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Abstract

In clustering tasks, it is essential to structure
the feature space into clear, well-separated dis-
tributions. However, because short text rep-
resentations have limited expressiveness, con-
ventional methods struggle to identify clus-
ter centers that truly capture each category’s
underlying semantics, causing the representa-
tions to be optimized in suboptimal directions.
To address this issue, we propose IOCC, a
novel few-shot contrastive learning method that
achieves alignment between the cluster centers
and the semantic centers. IOCC consists of
two key modules: Interaction-enhanced Opti-
mal Transport (IEOT) and Center-aware Con-
trastive Learning (CACL). Specifically, [IEOT
incorporates semantic interactions between in-
dividual samples into the conventional opti-
mal transport problem, and generate pseudo-
labels. Based on these pseudo-labels, we ag-
gregate high-confidence samples to construct
pseudo-centers that approximate the seman-
tic centers. Next, CACL optimizes text repre-
sentations toward their corresponding pseudo-
centers. As training progresses, the collabo-
ration between the two modules gradually re-
duces the gap between cluster centers and se-
mantic centers. Therefore, the model will learn
a high-quality distribution, improving cluster-
ing performance. Extensive experiments on
eight benchmark datasets show that IOCC out-
performs previous methods, achieving up to
7.34% improvement on challenging Biomed-
ical dataset and also excelling in clustering
stability and efficiency. The code is available
at: https://anonymous.4open.science/r/IOCC-
C438.

1 Introduction

Short text clustering, which groups short texts into
distinct clusters based on their semantic similarity,
has broad applications in real-world domains such
as chatbots (Kuhail et al., 2023), topic discovery
(Murshed et al., 2023), and spam detection (Liu
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Figure 1: Schematic Illustration of the Motivation.
(a) Previous works generate cluster centers that are mis-
aligned with the underlying semantic centers. (b) In con-
trast, our method effectively aligns cluster centers with
the semantic centers by constructing pseudo-centers,
thereby facilitating a finer distribution.

et al., 2024; Abkenar et al., 2023). A key factor
in achieving high-quality clustering is determining
the appropriate cluster center for each category,
as this critically influences whether samples can
be grouped according to their intrinsic semantic
similarities (Bai et al., 2012). The ideal scenario is
that the cluster center for each category precisely
corresponds to the semantic center (i.e., the core or
central concept that embodies the main meaning of
the category) in the feature space. However, due
to the lack of labeled samples and limitations in
text representation quality, extracting the semantic
center of each category remains a challenge (Fini
et al., 2023). As illustrated in Figure 1(a), cluster
centers often fail to align with the semantic centers,
leading to suboptimal category aggregation.
Previously, Zheng et al. (2023); Li et al. (2024)
proposed constructing pseudo-labels to assign pre-
liminary category information to certain samples,
allowing similar samples to gradually converge dur-
ing the iterative process. However, the pseudo-
labels generated using traditional optimal transport
are limited to the global structure and ignore in-
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dividual information, which reduces the accuracy
of the pseudo-labels. On the other hand, to learn
more discriminative and robust text representations,
Zhang et al. (2021); Chen et al. (2020) introduced
contrastive learning, which optimizes text represen-
tations by pulling positive pairs together and push-
ing negative pairs apart in the feature space. How-
ever, these method only consider instance-wise re-
lationships, neglecting category-wise optimization,
which causes samples that should belong to the
same category to be pushed apart, affecting cluster
quality (Wang and Isola, 2020).

In this work, we propose IOCC, a novel few-
shot contrastive learning framework for short text
clustering. The primary objective of this model
is to pull the text representations toward the cor-
rect corresponding centers in the feature space.
IOCC combines two key components: Interaction-
enhanced Optimal Transport (IEOT) and Center-
aware Contrastive Learning (CACL).

Specifically, (1) we incorporate similarity inter-
actions between samples into the optimal transport
(OT) framework, enabling IEOT to generate more
reliable pseudo-labels. (2) We then combine min-
imal true labels with pseudo-labels to effectively
design a pseudo-center to approximate the seman-
tic center for each category. Next, CACL leverage
these pseudo-centers as targets, pulling samples
toward their corresponding pseudo-center while
pushing them away from the others. As training
progresses, the collaboration between the above
two modules drives the pseudo-centers to gradually
approach the true semantic centers, which in turn
guides the text representations to move closer to
them. Eventually, IOCC aligns the cluster centers
with the semantic centers, yielding a more optimal
distribution, as shown in Figure 1(b).

We demonstrate that IOCC achieves state-of-the-
art performance on eight benchmark datasets. No-
tably, IOCC achieved the highest accuracy in all
datasets, with improvements exceeding 7.34% and
4.18% on Biomedical and GoogleNews-T, respec-
tively. Additionally, we show that our method ex-
hibits faster convergence and more robust training
compared to current methods. In summary, our
main contributions are as follows:

(1) We propose a few-shot framework, IOCC,
which integrates the following two key compo-
nents, bridging the gap between the semantic and
cluster centers. (2) We propose a novel optimal
transport strategy, IEOT, which integrates semantic
interactions between individual samples. It gen-

erates reliable pseudo-labels to help the few-shot
labels uncover the true semantic centers of each cat-
egory. (3) We propose a novel contrastive learning
method, CACL, which aligns cluster centers with
semantic centers by constructing pseudo-centers to
guide the representation optimization. (4) IOCC
shows state-of-the-art results on eight benchmark
datasets. it also achieves faster convergence and
better stability compared to previous methods.

2 Related Works

Short Text Clustering. Short text clustering is
challenging due to the limited number of words in
short texts. In recent years, deep joint clustering
methods have become mainstream by integrating
representation learning and clustering into a uni-
fied framework. Notable examples include SCCL
(Zhang et al., 2021), which uses DEC (Xu et al.,
2017) as the clustering objective and contrastive
learning to guide representation learning. RSTC
(Zheng et al., 2023) proposes the use of pseudo-
labels to assist the model in learning sample repre-
sentations and clustering. STSPL-SSC (Nie et al.,
2024) is built on the RSTC method, using fewer
labeled data to assist the pseudo-labeling process.
COTC (Li et al., 2024) combines sentence-level
and token-level information to achieve more effi-
cient clustering.

Few-shot learning. Few-shot methods leverage
a small amount of labeled data and a large collec-
tion of unlabeled data to train models. The most in-
tuitive approach is Pseudo-labels (Lee et al., 2013),
where a model trained on labeled data generates
pseudo-labels for unlabeled examples, which are
then added to the labeled set for the next iteration.
However, hard labels easily exacerbate the classifi-
cation bias of the training model (confirmation bias)
(Arazo et al., 2020). To counteract this issue, re-
searchers have shown benefits from soft labels and
confidence thresholding (Arazo et al., 2020) as well
as from different training strategies like co- and
tri-training (Dong-DongChen and WeiGao, 2018;
Nassar et al., 2021). In our research, we integrate
optimal transport and pseudo-labeling methods to
explore textual features and similarities, maximiz-
ing the guiding role of labeled information.

Contrastive Learning. @ As a promising
paradigm of unsupervised learning, contrastive
learning has lately achieved state-of-the-art per-
formance in many fields (Grill et al., 2020). Con-
trastive learning aims to map data to a feature space



where positive pairs are similar and negative pairs
are dissimilar (Hadsell et al., 2006). Recently,
Zhang et al. (2021) applies contrastive learning
to short text clustering, upon which methods like
Zheng et al. (2023); Nie et al. (2024); Li et al.
(2024) and many others have introduced further
improvements. The previous methods typically
distribute the samples uniformly in feature space
(Wang and Isola, 2020), whereas our approach fur-
ther optimizes them by incorporating semantics,
thereby achieving consistency and accuracy.

3 Method

IOCC is primarily attributed to two key factors:
Interaction-enhanced Optimal Transport (IEOT)
and Center-aware Contrastive Learning (CACL),
as illustrated in Figure 2. Specifically, after sam-
ples pass through the Encoder and Classifier, [EOT
processes their probability distributions to generate
pseudo-labels. Subsequently, pseudo-centers are
updated by aggregating high-confidence samples
which can better represent the semantics of cate-
gories. CACL then enforces that each text represen-
tation in the feature space is contracted toward its
corresponding pseudo-center. Eventually, pseudo-
centers gradually converge toward the semantic
centers, thereby achieving alignment between clus-
ter centers and semantic centers.

3.1 Preliminaries

In our method, we train the model using M labeled

samples and NV unlabeled samples, where N > M.

Following (Zhang et al., 2021), we apply the con-

textual augmenter (Shorten et al., 2021) to generate

augmented data by inserting or substituting top-n

suitable words of the input text. Given an unlabeled
u

sample x; (©) and a labeled sample :1:2(0), their aug-
mented versions are defined as {z%(}), 2%} and
{acﬁ(l), :Bli(z) }, respectively. During training, mini-
batches are constructed from labeled instances
X = {(mé(o),yé-)}j: ,» and unlabeled instances

Uu = {(mg(o)}fj. Here, B is the batch size of
labeled data, 1 is the ratio of unlabeled to labeled
examples in each mini-batch, and yé is the true la-
bel corresponding to the cluster k € {1,..., K}.
We denote the Encoder as f(-), followed by a Clas-
sifier network g(-) and a Projector network A(-).
For each sample, the probability output of the Clas-
sifier is defined as p; € R = go f(x;). The
projected representations from the Projector are
defined as z; € RP = ho f(x;).

3.2 Interaction-enhanced Optimal Transport

Based on previous optimal transport (OT) methods
(Zheng et al., 2023), IEOT incorporates a novel
regularization term constructed using the semantic
similarity between individual samples. By solving
this novel OT problem, we can derive pseudo-labels
that seamlessly combine the semantic interactions
imposed by our regularization with the global struc-
ture captured by the standard OT formulation.

Given a batch of original unlabeled samples
X “(0>, we define the probability assignments as
P e RuBXK — go f(X“m)). Then, pseudo-
labels can be generated by solving the IEOT prob-
lem as follows:

win(Q,M)—<1H (Q)+,0(b)—<s(S QQ")

st Qly=a, Q1,5 =b,Q>0,b"1x=1,

€]

where M = —log(P“(O)), Q is the transport ma-
trix, (-, -) is the Frobenius inner product, €1, €2 and
€3 are hyperparameters, a = %1 .5 18 the sample
distribution, and b is an unknown cluster distri-
bution. S is the cosine similarity matrix of the
probability assignment P defined as follows:
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where P;{(O) denote the i-th row vector of P
Details of each term in Eq.(1) are as follows:

* HQ) = —(Q,logQ — 1) is the entropy of
the transport matrix ¢, which prevents ¢ from
being sparse.

* O(b) = ZJK:1 —bjlog(b;) is the entropy of the
cluster probability b, which encourages b to
approach a uniform distribution. By adjusting
the strength of this term, IEOT is suitable for
various imbalanced datasets.

* (8,QQT) is the semantic regularization, which
promotes the transport matrix @ to capture se-
mantic similarity between samples. Specifically,
this term encourages the transport vector Q;. to
be similar to @ ;. when the similarity S; is large.
In other words, it ensures semantically similar
samples produce similar transport vectors.

IEOT is a non-convex optimization problem.
We propose to solve this problem by using the
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Figure 2: Method Overview. IOCC is mainly composed of two core components: Interaction-enhanced Optimal
Transport (IEOT) and Center-aware Contrastive Learning (CACL).

Majorization-Minimization method which mini-
mizes the objective function by iteratively mini-
mizing its surrogate function (Hunter and Lange,
2004). Details of the solution are provided in Ap-
pendix A.1.

By solving the proposed IEOT problem, we ob-
tain the transport matrix ¢, which not only serves
as a probability assignment matrix reflecting the
traditional OT’s global sample-to-cluster structure
but also encodes semantic interactions between in-
dividual samples. Finally, pseudo-label for the ¢-th
sample ;' can be generated as follows:

g;' = argmax Q;;. 3)
J
In other words, the pseudo-label for a given unla-
beled sample corresponds to the cluster with the
highest corresponding assignment probability.

3.3 Center-aware Contrastive Learning

After obtaining the pseudo-labels, we aim to pro-
mote well-clustered short text projections by at-
tracting samples to their respective semantic cen-
ters while distancing them from the others. There-
fore, we adopt a contrastive objective that utilizes
pseudo-centers to approximate the semantic cen-
ters. Pseudo-centers are computed at the end
of each iteration, based on the labeled and high-
confidence pseudo-labeled samples identified from
the previous iteration.

Specifically, we define a reliability indicator for
each sample 7; = 1(max(p} u(0 )} > 7) denoting if
its max prediction exceeds the confidence threshold
7. Formally, let Z} = {i|Va:é(0) € X,y =k} be
the indices of labeled instances with true cluster £,
and 7 = {i|Va?® € U,n; = 1,5 = k} be the
1nd1ces of the reliable unlabeled samples with hard
pseudo-label k. The normalized pseudo-center cy,
for cluster k£ can then be obtained as per:

Zz‘eI;;UI}C Zi o — Ck
Tel+

“)

CL =

In the following iteration, we minimize the fol-
lowing Center-aware Contrastive Learning (CACL)
loss on unlabeled augmented samples:

(z
Z exp(cos

Y C@@)/TP)

i=1 Zk 1 exp(cos(z} )7Ck)/TP)

Z exp(cos(z;f‘( ,CQ;A)/TP)

i=1 ZkK:1 eXP(COS(Z?(Q)aCk)/TP)7
©)

where cos(z%(1), cg») denotes the cosine similarity

between z%(!) and the pseudo-center ¢y corre-
sponding to ¢;', with T’» meaning the temperature
parameter. Consequently, pseudo-centers will grad-
ually converge to the semantic centers, and samples
from the same category will be more tightly dis-



tributed around the semantic center in the feature
space, thereby enhancing clustering performance.

3.4 Instance-wise Contrastive Learning

To help the model capture finer details from the
augmented samples, we also employ Instance-wise
Contrastive Learning. For the ¢-th unlabeled sam-
ple in a batch, its augmented samples are regarded
as a positive pair, while the other 2uB — 2 pairs
are considered negative. The loss function for the
t-th sample is defined as follows:

8(zu() zu(2)

l;=—log L :
2%%5(4“1zz<l>>+5<z$“1zz<2>>>

6(zu(2) Zzu())y
—loe =m0 Zu(f)z u(2) Hu(2)))’
Zﬁ?(&(zi Lz W) +6(20%), 219)))
(6)
Here §(z! mz”)-exp(cos( (1)Z )/TI),

Ty is a temperature parameter. The total loss is
computed as follows:

1 &
i=1

3.5 Pseudo-label & Supervised Learning

Using the generated pseudo-labels, we compute the
loss for unlabeled samples based on the model’s
prediction under augmentations, as follows:

*Z CE(3¢, pt VU HCE(gE, ), )

where CE denotes the cross-entropy. Also, we ap-
ply a supervised classification loss over the labeled

data:
B

S (CEL ) +CE@L B ). )

=1

1
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Notably, Eq.(8) and Eq.(9) are acted on both two
augmented versions.

3.6 Final Objective

We design a two-stage training procedure for IOCC.
The first stage aims to obtain a good initial feature
space, while the second stage focuses on optimiz-
ing the distribution using all the algorithms men-
tioned above. The overall loss function is:

) Lx+ Lo+ Ly
Lx+ Lo+ L+ MNLp

if iter < Eyirg
ifiter > Fpirgs
(10)

where iter is the number of training iterations, A is
a balancing hyperparameter, and E';,.s is the first
stage iterations. By integrating the above compo-
nents, the model learns a high-quality feature space
distribution, leading to more accurate and stable
clustering results. Algorithm 2 in Appendix E.1
describes the training process of IOCC.

4 Experiments

4.1 Datasets

We conducted experiments using eight benchmark
datasets: AgNews, StackOverflow, Biomedical,
SearchSnippets, GoogleNews-TS, GoogleNews-
T, GoogleNews-S, and Tweet. A summary of
the key characteristics and detailed information
of these datasets are provided in Table 1 and Ap-
pendix E.2, respectively.

Datasets S N L R
AgNews 8000 4 23 1
SearchSnippets 12340 8 18 7
StackOverflow 20000 20 8 1
Biomedical 20000 20 13 1
GoogleNews-TS 11109 152 8 143
GoogleNews-T 11109 152 6 143
GoogleNews-S 11109 152 22 143
Tweet 2472 89 22 249

Table 1: Key Information of Datasets. "S" represents
the dataset size; "N" is the number of categories; "L" is
the average sentence length; "R" is the size ratio of the
largest to the smallest category.

4.2 Experiment Settings

We implement our model using PyTorch (Paszke
et al., 2019) and employ bge-base-en-v1.5 in the
Sentence Transformers library as the Encoder
(Chen et al., 2024). Under our few-shot defini-
tion, we use 1% of the samples as labeled samples
if S/N > 1% according to Table 1, otherwise we
use only 1 sample per dataset as labeled samples.
All parameters of our model are optimized using
the Adam optimizer (Kingma, 2014). The learning
rate of the Encoder is 5 x 10~%, while the other
networks is 5 x 10~%. We use Accuracy (ACC) and
Normalized Mutual Information (NMI) to evaluate
the model. Definitions of the metrics and detailed
settings are in Appendix E.3 and Appendix E.4.

4.3 Baselines

We compare IOCC with several latest short text
clustering approaches. SCCL (Zhang et al., 2021)



AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI
SCCL 83.10 6196 7990 63.78 70.83 69.21 4249 39.16
RSTC 8424 6245 80.10 69.74 8330 74.11 48.40 40.12
BGE-M3 87.89  66.67  75.59 60.7 84.66 8221 51.25 46.05
MIST 89.47 7025 76772 67.69 79.65 7859 39.15 34.66
STSPL-SSC  89.92 71.66 81.04 6546 86.74 82.54 4743 4249
COTC 87.56  67.09 90.32 77.09 87.78 79.19 53.20 46.09
10CC 90.28 7222 9044 7715 9038 82.74 60.54 48.81
Improvement +0.36 +0.56 +0.12 +0.06 +2.6 +0.20 +7.34 +2.72
GoogleNews-TS GoogleNews-T  GoogleNews-S Tweet
ACC NMI ACC NMI ACC NMI ACC NMI
SCCL 82.51  93.01 69.01 85.10 7344 8798 73.10 86.66
RSTC 8327 93.15 7227 8739 7932 8940 7520 87.35
BGE-M3 7297  91.81 68.28 87.52 69.89 89.01 64.64 87.42
MIST 90.63 9642  78.80 89.31 82.14 90.86 91.75 95.12
STSPL-SSC 8441 9432 81.01 91.11 8230 91.18 79.59 88.02
COTC 90.50 96.33  83.53 92.07 86.10 9349 9133 95.09
10CC 9292 9590 87.71 9239 87.64 92.79 9211 94.63
Improvement +2.29 -0.52 +4.18 +0.32 +1.54 0.7 +0.36 -0.49

Table 2: Experimental Results. Clustering performance of IOCC and baselines are presented on eight benchmarks.
The results of baselines are quoted from (Zheng et al., 2023; Li et al., 2024; Kamthawee et al., 2024; Nie et al.,

2024). We bold the best result, underline the runner-up.

employs contrastive learning to refine representa-
tions and obtains the clustering results using the
DEC algorithm (Xie et al., 2016). RSTC (Zheng
et al., 2023) constructs pseudo-labels using adap-
tive optimal transport to assist the model in training
neural networks for clustering. MIST (Kamthawee
et al., 2024) enhances clustering by maximizing
the mutual information between representations at
both the sequence and token levels. STSPL-SSC
(Nie et al., 2024) extends RSTC by incorporating
additional labeled data and leveraging the informa-
tion from these labels to guide the effectiveness of
pseudo-labels. COTC (Li et al., 2024) introduces a
Co-Training Clustering framework that effectively
combines BERT and TFIDF features to generate a
high-quality feature space for clustering.
Additionally, to measure the performance of the
Encoder, we include BGE-M3 experiments, which
apply k-means directly to the output of the BGE-
M3 model. Further analysis of the same Encoder
on other baselines are conducted in Appendix B.3.

4.4 Main Results

The clustering results for both baseline models and
IOCC are summarized in Table 2. From the results,

we can find that: (1) The traditional contrastive
learning method SCCL and the RSTC method
with the introduction of OT, due to the complex-
ity of the datasets, did not yield good results. (2)
Directly incorporating k-means in BGE-M3 can-
not achieve good clustering results. (3) MIST
and COTC allow the model to learn more fea-
tures, and thus performed second only to IOCC
on some datasets. However, they still struggled to
address the challenges posed by complex semantics.
(4) STSPL-SSC, by introducing semi-supervised
learning, demonstrated good performance; nev-
ertheless, the information it could learn still fell
short of our method, so did its performance. (5)
Obviously, IOCC consistently outperforms previ-
ous methods across all datasets. Notably, IOCC
achieves superior clustering accuracy, particularly
on more challenging datasets such as Biomedical,
GoogleNews-T, and StackOverflow. The two com-
ponents in IOCC cooperate with each other to ex-
tract scarce information, achieving a more clear
and well-separated distribution in the feature space,
which is essential for achieving such outstanding
results. In the following sections, numerous ex-
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Figure 3: Comparison of the Alignment Between Semantic Center and Cluster Center. The semantic center
is calculated as the mean embedding of the keywords that describe the category, whereas the cluster center is the
average embedding of all samples within the category. Each color indicates a truth category.

periments will be presented to further validate the
accuracy and stability of our model.

4.5 Semantic Alignment Visualization

We use t-SNE visualization and Euclidean dis-
tances to verify whether IOCC achieves semantic
alignment. Specifically, we chose a representative
category from the StackOverflow dataset — the cat-
egory named "Matlab", where all samples consist
of sentences describing "matlab". We generated
a Word Cloud to identify the keywords in this cat-
egory, and used the average embedding of these
keywords to represent the semantic center of the

category (the list of keywords includes: "matlab"
"functions”, "matrices", "visualization", "program-
ming", "scripts”, and "optimization."). The visual-

ization of the cluster center and the semantic center
is shown in Figure 3, compared to other models,
IOCC achieves the best alignment between the clus-
ter centers and the semantic centers. It reveals that
our method accurately determine the cluster centers
in the feature space.

Furthermore, we can observe that the feature
space distribution obtained by IOCC is more con-
sistent and compact. A more detailed comparison
of the representation visualizations is provided in
Appendix B.2.

4.6 The Comparison of Model Stability

To validate the stability of our model, we used
multiple different random seeds to observe varia-
tions in model performance. Specifically, we con-
ducted experiments on the AgNews and Search-
Snippets datasets, with random seeds ranging from

0 to 10. To ensure a fair comparison, all experi-
ments uniformly use BGE-M3 as Encoder. The
results are shown in Figure 4. From it, we can
find that: (1) RSTC demonstrates high stability
but performs poorly on the imbalanced SearchSnip-
pets dataset. (2) COTC exhibits lower stability.
(3) IOCC achieves the highest performance while
maintaining strong stability, demonstrating the ro-
bustness and generalizability of our model.
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Figure 4: Comparison of Stability. The x-axis represe-
nting the random seeds we used.

4.7 Ablation Study

To demonstrate that each proposed module in IOCC
contributes to the outstanding performance, we
conducted ablation experiments on eight datasets,
as shown in Table 3. The experimental results
demonstrate that the model performance signifi-
cantly decreases regardless of which module we
remove from IOCC. When CACL is removed, rely-



Modules | Agn Sea  Sta  Bio GN-TS GN-T GN-S Twe | §
—(EOT&CACL) | 86.50 81.70 86.74 49.40 81.13 64.79 73.04 73.21 | -11.94
—EOT) 87.41 8424 88.10 53.51 82.717 6723 7486 7532 | -9.82
—(CACL) 88.79 87.51 89.33 58.17 91.47 86.42 86.48 90.41 -1.68
10CC 90.28 90.44 9038 60.54 92.92 87.71 87.64 92.11 0
Table 3: Ablation Results. — () denotes the respective module is removed. ¢ is the average improvement over
I0CC.
Labeled count |  Agn Sea Sta Bio GN-TS GN-T GN-S Twe
1orl1% 90.28 90.44 90.38 60.54 92.92 87.71 87.64 92.11
2 or 2% 90.41 91.13 90.83 63.51 94.21 89.1 90.86 94.7
5or5% 91.13 92.35 91.22 69.43 95.02 90.35 91.17 95.23
10 or 10% 91.65 93.25 91.96 73.41 96.25 93.09 92.84 98.46

Table 4: The Impact of Varying the Number of Labeled Samples. Note that, when (S/N) < 1%, if the required
labeled samples for a class exceed its available samples, the available number of samples in that class is used instead.

ing solely on IEOT to generate pseudo-labels fails
to optimize the distribution in the feature space.
On the other hand, when IEOT is removed, CACL
cannot utilize reliable pseudo-labels, causing the
failure in learning the correct information. Only
when each part of the model collaborates with the
others can the best performance be achieved.

4.8 The Impact of Labeled Data Quantity

Furthermore, we conduct experiments by varying
the number of labeled samples to 1 or 1%, 2 or 2%,
5 or 5%, 10 or 10%, where "1 or 1%" means that:
we use 1% of the samples as labeled if (S/N) > 1%
according to Table 1, and we use only 1 sample per
category as labeled if (S/N) < 1%. The results are
presented in Table 4. We can observe that the per-
formance increases with the number of labeled sam-
ples. In few-shot settings, IOCC already achieves
state-of-the-art results, and as more labeled data
is collected, the model’s performance continues to
improve. This demonstrates that IOCC can effec-
tively be applied in real-world scenarios. Finally,
we construct the labeled data using the "1 or 1%"
setting, which offers the highest cost-effectiveness.

4.9 In-depth Analysis

In addition to the experiments mentioned above,
we conducted more supplementary experiments to
further verify the capabilities of IOCC:

(1) We recorded how the number of predicted
clusters are changing over iterations in Appendix
B.1, showing that our model can effectively com-
bat clustering degeneracy. (2) Since each baseline
model uses a different Encoder, we converted base-

line models to the same Encoder (BGE-M3 and
SBERT) for comparison. The results provided in
the Appendix B.3, it can be observed that, regard-
less of whether the Encoder is the same or not, our
model outperforms all other models. (3) Due to
the current scarcity of semi-supervised methods in
the field of short text clustering, we incorporated
labeled data into recent high-performance models
in the training process. As can be seen from the Ap-
pendix B.4, few-shot scenario will not directly en-
hance the performance of the baselines, and IOCC
still outperforms these models comprehensively.
(4) We conducted hyperparameter analysis exper-
iments includinge,e2,63 and A, and analyzed the
impact of these hyperparameters in Appendix D.
(5) We recorded the computation budget with pre-
vious models, as shown in Appendix C. Our model
strikes a balance between performance and effi-
ciency, making it the most cost-effective solution.

5 Conclusion

This paper presents a novel approach, IOCC, for
few-shot short text clustering, which combines
Interaction-enhanced Optimal Transport (IEOT)
and Center-aware Contrastive Learning (CACL).
The former significantly improved the accuracy
of pseudo-labels by exploiting the interaction be-
tween samples, while the latter aligning the cluster
centers with the semantic centers by constructing
pseudo-centers and pulling samples towards them.
Extensive experiments demonstrate that IOCC con-
sistently outperforms existing state-of-the-art tech-
niques, showing significant improvements in clus-
tering accuracy and stability.



6 Limitations

Despite the promising results, there are some limi-
tations to our method. (1) The performance slightly
depends on the quality and representativeness of
the labeled data. So the future work will focus
on how to derive labeled data in a cost-effective
way like using LL.Ms. (2) The pseudo-labeling
process, while effective, can still introduce errors,
particularly in noisy or ambiguous data. Therefore,
exploring a method for generating more accurate
pseudo-labels is also a key focus in the future.
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A Hyper-efficient Solution for IEOT

A.1 Formulation of the Solution

As mentioned in Section 3.2, the IEOT problem is
formulated as:

milr)l (Q,M)—e1H(Q)+e20(b)—e3(S, QQT>

st. Qlx =a, Q1,5 =b, Q >0, b 1, =1,

(1)
where M = —log(P“<U> ), {-,-) represents the
Frobenius inner product, €1 and eo are balanc-
ing hyperparameters, a = ,%BluB’ H(Q) =
—(Q.10g(Q) — 1), and O(b) = XX | ~b,log(b;)
is the entropy of the cluster probability assignments
b.

The IEOT incorporates a complex quadratic se-
mantic regularization term, which cannot be solved
directly using traditional OT methods. To ad-
dress IEOT, we propose integrating the Lagrange
multiplier algorithm (Zheng et al., 2023) into the
Majorization-Minimization method to solve IEOT.
The proposed Majorization-Minimization method
is iteratively minimizes the objective function in
Eq.(11). In the i-th (z > 1) iteration, the Taylor ex-
pansion with the constant term and the linear term
to approximate (S, QQT) are as follows:

T(S,Q) =((S+5")Q; 1.Q - Q, 1)

(12)
+(8,Q, Q7 )

, in which %QQU = (8 + ST)Q is used.

When replacing the (S, QQT) in the objective
function with its Taylor approximation in Eq.(12),
one can get the following optimization problem:

%}lr)l (Q,M)—e1H(Q)+20(b) —T(S,Q)

st. Qlx =a, Q1,5 =b, Q >0, b 1, =1,
(13)



The objective function in Eq.(13) is a surrogate
function for the objective function in Eq.(11). To
prove this claim, define

9(Q,b) =(Q,M)—c1H(Q) + 20(b), (14)

the objective function in Eq.(11) is

f(Qab) = g(Q7b) _53<Sa QQT>7 (15)
and the objective function in Eq.(13) is

f(Q,b) and s(Q, b) satisty the following two
conditions:

Condition 1: f(Q;_1,bi—1)=s(Q;_1,bi—1) (17)

Condition 2: f(Q,b) < s(Q,b), (18)

Condition 1 is straightforward, while Condition 2
is based on the concavity of (S, QQ7) w.rt. Q,
such that the following inequality holds (Boyd and
Vandenberghe, 2004):

—(5,QQ") < —{(S+51)Q;_1,Q - Q;_1)
- <Sv Qi—leT—1>'

19)

Based on these two conditions, f(Q, b) is a sur-

rogate function for s(@Q,b) (Hunter and Lange,

2004). One can solve the problem in Eq.(11) itera-

tively, and in each iteration the problem in Eq.(13)

is solved. In the ¢-th iteration, with Q);_; available,

the objective function in Eq.(13) can be rewritten
as follows:

(Q, M) — e1H(Q) +20(b) — e37(S,Q)
=(Q,M —3(S+5")Q,;_1) —1H(Q)
+ 6(b) + D,

(20)
in which D e3((S + 8TYQ,_1,Q,_,) —
£3(8,Q,;_1QL ) is a constant.

Therefore, the optimization problem in Eq.(13)
can be rewritten as follows:

win (Q, M) —e1H(Q) +226(b)

)

st. Qlx=a, Q"1,5=b, Q>0, b'1, =1,
. 21
with M = —log(P©)) — 3(S + 81)Q, ;.
Then, we adopt the Lagrangian multiplier algo-
rithm to solve Eq.(21):

%ig(Q, M)—1H(Q)+e20(b)— L (Q1l,—a)

~9"(Q"1,5 —b) — h(b" 1, — 1),
(22)
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where f, g and h are all Lagrangian multipliers.
Taking the partial derivative of Eq.(22) with respect
to @Q, one can obtain:

> 0.
€1 )

Qij = exp (23)
Eq.(23) is a function of each element in f and g.
Next, we first fix b, and update f; and g;. Due to

the fact that Q1 = a, one can get:

K K r
2% Z;exp(zéw
J:

— 1
Ji

)

K

f; g; — M;;

= ep(2) Y exp(E—=)
j=1

(24)

= Q5,

where K represents the number of clusters in the
dataset. Further, one can obtain:

Jiy

€1

a;

(25)

exp( - —
> j=1 eXP(gjgil”)

Taking the logarithm of both sides and multiplying
by €1, one can obtain:

fi = e1lna; — 511nzlexp(j€1”). (26)
]:

Similar to the above derivation, from Q71 =
b, one can obtain:

fi —sz)
€1 '

uB

g; = €1lnb; — 511nz exp(
i=1

(27)

We can observe that g; is an unknown variable in
Eq.(26), while f; is an unknown variable in Eq.(27).
Since f; and g; are functions of each other, making
it infeasible to directly solve for their exact values.
Thus, we employ an iterative approach to update
and work out it.

Then, we fix f and g, and update b. Specifi-
cally, take the partial derivative of the optimization
problem Eq.(22) on the variable b, one can obtain:

ea(log(bj) +1) +g; —h=0,  (28)
by solving formula Eq.(28), one can get:
h—g;—c¢
bi(h) =exp(—2 =) (29)

€2



Taking Eq.(29) back to the original constraint
b''1, = 1, the formula is defined as below:

h—g;—eo

K P
(b(h) 1k :;exp( ;2 )=1, (30)

by extracting the scalar part, one can obtain:
h & gi — €
—gj — &2
— ——) =1 1
exp(Z) ) exp(—_—) =1, GD
7j=1
by solving Eq.(31), one can get:

K
h = —eslog Zexp(%;@) ,  (32)
j=1

where h is the root of Eq.(30), Then, we can obtain
b by Eq.(29).

Overall, through iteratively updating the Eq.(26),
(27) and (29), we can get the transport matrix ¢
on Eq.(23). We show the iterative optimization
process for solving Eq.(21) using the Lagrange
multiplier algorithm in Algorithm 1.

Algorithm 1 The pseudo-code for solving IEOT

Input: Probability matrix PO, marginal con-
straints a; semantic similarity matrix S’; constraints
weights €1, €2 and 3.

Output: Transport matrix Q.

Procedure:

Initialize by randomly and perform normaliza-
tion so that b} 1 = 1
Initialize Q, = ab] .
for i =1toT; do
M =—log(P")—e3(S+57)Q,_,.
Initialize f and g randomly.
Initialize h = 1.
for i=1to 75 do
Fix b, update f andg by Eq.(26) and (27),
respectively.
Fix fand g, update b by Eq.(29) and (32).
end for
Calculate Q; in Eq.(23).
end for

Q=Qr

B Supplementary Experiment

B.1 Clustering Degeneracy Study

We conducted comparative experiments to verify
whether our method can prevent the occurrence of

12

the clustering degeneracy problem. Clustering de-
generacy is a significant challenge for imbalanced
datasets (i.e., although the number of categories is
provided to the model during training, the predicted
number is still smaller than the real amount).

The results are shown in Figure 5. From these
results, we can observe that, IOCC converges to the
real category number, while other methods suffer
from the clustering degeneracy problem.

B.2 The visualization of text representations

To observe the distribution of samples in the fea-
ture space, we performed t-SNE visualization on
SearchSnippets dataset for baseline models and
IOCC. The result is shown in Figure 6. We can
see that: (1) In M3, all the clusters overlap with
each other. (2) RSTC shows some improvement
over M3, but still contains a significant number of
misclustered noise points, indicating poorer clus-
tering performance. (3) COTC achieves a better
representation distribution than RSTC, but it still
has some errors, particularly confusing the clusters
represented by red color and black color. (4) Our
proposed IOCC achieves the best clustering per-
formance. It effectively reduces the noise points
within the clusters obtained by clustering. The
representation visualization indicates that our pro-
posed method learned discriminative representa-
tions and achieved better clustering.

B.3 The Comparison Results Using the Same
Encoder

To ensure a fair comparison of algorithm perfor-
mance, additional experiments were conducted us-
ing a unified Encoder. Among the baseline mod-
els, SCCL (Zhang et al., 2021), RSTC (Zheng
et al., 2023), and COTC (Li et al., 2024) utilize
the distilbert-base-nli-stsb-mean-tokens (SBERT)
Encoder, MIST (Kamthawee et al., 2024) employs
the paraphrase-mpnet-base-v2 (MPNET) Encoder,
and STSPL-SSC (Nie et al., 2024) uses the bge-
base-en-vi.5 (BGE-M3) Encoder. Notably, SBERT
yields the lowest performance, MPNET surpasses
SBERT, and BGE-M3 produces the best results.
In real-world short text clustering applications,
the primary objective is to achieve the most accu-
rate clustering results. To this end, IOCC adopts
the same BGE-M3 Encoder used by STSPL-SSC
(Nie et al., 2024). Different encoders may yield
varying results; therefore, to ensure a fair compari-
son with previous studies, we replaced the encoders
for IOCC and baseline models with the BGE-M3
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Encoder and SBERT Encoder, respectively.

The results, presented in Table 5 & 6, indicate
that under identical Encoder conditions, IOCC con-
tinues to outperform the other models. Therefore,
the superior performance achieved by IOCC is not
closely related to the encoder.

B.4 Research on Incorporating Labeled Data

Like the previous work STSPL-SSC, IOCC is a
semi-supervised approach, while the other previ-
ous works are unsupervised methods. To ensure a
fair comparison, we incorporated the same amount
of labeled data used in IOCC into the previous
works and applied the cross-entropy loss function
to leverage the labeled data.

The results, presented in Table 7, indicate that
simply incorporating a small amount of labeled
data does not improve model performance. In fact,
it has a negative impact. We attribute this to the
fact that previous works utilize k-means to gener-
ate pseudo-labels at the beginning of the training
process. K-means assigns random labels to the gen-
erated clusters, which may conflict with the true
labels. Furthermore, these results demonstrate that
the strong performance of our method is not solely
due to the labeled data, but rather to its ability to
effectively propagate knowledge from the labeled
data to the unlabeled data.

C Computation Budget

We built our model using PyTorch and performed
all experiments on an NVIDIA GeForce RTX 3090

Ti GPU. To provide a comprehensive comparison
with prior research, we evaluate both the parameter
count and training time relative to existing methods,
using the StackOverflow dataset as a benchmark.
This comparison offers insights into the computa-
tional efficiency and scalability of our approach in
relation to previous studies.

The results in Table 8 show that, due to the adop-
tion of BGE-M3 as the Encoder, our model has
over more 40M parameters compared to RSTC-
origin and COTC-origin. However, this increase is
negligible relative to the significant improvement
in clustering performance. Additionally, in previ-
ous work, MIST also uses a new Encoder, mak-
ing its parameter count comparable to ours, but its
clustering performance is still significantly lower
than IOCC (as shown in Table 2). Furthermore,
IOCC achieves the shortest training time except
for RSTC-origin, indicating lower computational
resource requirements. When RSTC and COTC
are switched to BGE-M3 Encoder, their parameters
and training time increase substantially.

D Hyperparameter Analysis

We conducted a series of experiments to validate
the effects of 1, €9, €3 and A with values in
{0,1,5,10}, {0.03,0.06,0.1,1,3.5,7,10, 100},
{10,15,20,25,30} and {1, 5, 10, 15,20}, respec-
tively. The experiments were conducted on the
representative datasets AgNews, GoogleNews-T
and Tweet. The experimental results are presented
in Figure 7.
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Method Agn Sea Sta Bio GN-TS GN-T GN-S Twe

RSTC 89.39 81.26 86.78 51.67 84.21 80.12 82.82 77.06
STSPL-SSC 89.92 81.04 86.74 47.43 84.41 81.01 82.30 79.59
COTC 88.33 89.78 89.83 51.92 89.56 85.02 87.10 91.53
10CC 90.28 90.44 90.38 60.54 92.92 87.71 87.64 92.11
Improvement | +0.36 +0.66 +0.55 +8.62 +3.36 +2.69 +0.54 +0.58

Table 5: Results of Using the Same BGE-M3 Encoder. The experiment results for baseline models using the same
BGE-M3 Encoder.

Method | Agn Sea Sta Bio GN-TS GN-T GN-S Twe
RSTC 84.24 80.10 83.30 48.40 83.27 72.27 79.32 75.20

COTC 87.56 90.32 87.78 53.20 90.50 83.53 86.10 91.33
10CC 87.73 90.24 89.06 58.33 91.71 85.39 86.91 91.62

SCCL 83.10 79.90 70.83 42.49 82.51 69.01 73.44 73.10

Improvement | +0.17 -0.08 +1.28 +5.13 +1.21 +1.86 +0.81 +0.29

Table 6: Results of Using the Same SBERT Encoder. The experiment results for baseline models using the same
SBERT Encoder.

Method | Agn Sea Sta Bio GN-TS GN-T GN-S Twe
RSTC 84.76 79.55 81.89 45.31 80.91 70.99 77.89 70.55
MIST 85.51 75.93 82.20 39.85 86.42 73.22 79.45 87.45
STSPL-SSC 89.92 81.04 86.74 47.43 84.41 81.01 82.30 79.59
COTC 87.06 90.65 87.17 52.79 88.70 83.03 84.31 90.14
10CC 90.28 90.44 90.38 60.54 92.92 87.71 87.64 92.11
Improvement | +0.36 -0.21 +3.21 +7.75 +4.22 +4.68 +3.33 +1.97

Table 7: Results of Incorporating Labels for Baselines. The comparison between IOCC and previous models with
labeled data incorporated.

‘RSTC—origin RSTC-M3 COTC-origin COTC-M3 MIST-origin I0CC

Training time 00:15:39 00:28:40 00:35:21 01:02:36 00:37:27 00:24:01
Parameters 68.25M 111.37M 77.44M 120.55M 109.5M 111.37M

Table 8: The Comparison of Parameter Quantity and Training Time. Where "RSTC-origin", "COTC-origin" and
"MIST-origin" refer to the models presented in their respective original papers, while "RSTC-M3" and "COTC-M3"
denote the models with the Encoder replaced by BGE-M3.

From Figures 7(a), 7(c), and 7(d), we observe Although our model has several hyperparame-
that variations in €1, €3, and A have minimal im-  ters, only 2 influences the performance on imbal-
pact on model performance, suggesting that the  anced datasets. This suggests that the model ex-
model is largely insensitive to these parameters. In  hibits strong robustness and generalizability. Con-
contrast, Figure 7(b) emphasizes the importance of  sequently, when applied to unseen data, the model
tuning €9 for imbalanced datasets, whereas it has ~ demonstrates higher adaptability, requiring min-
no discernible effect on balanced datasets. Since  imal hyperparameter tuning for effective perfor-
€9 regulates the penalty strength for the imbalance ~ mance. Experientially, we set e; = 1, e3 = 25
levels of predicted cluster probabilities in Eq.(11), and A = 5 for all datasets; 5 = 1000 and 1.2 for
we determine its value based on the degree of im-  balanced datasets and severely imbalanced datasets,
balance in the dataset. respectively.
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Figure 7: Hyperparameter Analysis. The effect of €1, €2, £3, and A on model accuracy.

E Supplementary Details

E.1 Pseudocode of IOCC

We present the pseudocode of IOCC’s training pro-
cess for an iteration, as shown in Algorithm 2.

E.2 Datasets

We conduct experiments on eight benchmark
datasets, which cover a wide range of text sources,
including news headlines and social media content.
These diverse sets enable a thorough evaluation
of the model across various domains. Based on
the degree of imbalance, AgNews, StackOverflow,
and Biomedical are classified as balanced datasets,
while SearchSnippets is categorized as a slightly
imbalanced dataset. In contrast, GoogleNews-T'S,
GoogleNews-T, GoogleNews-S, and Tweet are
considered as severely imbalanced datasets. The
brief descriptions are provided below:

* AgNews: Sourced from AG’s news corpus
(Zhang et al., 2015), this dataset contains
8,000 news headlines categorized into four
different topics (Rakib et al., 2020).

SearchSnippets: Derived from web search
activities, it includes 12,340 search result snip-
pets organized into eight distinct categories
(Phan et al., 2008).

StackOverflow: Comprising 20,000 question
titles across 20 technical fields (Xu et al.,
2017), this dataset is sampled from Kaggle
competition data, covering technical discus-
sions and programming-related queries.

Biomedical: This dataset consists of 20,000
research paper titles in 20 scientific disciplines
(Xu et al., 2017), sourced from BioASQ,
showcasing the specialized terminology and
format typical of academic research.

GoogleNews: Providing a broad range of
news content, it includes 11,109 articles re-
lated to 152 events (Yin and Wang, 2016).
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Algorithm 2 Pseudocode for an iteration of IOCC

Input: Encoder f; Classifier g; Projector h; Mini-
batch labeled data { X!(?), Y*}; Mini-batch unlabe-
led data X “(0); current iteration iter.
Output: Updated parameters
# generate augmented samples
X! , X2+ textual augmenter(Xl(O))
X“(l), X"2)  textual augmenter(X“(U))
# forward texts and obtain P and Z
Pl(l),Pl(z)jpu(O)jPu(l)jpu(2) « f(g(~))
ZZ(O), Zu(0)7 Zu(l)j Zu(2) F(h(~))
# produce pseudo-label via IEOT
Y « IEOT(P“(0)
# accumulate and update pseudo-center
n + 1(max(P*©) > 7)
C «accum. pseudo-center(Z 1(02 AR

#Eq.(3)

C < update pseudo-center(C) #Eq.(4)
# calculate the loss function
L1 +calculate loss(Z*(1), Z(2)) #Eq.(7)

L x <—calculate loss(Pl(l), Pl(2), YY) #Eq.9)
L¢ <calculate loss(P“(l), P“(2), Yu) #Eq.(8)
L—Li+Lx+ Lo #Eq.(10)
if iter > F;ro then

Lp +calculate loss(Z%1) |, Zu(2) Yu, (@)

# Eq.(5)
L+ L+NCp #Eq.(10)
end if
# update parameters
back propagation(L)

The dataset is available in three versions:
complete articles (GoogleNews-TS), titles
only (GoogleNews-T), and snippets only
(GoogleNews-S).

* Tweet: Containing 2,472 tweets linked to 89
different queries (Yin and Wang, 2016), this
dataset was gathered from the Text Retrieval
Conference’s microblog tracks in 2011 and
2012, reflecting the casual and succinct nature
of social media posts.



E.3 Evaluation Metrics

Consistent with previous works (Rakib et al., 2020;
Zheng et al., 2023), we employ two standard met-
rics to use the clustering performance: Accuracy
(ACC) and Normalized Mutual Information (NMI).
Accuracy measures the proportion of correct clus-
tered texts, which is defined as:

N
Zi:l ]lyi:map(??i)

A =
cc N :

(33)

where y; is the true label and yj; is the predicted
label, map(-) operation refers to aligning the pre-
dicted labels with the true labels using the Hungar-
ian algorithm. (Papadimitriou and Steiglitz, 1998).

Normalized Mutual Information quantifies the
shared information between the true and predicted
label distributions, normalized by their individual
uncertainties:

NMI(Y,Y) = (34)

where Y and Y represent the true and predicted
label matrices respectively, I denotes mutual infor-
mation, and H represents entropy.

E.4 Experiment Settings

The batch size of the labeled and unlabeled data
are set to B = 15 and pB = 200, respectively.
The temperature parameters for instance-wise and
prototypical-based contrastive learning are set to
Tp = 1 and T7 = 1. The outer loops of the
Majorization-Minimization algorithm 77 and the
iterations of the Lagrange multiplier algorithm 75
are set to 10. The total number of training iterations
FEiorar 1s 1,500 for all datasets except the Tweet
dataset, where Fi,:,; = 1,000. The number of
first stage iterations E ;s is 1,000 for all datasets
except the Tweet dataset, in which E;.s; = 700.
The maximum sentence length of the Encoder f
input is 32. The output dimension of the Projector
hissetto D = 128.
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