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Abstract

Tyler’s M -estimator (TME) is an accurate and efficient robust estimator for the scat-1

ter matrix when the data are samples from an elliptical distribution with heavy-tails2

and the number of samples n is larger than the number of variables p. Unfortu-3

nately, when p > n, TME is not defined, and various research works have proposed4

regularized versions of TME using the spirit of Ledoit & Wolf estimator whose per-5

formance depends on a carefully chosen shrinkage coefficient parameter α ∈ (0, 1).6

In this paper, we consider the problem of estimating an optimal shrinkage coef-7

ficient α ∈ (0, 1) for Regularized TME (RTME). In particular, we propose to8

estimate an optimal shrinkage coefficient by setting α as the solution to a suitably9

chosen objective function; namely the leave-one-out cross-validated (LOOCV) log-10

likelihood loss. Since LOOCV is computationally prohibitive even for moderate11

values of n, we propose a computationally efficient approximation for the LOOCV12

log-likelihood loss that eliminates the need for invoking the RTME procedure n13

times for each sample left out during the LOOCV procedure. This approximation14

yields an O(n) reduction in the running time complexity for the LOOCV procedure,15

which results in a significant speedup for computing the LOOCV estimate. We16

demonstrate the efficacy of the proposed approach on synthetic high-dimensional17

data sampled from heavy-tailed elliptical distributions, as well as on real high-18

dimensional datasets for object and face recognition. Our experiments show that19

the proposed method is efficient and consistently more accurate than other methods20

in the literature for shrinkage coefficient estimation.21

1 Introduction22

Covariance matrices, or their scaled versions scatter matrices, are ubiquitous in statistical models23

and procedures for machine learning, pattern recognition, signal processing, and various other fields24

of science and engineering. The performance of procedures such as principal component analysis25

(PCA) and its extensions [24], linear discriminant analysis (LDA) and its extensions [31], canonical26

correlation analysis (CCA) [21], portfolio optimization for investment diversification [28], and outlier27

detection using robust Mahalanobis distance [4], all depend on an accurate estimate of the covariance28

matrix. Unfortunately, the process of accurately estimating a covariance matrix is challenging since29

the number of unknown parameters grows quadratically with the number of variables (or features) p.30

The problem is well-understood when the number of samples n is much larger than p and the data’s31

underlying distribution is a multivariate Gaussian. In this case, the sample covariance matrix (SCM)32

is an accurate estimate of the covariance matrix, and is optimal under most criteria [43].33

In various modern applications, however, p may be comparable to, or greater than n, and the data’s34

underlying distribution may be non-Gaussian and/or heavy-tailed. The situation gets exacerbated35

if the data are also contaminated with outliers. In such settings, the SCM is known to be a poor36

estimate of the covariance matrix and one needs to consider estimators that are more accurate and37
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robust than the SCM. In this work, we are interested in a particular estimator from the family of38

robust and affine-invariant M -estimators of scatter matrices proposed by Maronna [29] – namely39

Tyler’s M -estimator (TME) [42, 41] – in the setting where the data’s distribution is heavy-tailed and40

the sample support is relatively low; i.e. p is large, and p ≥ n.141

Various approaches were proposed for estimating high-dimensional covariance matrices when p ≥ n;42

shrinkage-based approaches [23, 11, 9, 27]; specifying an appropriate prior distribution for the43

covariance matrix [17]; regularization-based approaches [10, 39, 38]; approaches that exploit sparsity44

assumptions (banding, tapering, thresholding) [3, 25, 5, 19]; and approaches developed in the robust45

statistics literature [22, 18]. Except for some approaches from the robust statistics literature, most of46

the other approaches assume that the data’s underlying distribution is a multivariate Gaussian, which47

may not be a reasonable assumption for handling outliers, or samples from heavy-tailed distributions.48

TME is an accurate and efficient robust estimator for the scatter matrix when the data are samples49

from an elliptical distribution with heavy-tails and n ≫ p. Elliptical distributions (introduced50

shortly) are the generalization of the multivariate Gaussian distribution and are suitable for modeling51

empirical distributions with heavy tails, where such heavy tails may be due to the existence of outliers52

in the data [32]. In this setting, and under some mild assumptions on the data, TME has various53

attractive properties [42, 41]. TME is strongly consistent, asymptotically normal, and is the most54

robust estimator for the scatter matrix for an elliptical distribution in a minimax sense; minimizing55

the maximum asymptotic variance (see Remark 3.1 in [42]). Unfortunately, in the p > n regime,56

TME is not defined. Various research works have proposed regularized versions of TME using the57

spirit of Ledoit–Wolf estimator [27] whose performance depends on a carefully chosen regularization58

parameter, or shrinkage coefficient α ∈ (0, 1) [1, 7, 43, 37, 40, 35, 45, 2]. Our work here addresses59

the question of shrinkage coefficient estimation for Regularized TME (RTME), and proposes a60

computationally efficient algorithm for obtaining a near-optimal estimate for this parameter.261

Unfortunately, the recursive nature of TME’s procedure makes estimating an optimal shrinkage62

coefficient for this estimator a non-trivial problem. Arguably, three broad approaches were considered63

to address this problem: (i) oracle and random matrix theory (RMT) based approaches [7, 35, 8, 45,64

20]; (ii) data-dependent approaches based on Cross Validation (CV) techniques [1, 43, 40, 12]; and65

(iii) maximum likelihood (ML) based approaches [2]. Oracle-based approaches are computationally66

efficient due to their closed-form solutions but may come short in terms of accuracy due to their67

implicit assumptions on the data distribution, and due to the implicit assumptions in their asymptotic68

estimates. CV techniques on the other hand are more accurate than oracle based methods since they69

are data-dependent approaches; this accuracy, however, comes at the cost of intensive computations,70

especially for high-dimensional data, which makes CV techniques not a favorable option for various71

applications. [2] proposed a ML based approach, namely the expected likelihood (EL) method,72

for selecting a shrinkage coefficient for RTME when used for some specific problems in wireless73

communications; e.g. adaptive-filtering and estimating the signal’s direction of arrival. While in such74

applications the noisy data samples may be reasonably assumed to have an elliptical distribution, the75

EL method may not be considered a general approach for estimating the shrinkage coefficient due to76

the special controlled environments for such problems in wireless communications.77

In this work, we propose a more general approach for estimating an optimal shrinkage coefficient α∗78

for RTME. Our proposed approach formulates the problem of finding an optimal shrinkage coefficient79

as an optimization problem with respect to parameter α. In particular, we define an optimal shrinkage80

coefficient α∗ as the minimizer for the following loss function; the leave-one-out cross-validated81

(LOOCV) negative log-likelihood (NLL) for the estimated scatter matrix with respect to parameter α82

(Eq. 12). Since LOOCV is computationally prohibitive even for moderate values of n, we propose83

a computationally efficient approximation for the LOOCV NLL loss that eliminates the need for84

computing the Regularized TME n times for each sample left out during the LOOCV procedure. This85

approximation yields an O(n) reduction in the running time complexity for the LOOCV procedure,86

which results in a significant speedup in computing the LOOCV NLL loss.87

At high-level, the resulting procedure, the Approximate Cross-Validated Likelihood (ACVL) method,88

exploits mild computation and the given finite sample to select a (data-dependent) near-optimal coeffi-89

cient α for RTME. In addition, the ACVL method is amenable to parallel computation, and is directly90

1See [30, 44] for a recent overview and results on this family of estimators.
2Shrinkage coefficient estimation for SCM, and generalized M -estimators for elliptically distributed data,

were considered in [34, 36].
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applicable to sparse covariance matrix estimation by means of thresholding the Regularized TME91

[15]. We demonstrate the efficiency and accuracy of the ACVL method on synthetic high-dimensional92

data sampled from heavy-tailed elliptical distributions, as well as on real high-dimensional datasets93

for face recognition (Yale B), object recognition (CIFAR10 and CIFAR 100), and handwritten digit94

recognition (USPS). Our experiments show that, with some additional mild computation, the ACVL95

method is efficient and more accurate than other methods in the literature.96

1.1 Notation and Setup97

Scalars and indices are denoted by lowercase letters: x, y and i, j, respectively. Vectors are denoted98

by lowercase bold letters: x,y, and matrices by uppercase bold letters: X,Y. Sets are denoted99

by calligraphic letters: X ,Y , and spaces are denoted by double-bold uppercase letters: R,S. The100

identity matrix is denoted by I, and 0 is the vector with all zeros, both with suitable dimensions from101

the context. For x ∈ Rp, ∥x∥ is the Euclidean norm. For a matrix A = (aij), ∥A∥F is the Frobenius102

norm, Tr(A) is the matrix trace, and det (A) is the matrix determinant. The space of symmetric and103

positive definite (PD) matrices is denoted by Sp+. The unit sphere in Rp is denoted by Sp, where104

Sp = {x ∈ Rp s.t. ∥x∥ = 1}.105

1.2 Elliptical Distributions106

We will use the stochastic model due to [6] and recently used in the literature to define elliptical107

random vectors (RV) [13, 15]. Let z be a p dimensional RV generated by the following model:108

z = µ+ uS
1
2y = µ+ ux̃ , (1)

where µ ∈ Rp is a location vector, S ∈ Sp+ is a scatter or shape matrix, y is drawn uniformly from109

Sp, and u is a nonnegative random variable (r.v.) stochastically independent of y. The resulting RV z110

from the model in (1) is an Elliptically Distributed (ED) RV. Note that S in (1) is not unique since111

it can be arbitrarily scaled with 1/u absorbing the scaling factor u. The distribution function of u,112

known as the generating distribution function, constitutes the particular elliptical distribution family113

of the RV z. If z is an ED RV, its probability density function (PDF) is defined as:114

f(z;µ,S, gu) = det (S)
− 1

2 gu
(
z̄⊤S−1z̄

)
, (2)

where z̄ = (z− µ), and gu : R+ 7→ R+ is a nonnegative decreasing function known as the density115

generator function and is not dependent on µ and S, but dependent on the generating distribution116

function of u. The density generator function determines the shape of the PDF, as well as the tail117

decay of the distribution. For any elliptical distribution, if its population covariance matrix Σ exists,118

then Σ = cgS for some constant cg > 0 that is dependent on gu.119

2 Regularized Tyler’s M–Estimator120

Let Zn = (z1, . . . , zn) be a sample of n independent and identically distributed (i.i.d.) realizations121

from the model in (1) with location vector µ = 0 and scatter matrix S. We are interested in122

computationally efficient and statistically accurate algorithms for estimating the population scatter123

matrix S using the samples in Zn in the setting where p > n. Here we do not make a priori sparsity124

assumptions on the scatter matrix S. Without any a priori knowledge on cg and gu, it may seem125

less probable to obtain a good estimator for S. In addition, for some elliptical distributions – such126

as the multivariate Cauchy distribution – they may have infinite second moments in which case the127

population covariance matrix Σ does not exist. Thus it may always be better to consider and estimate128

the normalized scatter matrix S which is always defined [37].129

TME can be derived as a ML estimator of the shape matrix for the Angular Central Gaussian (ACG)130

distribution (defined in Equation 3) based on the sample Zn [41]. With µ = 0, the sample Zn can be131

written as (u1x̃1, . . . , unx̃n). Since the scalars u1, . . . , un are unknown, there is a scaling ambiguity132

and one can only expect to estimate matrix S up to a scaling factor. TME overcomes this limitation133

by working with the normalized samples: xi = zi/ ∥zi∥ = x̃i/ ∥x̃i∥, 1 ≤ i ≤ n, where the scalars134

ui cancels out. The PDF for the vectors x1, . . . ,xn is given by:135

f (x;S) = (2π)−
p
2Γ( 12 ) det (S)

− 1
2
(
x⊤S−1x

)− p
2 , (3)
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where x ∈ Sp, Γ(·) is the Gamma function, and Γ(p/2)/(2π)
p
2 is the surface area of Sp. The136

ACG density in (3) represents the distribution of directions for samples drawn from a multivariate137

Gaussian distribution with zero mean and covariance matrix S [41]. Thus, only the directions of138

outliers can affect TME’s performance but not their magnitude. Given an i.i.d. random sample139

Xn = (x1, . . . ,xn) from a distribution having the ACG density in (3), the likelihood of Xn with140

respect to S is proportional to:141

L (Xn;S) = det (S)
−n/2

n∏
i=1

(
x⊤
i S

−1xi

)− p
2 . (4)

Taking − log of L (Xn;S) yields the loss function:142

L (Xn;S) =
p

2

n∑
i=1

log
(
x⊤
i S

−1xi

)
+

n

2
log det (S) , (5)

which will be needed for our next discussions. Taking the derivative of L (Xn;S) with respect to S143

and equating it to zero, the ML estimator for S is the solution to the following fixed point equation:144

Sn =
p

n

n∑
i=1

xix
⊤
i /(x

⊤
i S

−1
n xi) , (6)

where xi ̸= 0, for i = 1, . . . , n since samples lying at the origin provide no directional information145

on S. If n > p(p − 1), Theorem 1 in [41] states that with probability one, the ML estimate of S146

exists, corresponds to the solution in (6), and is unique up to a positive multiplicative scalar. The147

solution to (6) can be found using the following fixed point iteration (FPI) algorithm:148

Ŝt+1 =
p

n

n∑
i=1

xix
⊤
i /(x

⊤
i Ŝ

−1
t xi) , (7)

with Ŝ0 = I, or any arbitrary initial Ŝ0 ∈ Sp+ [26]. Theorem 2.2 and Corollaries 2.2 & 2.3 in [42]149

show that if n > p+ 1 and assuming that every p samples out of Xn are linearly independent with150

probability one, and that the maximum likelihood estimate of S exists, then the FPI algorithm in (7)151

almost surely converges to the solution of (6), and the limiting solution Ŝ = ŜT computed at the last152

iterate T is unique up to a positive multiplicative scalar.153

TME has various attractive properties and is asymptotically optimal under different criteria. In154

particular, TME is strongly consistent, asymptotically normal, and is the most robust estimator for the155

scatter matrix for an elliptical distribution in a minimax sense; minimizing the maximum asymptotic156

variance (see Remark 3.1 in [42]). Unfortunately, when p > n, TME is not defined; the LHS of (6)157

must be a full rank symmetric PD matrix, while the RHS is rank-deficient.3 Various researchers have158

proposed different flavors of RTME using the spirit of [27] linear shrinkage estimator [1, 7, 43, 37, 35].159

In particular, Sun et al. (SBP) [40] proposed the following penalized log-likelihood function to derive160

a regularized version of TME:161

LP(Xn;S) = L (Xn;S) + βP(S) , (8)

where L(Xn;S) is defined in (5), and P(S) is a penalty function defined as: P(S) = Tr(S−1T) +162

log det (S), with β > 0 is the regularization parameter (or shrinkage coefficient). Matrix T ∈ S+p163

is a given target matrix with some desirable structural properties (diagonal, banded, Toeplitz, etc.).164

Letting α = β/(1 + β), the solution to (8) has to satisfy the fixed point equation:165

Sn = (1− α)
p

n

n∑
i=1

xix
⊤
i

x⊤
i S

−1
n xi

+ αT . (9)

Note that α ∈ (0, 1) for any 0 < β < ∞. Starting from an arbitrary Ŝ0 ∈ S+p , the final solution can166

be obtained using the Regularized FPI (RFPI) algorithm:167

Ŝt+1(α) = (1− α)
p

n

n∑
i=1

xix
⊤
i

x⊤
i Ŝ

−1
t (α)xi

+ αT , (10)

3Regularization may still be needed for p ≤ n ≤ p(p− 1) when the points are not in general position, and/or
the samples are not drawn from an elliptical distribution.
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where α ∈ (0, 1) is the shrinkage coefficient that controls the amount of shrinkage applied to scatter168

matrix S towards the target matrix T. Theorem 11 and Proposition 13 in [40] establish the necessary169

and sufficient conditions for the existence and uniqueness of the solution to Equation (9), while170

Proposition 18 ensures that the RFPI in (10) converges to the unique solution of (9).171

Without loss of generality, if T = I and α = 0, one restores the unbiased TME in (7), and if α = 1172

the estimator reduces to the uncorrelated scatter matrix αI. If p < n, and the samples are drawn173

from an elliptical distribution, α is expected to be zero (or close to zero) and results for existence and174

uniqueness of the estimator still hold [37]. If p ≥ n, α is expected to be large4; however to ensure the175

existence and uniqueness of the estimator, α needs to be strictly greater than 1− n/p [37, 40].176

2.1 Runtime Analysis for the RFPI Algorithm177

The magnitude of α has an impact on the accuracy of the final estimate Ŝ = ŜT , as well as on the178

convergence speed for the RFPI algorithm. In particular, Lemma 1 in [15] gives a result on the179

uniform linear convergence of the algorithm in (10) to a unique solution; for desired accuracy ε,180

convergence ratio r, and sufficiently large α > p/n− 1, at most ⌈log1/r(1/ε)⌉ iterations are needed181

for (10) to converge to the unique solution of (9). A preliminary analysis of the RFPI algorithm shows182

that the running time for each iteration is O(np2 + p3) where O(np2) is the time needed to compute183

the sum of rank-one matrices, and O(p3) is the time needed to compute the inverse matrix Ŝ−1
t (α).184

Since Ŝt(α) is PD, an efficient computation for the inverse can be done using Cholesky factorization185

[16]: Ŝt(α) = LL⊤, where L is a lower triangular matrix. Cholesky factorization requires 1
3p

3 flops:186
1
6p

3 multiplications, and 1
6p

3 additions. Finally inverting a triangular matrix will require p2 flops. If187

T iterations are needed for the RFPI algorithm to converge, its total running time complexity will be188

O(T (np2 + p3)).189

3 Optimal Choice of Shrinkage Coefficient α190

Our objective is to find an appropriate α that is optimal under a suitable loss function. If the true191

scatter matrix S is known, one can choose a shrinkage coefficient that minimizes an appropriate192

distance metric between Ŝ and S. Since S is unknown, our approach will depend on the loss function193

of Xn with respect to S in (5). In particular, for a fixed ᾱ ∈ (0, 1), suppose that Ŝ(ᾱ) is an estimate of194

the true scatter matrix S. Given the sample Xn, one can assess the quality of Ŝ(ᾱ) with respect to Xn195

using the loss function L (Xn;S) in (5), by replacing S with Ŝ(ᾱ). Using this approach, an optimal196

α with respect to Xn, denoted α∗, will be the one that minimizes L(Xn, Ŝ(α)) over α ∈ (0, 1); i.e.197

α∗ = argmin
α∈(0,1)

L(Xn; Ŝ(α)) . (11)

The problem with this direct approach is that Ŝ(α) needs to be computed using the sample Xn. That198

is, Xn will be used twice; first time to compute Ŝ(α), and a second time to assess the quality of199

Ŝ(α) using L(Xn; Ŝ(α)) in (5). This is known as double dipping and inevitably it leads to an overfit200

estimate of α.201

CV techniques overcome this problem by splitting the data into two non-overlapping samples; one202

sample for estimating S and the other sample for estimating the loss L. Here, we propose to use203

Leave-One-Out CV (LOOCV) for estimating S and L. In particular, for 1 ≤ i ≤ n, LOOCV splits Xn204

into two sub-samples: the sample Xn\i = (x1, . . . ,xi−1,xi+1, . . . ,xn), and the sample (xi) which205

contains the single data point xi. The sample Xn\i will be used to estimate S(α) using the RFPI206

algorithm in (10), while the single sample (xi) will be used to estimate L(xi; Ŝ(α)). This process is207

repeated n times and the LOOCV estimate will be the average of all L(xi; Ŝ(α)), 1 ≤ i ≤ n. Using208

LOOCV, an optimal α can be computed as follows:209

α̂∗
CV = argmin

α∈(0,1)

LCV(Xn, α) , (12)

4If p < n and the samples are heavy-tailed and not from an elliptical distribution, α is expected to be large
as well.
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where LCV(·) is the average CV Loss (CVL) defined as:210

LCV(Xn, α) =
1

n

n∑
i=1

L(xi; Ŝ(α;Xn\i)) , (13)

and Ŝ(α;Xn\i) is estimated from the points in Xn\i using the RFPI algorithm (10). In practice, one211

possible approach to solve problem (12) can be using a simple grid search: (i) define a discrete range212

of increasing values of α: (α1, . . . , αj , . . . , αm); (ii) evaluate LCV(Xn, αj) for each αj using (13);213

and (iii) choose αj with the minimum LCV(·).5 For a fine discretization for the range of α’s, this214

direct estimation approach will yield an estimate for α that is reasonably close to its optimal value.215

With little abuse of terminology, we refer to this method for estimating α∗ as the Exact CVL method.216

3.1 The Computational Overhead of LOOCV217

LOOCV is notorious for its high computational overhead. Indeed, for a fixed ᾱ and for n samples218

in Xn, LOOCV will make n calls for the RFPI algorithm in order to compute L(xi, Ŝ(α;Xn\i))219

in the RHS of (13). Thus, for m values of αj from (α1, . . . , αm), the Exact CVL method in (12)220

will require mn calls for the RFPI algorithm, which is prohibitive even for moderate values of n.221

If the RFPI algorithm requires T iterations to converge, then the RFPI algorithm will consume222

O(mn.T (np2+p3)) time from the Exact CVL method in (12), where O(T (np2+p3)) is the running223

time for a single call for the RFPI algorithm.224

Our objective in the following section is to reduce the time consumed by the RFPI algorithm in the225

Exact ACVL method by a factor of n; i.e. to be O(m.T (np2 + p3)) instead of O(mn.T (np2 + p3)).226

In particular, we propose an efficient approximation for Ŝ(α,Xn\i) in (13) so that the RFPI algorithm227

is invoked m times only instead of mn times to compute LCV(Xn, α) in (12). The gain in speed due228

to this approximation while maintaining the accuracy of the estimated α is depicted in Figure (1) for229

the multivariate Cauchy distribution. In particular, Figure (1) depicts the Exact CVL method vs. the230

approximation developed in the following section in terms of the average CV loss in (13), running231

time (in seconds), and the optimal α obtained from each method (details in §5).232

4 Approximate LOOCV233

The approximation proposed next is based on rewriting the RFPI algorithm in a more enlightening234

form. For a fixed ᾱ, the RFPI algorithm in (10) can be expressed as follows:235

Ŝt+1(ᾱ) = (1− ᾱ)p

(
1

n

n∑
i=1

w−1
t,i xix

⊤
i

)
+ ᾱT , (14)

where wt,i = x⊤
i Ŝ

−1
t (ᾱ)xi, and t = 1, . . . , T . That is, the first term in the RHS of (14) involves236

a weighted sample covariance matrix using the weights wt,i and the RFPI algorithm iteratively237

estimates these weights until convergence. For initial matrix Ŝ0 ∈ Sp+, let (ŵ1, ŵ2, . . . , ŵn) be the238

optimal weights estimated using Xn and the RFPI in (14). Then, the final estimate for the scatter239

matrix can be written as:240

Ŝ(ᾱ;Xn) = (1− ᾱ)
p

n

n∑
i=1

1

ŵi
xix

⊤
i + ᾱT . (15)

Let Xn\i = (x1, . . . ,xi−1,xi+1, . . . ,xn). Similar to (15), using ᾱ and initial matrix Ŝ0, the final241

estimate Ŝ using Xn\i and the RFPI in (14) will be:242

Ŝ(ᾱ;Xn\i) = (1− ᾱ)
p

n− 1

n∑
j=1
j ̸=i

1

v̂j
xjx

⊤
j + ᾱT , (16)

5Note that when p > n, and for existence and uniqueness results to hold, α needs to be strictly greater than
1− n/p [37, 40], and hence there is no need to evaluate LCV(·) for α ≤ 1− n/p.
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Figure 1: Comparison between Exact and Approximate CVL for samples drawn from a multivariate
Cauchy distribution in three different settings; p < n (left), p = n (middle), and p > n (right),
and for three different values of γ = {0.1, 0.5, 0.85}. The blue circle and red square indicate the
optimal values for α obtained from the Exact and Approximate CVL methods, respectively. The
running times (in seconds) for the Exact and Approximate CVL methods are shown in the legend.
The speedup for the Approximate CVL method for each sub-figure is: (first row) 24.3x, 35.8x, 20.6x;
(second row) 24.0x, 33.7x, 19.0x; (third row) 25.0x, 28.6x, 18.7x .

where (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂n) are the optimal weights estimated using Xn\i. In terms of com-243

putations, and for a fixed ᾱ ∈ (0, 1), computing the final estimate Ŝ(ᾱ;Xn\i) for each i = 1, . . . , n244

requires invoking the RFPI algorithm n times during the LOOCV procedure. This yields a total245

running time of O(nT (np2 + p3)) which is inefficient even for moderate values of n and p.246

Suppose that the true scatter matrix S∗ ∈ S+p is known and (S∗)−1 has been computed. The final247

estimate Ŝ(ᾱ;Xn) in (15) can be directly computed without invoking the RFPI algorithm in (14):248

Ŝ(ᾱ;Xn) =
(1− ᾱ)p

n

n∑
i=1

1

ŵ∗
i

xix
⊤
i + ᾱT , (17)

where ŵ∗
i = x⊤

i (S
∗)−1xi. Similarly, using (S∗)−1, the final estimate Ŝ(ᾱ;Xn\i) in (16) can be249

directly computed without invoking the RFPI algorithm in (14):250

Ŝ(ᾱ;Xn\i) =
(1− ᾱ)p

n− 1

n∑
j=1
j ̸=i

1

v̂∗j
xjx

⊤
j + ᾱT , (18)

where v̂∗j = x⊤
j (S

∗)−1xj . Note that both ŵ∗
i in (17) and v̂∗j in (18) are dependent on the true but251

unknown scatter matrix S∗ and in this case: v̂∗j = ŵ∗
j for j ̸= i, and j = 1, . . . , n. Since S∗ is252

unknown, we propose to approximate Ŝ(ᾱ;Xn\i) in (18) using the following estimate:253

S̃(ᾱ;Xn\i) =
(1− ᾱ)p

n− 1

n∑
j=1
j ̸=i

1

ṽj
xjx

⊤
j + ᾱT, where (19)

ṽj = x⊤
j Ŝ(ᾱ;Xn)

−1xj .

That is, we plugin the Regularized TME Ŝ(ᾱ;Xn) ∈ S+p from (15) into equation (18) to obtain the254

new weights ṽj , for j ̸= i, j = 1, . . . , n; then use the new weights ṽj to obtain the new estimate255

S̃(ᾱ;Xn\i) in (19). Using this approximation, and for a fixed ᾱ ∈ (0, 1), computing S̃(ᾱ;Xn\i) does256

not require invoking the RFPI algorithm for each i = 1, . . . , n. Instead, the RFPI algorithm will be257
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Figure 2: The solid blue line shows the NMSE between the population matrix S and the scatter matrix
Ŝ estimated using SBP’s RFPI algorithm for α ∈ (0, 1) and p = 500, in three different settings:
p < n (left), p = n (middle), and p > n (right). The orange, red, and green solid vertical lines
indicate the values for α̂cwh, α̂zw, and α̂acvl obtained using the methods in [7, Eq. 13], [45, Eq. 12],
and the ACVL method, respectively.

invoked once to compute Ŝ(ᾱ;Xn) in (15), while S̃(ᾱ;Xn\i) in (19) can be directly computed for258

each i = 1, . . . , n. Using the approximation in (19), an optimal α can now be computed as follows:259

α̂∗
CV = argmin

α∈(0,1)

L̃CV(Xn, α) , where (20)

L̃CV(Xn, α) =
1

n

n∑
i=1

L(xi, S̃(α;Xn\i)) , (21)

and L̃CV(Xn, α) is the approximate cross-validated loss (ACVL); and we refer to the problem in (20)260

as the ACVL method. For m values of α in (α1, . . . , αm), the RFPI algorithm will now consume261

O(m ∗ T (np2 + p3)) running time from the ACVL method.262

5 Experimental Results263

In this section, we evaluate the performance of the ACVL method on synthetic and real high-264

dimensional datasets, and compare it with other shrinkage coefficient estimation methods in the265

literature; in particular the methods proposed in [7], [45], and [27]. For synthetic data, and similar to266

other works in the literature on RTME [7, 43, 37, 40, 35, 15], we consider the Toeplitz matrix used in267

[3] to be the population scatter matrix S for the elliptical RV in (1); i.e. S = (si,j) = γ|i−j|, where268

γ = {0.1, 0.5, 0.85}. Note that S approaches a singular matrix when γ → 1, and S approaches the269

identity matrix when γ → 0.270

The random quantities u and y in (1) are stochastically independent. We let y1, . . . ,yn be samples271

from a p-variate standard Gaussian distribution N(0, I). For r.v. u, we consider four different choices272

for heavy-tailed distributions: (i) ui = 1, which makes {z1, . . . , zn} are i.i.d. samples from N(0,S);273

(ii) ui =
√
d/χ2

d, a Student-T distribution with degrees of freedom d = 3; (iii) ui = Laplace(0, 1), a274

heavy-tailed distribution with finite moments; and (iv) ui = Cauchy(0, 1), a heavy-tailed distribution275

with undefined moments. Note that since TME and RTME operate on the normalized samples xi, the276

scalars ui’s cancel out, and the resulting plots become identical regardless of the distribution of ui.277

For this reason, we show here only the plots for the multivariate Cauchy distribution.278

The accuracy of an estimator Ŝ is measured using the normalized mean squared error (NMSE)279

∥Ŝ − S∥2F /∥S∥2F . The convergence criterion for all RFPI algorithms is ∥Ŝ − S∥2F < ϵ, where280

ϵ = 1.0e− 9 is the desired solution accuracy. For Figure (2), p is set to 500, while n is set to three281

different values {1000, 500, 250} to consider three different scenarios: p < n, p = n, and p > n,282

respectively. The value of C that appears on the right y-axis in all figures is for the ratio p/n.283

Figure (1) compares the Exact CV loss to the Approximate CV loss developed in the previous section,284

for the multivariate Cauchy distribution (which has undefined moments). It can be seen that the285

Exact CV loss in (13) (solid blue line) and the Approximate CV loss in (21) (solid red line) are286

almost identical in all settings: p < n, p = n, p > n, and for all values of γ = {0.1, 0.5, 0.85}.287
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This negligible difference between the Exact and Approximate CV loss supports our proposal that288

the latter can be leveraged to estimate a near-optimal value for the shrinkage coefficient α. This289

can be confirmed by noticing that the optimal α estimated using the ACVL method (red square) is290

reasonably close to, or overlaps, the optimal α estimated using the Exact CVL (blue circle) in all291

nine settings for the multivariate Cauchy distributions. In terms of speedup, the ACVL method is at292

least 20× faster than the Exact CVL method in all the different settings (see exact runtimes in the293

legends of Figure (1)).294

Figure (2) compares the shrinkage coefficient estimated using the ACVL method in (20), denoted295

by α̂acvl, with the shrinkage coefficients estimated from the closed-form expressions in [7, Equation296

13] (CWH), denoted by α̂cwh, and [45, Equation 12] (ZW), denoted by α̂zw. While the methods in297

[7] and [45] are faster than the ACVL method due to their closed-form expressions, it can be seen298

that the ACVL method provides more accurate estimates for α especially when p ≥ n. Also, it299

can be noticed that the estimates from [7] and [45] tend to diverge from the optimal value as p is300

growing greater than n. The tendency for methods based on asymptotic analysis and RMT results to301

over/under estimate the value for α is understandable since such methods make explicit assumptions302

about the data’s underlying distribution. This over/under estimation of α leads to larger values of the303

NMSE as shown in Figure (2), as well as larger values for the LOOCV NLL loss as demonstrated in304

the following experiments.305

Tables (1 – 4) in Appendix A compare the LOOCV NLL loss for the scatter matrices estimated using306

Ledoit–Wolf (LW) estimator [27], and the RTME with shrinkage coefficients from CWH [7], ZW307

[45], and the ACVL method in (20). The comparison between the different estimators was carried out308

using four real high-dimensional datasets: (i) Images for the first six subjects from the Extended Yale309

B dataset for face recognition [14]; (ii) Images for the first six object categories from the test set for310

the CIFAR100 dataset for object recognition; (iii) Images for the first six object categories from the311

test set for the CIFAR10 dataset for object recognition; and (iv) Images for the first six digits’ classes312

(0, 1, 2, 3, 4, 5) from the United States Postal Service (USPS) dataset for handwritten digits [33].313

From Tables (1 – 4) it can be seen that for most of the cases, scatter matrices estimated using314

RTME yield lower LOOCV NLL loss than the scatter matrices estimated using LW estimator. The315

difference in performance between both classes of estimators is primarily due to the difference in the316

underlying assumption on data distribution; hence, both classes derive different estimation procedures317

for their respective scatter matrices. While LW estimator assumes that the data are sampled from a318

multivariate Gaussian distribution, the class of TME and RTME assume that the data are sampled319

from a multivariate elliptical distribution with heavy tails (Eq. 3). The better performance for RTME320

suggests that the class of multivariate elliptical distributions can be a better alternative than the321

Gaussian distribution for modeling high-dimensional data with an (unknown) empirical distribution.322

In terms of shrinkage coefficients for RTME, it can be seen that the ACVL method yields lower323

LOOCV NLL loss than the methods in [7] and [45] for all cases in Tables (1 – 4). This confirms our324

earlier observation that over/under estimation of the coefficient α leads to larger LOOCV NLL loss325

which, potentially, may jeopardize the performance of one or more downstream inferential tasks.326

6 Conclusion327

Robust estimation of a high-dimensional covariance matrix from empirical data is a well-known328

challenging task, especially when p ≥ n. In this work, we considered RTME, an accurate and329

robust estimator for the scatter matrix when the data are samples from an elliptical distribution330

with heavy tails, and p ≥ n. In particular, our work presented here introduces an alternative331

approach for estimating an optimal shrinkage coefficient α for RTME, focusing on both accuracy332

and computational efficiency. Unlike existing methods, our approach uses efficient computation and333

the given finite sample to estimate a near-optimal α for RTME. The main driver for this efficiency334

is the Approximate LOOCV NLL loss for the estimated scatter matrix with respect to parameter α335

(Eq. 20). As a result, the ACVL method demonstrated competitive performance in experiments with336

high-dimensional synthetic and real-world data. An interesting question for future work is whether337

the proposed approximation can be extended to other covariance matrix estimators, or more generally,338

to hyper-parameters’ selection for different classes of learning algorithms. Another research direction339

can explore further approximations for the LOOCV loss where the approximation can better exploit340

the specific structure of the learning algorithm; e.g. algorithms for subspace learning, and algorithms341

for learning mixture models.342

9



Appendix343

A Tables344

Table 1: Comparison results for the first
6 (out of 38) classes from the Extended
Yale B dataset; n = 64, p = 1024.

ID LW CWH ZW ACVL

1 5677 5371 5643 3705
2 5613 5440 5598 3706
3 5768 5470 5749 3826
4 5403 5080 5362 3455
5 5824 5435 5786 3716
6 5797 5460 5761 3790

Table 2: Comparison results for the first 6 (out of
20) classes from the CIFAR100 test set; n = 500,
p = 1024.

Label LW CWH ZW ACVL

apple 849 866 846 846
aq.fish 807 810 799 767
baby 968 984 967 932
bear 810 794 803 769
beaver 869 846 859 812
bed 1051 1047 1043 1008

Table 3: Comparison results for the first
6 (out of 10) classes from CIFAR10 test
set; n = 1000, p = 1024.

Label LW CWH ZW ACVL

airp 631 593 612 590
auto 913 900 906 894
bird 727 705 718 694
cat 773 757 772 755
deer 769 753 761 739
dog 721 702 719 699

Table 4: Comparison results for the first 6 (out
of 10) classes from the USPS dataset; p = 256.
Note that n varies for each digit’s class

Label n LW CWH ZW ACVL

0 1585 268 259 261 239
1 1330 -269 -374 -309 -475
2 952 370 366 369 342
3 807 336 327 330 298
4 795 310 293 301 249
5 659 360 357 359 337
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