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Abstract

Hyperbolic space is becoming a popular choice for representing data due to the hierarchi-
cal structure — whether implicit or explicit — of many real-world datasets. Along with
it comes a need for algorithms capable of solving fundamental tasks, such as classification,
in hyperbolic space. Recently, multiple papers have investigated hyperbolic alternatives to
hyperplane-based classifiers, such as logistic regression and SVMs. While effective, these
approaches struggle with more complex hierarchical data. We, therefore, propose to gen-
eralize the well-known random forests to hyperbolic space. We do this by redefining the
notion of a split using horospheres. Since finding the globally optimal split is computa-
tionally intractable, we find candidate horospheres through a large-margin classifier. To
make hyperbolic random forests work on multi-class data and imbalanced experiments, we
furthermore outline new methods for combining classes based on the lowest common ances-
tor and class-balanced large-margin losses. Experiments on standard and new benchmarks
show that our approach outperforms both conventional random forest algorithms and recent
hyperbolic classifiers.

1 Introduction

Machine learning in hyperbolic space is gaining more and more attention, and hyperbolic representations of
data have already found success in numerous domains, such as natural language processing (Nickel & Kiela,
2017; Tai et al., 2022) computer vision (Ahmad & Lecue, 2022; Khrulkov et al., 2020; Ghadimi Atigh et al.,
2021), graphs (Chami et al., 2019; Liu et al., 2019; Sun et al., 2021b), recommender systems (Sun et al.,
2021a), and more. Hyperbolic space is a natural choice for data with a hierarchical structure due to the fact
that the available space grows exponentially when moving away from the origin. Therefore, it can be seen
as a continuous version of a graph-theoretical tree (Nickel & Kiela, 2018).

With the rise of datasets embedded in hyperbolic space comes a need for algorithms that can successfully
operate on them (Cho et al., 2019). As a result, many methods specifically designed for hyperbolic space
have been proposed that tackle a variety of machine learning tasks, such as clustering (Monath et al., 2019),
regression (Marconi et al., 2020), and classification (Ganea et al., 2018b; Chien et al., 2021; Cho et al., 2019;
Pan et al., 2023; Weber et al., 2020).

Current hyperbolic classification algorithms, such as hyperbolic support vector machines (Fan et al., 2023)
or hyperbolic logistic regression (Ganea et al., 2018b), have shown promising results, but still struggle with
complex datasets. In Euclidean space, there is a long history of success of tree-based random forest algorithms
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Figure 1: Motivation for hyperbolic random forests. Two splits of (a) an axis-aligned Euclidean, (b)
an oblique Euclidean, and (b) a hyperbolic decision tree of depth two. The data is a continuous embedding
of a tree split into three nested classes. The inductive biases of linear decision boundaries are inappropriate
for efficiently capturing the underlying geometry, and more splits are needed to be effective.

in this regard, and they remain among the most popular learning algorithms for many data types (Caruana
& Niculescu-Mizil, 2006; Fernández-Delgado et al., 2014). We argue that decision trees and, by extension,
random forests are well-suited for hyperbolic space due to their shared hierarchical structure. Figure 1
illustrates the need for a classifier that fits the underlying geometry and the benefits of a hyperbolic tree-
based classifier. Euclidean hyperplane splits (Figure 1(a/b)) are ineffective at capturing the structure of the
data. In contrast, our hyperbolic splits (Figure 1(c)) are more appropriate, where the nested splits clearly
show how the smallest green class is a subclass of the larger orange one.

Tree-based algorithms are built by recursively applying a splitting function; hence, to generalize the concept
of a tree-based classifier to hyperbolic space, we need to define a hyperbolic splitting function. For this
purpose, we propose to use horospheres, which share several desirable properties with the hyperplanes used
in Euclidean trees. Due to a combinatorial explosion, finding the optimal horosphere by enumeration is
computationally intractable. We propose to tackle data splitting as a binary horosphere classification task.
To deal with multiple classes in a hierarchically consistent manner, we extend our splitting operator using
hyperclasses. We show how to obtain hyperclasses through clustering in hyperbolic space with the lowest
common ancestor. We also outline a class-balancing large-margin loss for dealing with long-tailed data.

We extensively evaluate our approach on canonical benchmarks from previous works on hyperbolic clas-
sification. Additionally, we introduce three new multi-class classification experiments. We show that our
method is superior to both competing hyperbolic classifiers as well as their Euclidean counterparts in these
settings. Summarized, our contributions are (1) a generalization of random forests to hyperbolic space using
horospheres, dubbed HoroRF, (2) two extensions to enable effective learning in multi-class and imbalanced
settings, and (3) a thorough evaluation of HoroRF, showing its advantage over other methods, both Euclidean
and hyperbolic.

2 Related Work

2.1 Hyperbolic machine learning

Machine learning in hyperbolic space has gained traction due to its inherent hierarchical and compact nature.
Foundational work showed that hyperbolic space is superior to Euclidean space for embedding hierarchies
in a continuous space, allowing for embeddings with minimal distortion (Nickel & Kiela, 2017; Ganea et al.,
2018a). Empowered by these results, learning with hyperbolic embeddings has recently been successfully
used for various problems. Chami et al. (2019) and Liu et al. (2019) showed how to generalize graph networks
to hyperbolic space, while Tifrea et al. (2019) showed the potential of hyperbolic word embeddings. In the
visual domain, hyperbolic embeddings have been shown to improve image segmentation (Ghadimi Atigh
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et al., 2022), zero-shot recognition (Liu et al., 2020), image-text representation learning (Desai et al., 2023),
and more. Hyperbolic embeddings have also been effective for biology (Klimovskaia et al., 2020) and in
recommender systems (Sun et al., 2021a). We refer to recent surveys for a more complete overview (Peng
et al., 2021; Yang et al., 2022; Mettes et al., 2023).

For classification specifically, various traditional classifiers such as logistic regression (Ganea et al., 2018b),
neural networks (Ganea et al., 2018b; Shimizu et al., 2021; van Spengler et al., 2023), and support vector ma-
chines (SVM) (Cho et al., 2019; Fan et al., 2023; Fang et al., 2021; Weber et al., 2020) now have counterparts
in hyperbolic space. In this work, we strive to go beyond single hyperplane/gyroplane decision boundaries
per class and bring random forests to hyperbolic space.

Our method is built on the concept of horospheres, which are the level sets of the Busemann function
to ideal points. Ideal points have recently succeeded in multiple areas, such as supervised classifica-
tion (Ghadimi Atigh et al., 2021) and self-supervised learning (Durrant & Leontidis, 2023). Horospheres, in
particular, have found applications in dimensionality reduction (Chami et al., 2021), as well as generalizing
SVMs (Fan et al., 2023) and neural networks (Sonoda et al., 2022) to hyperbolic space, but we are the first
to use them as building blocks for random forests. Concurrent with our work, Chlenski et al. (2023) also
propose a hyperbolic random forest model where they rely on geodesics rather than horospheres and work
in the hyperboloid model of hyperbolic space instead of the Poincaré disk model.

2.2 Random Forests

Random Forests remain a popular choice of classifier to this day due to their high performance, speed, and
insensitivity to hyperparameters (Grinsztajn et al., 2022). In their original paper (Breiman, 2001), two
versions of random forests were proposed: one with axis-aligned splits based on a single feature and one with
oblique splits based on linear combinations of features. While the optimal axis-aligned split can be found by
exhaustive search, finding the optimal oblique split is NP-complete (Heath et al., 1993). As a result, many
works have developed heuristics to find good oblique splits in a reasonable time.

One line of work makes use of meta-heuristics such as hill climbing (Murthy et al., 1993), simulated an-
nealing (Heath et al., 1993), or genetic algorithms (Cantú-Paz & Kamath, 2003). Other approaches train
one or more binary classifiers at every node, choosing among the resulting hyperplanes to split the data.
Examples include using linear discriminant analysis, ridge regression (Menze et al., 2011), or support vector
machines (Do et al., 2010). For multi-class cases, typically, heuristics are employed to partition them into
two hyperclasses (Katuwal & Suganthan, 2018). We follow the binary classifier approach for our hyper-
bolic random forests and introduce a hyperclass heuristic specifically designed for hyperbolic space based on
hierarchical clustering Chami et al. (2020).

3 Hyperbolic Random Forests

3.1 The Poincaré ball model

We follow the convention from previous works using horospheres (Chami et al., 2021; Fan et al., 2023) and
hyperbolic machine learning more broadly (Ganea et al., 2018b; Khrulkov et al., 2020; Chien et al., 2021;
Shimizu et al., 2021) and make use of the Poincaré ball model of hyperbolic space. The Poincaré ball model
is defined by the metric space (Bn

c , gBc ) for a given negative curvature c, which we set to 1 throughout this
work, where

Bn
1 = {x ∈ Rn : ∥x∥ < 1} (1)

with ∥ · ∥ the standard Euclidean norm, and

gB1 (x) = 2
1 − ∥x∥2 In. (2)

From here on, we will omit the curvature subscript for clarity. The distance between two points is given by

dB(a, b) = arcosh
(

1 + 2 ∥a − b∥2

(1 − ∥a∥2)(1 − ∥b∥2)

)
, (3)
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which is the length of the geodesic arc connecting them. Extending geodesics to infinity in one direction
leads to a point on the boundary of the Poincaré ball. These points on the boundary are known as ideal
points. The set of all ideal points thus lies on the hypersphere Sn−1, and they can be interpreted as directions
in hyperbolic space (Chami et al., 2021).

3.2 HoroRF

To generalize random forests to hyperbolic space, we require a way to split data points recursively for any
number of classes, regardless of the class frequency distribution, into two partitions with low impurity. In
Euclidean space, this splitting function outputs hyperplanes to split the data. For hyperbolic random forests,
we propose to use horospheres.

3.2.1 Formalization

Horospheres are the level sets of the Busemann function (Busemann, 1955), which calculates the normalized
distance to infinity in a given direction. It can be expressed in closed form in the Poincaré model:

Bw(x) = log ∥w − x∥2

1 − ∥x∥2 . (4)

As a result, horospheres πw,b are parameterized by an ideal point w ∈ Sn−1, and a distance to that point
b ∈ R, which is the radius of the horosphere. Our goal is to find the optimal horosphere π′

w,b that minimizes
the impurity of the resulting partitions or, equivalently, maximizes the information gain. Consider a node S
with data {(xi, yi)}N

i=1 with x ∈ Bn and y ∈ Y . The optimal horosphere is given by

π′
w,b = arg max

πw,b

(H(S) − Iin − Iout), (5)

where H is an impurity measure, and Iin and Iout give the impurity of the set of points inside and outside
of the horosphere, respectively:

Iin = Nin

N
H({x ∈ S|Bw(x) < b}),

Iout = Nout

N
H({x ∈ S|Bw(x) ≥ b}). (6)

Here, Nin and Nout denote the number of samples inside and outside the horosphere. Similar to oblique
decision trees in Euclidean space, finding the globally optimal horosphere is computationally infeasible. As
such, we need to find approximate solutions.

3.2.2 Finding approximate solutions

As is conventional in (oblique) decision tree literature (e.g., Do et al. (2010); Menze et al. (2011); Katuwal
et al. (2020)), we employ a binary classifier at every node to find candidate solutions. We need a hyperbolic
classifier that will allow us to find splits that fit the underlying geometry. Large margin classifiers based on
horospheres guarantee a globally optimal solution, bypassing hyperbolic hyperplane-based methods that fail
to converge (Weber et al., 2020) or are limited to two dimensions (Chien et al., 2021). Moreover, the state-of-
the-art hyperbolic SVM, HoroSVM, is based on horospheres and outperforms hyperbolic hyperplane-based
methods (Fan et al., 2023). For this reason, we build upon HoroSVM. For a labeled dataset D = {(xi, yi)}N

i=1
with xi ∈ Bn and yi ∈ {−1, 1}, it optimizes the convex loss function

ℓ(µ, w, o; D) = 1
2µ2 + C

N∑
i=1

max
(
0, 1 − yi(µB−1

w (xi) − o)
)

, (7)

where
B−1

w (x) = log 1 − ∥x∥2

∥w − x∥2 , (8)
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Figure 2: Information gain from hierarchical splits. The best (a) one-versus-rest split and (b) split
found with our hyperclass heuristic. We find splits with a higher information gain by considering splits where
more than one class is seen as positive.

with µ, o ∈ R+ and w ∈ Sn−1. The slack hyperparameter C controls the trade-off between misclassification
tolerance and margin size. Solving for HoroSVM thus results in the three parameters µ, w, and o. In order
to transform these results into a horosphere πw,b, we set b = − o

µ and use w directly.

We repeat the classification K times in a one-versus-rest setting, with K the number of classes, and compute
the information gain for all resulting horospheres. We select the horosphere with the highest information
gain to split the data. We refer to this splitting procedure as the HoroSplitter. While this base version
of the HoroSplitter already achieves competitive results, it naturally has limited capacity to deal with
imbalanced data, and the one-versus-rest set-up limits its effectiveness in multi-class settings. Therefore, we
introduce two additional components to the HoroSplitter that make it more appropriate specifically as a
building block for hyperbolic decision trees.

3.2.3 Combining classes

The default HoroSplitter uses a one-versus-rest approach to deal with multi-class data. As a result, it can
only find one-versus-rest splits. Nonetheless, a horosphere split with a high information gain could have more
than one class in either partition. To find good splits with multiple classes while avoiding searching over
all possible combinations, only the most promising combinations should be evaluated. For this, we design
a heuristic that transforms the multi-class problem into a hierarchical set of binary problems by iteratively
grouping classes into two hyperclasses based on their lowest common ancestor (LCA). Then, these binary
combinations are added to the pool of one-versus-rest experiments and evaluated for their information gain.

Recall the connection of hyperbolic space to graph-theoretical trees. In a tree, similar leaf nodes lie in a
small subtree and have their LCA at a high depth. In contrast, dissimilar nodes will have their LCA close
to the root of the tree. We exploit the analog of this property in hyperbolic space to cluster together the
most similar classes first, as similar classes are likely to be capturable by a single horosphere.

We represent each cluster by its hyperbolic mean. As computing the average in the Poincaré model in-
volves the computationally expensive Fréchet mean (Lou et al., 2020), we use the Einstein midpoint after
transforming the data to Klein coordinates instead. Specifically, data is transformed into Klein space K with

xK = 2xB
1 + ∥xB∥2 , (9)

and we compute the average ϕy for class y using

ϕy =
∑N

i=1 1[yi=y]γixi∑N
i=1 γi

, (10)
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Figure 3: Importance of class balancing. The optimal solution on a binary classification problem found
(left) without and (right) with class-balancing. The left horosphere has a large negative b and does not split
the data. In contrast, the right horosphere has a higher loss but a positive information gain. Class labels are
given by marker shape. The points and color bar are colored by loss; the background is colored by distance
to the horosphere.

where γi = 1√
1−∥xi∥2

. Afterward, the mean is transformed back to the Poincaré ball with

xB = xK
1 +

√
1 − ∥xK∥2

. (11)

We compute all pairwise similarities and iteratively group the two most similar classes together, where the
similarity is based on the LCA of the means of the two classes. The LCA for two points in hyperbolic space
is the point that is closest to the origin on the geodesic between them (Chami et al., 2020). As a result, the
distance of the LCA from the origin can be seen as a similarity measure. Given two means ϕi and ϕj , we
can calculate their similarity by

sim(ϕi, ϕj) = 2 tanh−1
(√

R2 + 1 − R
)

(12)

with

R =

√(
∥ϕi∥2 + 1

2∥ϕi∥ cos(α)

)2
− 1 (13)

and

α = tan−1
(

1
sin(θ)

(
∥ϕi∥(∥ϕj∥2 + 1)
∥ϕj∥(∥ϕi∥2 + 1) − cos(θ)

))
, (14)

where θ is the angle between ϕi and ϕj . We repeat this until only two hyperclasses are left, for K − 2
iterations total. As a result, we only evaluate K + K − 2 horospheres per node. We show an example where
evaluating hyperclasses is beneficial in Fig. 2.

3.2.4 Imbalanced data

SVM-based methods are known to behave poorly on imbalanced data, and HoroSplitter is no exception.
We address this by proposing a class-balanced version of the HoroSplitter. Specifically, the problem comes
from equation 7 finding an optimal solution that does not split the data and has an information gain of zero
as a result. As an example, consider the binary problem in Figure 3. The optimal horosphere has its ideal
point on the top of the Poincaré ball, a µ very close to 0 and o very close to 1; a result of the loss, in the
case of a large imbalance, almost reducing to the degenerate form

ℓimbalanced(µ, w, o; D) ≊ C

N∑
i=1

max(0, 1 + yi). (15)
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We remedy this limitation by incorporating class-balancing into HoroSplitter’s loss function (Cui et al.,
2019). We rewrite the loss function in equation 7 as

ℓ(µ, w, o; D) = 1
2µ2 + C

N∑
i=1

1 − β

1 − βny
max(0, 1 − yi(µB−1

w (xi) − o)), (16)

where ny gives the number of training samples belonging to class y and β is a hyperparameter. By adding
more emphasis on the loss for samples of the minority class, we can find horospheres that split the data even
in imbalanced cases.

Training and inference We build horospherical decision trees (HoroDT) by repeatedly applying the
HoroSplitter. This process is repeated until all nodes are pure, i.e. contain one class, or a stopping
criterion is met. Example stopping criteria include stopping when a node reaches a certain number of
samples or no split with an information gain higher than a threshold can be found. By combining multiple
HoroDTs into an ensemble, we form a horospherical Random Forest (HoroRF). Each tree is trained on a
randomly sampled (with replacement) subset of the data, and a subsample of the features is considered at
every split. Predictions are made by a majority vote among the HoroDTs.

4 Experiments

4.1 Datasets

We evaluate HoroRF on two canonical hyperbolic classification benchmarks: WordNet subtree and network
node classification (Cho et al., 2019; Fan et al., 2023). Additionally, we introduce three new multi-class
WordNet experiments, which we will detail first.

Multi-class WordNet We propose three new multi-class WordNet experiments aimed at evaluating three
distinct qualities. In the first experiment, the task is to classify samples into one of multiple subtrees with
the same parent. In the second experiment, we pick nested subtrees, and samples must be classified into
the smallest subtree they belong to. The third experiment combines the previous experiments with nested
classes of multiple subtrees. Unlike previous benchmarks, these are difficult multi-class experiments on
large, imbalanced datasets. We provide the full details of the experiments in the appendix. The datasets are
split into train, validation, and test sets with a ratio of 60:20:20. A hyperparameter search is done on the
validation set, and the macro-f1 score over three trials on the test set is reported.

WordNet We run binary classification experiments on the nouns of WordNet (Fellbaum, 2010), embedded
into hyperbolic space using hyperbolic entailment cones (Ganea et al., 2018a). The goal is to identify whether
a sample belongs to a semantic category (i.e., a subtree of the hyperbolic embeddings). Following (Fan
et al., 2023), we split the data into 80% for training and 20% for testing and report the best results from
a grid search over three runs in AUPR. We find that three of the larger subtrees typically used for these
experiments (animal.n.01, group.n.01, mammal.n.01) can be solved near-perfectly with random forests,
both Euclidean and hyperbolic. Therefore, we add experiments on two additional subtrees, occupation.n.01
and rodent.n.01, which are smaller and more difficult subtrees for classification purposes.

Networks We run node classification experiments on four network datasets embedded into hyperbolic
space. These networks are (1) karate (Zachary, 1977), a network of 34 members of a karate club split into
two factions, (2) polblogs (Adamic & Glance, 2005), a network of 1224 hyperlinks in political blogs split into
two communities, (3) football (Girvan & Newman, 2002), a network of 115 colleges linked by football games
split into 12 leagues, and (4) polbooks1, a network of 105 books split into three affiliations.

We use the public embeddings provided by Cho et al. (2019). Each dataset has five sets of embeddings
obtained using the method of Chamberlain et al. (2017). Following previous work (Fan et al., 2023), we run
a grid search with 5-fold stratified cross-validation and report the best average micro-f1 score over five seeds,
using a different embedding for each seed.

1http://www-personal.umich.edu/ mejn/netdata/
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4.2 Evaluation

Baselines We evaluate HoroRF against six baselines, split into two categories. The first set covers hy-
perbolic classifier baselines, namely hyperbolic multiple logistic regression (HypMLR; Ganea et al. (2018b))
and the state-of-the-art hyperbolic SVM, HoroSVM (Fan et al., 2023). The second set of baselines comprises
Euclidean counterparts of the hyperbolic classifiers, namely a linear SVM (LinSVM), an SVM with an RBF
kernel (RBFSVM; (Cortes & Vapnik, 1995)), an axis-aligned random forest (RF) (Breiman, 2001), and an
oblique random forest (OblRF) with a similar set-up to HoroRF. The OblRF uses a cost-balanced linear
SVM to find optimal splits (see e.g. (Do et al., 2010)). If the SVM fails to converge, it defaults to using the
best axis-aligned split. It finds hyperclasses by iteratively merging the two classes with the closest means.

As is common practice (Cho et al., 2019; Fan et al., 2023), the Euclidean baselines are run on the same
embeddings as the hyperbolic methods, which we also find to perform better compared to mapping the
embeddings back to Euclidean space first. Moreover, as the SVMs, HypMLR, and HoroSVM baselines are
negatively affected by the class imbalance in the WordNet experiments, we report cost-balanced results on
those benchmarks, where the loss is weighted inversely proportional to the class frequency.

Implementation Details We use 100 trees for all tree-based methods. We use the Gini impurity to calcu-
late the information gain. At every node, we set C to 2n where n is randomly sampled from {−3, −2, . . . , 5}.
We stop splitting when a node reaches a certain number of samples m. In the case of ties in information gain
between possible splits, a random split is selected. If the HoroSplitter fails to converge, we choose the best
horosphere from a small number of random ideal points. We set m and the class-balancing hyperparameter β
via grid search. Further details are given in the appendix.

4.3 Results

WordNet The results for the WordNet subtree classification experiments are shown in Tab. 1. The
Euclidean SVMs are unable to handle the large imbalance in the datasets despite the loss re-weighting. The
random forest approaches are better equipped to deal with this type of data. The results show that HoroRF
outperforms the Euclidean tree-based methods in most cases. The differences are most pronounced in the
hardest experiments, occupation and rodent, while we find the tree-based methods to perform similarly on
the saturated experiments with close to perfect scores, i.e., animal, group, and mammal. Overall, HoroRF
performs better than the well-known Euclidean SVMs and random forest approaches.

Compared to the hyperbolic classifiers, we find that both the hyperbolic MLR and SVM baselines struggle to
deal with the imbalanced data, despite the loss re-weighting. Neither are able to match the performance of
HoroRF. We argue this is the case as real-world data cannot be distinguished with a single horosphere, but
requires recursive horospherical separation as done in HoroRF. We conclude from the WordNet experiment
that HorRF is a competitive classifier even in the binary setting.

Multi-class WordNet The results for the multi-class WordNet experiments are shown in Table 2, which
paint a similar picture as the previous experiments. For the Euclidean methods, the tree-based methods
outperform the SVMs, with OblRF, on average, having a slight edge over the axis-aligned random forest.
HoroRF outperforms the SVMs and axis-aligned RF in all three cases, and despite reaching an equal score
in the first experiment, it outperforms OblRF in the remaining two. Compared to the other hyperbolic
classifiers, HoroRF reaches far higher performance on these complex imbalanced multi-class experiments, on
which both HypMLR and HoroSVM struggle greatly.

Networks The results on the network datasets are shown in Table 3. Our HoroRF outperforms the
Euclidean methods in all cases, besides matching the SVMs on karate, showing that the choice of horospheres
over hyperplanes results in better performance on data lying in hyperbolic space.

As for the hyperbolic methods, HypMLR is outclassed by both HoroRF and HoroSVM in all cases except
football. HoroSVM and HoroRF perform similarly in the binary experiments, with a slight edge for HoroRF
on polblogs. In contrast, for the multi-class experiments football and polbooks, HoroRF outclasses HoroSVM
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Animal Group Worker Mammal Tree Solid Occupation Rodent

Euclidean
LinSVM 2.5±0.0 6.0±0.6 0.7±0.0 0.7±0.0 0.6±0.0 0.8±0.0 0.2±0.0 0.1±0.0
RBFSVM 2.5±0.0 6.0±0.6 0.7±0.0 0.7±0.0 0.6±0.0 0.8±0.0 0.2±0.0 0.1±0.0
RF 98.6±0.2 96.6±0.4 70.0±3.1 99.3±0.3 75.8±2.0 92.5± 1.2 59.8±1.1 34.5±3.0
OblRF 98.4±0.1 96.7 ±0.3 73.3±1.3 98.8±0.3 76.2±3.2 92.9±1.7 65.0±2.4 38.2±0.9

Hyperbolic
HypMLR 3.2 ±0.1 6.5 ±0.0 1.2 ±0.2 0.9 ±0.0 1.3±0.8 1.0 ±0.2 0.9±0.9 0.4 ±0.4
HoroSVM 92.4±1.3 71.0±0.5 39.9±3.6 89.8±0.9 41.5±1.0 65.7±0.9 13.0±1.5 13.6±2.0
HoroRF 98.5±0.2 96.6±0.4 73.4± 1.7 99.3±0.4 76.6± 3.8 93.5± 1.3 65.6± 1.5 39.0± 2.4

Table 1: Comparative evaluation on binary WordNet experiments. We follow the experimental
protocol of Fan et al. (2023) and report the mean and standard deviation of the AUPR over three runs.
Underlined gives the best hyperbolic method, Bold denotes the best method overall. On aggregate across
the experiments, HoroRF obtains the best performance.

Same Nested Bothlevel
Euclidean
LinSVM 48.8 ±0.9 59.7 ±0.5 35.6 ±0.2
RBFSVM 80.0 ±1.8 89.8 ±1.1 70.8 ±0.6
RF 89.7±0.7 91.7±0.3 81.5±1.5
OblRF 91.3±0.6 93.0±0.2 81.3±1.4

Hyperbolic
HypMLR 29.0 ±4.5 57.6 ±0.5 35.9 ±6.7
HoroSVM 50.2 ±2.2 56.0 ±0.7 35.2 ±0.5
HoroRF 91.3±0.3 93.3±1.1 81.9±1.5

Table 2: Comparative evaluation on multi-class WordNet. We run a grid search to determine the
optimal configuration on the validation set and report results over three trials in macro-f1 score on the test
set. Underlined gives the best hyperbolic method, Bold denotes the best method overall. HoroRF performs
best in all settings.

by 4.0 and 0.6 macro f-1, respectively, confirming the benefit of HoroRF over HoroSVM in more complex cases.
Overall, we find that HoroRF is the most consistent and best-performing classifier across all benchmarks.

4.4 Ablations and Visualizations

Hierarchical Classification Hyperbolic methods have been proven successful when evaluated on a wide
range of hierarchical tasks Cao et al. (2020); Ghadimi Atigh et al. (2021); Surís et al. (2021); Tifrea et al.
(2019). Here, we aim to verify our hypothesis that random forests are well-suited for hyperbolic space
by comparing HoroRF with other SOTA hyperbolic classifiers on hierarchical classification, with metrics
explicitly designed to evaluate their success in capturing the hierarchy.

We evaluate the methods using CIFAR10 Krizhevsky et al. (2009) and STL10 Coates et al. (2011) using the
CIFAR10 hierarchy from Sebastian & Sebastian (2023). Note that STL10 has the same classes as CIFAR10,
with the only difference being the substitution of frog for monkey. As such, we maintain the hierarchy
from Sebastian & Sebastian (2023) for STL10 but modify it by removing frog and incorporating monkey
into the mammal subtree.

We embed the images into 9-dimensional space by training a hyperbolic prototype ResNet-18 with prototypes
uniformly distributed over the hyperbole Kasarla et al. (2022) and train the classifiers on these 9-dimensional
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Binary Multi-class
Karate Polbooks Football Polblogs

Euclidean
LinSVM 95.4±2.3 92.4±0.3 33.2±5.1 85.5±0.9
RBFSVM 95.4±2.3 92.4±0.3 35.5±4.7 84.4±1.9
RF 94.3±3.1 92.1±0.3 36.2±4.9 85.1±2.1
OblRF 94.8 ±2.2 92.1 ±0.3 36.7 ±2.7 84.4 ±1.3

Hyperbolic
HypMLR 93.1±3.4 90.9±0.7 40.2±2.5 81.5±1.5
HoroSVM 95.4±2.3 92.4±0.2 34.3±1.8 85.3±0.8
HoroRF 95.4±2.3 92.5±0.3 38.3±1.8 86.1±1.0

Table 3: Comparative evaluation on network datasets. We follow the experimental protocol of Fan
et al. (2023) and report the mean and standard deviation of the micro-f1 score over five trials of 5-fold
stratified cross-validation. Underlined gives the best hyperbolic method, Bold denotes the best method
overall. HoroRF obtains the best performance on aggregate over the datasets.

CIFAR10 STL10
Mis. Sev. (↓) HD@1 (↓) Mis. Sev. (↓) HD@1 (↓)

HypMLR 60.8±1.7 10.2±0.0 54.2±2.8 22.4±0.3
HoroSVM 59.9±0.1 12.5±0.0 54.4±1.0 26.0±0.3
HoroRF 58.2±0.3 9.9±0.2 53.4±0.2 22.3±0.1

Table 4: Evaluating hyperbolic classifiers for hierarchical classification. We run a grid search to
determine the optimal configuration on the validation set and report the mean and standard deviation of
the mistake severity and hierarchical distance@1 on the test set over three seeds. Bold denotes the best
method. HoroRF performs best.

image features. We obtain hyperbolic embeddings for 3600 training, 900 validation, and 1000 test samples.
To compare the classifiers, we run a grid search on the training set and select the optimal configuration
based on validation performance. Then, we report the mistake severity and hierarchical distance@1 on the
test set Garg et al. (2022). These metrics both use the LCA distance, computed by dividing the height of
the LCA of the predicted and ground-truth class by the tree height. The mistake severity is the average
of this distance for all misclassified samples, whereas the HD@1 computes the average distance for all the
samples Karthik et al. (2021).

From the results in Tab. 4, HoroRF is the best hyperbolic method, confirming its ability to model the
hierarchy effectively and the benefits of our generalization of random forests to hyperbolic space.

Ablating hyperclasses and balancing. We perform an ablation study to validate our choices on the
football dataset. From Tab. 5, we find a large benefit in using our HoroSplitter to find splits instead of
enumerating all possible horospheres at axis-aligned ideal points. Furthermore, we show how both our hy-
perclass and class-balancing additions improve upon the base HoroSplitter, and their combination enables
us to reach the best performance.

Visualization & synthetic evaluation We build a synthetic dataset following Ganea et al. (2018a) by
creating a synthetic tree of depth six with a branching factor of four and embedding it into hyperbolic space
with hyperbolic entailment cones. We then partition the nodes into five classes from two depths. Using this
dataset, we visualize the splits of HoroRF, HoroRF without hyperclasses or class-balancing, OblRF on the
hyperbolic embeddings, and OblRF on the Euclidean embeddings in Fig. 6. We additionally verify which
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Ideal Hyper- Class- f1Points classes balanced
Axis-aligned ✗ ✗ 9.9

HoroSplitter ✗ ✗ 35.7
HoroSplitter ✗ ✓ 36.5
HoroSplitter ✓ ✗ 37.4
HoroSplitter ✓ ✓ 38.3

Table 5: Ablating the HoroSplitter in HoroRF on the football dataset. We follow the experimental
protocol of Fan et al. (2023) and report the mean and standard deviation of the micro-f1 score over five trials
of 5-fold stratified cross-validation. Our splitting function, hyperclass-based aggregation, and class balancing
are all important for effective hyperbolic random forests.

Ho
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RF
Ba
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F
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lR
F
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lR

F

Figure 4: Visualizing HoroRF & OblRF splits. We show five splits for HoroRF, a basic version
of HoroRF without class-balancing and hyperclasses, OblRF on the original hyperbolic embeddings, and
OblRF after mapping the data to Euclidean space. The split with the highest impurity is chosen at every
level to visualize the next level. Splitting in hyperbolic space with balanced and multi-level horospheres
obtains good splits for hyperbolic classification.

method is the most successful at various depths in Tab. 6, where we find that HoroRF consistently reaches
high performance and is especially effective with a single split.

Reducing runtime A limitation of HoroRF is its runtime on large datasets. While the HoroSplitter
scales linearly with the number of samples as HoroSVM has a linear time complexity, it is applied multiple
times per node and repeated for every node. We designed and conducted two experiments showing how to
mitigate the computational time needed to obtain good results: reducing the number of trees and lowering
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Depth 1 2 3 10 No limit

OblRF Euc 34.5±0.1 68.8±2.5 83.3±0.0 99.3±0.0 98.9±0.0
OblRF Hyp 33.6±0.7 65.6±1.3 83.2±0.3 99.1±0.0 98.9±0.0
Base HoroRF 60.8±0.0 67.8±4.9 83.6±1.6 99.1±0.0 99.1±0.3
HoroRF 63.1±3.2 67.4±5.1 85.5±1.8 99.3±0.0 98.9±0.3

Table 6: Effect of tree depth on performance on the synthetic dataset. We run a grid search to
determine the optimal configuration on the validation set and report results over three trials in micro-f1
score on the test set. Bold denotes the best method, underlined the second best. Splitting in hyperbolic
space with balanced and multi-level horospheres consistently reaches high performance.
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Figure 5: Analyzing ways to reduce the computational time of HoroRF on polbooks. In (a),
we show that the optimal performance is already reached with around 20 trees. In (b), we show that by
reducing the number of optimization iterations of HoroSVM, we can further reduce computational time while
maintaining high performance.

the number of HoroSVM optimization iterations. From the results in Fig. 5, we find that both the number of
trees and HoroSVM optimization iterations can be greatly reduced without sacrificing performance. Lowering
the number of HoroSVM iterations is a logical way to reduce computational time, as we are not interested
in finding the exact optimal horosphere; a solution close to it suffices for our purpose and might even benefit
HoroRF due to the increased variation in splits.

5 Conclusion

We present HoroRF, a random forest algorithm in hyperbolic space. HoroRF constructs its trees by re-
peated application of the HoroSplitter, which finds horosphere-based splits with high information gain.
We show the benefits of additional components aimed at improving performance on imbalanced and multi-
class datasets. Extensive experiments on two established and one newly introduced benchmark show its
effectiveness over both existing hyperbolic classifiers as well as their Euclidean counterparts.

Further advances in hyperbolic classification can easily be incorporated into the framework, as HoroRF is in
no way restricted to a single type of classifier. In future work, we aim to investigate the benefits of combining
multiple types of splits, for example by including hyperbolic logistic regression to provide additional split
options to include next to the horosphere splits. We furthermore expect that any improvement in optimiza-
tion of HoroSVM as splitting operation, akin to hyper-optimized libraries for Euclidean SVMs (Chang &
Lin, 2011), will have direct benefits for HoroRF, especially when dealing with many classes.
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