) 7B - 49.2 60.5 - - 36 60.9
InstructBLIP (Dai et al., 2023) 13B - 49.5 63.1 78.9 1212.8 - 58.2

Shikra (Chen et al., 2023a) 13B 77.4 - - - - 58.8 -
LLaVA-1.5 (Liu et al., 2023a) 7B 78.5 62.0 66.8 85.9 1510.7 64.3 63.4

GroundingGPT (Li et al., 2024c) 7B 78.7 62.1 - 87.4 1454.2 63.8 70.9
Qwen-VL-Chat (Bai et al., 2023) 7B 78.2 - 68.2 - 1487.5 60.6 -

MiniCPM-V-2+ (Yao et al., 2024) 2.8B - - - 87.8 - 69.6 69.2
InternVL-2+ (Chen et al., 2024b) 2B - 61.0 - 88.3 1439.6 - 62.5

LLaVA-Phi (Zhu et al., 2024) 2.7B 71.4 - 68.4 86.7 1335.1 59.8 -
TinyLLaVA (Zhou et al., 2024) 2.7B 77.7 61.0 70.1 86.3 1437.3 68.3 67.1

TinyGroundingGPT 3B 79.3 63.3 70.3 87.9 1423.2 66.4 67.5
1.5B 77.9 62.2 63.1 87.6 1392.4 64.2 65.3

Table 2: Comparison of MLLMs on image understanding benchmarks. Benchmark names are abbreviated due
to space limits. VQAv2 (Goyal et al., 2017); GQA (Hudson and Manning, 2019); SQAI:ScienceQA-IMG (Lu
et al., 2022); POPE (Li et al., 2023b); MME (Fu et al., 2023); MMB:MMBench (Liu et al., 2025); LLaVAW:
LLaVA-Bench (In-the-Wild) (Liu et al., 2024). "+" indicates that the model uses dynamic high-resolution.

RefCOCOg benchmarks. For instance, on the469

RefCOCO+ benchmark, our method achieved an470

increase of 1.67% for the 3B model and 0.87% for471

the 1.5B model, demonstrating the effectiveness of472

our proposed fine-grained alignments and datasets.473

474

Size Alignment RefCOCO RefCOCO+ RefCOCOg

3B
T, C 87.35 78.89 83.25

T, C, I 88.50 80.56 83.69

1.5B
T, C 85.93 77.05 79.54

T, C, I 86.33 77.92 79.96

Table 3: Ablation study on our Additional Multi-scale
Fine-grained Grounding Dataset in Stage 2. Here, T, C,
and I denote Text, Coordinate, and Image, respectively.
We report the average accuracy for each benchmark.

Ablation Study on Global Grounding Datasets.475

In Stage 3, we utilized the constructed Global476

Grounding Datasets for TinyGroundingGPT to477

bridge different objects with varied representations478

and enhance global image comprehension. The re-479

sults presented in Table 4 showcased the effective-480

ness of this strategy. Notably, a reduction in hallu-481

cinations can be observed on the POPE benchmark.482

Overall, significant improvements in visual under-483

standing benchmarks underscored the value of de-484

tailed global knowledge learning and the Global485

Grounding Datasets, which enhanced global object486

alignment by connecting different objects repre-487

sented by texts, coordinates, and images.488

Ablation Study on Models. (1) Larger parame-489

ters: We applied our method to TinyGroundingGPT490

with the larger language model Qwen2.5-7B (Ap-491

pendix A.4). (2) Vision encoders: We explored the492

Size Global Align GQA VQAv2 SQA POPE MMB

3B
61.7 77.4 65.6 86.6 63.1

✓ 63.3 79.3 70.3 87.9 66.4

1.5B
60.3 77.3 62.1 86.4 63.0

✓ 62.2 77.9 63.1 87.6 64.2

Table 4: Ablation study on our Global Grounding
Datasets in Stage 3. If the model is trained without
global alignment, it indicates that we do not use these
datasets to further align different objects represented by
texts, coordinates, and images.

Figure 4: A case for the outputs of our TinyGrounding-
GPT when the input is either enhanced with coordinates
or not. Probability values indicate the likelihood of gen-
erating corresponding tokens.

effects of our multi-scale vision encoders (ViT and 493

DINOv2) (Appendix A.5). (3) Qwen2 as pretrained 494

LLM: We compared Qwen2.5 with Qwen2, demon- 495

strating Qwen2.5’s effectiveness (Appendix A.6). 496

Overall, the results highlight the effectiveness of 497

our proposed method and TinyGroundingGPT. 498

5 Discussion 499

5.1 Effectiveness of Fine-grained Knowledge 500

Our fine-grained visual knowledge alignment 501

method not only improves grounding ability but 502
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Figure 5: Visualization of the attention map for image patches with different object representation outputs (texts,
coordinates, and images, underlined). The red bounding box denotes the target region. The attention at the four
corners serves as anchors for grounding, while attention at specific objects highlights their importance.

also enhances comprehensive image understand-503

ing. Examples of image descriptions generated504

by TinyGroundingGPT are provided in Appendix505

Fig. 13, demonstrating the model’s ability to avoid506

incorrect or nonexistent object descriptions. We507

evaluated the annotation quality by selecting 50508

images from RefCOCO-test and using GPT-4V to509

score descriptions from different models. As de-510

tailed in Appendix A.7, TinyGroundingGPT-3B511

outperforms GroundingGPT-7B and Qwen2-VL-512

2B in overall quality and richness. Additionally,513

incorporating fine-grained knowledge into input514

questions for TinyGroundingGPT results in more515

accurate and persuasive responses. As shown in516

Fig. 4, adding coordinates to object texts in queries517

enhances response confidence compared to directly518

asking about objects in an image. This underscores519

the potential of fine-grained MLLMs.520

5.2 Interpretability for High-level Alignments521

Grounding MLLMs fundamentally model the max-522

imum likelihood output based on visual inputs523

and text prompts. By conditioning on the refer-524

ring prompt, the model identifies which parts of525

the image significantly influence the output. To526

demonstrate the effectiveness of our multi-scale527

fine-grained grounding capability, we visualize the528

attention map in the last layer of our TinyGround-529

ingGPT. As shown in Fig. 5, the attention maps of530

our TinyGroundingGPT reveal distinct location at-531

tributions, unlike the baseline GroundingGPT-7B.532

For object coordinates, high attention scores are533

concentrated at the four corners of the image, serv-534

ing as anchors for bounding box coordinates, as535

well as at the locations of the intended objects men-536

tioned in the prompt. When prompted to describe537

a specific region, the model directs increased atten-538

tion to the corresponding object patches. For the539

output of an object image, the attention values be- 540

tween image patches and the target object highlight 541

relevant regions and reinforce grounding anchors. 542

This indicates that TinyGroundingGPT effectively 543

learns both aligned features and grounding infor- 544

mation for object images. In summary, our find- 545

ings underscore the effectiveness of the proposed 546

fine-grained visual knowledge alignment method, 547

achieving high-level alignment among different ob- 548

ject representations. This provides insights for fur- 549

ther explaining MLLMs, particularly in grounding 550

tasks. More visualizations can be found in Ap- 551

pendix Fig. 14. 552

6 Conclusion 553

In this paper, we introduce a novel fine-grained vi- 554

sual knowledge alignment method for MLLMs to 555

address the limitations of fine-grained alignments 556

in previous works. Our method progresses from 557

easy to hard, emphasizing multi-scale fine-grained 558

alignments among object texts, coordinates, and im- 559

ages from both local and global perspectives. This 560

empowers models to effectively learn fine-grained 561

knowledge and facilitates reasoning and grounding 562

tasks. Additionally, we develop a multi-scale fine- 563

grained enhancement data synthesis pipeline that 564

leverages open-source datasets and advanced mod- 565

els to generate over 300K essential training sam- 566

ples. Building on this foundation, we train Tiny- 567

GroundingGPT, a series of smaller models (1.5B 568

and 3B parameters) optimized through high-level 569

alignments, capable of handling various visual and 570

grounding tasks, often surpassing larger models. 571

Experimental results demonstrate the effectiveness 572

of our proposed method and the generated datasets. 573

Our work contributes to the advancement of practi- 574

cal applications for MLLMs. 575
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Limitations576

Our work has developed a fine-grained visual577

knowledge alignment method for MLLMs. Based578

on this, we constructed the necessary datasets579

and trained our proposed TinyGroundingGPT.580

There are several aspects that can be further im-581

proved: (1) Additional techniques can be applied582

to TinyGroundingGPT to further enhance its perfor-583

mance. For example, the dynamic high-resolution584

in works (Xu et al., 2024; Chen et al., 2024b) has585

been proved to improve image understanding ca-586

pabilities. (2) Additional datasets, such as OCR587

datasets described in (Wang et al., 2024a), can be588

utilized for supervised fine-tuning of TinyGround-589

ingGPT in Stage3 to further enhance its multi-590

modality capabilities. (3) Our current multi-scale591

alignments focus only on objects within a single592

image. This approach can be further extended to593

include similar objects or objects captured from594

different angles across multiple images, thereby en-595

hancing the robustness and generality of alignment.596
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A Appendix 871

A.1 Implementation Details 872

We present additional details about our experimen- 873

tal configuration to facilitate the reproduction of 874

our model. The hyperparameters for all stages are 875

summarized in Table 5. We adopted a progressive 876

training strategy in Stage 1 because the loss after 877

pretraining the MLP for TinyGroundingGPT was 878

still relatively high (about 3.0). Further finetun- 879

ing TinyGroundingGPT with both the MLP and 880

pretrained LLMs reduced the loss to around 1.5 881

for improving multi-modality ability. Moreover, 882

the object coordinates in training were normalized 883

after padding. 884

Size
Stage 1

Stage 2 Stage 3
Pretrain Finetune

Batch size 32 32 32 16
Learning rate 1e-3 2e-5 2e-5 2e-5

Epochs 1 1 1 2
Learning schedule Cosine decay

Warm-up ratio 0.03 0.03 0.03 0.03
Weight decay 0 0 0 0

BF16 ✓ ✓ ✓ ✓
TF32 ✓ ✓ ✓ ✓

DeepSpeed stage ZeRO2
GPUs 8xA100

Table 5: The hyperparameters for model training.

A.2 Dataset Details 885

We provide additional details about the datasets we 886

utilized, as summarized in Table 6. We also in- 887

clude additional examples of the generated datasets 888

in Fig. 8 for Stage 2 and in Fig. 9 for Stage 3. 889

11



Specifically, during the training process, the object890

images are cropped and zoomed from the origi-891

nal image and then fed into the vision encoders892

to obtain object image features. These features893

are subsequently used to replace the placeholder894

denoted as <img> in the QA pairs.895

As described in Section 3.2, we developed a896

multi-scale fine-grained enhancement data synthe-897

sis pipeline, which includes the construction of898

a multi-scale fine-grained grounding dataset (in899

Stage 2) and a global grounding dataset (in Stage900

3). In Fig. 7, we present the prompt messages used901

for object recognition and relation extraction to pre-902

pare additional data material. Fig. 10 illustrates the903

detailed processing steps involved in constructing904

the multi-scale fine-grained grounding dataset. Fur-905

thermore, Figs. 11 and 12 outline the processing906

steps for constructing the global grounding dataset.907

Additionally, Table 7 shows an example prompt908

used to evaluate the generated QA pairs. Based on909

these evaluations, we filtered out low-quality QAs910

(or descriptions), specifically those with incorrect911

answers or low-quality scores (<3).912

Stage Dataset Samples

Stage1 LLaVA-Pretrain-595k 595K

Stage2 Alignment data
Text-coordinate pairs 4.1M

Image-coordinate pairs 210K
Text-image pairs 46K

Stage3 SFT data
LLaVA-v1.5, ShareGPT4V 665K

Grounding-conv 28K
Grounding-description 29K

Table 6: The dataset details used for model training.

A.3 Object Hallucination Evaluation913

We evaluated MLLMs for object hallucination, as914

shown in Table 8. Higher accuracy and F1-score915

metrics, along with a lower ’Yes’ metric, indi-916

cate better performance. Our TinyGroundingGPT917

yielded outstanding results across all three sam-918

pling subsets. Notably, TinyGroundingGPT-3B919

outperformed larger models like InstructBLIP-13B920

in the challenging Adversarial subset, achieving921

an increase of 14.67% in accuracy and a 8.90% in-922

crease in F1 score, despite a decrease of 27.77% in923

the ’Yes’ metric. Compared to GroundingGPT-7B,924

our 3B model excelled in the Popular and Adver-925

sarial subsets for both accuracy and F1 score. Sim-926

ilarly, TinyGroundingGPT-1.5B achieved higher927

accuracy and F1 score than some larger models928

like Shikra while maintaining a lower ’Yes’ score.929

You are tasked with evaluating QA pairs based on an
image. Please assess the provided QA pairs according
to the following criteria:
**Quality (1-5):**

1 - The QA is incoherent, lacks flow, and fails to convey
the content of the image effectively.

2 - The QA is somewhat relevant but contains notable
inaccuracies or lacks clarity.

3 - The QA is generally clear and relevant, though it
may overlook some important details or context from
the image.

4 - The QA is clear, coherent, and accurately reflects the
content of the image, with only minor omissions.

5 - The QA is highly coherent and effectively captures
the essence and details of the image, providing insightful
and accurate information.

Please evaluate the given QA pair on a scale from 1 to 5
and provide a brief justification for your rating, as well
as determine whether the QA is correct.

Your output should be structured as follows: "Quality":
"Your rating here.", "Correct": "Yes or No", "Justifica-
tion": "Your justification here.".

Do not include any additional text outside of this format.

Table 7: The prompt for GPT-4V to evaluate generated
QAs.

This superior performance can be attributed to its 930

fine-grained knowledge alignment from both global 931

and local perspectives during training. 932

A.4 Grounding Ability for Larger Model 933

We further apply our fine-grained visual knowl- 934

edge alignment method to TinyGroundingGPT, us- 935

ing Qwen2.5-7B as the larger-parameter language 936

model, to evaluate its image grounding capability. 937

The results in Table 9 highlight the method’s effec- 938

tiveness, with increases of 0.68% on RefCOCO+- 939

testA and 0.81% on RefCOCO+-testB. 940

A.5 Ablation Study for Vision Encoders 941

Image features from ViT-L/14 (Radford et al., 942

2021) (second-to-last layer) capture more object 943

semantics, while those from DINOv2-L/14 (Oquab 944

et al., 2023) (last layer) capture more local fine- 945

grained details, as shown in Fig. 6. The multi-scale 946

vision encoders in our proposed TinyGrounding- 947

GPT align well with the fine-grained alignment of 948

our method. As shown in Table 10, this approach 949

improves performance on benchmarks highly re- 950

lated to fine-grained understanding, such as POPE 951

and VQAv2. 952
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Models LLM Size Random Popular Adversarial
Accuracy F1-Score Yes Accuracy F1-Score Yes Accuracy F1-Score Yes

LLaVA 7B 72.16 78.22 76.29 61.37 71.52 85.63 58.67 70.12 88.33
mPLUG-Owl 7B 53.97 68.39 95.63 50.90 66.94 98.57 50.67 66.82 98.67
MiniGPT-4 13B 79.67 80.17 52.53 69.73 73.02 62.20 65.17 70.42 67.77

InstructBLIP 13B 88.57 89.27 56.57 82.77 84.66 62.37 72.10 77.32 73.03
Shikra 7B 86.90 86.19 43.26 83.97 83.16 45.23 83.10 82.49 46.50

GroundingGPT 7B 89.79 89.22 43.13 88.23 87.38 43.23 86.17 85.50 45.43

TinyGroundingGPT 3B 89.93 89.47 43.08 88.56 87.90 43.43 86.77 86.22 45.26
1.5B 89.59 88.98 42.92 88.67 87.90 42.87 86.74 86.04 44.77

Table 8: Results on the POPE benchmark for object hallucination evaluation. "Yes" represents the probability of
positive answers to the given question.

A.6 Ablation Study for Pretrained LLM953

We conduct additional experiments to explore the954

effect of the pretrained LLM on TinyGrounding-955

GPT. As shown in Table 11, TinyGroundingGPT956

with Qwen2.5-1.5B outperforms that with Qwen2-957

1.5B in image understanding, highlighting the effec-958

tiveness of Qwen2.5 for our proposed TinyGround-959

ingGPT.960

Model Alignment RefCOCO+
val testA testB

TinyGroundingGPT-7B T, C 83.98 88.08 77.90
T, C, I 84.56 88.76 78.71

Table 9: Performance comparison on the referring ex-
pression comprehension(REC) task for whether con-
ducting our proposed Multi-scale Fine-grained Local
Knowledge Alignment.

Vision Encoder VQAv2 GQA SQAI POPE MMEP MMB

ViT 76.5 61.4 64.8 85.8 1417.8 63.0
ViT + DINOv2 77.9 62.2 63.1 87.6 1392.4 64.2

Table 10: Ablation Study on our TinyGroundingGPT-
1.5B for the multi-scale vision encoders.

Pretrained LLM VQAv2 GQA SQAI POPE MMEP MMB

Qwen2-1.5B 76.3 61.2 56.8 85.7 1386.9 58.9
Qwen2.5-1.5B 77.9 62.2 63.1 87.6 1392.4 64.2

Table 11: Ablation Study on our TinyGroundingGPT-
1.5B for the pretrained LLM.

A.7 Assessment for Image Annotation961

As illustrated in Section 5.1, we provided examples962

of image descriptions generated by TinyGround-963

ingGPT in Fig. 13. Moreover, we selected 50 im-964

ages from RefCOCO-test and utilized GPT-4V to965

evaluate image descriptions produced by various966

methods. We assessed the image descriptions us- 967

ing scores ranging from 1 to 5 across three per- 968

spectives: "Quality," which reflects overall quality; 969

"Richness," which measures the diversity of object 970

descriptions; and "Accuracy," which pertains to 971

precision. The prompt used for GPT-4V and the 972

scoring details are presented in Table 12. As the re- 973

sults summarized in Table 13, TinyGroundingGPT 974

achieved better overall quality and richness com- 975

pared to GroundingGPT-7B and Qwen2-VL-2B. 976

Model Quality Richness Accuracy

GPT-4V 4.24 4.10 4.88
GroundingGPT-7B 3.68 3.20 3.38

Qwen2-VL-2B 3.90 3.64 4.18

TinyGroundingGPT-3B 4.04 3.90 3.66

Table 13: The assessment for image annotation by GPT-
4V includes "Quality" for overall quality, "Richness"
for the diversity of object descriptions, and "Accuracy"
for precision. Scores are based on the average ratings
(1-5) from 50 samples.

A.8 More Visualizations 977

As illustrated in Section 5.2, we visualized the last- 978

layer attention maps of both the GroundingGPT- 979

7B baseline and our TinyGroundingGPT-1.5B. The 980

attention map in grounding MLLMs not only en- 981

hances interpretability but also illustrates the align- 982

ment between the model’s output and the input 983

image. The process for obtaining the heatmap of 984

attention involves several steps: (1) we select the 985

attention scores between image patches and ob- 986

ject representations (i.e., texts, coordinates, and 987

images); (2) we sum the attention scores across 988

the dimensions of both the attention heads and ob- 989

ject representations; (3) We map the normalized 990

attention scores onto the input image patches. 991

Additional visualizations are displayed in 992
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Evaluate the image description based on the following criteria:

Quality (1-5): Richness (1-5): Accuracy (1-5):

1 - The description is incoherent, lacks
flow, and does not effectively convey the
contents of the image.

1 - The description only mentions a few
basic objects or elements in the image,
without any contextual details or rela-
tionships.

1 - The description contains multiple sig-
nificant inaccuracies or errors in identi-
fying objects, elements, or their charac-
teristics.

2 - The description has some coherence
but is still disjointed, with limited flow
and incomplete coverage of the image.

2 - The description includes some ad-
ditional details about the objects or ele-
ments but lacks depth in terms of their
relationships or broader context.

2 - The description has some inaccura-
cies or errors in identifying objects, ele-
ments, or their characteristics.

3 - The description is generally coherent,
with reasonable flow, and covers most of
the key elements in the image.

3 - The description provides a reason-
able level of detail about the objects and
elements, as well as some of their rela-
tionships or broader context.

3 - The description is generally accurate
in identifying the objects, elements, and
their characteristics, with only minor in-
accuracies.

4 - The description is coherent, with
good flow, and comprehensively covers
the important aspects of the image.

4 - The description is rich in detail,
covering a diverse range of objects,
elements, their relationships, and the
broader context of the scene.

4 - The description is highly accurate
in identifying the objects, elements, and
their characteristics, with minimal to no
inaccuracies.

5 - The description is highly coherent,
with excellent flow, and articulately cap-
tures the essence of the image in a com-
pelling manner.

5 - The description is exceptionally rich,
providing abundant details about the di-
verse array of objects, elements, their
intricate relationships, and the compre-
hensive context of the scene.

5 - The description is completely accu-
rate in identifying all the objects, ele-
ments, and their characteristics, with no
discernible errors or hallucinations.

Table 12: The prompt for GPT-4V to assess descriptions from the perspectives of Quality, Richness, and Accuracy.

Fig. 14. As shown, TinyGroundingGPT reveals993

more distinct location attributions, indicating that it994

effectively learned multi-scale fine-grained knowl-995

edge and achieved high-level alignments among996

object texts, coordinates, and images. This pro-997

vides insights for further explaining MLLMs, par-998

ticularly in grounding tasks. We also provide a999

demo for utilizing TinyGroundingGPT in Fig. 15.1000
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Figure 6: The visualizations of image feature cosine similarity for the selected patch (highlighted with yellow box).
Lighter colors indicate higher feature similarity.

Figure 7: The prompt message for object recognition and relation extraction.

Figure 8: Our generated various kinds of data used in Stage2 for achieving high-level alignments among texts,
coordinates, and images, where the < img > denotes the corresponding augmented object image.

Figure 9: Our generated various kinds of data used in Stage3 for achieving global object alignment, where the
< img > denotes the corresponding augmented object image.
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Figure 10: The prompt message and user’s input example used for generating our Fine-grained Grounding Dataset
in Stage2.

16



Figure 11: The prompt message and user’s input example used for generating our Multi-round Grounding Conversa-
tion Data in Stage3.
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Figure 12: The prompt message and user’s input example used for generating our Grounding Description Data in
Stage3.

Figure 13: A comparison of generated image descriptions between TinyGroundingGPT trained with our method
and without it.
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Figure 14: The visualization of the attention map for image patches with different object representation outputs
(texts, coordinates, and images, which are underlined), where the red bounding box denotes the target region.

Figure 15: A demo for the use of our TinyGroundingGPT.
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