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Abstract

Detecting junctions in the retinal vasculature is vital to ana-
lyze topological structures relevant to disease diagnosis and
progression. Although deep learning models have achieved
high accuracy in medical image segmentation, their deci-
sion making remains opaque, limiting their adoption in sen-
sitive clinical applications. In this work, we propose SAM-
SPJunc, a SAM-based Self-Prompted Junction Detection ar-
chitecture where a dedicated decoder first predicts a radius-
aware soft mask that encodes potential junction regions.
This coarse prediction is then used as a dense prompt to
guide a second decoder that acts as a learnable refinement
module generating the final junction predictions through re-
gression to a distance transform. By embedding structural
prior knowledge in the form of self-generated radius-based
prompts, our model improves spatial focus, reduces false
positives, and promotes interpretability. This modular de-
sign demonstrates that prompting can serve not only as a
means of task control, but also as a foundation for more
interpretable and structured medical AI systems.

1. Introduction and Background

The high-resolution and non-invasive characteristics of reti-
nal imaging make it an ideal modality for computer vision-
based approaches to early disease detection and large-scale
screening. In particular, retinal vascular junctions are es-
sential landmarks in biomedical image analysis, particularly
in ophthalmology, where they support a variety of clini-
cal and research applications. These junctions play a crit-
ical role in the extraction of the retinal vascular topology
[2, 6], which is fundamental to the diagnosis of diseases
such as diabetic retinopathy [3], cardiovascular diseases[5],
Alzheimer’s disease[15], and hypertensive retinopathy [9].
In addition, junctions can serve as retina-based biometric
identification points for the registration of vascular struc-
tures [23] to support the monitoring of the progression of

(a) (b)

Figure 1. Visualization of a sample retinal vascular map and its
corresponding graph representation, with junctions (red disks) de-
fined as graph nodes.

vascular lesions [10]. For these reasons, accurate and in-
terpretable detection of vascular junctions remains a vital
challenge in the analysis of retinal images.

Junction detection is inherently challenging due to the
intricate structure of retinal vascular networks and the het-
erogeneous distribution of junction points. Earlier junc-
tion detection methods relied on hand-crafted features or
morphological rules [1, 16], but such approaches were of-
ten limited in scalability, robustness, and interpretability,
as they lacked the capacity to adaptively model vascular
complexity across datasets. In recent years, deep learning
methods have been applied to junction detection, similar
to other image analysis tasks. For example, a multitask
framework [18] was proposed that uses vessel features as
supervision to identify candidate junctions but still relies
on extensive post-processing for refinement. [11] proposed
a heatmap regression-based approach, where a fully con-
volutional network is trained using supervision in the form
of heatmaps automatically generated from annotated target
pixel locations. In [22] a two-stage method was proposed to
detect junctions in retinal images using a Regional Convo-
lutional Neural Network (RCNN). While effective in identi-
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Figure 2. Proposed SAM-SPJunc Network Architecture. It consists of an image encoder adopted from the pre-trained SAM model [13],
followed by a radius decoder, two prompt encoders, a junction decoder, and a cross-attention fusion module.

fying candidates, this approach requires bounding box cal-
ibration and incurs extra computational cost. Moreover, its
bounding box-based design struggles to localize the small,
densely clustered junctions typical of biomedical images.

In most recent works, [21] introduced the Attention O-
Net, an O-shaped network architecture equipped with at-
tention modules for junction detection in biomedical im-
ages without requiring segmentation. The network com-
prises two key components: the Junction Detection Branch
(JDB), which regresses to junction heatmaps, and the Lo-
cal Enhancement Branch (LEB), which employs a radius-
adaptive labeling strategy to enhance thin branches and mit-
igate the imbalance in heatmap responses between thin and
thick junction regions. An approach called Vessel-Guided
Junction Detection Network (VGJD-Net) was proposed by
[14] that leverages vessel guidance to detect retinal vascu-
lar junctions, VGJD-Net which comprises vessel segmenta-
tion and junction detection branches, with sharing the same
structure, enhances both local and contextual perception of
vascular structures through a vessel attention mechanism
and a vessel feature perception module.

Recently, the rapid rise of foundational models has
demonstrated strong generalization and semantic under-
standing. The Segment Anything Model (SAM) [13] is
one such model for image segmentation, showing impres-
sive zero-shot performance. SAM has been applied across
tasks such as medical image segmentation [12], object de-
tection [7], and remote sensing [4], either through fine-
tuning or direct use. Prompting has recently gained trac-
tion in both vision-language models and image segmenta-
tion, including self-prompting strategies where models gen-
erate their own guidance signals. In SAM-based architec-
tures, self-prompting has been implemented through simple

pixel-wise classifiers that produce internal prompts such as
points or boxes [19, 20]. However, such mechanisms have
not yet been explored for the task of junction detection,
nor have they been used to incorporate geometric priors
such as vessel-aware radius masks. In contrast, our SAM-
SPJunc integrates anatomical prior knowledge directly into
the prompting mechanism. By employing a radius-aware
intermediate decoder and guiding the final prediction us-
ing soft masks and cross-attention fusion, we propose a
more structured and interpretable form of self-prompting
that is explicitly grounded in the topological organization
of vascular networks. Similarly, cross-attention has recently
been injected into the SAM architecture for medical image
segmentation[8], but we employ it here as a spatial refine-
ment bridge between decoders.

Despite recent advances in deep learning for curvilinear
structure analysis, existing junction detection methods of-
ten function as black boxes, lacking transparency and spa-
tial interpretability. In high-precision tasks like junction de-
tection, where decisions depend on subtle geometric cues,
this opacity limits reliability and control. We wanted to an-
swer this question: What if the network itself was struc-
tured in a way that reflected anatomical priors? To address
this, we propose a self-prompting architecture built upon
SAM, leveraging its strong image-prompt conditioning ca-
pabilities. In our SAM-SPJunc, an initial SAM-based de-
coder predicts a radius-based soft mask that implicitly en-
codes geometric priors related to vascular junctions. This
self-generated mask is then used as a learned prompt to
guide a second SAM decoder focused on refined junction
detection. In the case of using a radius-based mask, our
work shares some similarities with O-Net [21], which ap-
plied a radius-adaptive label to enhance junction visibility.
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In contrast, we embed such anatomical priors into a self-
prompting framework built upon the SAM architecture, en-
abling modularity, interpretability, and compatibility with
foundation vision models. To our knowledge, this is the
first work to utilize self-generated prompts within SAM for
vascular junction analysis, offering a more interpretable and
spatially grounded solution to this challenging task.

2. Method
2.1. Network Architecture
The overall architecture of the proposed SAM-SPJunc net-
work is illustrated in Figure 2. It comprises an image en-
coder adapted from the pre-trained SAM model [13], a ra-
dius decoder, a junction decoder, two prompt encoders, and
a cross-attention fusion module.

2.2. Vision Transformer-based Image Encoder
We adopt the image encoder from the pre-trained Seg-
ment Anything Model (SAM), specifically using the small-
est variant, ViT-B. This encoder follows the Vision Trans-
former (ViT) architecture. The encoder transforms an in-
put RGB image of size (H,W, 3) into a dense feature map
of shape (H/16,W/16, Dfeat) and provides these rich vi-
sual features for the downstream decoders. To achieve this,
the image is first partitioned into non-overlapping patches
of size 16 × 16. Each patch is linearly projected into a
token embedding, resulting in an initial tensor of shape
(H/16,W/16, Dfeat). This tensor is then processed through
a stack of 12 Transformer blocks employing multi-head
self-attention. The feature dimension Dfeat remains constant
throughout.

2.3. Radius and Junction Decoders
We employ two separate decoders: Radius Decoder and
Junction Decoder: for radius-based and soft junction pre-
dictions, both following the architectural style of the SAM
mask decoder [13]. Each decoder consists of a lightweight
transformer module and an upsampling head that projects
the transformer output back to image resolution.

At the core of each decoder is a two-way transformer,
composed of two transformer blocks with 8 attention heads,
an embedding dimension equal to that of the prompt en-
coder, and a feedforward MLP of dimension 2048. This
module enables bidirectional interaction between prompt
embeddings and image features, enhancing the contextual
understanding of spatial cues.

The output of the transformer is passed through an up-
sampling module comprising two transposed convolution
layers. The first layer upsamples the feature map using
a kernel size of 2 × 2 and stride 2, reducing the channel
dimension by a factor of 4. The second transposed con-
volution further doubles the spatial resolution while halv-

ing the channel depth. Each convolution is followed by
a non-linear activation, and the first layer includes a 2D
layer normalization. The final output is a probability map
of shape (H,W, 1), indicating the per-pixel likelihood of
radius-based or final junction structures.

2.4. Prompt Encoders
Our pipeline employs two prompt encoder modules adapted
from the SAM architecture, each serving distinct functions.
The first prompt encoder (Prompt Encoder-1) that receives
null input (without explicit input mask) generates prompt
embeddings to guide the radius-based decoder, which out-
puts a soft radius-aware mask. This intermediate mask is
then fed into the second prompt encoder (Prompt Encoder-
2), which converts it into dense prompt embeddings. These
serve as structured self-prompts for the second decoder,
tasked with refining junction-level predictions.

Both encoders are configured with an embedding dimen-
sion of 256 and mask in chans=16 , which sets the number
of hidden channels used internally during mask embedding.
This setup enables our model to integrate hierarchical spa-
tial priors while maintaining modularity and interpretability
across stages.

2.5. Cross Attention and Fusion Module
To integrate structural cues from the first decoder into the
final junction prediction, we introduce a cross-attention and
gated fusion module. Specifically, the intermediate features
produced by the radius-based decoder are used to compute
cross-attention with the original image embeddings. This
guides the network to attend to spatial regions indicative of
junction presence. The resulting attention map is fused back
with the original image embeddings via a lightweight fu-
sion gate, implemented as two 1×1 convolution layers with
ReLU and Sigmoid activations. This gate modulates the
contribution of the attended features, allowing the model to
selectively enhance regions relevant to downstream junction
decoding.

2.6. Loss Functions
To supervise the training of our two-stage junction detec-
tion model, we employed different loss functions tailored
to each decoder’s objective. The first decoder is trained to
predict radius-based junction maps, which are sparse and
highly imbalanced. To address this, we use the focal loss,
which helps mitigate class imbalance by down-weighting
easy negatives and focusing the learning on hard exam-
ples—improving the model’s ability to detect small and in-
frequent junctions:

FL(pt) = −α(1− pt)
γ log(pt) (1)

Here, pt is the model’s estimated probability for the
true class, defined as p if the ground-truth label is 1
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and 1 − p otherwise. The parameter α ∈ [0, 1] bal-
ances the importance of positive and negative exam-
ples, while γ ≥ 0 modulates the focus on hard-to-
classify instances. Following the default settings in
torchvision.ops.sigmoid focal loss, we use
α = 0.25 and γ = 2.

For the second decoder, which regresses to the dis-
tance transform of ground truth junctions, we use the mean
squared error (MSE) loss:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2)

Here, yi and ŷi represent the ground truth and predicted
values at pixel i, respectively, and N is the total number of
pixels. MSE loss provides smooth and continuous super-
vision, encouraging the network to produce accurate spa-
tial localization of junction centers by penalizing deviations
from the target distance map.

3. Experimental Setup
3.1. Dataset
The DRIVE [17] and IOSTAR [1] datasets were used for
experimentation, containing 40 and 24 images with resolu-
tions of 584×565 and 1204×1024, respectively. The DRIVE
images were resized to 1024×1024 to match the input re-
quirements of our ViT-based image encoder. The network
was trained exclusively on the DRIVE training set and eval-
uated on the DRIVE and IOSTAR test sets. RGB images
were used for training and testing. The junction ground
truths for both datasets were provided by the authors of [1].

3.2. Mask Generation
To provide spatially informative supervision for junction
detection, we construct two distinct ground truth masks, one
for each decoder. The first decoder is trained using a radius-
based junction mask, while the second decoder uses a soft
supervision mask. In the following, we describe the con-
struction process for each mask type in detail. A sample
image and its corresponding masks are shown in Figure 3

Radius-based mask: this mask expands each junction
point into a circular region whose size reflects the local
vessel thickness. Given a binary vessel mask and a bi-
nary junction mask, we first compute a vessel thickness
map by applying a distance transform to the vessel mask,
which estimates the radius at each foreground pixel. For
every junction point, we extract the corresponding vessel
width and compute a radius by scaling this width, while
constraining it within a predefined range [Rmin, Rmax]. A
filled circle is then drawn around each junction location us-
ing the computed radius, resulting in a mask that contextu-
alizes each junction within the geometry of the surround-
ing vessel. This radius-based mask is used to supervise the

(a) (b) (c)

Figure 3. Example visualization of masks used for supervision:
(a) Raw RGB image, (b) Radius-based junction mask, (c) Soft
distance-based junction mask.

first decoder, encouraging it to learn topologically signifi-
cant features that improve the accuracy and interpretability
of junction prediction.

Soft mask: to generate the soft supervision mask used
for the second decoder, we first dilate each junction point
using a disk of radius 5. We then apply a distance transform
to the dilated mask, resulting in a smooth, continuous map
that provides gradient-based supervision for regression.

3.3. Evaluation Metrics

To evaluate the performance of the proposed SAM-SPJunc
method, we follow the common approach used in related
papers by computing precision, recall, and F1 Score. A de-
tected junction is considered a True Positive if it falls within
a 10-pixel radius of a ground-truth annotation. We adopted
this exact evaluation strategy to ensure a fair comparison
with previous works. However, since none of the previous
papers specify whether their evaluation enforces a one-to-
one matching between predictions and ground truths, we
use a greedy matching strategy in our ablation study to bet-
ter show the impact of each component in our network.

3.4. Implementation Details

We trained models for 20 epochs using the Adam optimizer.
A base learning rate(LR) of 0.0001 was used for the newly
initialized decoder modules, while the pretrained image en-
coder was fine-tuned with a learning rate of (0.1× the base
LR). A MultiStepLR scheduler was applied with a milestone
at epoch 9 and a decay factor of 0.1. To compensate for
the limited number of training images, we adopted a patch-
based training strategy with a stride of 64 to extract over-
lapping patches and employed simple data augmentations,
including random rotations and horizontal/vertical flips.
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Method Threshold
DRIVE IOSTAR

Precision Recall F1 Score Precision Recall F1 Score
Pratt [16] - 0.74 0.54 0.64 0.52 0.54 0.52
Abbasi [1] - 0.40 0.74 0.52 0.47 0.66 0.62
Uslu [18] - 0.65 0.69 0.67 0.52 0.67 0.59
Zhao [22] - 0.71 0.70 0.70 0.62 0.57 0.60
Long [14] - 0.83 0.76 0.79 0.62 0.66 0.64

Hervella [11] - 0.80 0.73 0.76 0.74 0.69 0.71
Zhang [21] - 0.85 0.80 0.82 0.72 0.74 0.73

SAM-SPJunc (Ours) 0.1 0.77 0.83 0.79 0.73 0.71 0.71
SAM-SPJunc (Ours) 0.2 0.89 0.70 0.78 0.82 0.56 0.66

Table 1. Quantitative comparison of SAM-SPJunc (Radius Prompt + Cross-Attention Fusion) against state-of-the-art approaches for
junction detection on the DRIVE and IOSTAR datasets. The “Threshold” denotes the confidence level used during local maxima filtering
of predicted junctions. The best-performing results are shown in bold, and the second-best results are underlined.

4. Results and Discussion

In this section, we present a comprehensive evaluation of
our proposed SAM-SPJunc through quantitative metrics,
qualitative visualizations, and ablation studies. We first re-
port performance on standard benchmarks to demonstrate
the effectiveness of our approach. The qualitative results
then highlight the model’s ability to locate junctions in chal-
lenging cases. Finally, ablation studies analyze the contri-
bution of key architectural components, including radius-
based prompting and cross-attention fusion, to assess their
individual and combined impact on performance and inter-
pretability.

4.1. Quantitative Results

Table 1 presents the quantitative performance of our pro-
posed method and existing approaches on the DRIVE and
IOSTAR datasets. Our SAM-SPJunc model, denoted as
Ours (Radius Prompt + Cross-Attention Fusion), is eval-
uated at two confidence thresholds (0.1 and 0.2) to show
representative operating points. On the DRIVE dataset, our
method achieves an F1 score of 0.83 at threshold 0.1 and
the highest precision of 0.89 at threshold 0.2, reflecting
strong discriminative performance. While Zhang [21] re-
ports a comparable F1 score of 0.82, our method exhibits a
more structured design and precise localization through its
geometry-informed architecture.

On the more visually challenging IOSTAR dataset, our
method achieves the best reported precision and F1 score
at threshold 0.1 (0.73 and 0.71, respectively), indicating
strong generalization to unseen data. Unlike prior ap-
proaches that rely heavily on hand-crafted post-processing,
our architecture performs internal soft refinement via its
dual-decoder structure. The radius-aware prompt provides
geometric guidance, while the second decoder refines spa-
tial predictions—together forming a complementary refine-

ment mechanism that remains fully end-to-end trainable.
This design not only improves interpretability but also en-
hances robustness by incorporating geometric priors di-
rectly into the learning process.

4.2. Qualitative Results
Figure 4 presents qualitative results on sample images from
the DRIVE and IOSTAR datasets. The predicted junc-
tions (b) align well with the ground truth (a), even under
challenging conditions such as central light reflex in the
IOSTAR image. The zoomed-in patches demonstrate the
model’s ability to localize junctions accurately, including
those near thin or low-contrast vessels.

Figure 5 highlights the model’s robustness in recover-
ing junctions that are entirely missing from both the vessel
and junction ground truth masks. In all shown patches, the
predicted junctions (c) fall on anatomically plausible loca-
tions, often on thin vessels omitted from the annotations.
This illustrates the model’s ability to generalize beyond in-
complete supervision and recover semantically meaningful
structures.

Figure 6 highlights the qualitative effect of radius-based
self-prompting. Without prompting (Figure 6b), predicted
junctions (green) are more scattered and less concentrated
around high-confidence regions (blue), resulting in more
false positives. With radius prompting (Figure 6c), predic-
tions become more focused and anatomically aligned. No-
tably, the blue area (representing the activation map of the
radius decoder) decreases from 66125 to 56783 pixels re-
flecting a relative reduction of 14.07%. This reduction sug-
gests that the prompt helps the model suppress irrelevant
activations and concentrate more effectively on true junc-
tion areas. For this specific example, precision increased
from 59% to 69% without any drop in recall, resulting in
an overall improvement in the F1 score. By guiding the de-
coder through anatomically meaningful priors, radius-based
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(a) (b)

Figure 4. Visual results of the proposed SAM-SPJunc method on two sample images from the DRIVE and IOSTAR datasets. (a) Junction
ground truth, and (b) Predicted junctions overlaid on the RGB image. Zoomed-in patches highlight key cases: junctions without arrows
correspond to true detections, red arrows show missed junctions (present in ground truth but not predicted), green arrows show correctly
predicted junctions not labeled in the ground truth.

prompting enhances both precision and spatial specificity,
contributing to improved interpretability. While this fig-
ure provides qualitative insight, the quantitative effect of
prompting is further evaluated in the ablation study pre-
sented in the next section.

4.3. Ablation Study
Table 2 presents an ablation study evaluating different ar-
chitectural configurations and prompting strategies for junc-
tion detection. For this ablation study, evaluation metrics
were computed using a one-to-one (greedy) matching strat-
egy, where each predicted junction is matched to the nearest
ground truth within a fixed radius, and duplicate matches
are not allowed. Since the models are trained only on the
DRIVE dataset, the IOSTAR dataset serves as a more chal-
lenging cross-domain benchmark.

While the simplest configuration using a single decoder
and a single radius-junction output achieves the highest re-
call (0.83 on DRIVE, 0.79 on IOSTAR), it suffers from ex-
tremely low precision (0.22 and 0.20, respectively), indi-
cating a large number of false positives and the lack of an
effective refinement mechanism. Introducing a two decoder
design with vessel-prompt-based guidance improves preci-
sion significantly (e.g., 0.68 on DRIVE at threshold 0.2),
yet the overall F1 score remains low. Qualitative inspection
revealed that this vessel prompt often misleads the junction
decoder by highlighting extended vessel regions rather than
discrete junctions, resulting in widespread false activations.

Replacing the vessel prompt with a radius-based soft
prompt led to a better balance between recall and preci-
sion, suggesting that radius-aware supervision helps local-
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(a) (b) (c)

Figure 5. Examples of missing ground truth (GT) and abilities of SAM-SPJunc in detecting junctions on very thin and/or faint branching
vessels. (a) Vessel GT, (b) Junction GT, (c) Predicted junctions. Cyan boxes indicate regions where both vessel and junction GT are
missing; blue boxes indicate missing junction GT despite the presence of vessel GT. (c) and the contrast-enhanced zoomed patches show
that the model successfully detects these cases, even for thin vessels (pointed by green arrows).

(a) (b) (c)

Figure 6. Effect of radius-based prompting on junction prediction. (a) Dilated ground-truth junctions overlaid on the raw image. (b) Final
predictions using only cross-attention. (c) Predictions using both cross-attention and radius-based self-prompting. Red: dilated ground
truth, green: predicted junctions, blue: radius decoder output. Prompting reduces the extent of the radius activation map (blue area: 66125
pixels→ 56783 pixels: 14.13% decrease) and improves precision (59% → 69%: 10% increase) without affecting recall, leading to more
focused and accurate junction predictions, try making BG white.

ize junction-relevant features more effectively. This design
introduces an interpretable intermediate representation that
encodes vessel context and mimics human intuition, widen-
ing attention around thicker junctions and constraining it
around finer ones. Incorporating a cross-attention fusion
module, used to selectively integrate encoder and decoder
features, further stabilized training and improved robust-
ness.

The best performance is achieved with the full model
(radius prompt + attention fusion), reaching an F1 score
of 0.66 on DRIVE and 0.60 on IOSTAR, with the high-
est precision across both datasets (0.76 on DRIVE and 0.71
on IOSTAR). These improvements highlight not only better
generalization, but also the benefit of modular interpretabil-

ity: The radius prompt encodes prior anatomical structure,
while the attention mechanism offers transparent spatial re-
finement. Together, they make the model’s reasoning more
structured and explainable, aligning well with the goals of
interpretable and controllable spatial computing.

5. Conclusion

In this paper, we introduced SAM-SPJunc: a self-prompted
architecture for junction detection in retinal images, built
upon the Segment Anything Model (SAM). Our method
leverages anatomical priors by predicting a radius-aware
soft mask, which serves as a dense prompt to guide a sec-
ond decoder responsible for refining junction predictions.
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Method Threshold
DRIVE IOSTAR

Precision Recall F1 Score Precision Recall F1 Score
1 Decoder (Radius Junction) 0.1 0.22 0.83 0.34 0.20 0.79 0.31
1 Decoder (Radius Junction) 0.2 0.48 0.72 0.57 0.47 0.67 0.54
2 Decoders (Vessel Prompt) 0.1 0.45 0.71 0.55 0.44 0.66 0.50
2 Decoders (Vessel Prompt) 0.2 0.68 0.54 0.60 0.65 0.43 0.50

SAM-SPJunc (Radius Prompt) 0.1 0.60 0.70 0.64 0.56 0.63 0.59
SAM-SPJunc (Radius Prompt) 0.2 0.74 0.60 0.66 0.70 0.53 0.60

SAM-SPJunc (Cross-Attention Fusion) 0.1 0.61 0.69 0.64 0.64 0.61 0.58
SAM-SPJunc (Cross-Attention Fusion) 0.2 0.74 0.61 0.66 0.67 0.53 0.59

SAM-SPJunc (Radius Prompt + Cross-Attention Fusion) 0.1 0.63 0.68 0.65 0.61 0.60 0.60
SAM-SPJunc (Radius Prompt + Cross-Attention Fusion) 0.2 0.76 0.59 0.66 0.71 0.49 0.58

Table 2. Ablation study evaluating different model configurations and prompt strategies on the DRIVE and IOSTAR datasets. “Threshold”
refers to the confidence level used for local maxima filtering. The best results are shown in bold, and the second-best results are underlined

This design not only reduces false positives, but also im-
proves interpretability by aligning the model’s internal at-
tention with meaningful vascular structures.

Quantitative evaluations on the DRIVE and IOSTAR
datasets demonstrate competitive or superior precision com-
pared to existing methods, particularly under low confi-
dence thresholds. The proposed framework acts as a self-
refining pipeline, where the initial decoder provides coarse
geometric guidance and the second decoder performs struc-
tured refinement, mimicking post-processing while remain-
ing end-to-end trainable. Our results suggest that embed-
ding task-specific priors into a prompting mechanism can
improve both accuracy and transparency, offering a com-
pelling direction for interpretable medical image analysis.
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