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Abstract

Style refers to the distinctive manner of expressing content, and humans can both
recognize content across stylistic transformations and detect stylistic consisten-
cies across different contents. Prior work has shown that vision–language models
(VLMs) exhibit steerable texture–shape biases, with language supervision shift-
ing this tradeoff at the behavioral level. However, the internal representational
dynamics of style and content—how they emerge across layers and how language
pathways modulate them—remain poorly understood. Here, we adapt neuroscience-
inspired tools to dissect style and content representations in a large VLM. We show
that vision encoders strongly preserve stylistic signals while progressively en-
hancing content selectivity, and that language pathways further amplify content
representations at the expense of style. Prompting can modestly steer these bal-
ances, but content remains dominant in deeper layers. These findings provide
systematic evidence of style–content dissociation in multimodal models, guiding
the design of architectures that more effectively balance style and content.

1 Introduction

Neural networks encode both style and content. Early evidence that artificial neural networks capture
stylistic regularities came from style recognition using CNN features [1], soon followed by the
breakthrough of neural style transfer: Pretrained CNNs were used to separate and recombine content
and style by matching Gram-matrix statistics or covariances of feature maps [2–4]. A rich literature
then optimized for speed, controllability, and generality [5–9]. StyleGAN explicitly modulates layers
by a latent “style” to factor high-level attributes from stochastic detail [10]. Comparative surveys now
document how CNN- and Transformer-based systems differ for style transfer and manipulation [11].

More recently, studies revealed that CNNs are more texture-biased than Vision Transformers (ViTs)
[12, 13]. Rather than relying on convolutional locality, ViTs use global self-attention, yielding
different internal progressions and inductive biases. Analyses show flatter specialization across layers
and stronger propagation of low-level information [14], enhanced reliance on global shape with
reduced texture bias and strong occlusion resilience [15], and distinct corruption-robustness patterns
compared with CNNs and MLP-Mixers that reflect architectural inductive biases [13]. Training
can tune these biases; e.g., shape–texture debiasing reduces single-cue reliance [16]. Frequency-
domain studies argue multi-head attention tends toward low-pass, global structure, while convolutions
emphasize high-frequency local detail [17]. Self-supervised ViTs exhibit emergent grouping and token
semantics [18], and recent evidence suggests ViTs explicitly encode relations among objects—an
aspect of “content” beyond shape alone [19].

VLMs are typically more shape-biased than their vision encoders and that this bias is steerable by
language—e.g., prompting alone can move shape bias from ~49% to ~72% (humans ~96%)—with
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complementary visual interventions (noise, patch shuffling) [20]. Contamination-controlled splits
further reveal that CLIP’s strong results on stylized/sketch benchmarks partly reflect exposure to
rendition images during pretraining rather than true domain generalization[21].

These findings highlight the influence of language on style–content balances, but they are based
on model behavior rather than internal mechanisms. It remains unclear where style information is
preserved or discarded inside VLMs, how separable style and content are across network depth, and
how multimodal supervision reshapes these representations. We address these questions by directly
probing internal geometry and decodability of layerwise representations using a controlled set of
styled images, thereby bridging psychophysics of style perception and neural network interpretability.

2 Methods

2.1 Dataset

We use a controlled image set in which content (e.g., beaches, libraries, mountains, bedrooms) and
style (e.g., Van Gogh, Monet, Klimt, Munch, Pollock) vary orthogonally (Figure 1). Style variations
were generated by applying neural style transfer to naturalistic scene photographs (images available
on OSF: https://osf.io/mb3nh/; [22]).

Figure 1: Prompting framework and behavioral evaluation of a vision–language model (VLM). (a)
Three prompt types were used: free-form description (prompt 1), closed-set style classification
(prompt 2), and closed-set content classification (prompt 3). (b) Overall response accuracy for style
and content. (c) Confusion matrices for style (blue) and content (red) categories.

2.2 Model and prompting framework

We use the pretrained LLaVA model Liu et al. [23], which connects a pretrained CLIP ViT-L/14
vision encoder [24] to a large language model via a learned projection layer, enabling end-to-end
multimodal instruction following (Figure 1a). Training proceeds in two stages: first, the projection
layer is aligned by matching image features to paired captions; second, the entire model is fine-tuned
with multimodal instruction data to enable conversational use. Following this two-stage approach, we
assume that all modules are fine-tuned for multimodal interaction.

We use the same prompt set for all analyses (behavioral, RSA, and probes), so that the same linguistic
framing also defines the language-conditioned activations we analyze. For closed-set prompts, we
constrain decoding to the candidate label set (exact match on allowed options; minor variants are
normalized) and compute accuracy. The same prompts are used when extracting language features
while the model processes the image–prompt pair. These prompt-conditioned activations provide the
basis for the representational analyses described below, enabling us to examine how style and content
information evolve across layers under different forms of linguistic guidance.
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2.3 Representational analysis

Representational Similarity Analysis (RSA). We characterize layerwise representational geometry
using RSA [25, 26]. For each image–prompt condition, let hℓi ∈ RD denote the activation vector at
layer ℓ for stimulus i (i = 1, . . . , N ). After mean-centering each feature across stimuli, we compute
a representational dissimilarity matrix (RDM) Rℓ ∈ RN×N with correlation distance.

Rℓ(i, j) = 1− corr
(
hℓi, hℓj

)
,

We define binary target RDMs for style and content using the Kronecker delta δ(·, ·):

T style
ij = 1− δ(si, sj), T content

ij = 1− δ(ci, cj),

where si and ci denote the style and content labels of image i, respectively. Thus, within-class pairs
receive 0 and between-class pairs receive 1 (diagonals are 0 by definition). We quantify alignment
via rank correlation (Spearman) between layer-wise and target geometries. This procedure reveals
whether layers preferentially organize images by style or by content, and how this organization
evolves with depth and linguistic guidance.

Linear Probes. To quantify the accessibility of style and content information at each layer [27],
we extract activations in response to the image–prompt pairs. We first apply principal component
analysis (PCA) to reduce dimensionality (explaining 95% variance), then split the dataset into training
(80%) and test (20%) partitions and train an ℓ2-regularized logistic regression classifier. Probes are
trained separately for content classification and for style classification. Probe accuracy provides a
measure of how much linearly decodable information about content or style is present at each layer.

3 Results

3.1 Behavioral responses under style and content prompts

We first assessed the VLM’s outputs directly by presenting images under three prompts (free-
form description, closed-set style classification, closed-set content classification; Figure 1a). The
model produced descriptions that consistently identified (part of) the content, but showed marked
differences in accuracy across style and content tasks. Response accuracy was near ceiling for content,
but remained close to chance for style (Figure 1b). The confusion matrices further illustrate this
asymmetry (Figure 1c). For content prompts, responses aligned closely with ground-truth labels. In

Figure 2: Layerwise representational analyses of the vision encoder. (a) Example representational
dissimilarity matrices (RDMs). (b) RSA correlations between layer-wise RDMs and target RDMs for
style and content. (c) Linear probe accuracy.

contrast, style prompts elicited systematic confusions, with the model defaulting disproportionately
to Van Gogh, while misclassifying other styles.
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3.2 Style and content selectivity in vision layers

We next examined the internal geometry of the vision encoder, which is independent of prompts.
Early layers yield block-diagonal patterns consistent with stylistic grouping, whereas later layers
become increasingly homogeneous (Figure 2a). Across the first ten layers, network RDMs correlated
strongly with the style target matrix (Figure 2b), indicating that low- and mid-level layers cluster
images by style. Beyond layer 12, style correlations declined as content correlations rose, with
late layers primarily organizing by scene category. Style labels were linearly decodable from every
layer, achieving near-perfect accuracy even early in the encoder (Figure 2c). By contrast, content
classification lagged near baseline across layers.

Reconciling RSA and probe results. RSA and linear probe analyses appear to diverge: RSA
shows that later vision layers have similar representations for images with the same content but
different styles, whereas probes reveal that style remains linearly decodable throughout the network
and content decoding remains comparatively weak. These results can be reconciled by noting that
RSA captures the dominant geometry of the representational space—whether inter-image distances
align with style or content—whereas probes test the presence of linearly accessible information.
In later layers, the geometry is organized primarily by content, so style variation no longer drives
representational distances. However, residual style features persist in the embedding vectors, allowing
probes to classify them with high accuracy even when they no longer dominate similarity structure.
Conversely, although content governs the overall geometry, it may be encoded in a distributed
or nonlinear fashion that complicates linear decoding. Thus RSA and probes jointly reveal that
style is consistently available but deemphasized in later layers, while content increasingly shapes
representational geometry without becoming trivially linearly separable.

Figure 3: Layerwise representational analyses of the language layers. (a) RSA correlations
between layer-wise and target RDMs. (b) Linear probe accuracy.

3.3 Prompting effects on style–content dissociation in language layers

RSA correlations at the first language layer were much lower than those observed in the final vision
layer (Fig. 3a). Content correlations increased markedly with layer depth, showing a sharp rise
beginning around layer 18. By contrast, style correlations remained low, with only modest increases
in later layers. These trends were robust across prompt formulations. Moreover, content- and
style-oriented prompts slightly steered the representational geometry, biasing it toward preferential
organization by content or style, respectively. Linear probes at the last layer do not reach the high
content accuracy observed in behavioral outputs (Fig. 3b), likely because the final hidden layer was
optimized for next-token prediction rather than for linearly separating style and content categories.

4 Discussion

Our analyses reveal a systematic dissociation between style and content representations in vision–
language models. Vision encoders robustly preserve stylistic information alongside content, but
language pathways progressively reorganize the representational space to emphasize content seman-
tics at the expense of style. Whereas prompting can steer model behavior toward style or content,
representational analyses show that the underlying geometry is already strongly biased toward content
in later layers. Our results suggest that current architectures may undervalue stylistic information.
More balanced VLMs may require mechanisms that preserve stylistic signals alongside semantic
abstraction, enabling models to flexibly engage with both what is depicted and how it is expressed.
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