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Abstract

Despite recent advances in text-to-speech (TTS) technol-
ogy, auto-narration of long-form content such as books remains
a challenge. The goal of this work is to enhance neural TTS to
be suitable for long-form content such as audiobooks. In ad-
dition to high quality, we aim to provide a compelling and en-
gaging listening experience with expressivity that spans beyond
a single sentence to a paragraph level so that the user can not
only follow the story but also enjoy listening to it. Towards that
goal, we made four enhancements to our baseline TTS system:
incorporation of BERT embeddings, explicit prosody predic-
tion from text, long-context modeling over multiple sentences,
and pre-training on long-form data. We propose an evaluation
framework tailored to long-form content that evaluates the syn-
thesis on segments spanning multiple paragraphs and focuses
on elements such as comprehension, ease of listening, ability to
keep attention, and enjoyment. The evaluation results show that
the proposed approach outperforms the baseline on all evaluated
metrics, with an absolute 0.47 MOS gain in overall quality. Ab-
lation studies further confirm the effectiveness of the proposed
enhancements.

Index Terms: speech synthesis, prosody, natural language pro-
cessing, audiobook synthesis

1. Introduction

Recent advances in text-to-speech (TTS) synthesis, such as
Tacotron [1], FastSpeech 2 [2], and WaveRNN [3], have en-
abled neural network-based TTS systems. A typical neural
TTS system consists of two main neural networks: an acous-
tic model and a vocoder. The acoustic model takes graphemes
or phonemes as input and predicts Mel-spectrogram as an in-
termediate feature, while the vocoder takes Mel-spectrogram as
input and generates speech samples. Neural TTS can produce
quality that is close to natural speech [4, 5], and synthesis ap-
plications like virtual agents can now have human-like prosody.
However, the scope of the input text and the prosodic diversity
of the output are fairly constrained in such applications. The
input text is frequently made up of single, short sentences, and
the vocabulary is small and often seen in the training data. Fi-
nally, the required prosodic variations mostly encompass simple
declarative and interrogative sentences.

The development of synthetic audiobooks deals with a
broad range of content. There are differences in sentence length,
from short to long sentences; in sentence style, from simple
to compound to complex sentences; in sentence types, from
declarative to interrogative to exclamatory and more; there are
other elements in books such as dialogue, and finally the speak-
ing style and expressivity of speech is dependent on the content
and the context. As a result, the TTS system must be able to

cover the prosodic range required for a variety of content while
ensuring that the generated speech is not only intelligible but
also enjoyable to listen to. We specifically add the following
four enhancements to improve long-form reading required in
audiobooks synthesis:

1. We incorporate semantic and syntactic information by inte-
grating BERT [6] embeddings learned from large amounts
of unlabeled text data. BERT embeddings contain infor-
mation about the semantics of the phrase and the rele-
vance of each word, thus producing more natural prosody
[7,8,9,10].

2. While synthesizing long-form expressive text, we need to
synthesize a wide range of speaking styles, and the speaking
style needs to be suitable for the content. We integrate style
embeddings [11, 12, 13] to our baseline neural TTS system,
where the style embeddings are predicted from text.

3. Conventional TTS systems process each sentence sepa-
rately. As a result, they fail to capture inter-sentence
prosodic dependencies. In this work, we increase the input
and output to the model to encompass multiple sentences at
a time to learn high-level prosody within the paragraph and
to transition smoothly between sentences and phrases.

4. To learn the pronunciation of a large vocabulary and diverse
prosody required in audiobook synthesis, we pre-train our
models on long-form data.

1.1. Relation to prior work

Public domain audiobooks have been widely used as source ma-
terial to train TTS models. For example, LibriSpeech [14] and
a derivative dataset LibriTTS [15] are commonly used as they
provide large amounts of relatively high-quality speech mate-
rial. The Blizzard Challenge, an annual event for evaluating
TTS systems, has included audiobooks as their training data
and the target for evaluation [16, 17]. Since then, some stud-
ies have addressed various aspects in the synthesis of audio-
books [18, 9, 19, 20, 21, 22, 23, 24]. The closest works to ours
are presented in [9, 22, 23, 24], where similar techniques are
proposed to improve multi-sentence or audiobook TTS. In this
work, we propose a TTS system to synthesize long-form con-
text like audiobooks using long-form neural text-to-speech, and
we evaluate the synthesis on segments spanning multiple para-
graphs. Previous work on evaluating long-form TTS has been
conducted in [25] where single-sentence evaluation was con-
cluded to be insufficient. An evaluation protocol for evaluating
TTS for audiobook reading was proposed in [26], inspired by
the rating scales in [27]. In this work, we present an evaluation
method with nine questions specifically aimed for evaluating
the listening experience of synthetic audiobooks.
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Figure 1: Neural TTS architecture with proposed improvements.

2. Methods

The proposed system has two main modules: an acoustic model,
similar to FastSpeech 2 [2], that takes phonemes and punctua-
tions as input and generates a Mel-spectrogram, and a vocoder,
similar to WaveRNN [3], that generates speech samples condi-
tioned on the Mel-spectrogram. In this work, we focus on the
acoustic model and explain the enhancements for generating
high quality audiobooks, since the pronunciation and prosody
are mostly determined by the Mel-spectrogram. For the detailed
implementation of the vocoder, we refer to [28]. In this section,
we first introduce the baseline acoustic model architecture, and
then describe additional modeling and training data enhance-
ments that enable high-quality audiobook synthesis.

2.1. Acoustic model architecture

Baseline. Our baseline acoustic model, shown in Fig. 1, follows
the FastSpeech 2 architecture [2] with certain modifications. In-
put to the system is phoneme sequence along with punctuation
and word boundaries, and the output is Mel-spectrogram. The
model is based on a feed-forward Transformer (FFT) [29, 30]
encoder and dilated convolution decoder. The encoder consists
of an embedding layer that converts the phoneme sequence to a
dense representation and appends positional encodings. This is
followed by a series of FFT blocks where each FFT block con-
sists of a self-attention layer [29] and 1-D convolution layers
along with layer normalization and dropout to output phoneme
embeddings. The phoneme embeddings are fed to the variance
adaptors that predict phone-wise duration, pitch, and energy.
The variance adaptors consist of 1-D convolution layers, layer
normalization, and dropout. Instead of using pitch spectrograms
as in [2], we use continuous pitch with quantization and a pro-
jection to an embedding. The predicted pitch and energy are
then added to the phoneme embeddings and upsampled accord-
ing to the predicted phone-wise durations. The decoder consists
of a series of dilated convolution stacks instead of the original
FFT blocks as in [2], which improves model inference speed
and memory usage. Finally, the decoder converts the upsam-
pled encoder sequence into a Mel-spectrogram.

BERT. The input to the baseline model is a phoneme sequence,
which contains pronunciation information but is lacking seman-
tic information. Moreover, the limited TTS training data does
not help in learning higher-level generalizations for prosody.
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Figure 2: Proposed method for learning the alignment between
BERT tokens and phonemes.

Therefore, the acoustic model has a limited capability to in-
fer appropriate prosody for various contexts in diverse speech
material. We incorporate semantic and syntactic information
through BERT [6] representations learned from large amounts
of text data to improve prosody. BERT is a multi-layer bidirec-
tional Transformer encoder that has been pre-trained on large
amounts of unlabeled text data through self-supervision. The
pre-trained BERT model generates word representations which
are then fed to a BERT encoder, which is trained with our sys-
tem to accommodate the additional input. The BERT encoder
is similar to the phoneme encoder but without the positional
encoding since that information has been provided inherently
through the BERT embeddings themselves. In our experiments,
fine-tuning the BERT model with audiobook material did not
show clear improvement over the pre-trained model, and there-
fore we do not fine-tune BERT model in this work.

It is not straightforward to combine BERT and phoneme
sequences as BERT represents input text as word pieces which
is not aligned with phoneme representation. In this work we
propose to align the BERT token sequence and the phoneme
sequence using a learned alignment as shown in Fig. 2. First,
we use heuristic rules to align BERT tokens and phoneme se-
quences of the training data. During training, the attention
alignment module uses the rule-based ground-truth alignment
for teacher forcing. BERT token sequence is upsampled and
concatenated with phoneme embeddings. At the same time we
use ground-truth alignment as target to compute the alignment
loss. During inference, the attention alignment module is used
to align BERT tokens and phoneme sequences.

Text-based prosody prediction. To further improve the
prosody and expressivity of audiobook synthesis, we incor-
porate a prosody encoder to the baseline architecture. The
prosody encoder is based on the Text-Predicted Global Style
Token (TP-GST) method, and more specifically on Text Pre-
dicted Sentence Embedding (TPSE) [13]. During training, the
GST module learns to capture global variation in the training
data using a reference encoder, and a style attention module
that learns style vectors. Given a Mel-spectrogram, GST mod-
ule predicts style embedding that is a convex combination of
style vectors. The TPSE module takes encoder embeddings as
input and learns the relationship between the text and the style
embedding. At inference time, style embeddings are predicted
given the encoder embeddings using the TPSE module. TP-
GST was proposed to work with an auto-regressive Tacotron
model [1]. In this work, we use TP-GST with FastSpeech 2
model, and therefore replace recurrent components of the refer-
ence encoder and the TPSE module with feed-forward convo-
lution layers. Phoneme encoder embeddings and the style em-
bedding from TPSE together act as input to the decoder and the



variance adaptors so that the style embedding can influence both
the Mel-spectrogram and acoustic feature generation.

2.2. Data enhancements

Long-context modeling. Conventional TTS systems model
one utterance at a time during both training and inference. For
applications like audiobook synthesis, where the prosody of ut-
terances depends not only on the content but also on the context,
utterance-level training and inference does not generalize well
for long-form reading.

In this work, we propose long-context modeling where we
model multi-sentence input and multi-sentence output to learn
intra-sentence prosody and to transition smoothly between sen-
tences and paragraphs. In long-context modeling, the input and
output are consecutive sentences either from the same para-
graph or different paragraphs of the recording. To learn sev-
eral contexts, the combination of multi-sentence input/output is
done recursively so that utterances appear multiple times in the
training data: once as the first utterance, once as the second
utterance, etc.

Pre-training. Synthesizing long-form material like audiobooks
present various challenges such as generalizability to unseen
input, necessity to model the pronunciation of a large vocab-
ulary, and diverse prosody based on content and context. To
overcome these challenges we first pretrain our models on long-
form content. Several methods can be applied to help the model
generalize better, such as multi-speaker modeling [31, 32], pre-
training and fine-tuning [33, 34, 35], or meta-learning [36]. In
this work, we use a simple but effective model pre-training and
fine-tuning.

3. Experiments
3.1. Data

Two proprietary American English single-speaker audiobook
datasets were used to test the proposed techniques: a 29-hour
dataset of a female voice and a 42-hour dataset of a male
voice. For pre-training, we prepared corresponding pre-training
datasets for both voices. To pretrain the female voice, we used
308 hours of long-form material from 36 female speakers, and
for the male voice, we used 208 hours from 47 male speak-
ers. To train a conventional baseline TTS system that does not
include any enhancements proposed in the paper, we used 36
hours of speech from a female voice talent recorded in a consis-
tent style for conventional TTS purposes.

3.2. Systems
We used the following systems and samples in evaluation:

* Baseline-conventional: Baseline architecture, described in
Sec. 2.1, trained with the conventional TTS dataset.

¢ Baseline-audiobook: Baseline architecture trained with the
audiobook datasets.

* Proposed: Baseline architecture combined with the pro-
posed BERT, TPSE, long-context, and pre-training en-
hancements, and trained with the audiobook datasets.

* Natural recordings: Recordings from audiobooks for com-
parison, includes both male and female speech samples.

The baseline-conventional system was trained with the conven-
tional TTS dataset, while the baseline-audiobook and proposed
systems were trained with the audiobook datasets described in

Sec. 3.1. Baseline-conventional and baseline-audiobook sys-
tems are trained on respective datasets for 140k steps using dis-
tributed training algorithm SyncSGD [37] on 16 GPUs with
a batch size of 32. We chose Adam optimizer (81 = 0.9,
B2 = 0.999, ¢ = 1le—8) with an initial learning rate of le—3.
To train the proposed system, we build long-context pre-
train and fine-tune datasets by combining the input and output
of two consecutive sentences (2-sentence modeling). To avoid
memory issues, we set a threshold of 200 phonemes for the
combined input of the two sentences. The proposed system was
first pre-trained on the pre-train dataset for 400k steps using the
same settings as in the baseline systems, and then fine-tuned (all
the parameters of the model are fine-tuned) on the target dataset
with smaller initial learning rate of 1e—4 for another 140k steps.

3.3. Evaluation

TTS systems are typically assessed at sentence-level using
mean opinion score (MOS) [38], where listeners listen to a sen-
tence and rate it on a scale of 1 to 5. However, the traditional
approach of evaluating at sentence-level and with focus only on
overall opinion is not appropriate for evaluating synthetic audio-
books as there are many factors that contribute to the listening
experience. Evaluation of long-form synthesis has been inves-
tigated for example in [25] where it was shown that the tradi-
tional way of evaluating sentences in isolation is not sufficient.
In this work, we propose to evaluate synthesized audiobooks
using much longer segments (approximately two minutes), and
listeners not only rate the overall opinion but rate multiple di-
mensions on a scale of 1 to 5 as follows:

1. Overall: What is your overall opinion of the audiobook
sample you just heard? (1—Very poor, 2—Poor, 3—Ok,
4—Good, 5—Excellent)

2. Personality: How would you rate this narrator’s character
or personality? (same rating scale as above)

3. Voice-content match: Is this narrator’s voice appropriate
for the content in the sample? (same rating scale as above)

4. Attention: How well was the narrator able to keep
your attention? (1—Difficult to maintain attention,
2—Considerable effort required to maintain attention,
3—Moderate effort required to maintain attention, 4—Easy
to maintain attention, 5—Very easy to maintain attention)

5. Dialog distinction: How easy was it to distinguish narra-
tion from character dialog in this sample? (1— Very difficult,
2—Difficult, 3—Neutral, 4—Easy, 5—Very easy, NA—Not
applicable)

6. Ease: Would it be easy or difficult to listen to this voice for
long periods of time? (same rating scale as above)

7. Comprehension: How well did you follow this narrator’s
storytelling? (1—Very difficult to follow, 2—Had some dif-
ficulties, 3—Fairly well, 4—Well, 5—Very well)

8. Pausing: How would you rate the narrator’s pausing in gen-
eral in this sample? (1—Very poor, missing or misplaced
pauses, 2—Poor in most cases, 3—0k, 4—Good in most
cases, S—Excellent, pauses where expected)

9. Pacing: How would you rate the narrator’s pacing in gen-
eral in this sample? (1—Very poor, unnaturally fast or
slow, 2—Poor in most cases, 3—O0k, 4—Good in most cases,
5—Excellent, pace as expected)

In the listening test, for each of the two voices, we had 55
two-minute samples for the baseline-audiobook and proposed
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Figure 3: Results of the MOS evaluation. The scores for male
and female voices are averaged to simplify the illustration.

systems. For the baseline-conventional system and the natural
recordings, we had 15 two-minute samples. All source text for
the evaluation was long-form content from books not used for
training the models. The samples were evaluated by 204 listen-
ers with 15 responses per sample for each of the 9 questions,
resulting in a total of (4 x55+2x15)x9x15=33,750 ratings.

The results, depicted in Fig. 3, show that the proposed
method outperforms both baseline systems for all of the 9 ques-
tions. There is an absolute 0.46 MOS gain in overall quality
for the proposed system compared to the baseline-audiobook
system. Results also show that baseline-audiobook system re-
sults in better synthesis compared to the baseline-conventional
system, indicating that training with dataset close to the target
task improves the synthesis quality. The nine evaluation met-
rics correlate with each other with personality and ease being
most correlated with the overall rating. Dialog distinction was
least correlated with the overall rating and had the lowest score
for the proposed system, which suggests room for improvement
and future work on this topic.

3.4. Ablation studies

We evaluated the effectiveness of the various proposed enhance-
ments using ablation studies. We removed each of the model-
based and data-based enhancements individually and together
as shown in Table 1, and evaluated the effect on quality in
comparison to the full proposed system. We synthesized 110
one-minute long samples for each of the 6 systems for both
voices. We received 12 ratings per sample from 372 listeners
using the comparative mean opinion score (CMOS) test on a
scale of -3 (much worse) to +3 (much better), resulting in a
total of 6x2x12x110=15,840 ratings. We measured signifi-
cant differences by running Wilcoxon signed-rank test with the
null-hypothesis being samples from each side are from the same
distribution. We rejected the null-hypothesis if p < 0.05.

The results, depicted in Table 1, show that all the pro-
posed enhancements have a significant positive effect on quality
with BERT and long-context modeling resulting in higher qual-
ity gains compared to pre-training and TPSE. The results indi-
cate that incorporating BERT embeddings, which contain infor-
mation about the semantics of the phrase and the importance
of each word, help the system produce more natural prosody.
Also, the long-context modeling helps in learning higher-level
prosody inside the paragraph and transition smoothly between

Table 1: CMOS scores and p-values of the ablation studies.

Female Male
System Score | p-value | Score | p-value
Proposed 0 N/A 0 N/A
— TPSE -0.14 | «0.001 | -0.00 0.930
— BERT -049 | «0.001 | -0.24 | «0.001
— TPSE — BERT -047 | «0.001 | -0.24 | <«0.001
— Pre-train -0.15 | «0.001 | -0.07 0.034
— Long-context -042 | «0.001 | -0.58 | <«0.001
— Pre-train — long-context | -0.57 | «0.001 | -0.41 | <0.001
+ 6-sentence long-context | +0.18 | <0.001 | +0.11 0.018

sentences. The pre-training brings improvements to both male
and female voices, but is less significant in comparison to BERT
and long-context methods. We hypothesize that this is due to the
model learning and benefiting more from the high quality fine-
tune recordings, and hence the effect from using pre-train data
is reduced. Improvements from TPSE are clear for the female
voice but less clear for male voice. This discrepancy might be
due to more varied and consistent prosody in the female data,
while the style variation was less prominent in the male data.

3.5. Long-context with 2 sentences vs. 6 sentences

Encouraged by the results on the proposed system with 2-
sentence modeling, we further increased the input/output from
2 sentences to 6 sentences. As shown in the last row of Table 1,
for both male and female voices, long-context modeling with 6
sentences outperforms 2 sentences.

4. Conclusions

Synthesizing long-form content like books is challenging for
TTS systems due to the wide range of speaking styles, long con-
text dependencies, and a generally high requirement for quality
from the listeners. In this paper we proposed four enhance-
ments to the baseline neural TTS system to overcome the chal-
lenges, namely: incorporation of BERT embeddings, explicit
prosody prediction from text, long-context modeling over mul-
tiple sentences, and pre-training on large amounts of data. An-
other challenging aspect of long-form content is the evaluation,
as the assessment should not only focus on quality and expres-
sivity but also on experience and enjoyment. Towards that we
evaluated long-form synthesis of audiobooks from different per-
spectives, such as enjoyment, comprehension, ability to keep
attention, and ease of listening, on segments spanning multi-
ple paragraphs. The evaluation results show that the proposed
approach outperforms the baseline in all evaluated dimensions,
with an absolute 0.46 MOS gain in overall quality. Further-
more, the proposed enhancements reduce the huge gap between
baseline synthesis and natural recordings for audiobook synthe-
sis. Ablation studies show that BERT and long-context model-
ing result in significant quality improvements followed by some
but less consistent improvements from pre-training and prosody
prediction.

5. References

[1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,
N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le,
Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous, “Tacotron:
Towards end-to-end speech synthesis,” in Interspeech, 2017.

[2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,



[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

“FastSpeech 2: Fast and high-quality end-to-end text to speech,”
arXiv, 2020.

N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio
synthesis,” arXiv, 2018.

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous,
Y. Agiomyrgiannakis, and Y. Wu, “Natural TTS synthesis by con-
ditioning WaveNet on Mel spectrogram predictions,” in /CASSP,
2017.

X. Tan, J. Chen, H. Liu, J. Cong, C. Zhang, Y. Liu, X. Wang,
Y. Leng, Y. Yi, L. He, F. Soong, T. Qin, S. Zhao, and T.-Y. Liu,
“NaturalSpeech: End-to-end text to speech synthesis with human-
level quality,” arXiv, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional Transformers for language under-
standing,” arXiv, 2018.

Q. Tian, J. Chen, and S. Liu, “The Tencent speech synthesis sys-
tem for Blizzard Challenge 2019,” in The Blizzard Challenge 2019
Workshop, 2019.

T. Kenter, M. Sharma, and R. Clark, “Improving the prosody of
RNN-based English text-to-speech synthesis by incorporating a
BERT model,” in Interspeech, 2020.

P. Makarov, S. Ammar Abbas, M. Lajszczak, A. Joly, S. Karlapati,
A. Moinet, T. Drugman, and P. Karanasou, “Simple and effective
multi-sentence TTS with expressive and coherent prosody,” in In-
terspeech, 2022.

A. Mukherjee, S. Bansal, S. Satpal, and R. Mehta, “Text aware
emotional text-to-speech with BERT,” in Interspeech, 2022.

R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton,
J. Shor, R. J. Weiss, R. Clark, and R. A. Saurous, “Towards
end-to-end prosody transfer for expressive speech synthesis with
Tacotron,” in ICML, 2018.

Y. Wang, D. Stanton, Y. Zhang, R. J. Skerry-Ryan, E. Battenberg,
J. Shor, Y. Xiao, F. Ren, Y. Jia, and R. A. Saurous, “Style tokens:
Unsupervised style modeling, control and transfer in end-to-end
speech synthesis,” in /ICML, 2018.

D. Stanton, Y. Wang, and R. Skerry-Ryan, “Predicting expressive
speaking style from text in end-to-end speech synthesis,” in SLT,
2018.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
riSpeech: An ASR corpus based on public domain audio books,”
in ICASSP, 2015.

H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen,
and Y. Wu, “LibriTTS: A corpus derived from LibriSpeech for
text-to-speech,” arXiv, 2019.

S. King and V. Karaiskos, “The Blizzard Challenge 2013,” in The
Blizzard Challenge 2013 Workshop, 2016.

——, “The Blizzard Challenge 2016,” in The Blizzard Challenge
2016 Workshop, 2016.

A. Chalamandaris, P. Tsiakoulis, S. Karabetsos, and S. Raptis,
“Using audio books for training a text-to-speech system,” in Ninth
International Conference on Language Resources and Evalua-
tion, 2014.

X. Li, C. Song, X. Wei, Z. Wu, J. Jia, and H. Meng, “Towards
cross-speaker reading style transfer on audiobook dataset,” arXiv,
2022.

Y. Wu, X. Wang, S. Zhang, L. He, R. Song, and J.-Y. Nie,
“Self-supervised context-aware style representation for expressive
speech synthesis,” in Interspeech, 2022.

W. Nakata, T. Koriyama, S. Takamichi, Y. Saito, Y. Ijima, R. Ma-
sumura, and H. Saruwatari, “Predicting VQVAE-based character
acting style from quotation-annotated text for audiobook speech
synthesis,” in Interspeech, 2022.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

X. Chen, S. Lei, Z. Wu, D. Xu, W. Zhao, and H. Meng, “Un-
supervised multi-scale expressive speaking style modeling with
hierarchical context information for audiobook speech synthesis,”
in 29th International Conference on Computational Linguistics,
2022.

D. Xin, S. Adavanne, F. Ang, A. Kulkarni, S. Takamichi, and
H. Saruwatari, “Improving speech prosody of audiobook text-to-
speech synthesis with acoustic and textual contexts,” arXiv, 2022.

L. Xue, F. K. Soong, S. Zhang, and L. Xie, “ParaTTS: Learning
linguistic and prosodic cross-sentence information in paragraph-
based TTS,” IEEE Trans. Audio Speech Lang. Proc., vol. 30, pp.
2854-2864, 2022.

R. Clark, H. Silen, T. Kenter, and R. Leith, “Evaluating long-
form text-to-speech: Comparing the ratings of sentences and para-
graphs,” in ISCA SSW10, 2019.

F. Hinterleitner, G. Neitzel, S. Moller, and C. Norrenbrock, “An
evaluation protocol for the subjective assessment of text-to-speech
in audiobook reading tasks,” in The Blizzard Challenge 2011
Workshop, 2011.

ITU-T Rec. P.85, “A method for subjective performance assess-
ment of the quality of speech voice output devices,” International
Telecommunication Union, 1985.

S. Achanta, A. Antony, L. Golipour, J. Li, T. Raitio, R. Rasipuram,
F. Rossi, J. Shi, J. Upadhyay, D. Winarsky, and H. Zhang, “On-
device neural speech synthesis,” in ASRU, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,”
arXiv, 2017.

Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y.
Liu, “Fastspeech: Fast, robust and controllable text to speech,” in
NeurlPS, 2019.

Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen,
R. Pang, 1. Lopez Moreno, Y. Wu et al., “Transfer learning from
speaker verification to multispeaker text-to-speech synthesis,” Ad-
vances in neural information processing systems, 2018.

M. Chen, X. Tan, Y. Ren, J. Xu, H. Sun, S. Zhao, T. Qin, and T.-
Y. Liu, “MultiSpeech: Multi-speaker text to speech with Trans-
former,” arXiv, 2020.

S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural voice
cloning with a few samples,” arXiv, 2018.

Q. Hu, E. Marchi, D. Winarsky, Y. Stylianou, D. Naik, and S. Ka-
jarekar, “Neural Text-to-Speech Adaptation from Low Quality
Public Recordings,” in ISCA SSW10, 2019.

T. Tu, Y.-J. Chen, C.-c. Yeh, and H.-Y. Lee, “End-to-end text-to-
speech for low-resource languages by cross-lingual transfer learn-
ing,” arXiv, 2019.

S.-F. Huang, C.-J. Lin, D.-R. Liu, Y.-C. Chen, and H.-y. Lee,
“Meta-TTS: Meta-learning for few-shot speaker adaptive text-
to-speech,” IEEE Trans. Audio Speech Lang. Proc., vol. 30, pp.
1558-1571, 2022.

J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Re-
visiting distributed synchronous SGD,” arXiv, 2016.

ITU-T P.800.1, “Mean opinion score (MOS) terminology,” Inter-
national Telecommunication Union, 2016.



	 Introduction
	 Relation to prior work

	 Methods
	 Acoustic model architecture
	 Data enhancements

	 Experiments
	 Data
	 Systems
	 Evaluation
	 Ablation studies
	 Long-context with 2 sentences vs. 6 sentences

	 Conclusions
	 References

