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ABSTRACT

This work addresses the issue of recurrent false positive classification in object
detection. We consider two experimental setups imitating real-world scenarios
that lead to such errors: i) erroneous annotations, ii) non-objects that resemble
actual objects. We show that resulting models can be corrected efficiently using a
two-step protocol that leverages false positive annotations. For the first step, we
present and compare two correction approaches that guide false positives toward
true negatives, in either the latent or the logit space. The second step then con-
sists in standard continuous fine-tuning on correct annotations. The latent guid-
ance framework relies on a decoder that maps the bounding box of a given false
positive to its target true negative embedding. The decoder is trained as part of an
autoencoder, where appropriate true negative samples are generated by a learnable
Gaussian mixture model in the latent space. By leveraging the properties of the
Wasserstein distance, the mixture model is optimized through standard backprop-
agation. In both experimental setups, the two correction methods significantly
outperform standard continuous fine-tuning on correct annotations and demon-
strate competitive performance when compared to models retrained from scratch
on correct annotations. In particular, in the second experimental setup, the latent
guidance framework consistently outperforms these models, effectively enhanc-
ing detection performance at the cost of supplementary false positive annotations.
Additionally, the proposed techniques prove effective in a few-shot learning con-
text.

1 INTRODUCTION

The capacity to identify and locate objects is a fundamental aspect of computer vision, provid-
ing the basis for a vast array of applications, including autonomous driving, surveillance, robotics,
and medical imaging. This process entails not only the identification of objects within an image
but also precisely localizing them through bounding boxes. In recent years, significant advance-
ments in deep learning, particularly with Vision Transformers (ViT) (Dosovitskiy et al.,2021), have
greatly enhanced the accuracy and efficiency of object detection models. Despite these advance-
ments, recurrent errors remain a major challenge, hindering the performance and generalization of
these systems in industrial applications.

Errors in object detection can manifest in various forms, such as false positives (FPs), false negatives
(FNs), misclassifications, and localization errors (Bolya et al., |2020). These errors often arise due
to factors such as occlusion, varying object scales, complex backgrounds, or class imbalance in the
training data. While localization errors stem from inaccurate bounding box predictions, other errors
are typically the result of object misclassification. This study specifically addresses recurrent FP
classification errors, where the model consistently detects an object that should not be identified,
e.g. people on billboards as instances of real people. In this work, we examine two experimental
setups that contribute to the occurrence of such recurrent errors:

i) A model fyoisy trained on a noisy dataset Dyoisy, Where certain instances of recurrent FPs
are incorrectly labeled as objects.
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ii) A model fr. trained on a well-annotated dataset Dryy,e, Where instances of recurrent FPs
are rightfully not annotated. However, these instances bear resemblance to another object
that is to be detected, causing frwe to misidentify them as true objects.

The objective of this work is not only to correct the FP errors caused by one of the aforementioned
conditions, but simultaneously to ensure that these corrections do not negatively impact the model’s
performance on the rest of the dataset. By addressing these recurrent errors, our aim is to enhance
the overall performance of the model. Ultimately, this study seeks to contribute to the field of object
detection by introducing methodologies and insights that can be generalized across different datasets
and detection frameworks.

Our research is based on DETR model (Carion et al., [2020). For the correction process, we assume
that we have access to a corrective dataset D¢, which is a subset of the correct dataset Drye Where
recurrent FPs are additionally annotated as *FP’.

Motivations To improve fyoisy, one solution would be to retrain the model from scratch on Dryye.
Nevertheless, this approach is often impractical due to excessive computational time. Furthermore,
there are cases where the whole original training data may no longer be available. Therefore, a more
viable alternative is to develop correction frameworks based on continuous fine-tuning of the learned
model, preserving the knowledge gained from previous training data. Moreover, in the case of frye,
retraining on Dry,,. Would be ineffective as it was already trained on this dataset in the first place.

Contributions We propose two innovative correction frameworks that guide FPs toward TNs in
either the latent space or the logit space. The latent guidance framework leverages an autoencoder
where a learnable Gaussian mixture model generates the embeddings of appropriate TNs, and a
straightforward decoder retrieves the TN embedding given a bounding box. We utilize the properties
of the Wasserstein distance to train the Gaussian mixture model through standard backpropagation.
Finally, we assess and compare the outcomes across these two distinct spaces.

2 RELATED WORK

Our work builds upon and draws inspiration from a range of research areas, including object detec-
tion, contrastive learning, and machine unlearning.

Object Detection Object detection is a well-explored field in Computer Vision. Traditional de-
tectors, such as HOG (Dalal & Triggs, [2005) and DPM (Felzenszwalb et al., 2010), relied on hand-
crafted image features as priors. However, the advent of end-to-end neural network-based methods
revolutionized the field over the past decade, beginning with Convolutional Neural Networks (CNN)
(Krizhevsky et al., 2012), and more recently, Vision Transformers (ViT) (Dosovitskiy et al., | 2021)).
Unlike CNN, which rely on convolutional layers, ViT use attention mechanisms to capture global
dependencies across an image. Modern deep learning-based object detectors can be broadly cate-
gorized into two main architectures: single-stage detectors, such as YOLO (Redmon et al.| [2016)
and DETR (Carion et al.,|2020), and two-stage detectors, like those based on the R-CNN family of
models (Girshick et al.l|2014).

DETR In 2020, /Carion et al.|(2020) introduced an innovative one-stage architecture that leverages
ViT. After a ResNet backbone (He et al.,2015)), the image features are extracted and then processed
by a transformer encoder, which captures global dependencies across the entire image through self-
attention. They are then used for cross-attention in the decoder. The decoder takes N learnable
object queries as input and applies a series of self-attention and cross-attention mechanisms with
the encoder’s image feature embeddings. The result is NV potential objects in a latent space Z. Two
Multi-Layer Perceptrons (MLP), MLP,,ss and MLPyyox, then map each potential object to a class
label and a bounding box, as illustrated in Fig. [I] Since the number of object queries NNV is fixed, the
model can predict a ‘no-object’ class, denoted as &.

After a bipartite matching, ensuring a one-to-one correspondence between predicted and ground
truth objects (or & for no-object predictions), the loss of DETR consists of two components: one for
classification and another for localization accuracy. Following the notations from the original paper:
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Figure 1: Architecture of DETR’s transformer. Taken from the original paper (Carion et al., 2020).
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Machine Unlearning Machine Unlearning (MU) serves as a data forgetting mechanism that aligns
with regulations like "The Right to be Forgotten” under GDPR (Zhang et al.||2024). It aims to adjust
a trained model so that it behaves as though certain data has never been encountered, thereby pre-
serving performance while facilitating the removal of specific samples. Applications of this concept,
particularly in class forgetting, are explored by [Tarun et al.|(2024), who propose a framework utiliz-
ing data augmentation. This method involves an impair step to unlearn the forget classes, followed
by a repair step to restore accuracy on retained classes. There is a key distinction between MU and
our approach: while MU aims to forget specific samples, our objective is to generalize across all
samples of the same type.

Contrastive Learning The objective of contrastive learning is to construct an embedding space
where similar samples are close together and dissimilar samples are farther apart. A wealth of re-
search has developed various frameworks and methodologies with different loss functions, yielding
increasingly sophisticated results (Schroff et al., 2015} |Sohn, 2016} |Chen et al., 2020). Initially ef-
fective in unsupervised and self-supervised contexts, contrastive learning has also shown success in
supervised learning (Radford et al.,|2021}; |Khosla et al.,|2021)). Most recent studies utilize a similar
loss function, analogous to a cross-entropy loss in the embedding space.

False Positive Suppression [Cheng et al.|(2020) propose decoupling classification refinement from
localization tasks, utilizing one model for bounding box predictions and another for class predictions
based on these candidates. This approach transforms the model into a two-stage detector, which is
not our objective here. |Chen et al.|(2020) tackle the problem of FPs in domain adaptation for pedes-
trian detection. Their key contribution is the introduction of an unsupervised re-ranking mechanism
that clusters bounding boxes and re-ranks them to suppress FPs, addressing domain shifts without
the need for annotated data. Although impressive, their results still lag behind oracle models trained
on annotated data.
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3 METHOD

3.1 CORE CONCEPT

Two correction frameworks are developed, both based on the same underlying concept of shift-
ing FPs toward TNs. From an optimization perspective, this can be achieved by minimizing the
discrepancy between FPs and TNs. We focus on two distinct spaces for that. The first is the logit
space, which directly influences the model’s class predictions. The second is the latent space Z,
situated one level deeper, prior to the classifier MLP,,5s and the bounding box predictor MLPypox.
This space is deemed pertinent because it encompasses all the extracted features necessary for both
class prediction and localization prediction of a potential object.

Our approach involves two steps and draws inspiration from the methodology introduced by [Tarun
et al.| (2024). The process begins with a guide step, where, notably, FPs are moved toward TNs by
minimizing Eq. [2| This step updates the model’s weights, which may inadvertently affect the accu-
racy for the remaining objects. To mitigate this, we introduce a repair step to restore the performance
on the remaining objects, achieved by fine-tuning the model on Dy, using only the standard DETR
loss.

Louiae (Y, F) = Acomect Y, Lcomeer(tii) + Avetr Y Loetr(y;, ) 2

y; EFP y; ¢FP

3.2 LoOGF: LoGIT GUIDANCE FRAMEWORK

We begin by developing the Logit Guidance Framework (LoGF), which aims to transform FPs
into TNs within the logit space. To convert FPs into TNs, the cross-entropy (CE) loss is utilized:

ECorrect(g) = ‘CCE(Qa Q) (3)

It is noteworthy that this term is already included in Lpgrr. However, |Carion et al.| (2020) down-
weight the log-probability term associated with the 'no-object’ class to mitigate class imbalance,
as only a small fraction of the numerous potential objects are actual objects. Consequently, this
correction specifically up-weights the cross-entropy associated with FPs in D¢, thereby increasing
their significance.

3.3 LAGF: LATENT GUIDANCE FRAMEWORK
3.3.1 AUTOENCODER

We continue by developing the Latent Guidance Framework (LaGF), which aims to guide FPs
toward TNs within the latent space Z. The objective is to establish a more effective clustering
structure that assists the classifier in making more accurate predictions.

Unlike the logit space, where the target TN to which all the FPs should move is straightforward (&),
Z is a high-dimensional space where many points represent TNs.

Since Z encodes both the class and the bounding box of an object simultaneously, objects that share
similarities (class and bounding box) should be proximate in this space. Therefore, a suitable TN
candidate for a given FP is one that shares the greatest similarity with that FP. Given that the class of
the TN is already determined, only its position remains to be defined. We can define an appropriate
TN for a FP as follows:

Definition 1 [Target e-TN for a FP] Let zpp € Z represent the embedding of a FP and ypp,y denote
its bounding box prediction:

Ybbox = T O MLPbbox(ZFP>

Let zry € Z. zpy is the embedding of a target e-TN for zpp if zqy satisfies the following conditions:

[Softmax o MLP s (21n)] s > 1 — € and 0 0 MLPppox(21v) = Ybbox €]
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In other words, a target e-TN for a given FP is a sample that belongs to the 'no-object’ class & with
a probability of at least 1 — ¢ and shares the same bounding box as the FP. In the following, we will
omit €, implying that we are seeking target TNs with the highest probability.

An autoencoder architecture is proposed to identify the embeddings of target TNs for all FPs in
Dc, which are close to those of the FPs. This autoencoder is based on a Gaussian Mixture Model
(GMM) that learns to generate embeddings of target TNs in Z for similar FPs in Dc¢. Following the
GMM, a decoder learns to retrieve the embedding in Z of a target TN given a bounding box. The
end-to-end architecture described in Fig. [2al addresses the variance issues detailed in

Once the decoder @ is trained, the embedding zf € Z of a given FP  is guided toward the
embedding of a close target TN Z = ® o 0 o MLPypox (2 ) using the following loss:

sim(z7, %) (=7, %)

Leomeet (1)) = log (1 + exp <_T>) with  sim(z7, 2) = T %)

where T is a hyperparameter and sim denotes the cosine similarity. The schema for the guide step

is illustrated in Fig. Note that the distinction between FP embeddings {Zf }; and remaining
embeddings {27 }; is obtained using a bipartite matching after the forward pass.
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(a) Autoencoder architecture. (b Sehema of the guide stcp.

Figure 2: Architectures used for the latent guiding framework.

Note: During the guide step, FPs are converted into TNs, though not always with high confidence
in early updates. LaGF aims to progressively guide these samples toward TNs with increasing
confidence, until they reach a fixed point of the decoder. In this way, LaGF establishes an elegant
and natural displacement that facilitates correction.

3.3.2 GAUSSIAN MIXTURE MODEL

The purpose of the Gaussian Mixture Model (GMM) is to generate samples in Z that are embeddings
of target TNs for similar FPs in D¢, which are close to the embeddings of FPs in D¢, in order to
train the decoder effectively. We employ a GMM due to its property as a universal approximator of
smooth densities (Goodfellow et al., 2016)).
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Firstly, the GMM must generate TNs samples, which is ensured by:

ETN(Z) - LCE (@, MLPClass(z)) (6)

Secondly, the parameters of the GMM should be trained such that the image by o o MLPy,,, of its
distribution in Z is similar to the distribution of the bounding boxes of FPs in D¢. To measure the
similarity between these two distributions, the Wasserstein distance in the discrete case is employed,
since it is a very natural and canonical distance to optimize (Peyré & Cuturi, [2020). The Wasserstein
distance between two discrete distributions v = 377" a;0,, and § = Y 77", b;d,,;, considering the
Euclidian distance as metric, is defined as follows:

W(a,8) = min ZZH% y; T 5 (7)

eU(a,B) — i

where U(a, 3) is the set of joint probability distributions with marginals « and (8 such that
Ula,B) = {l € R”Y™ | M1,, = a and II'1, = b} and II is the transport plan that
enables the movement from « to 3.

Consider « as the discrete distribution defined as the image by o o MLPyy,0x of the samples generated
by the GMM, and f3 as the target discrete distribution of bounding boxes of FPs in Dc¢. In order to
transport « toward 3 while avoiding the centres of mass, it is necessary to sample the same number
of points in « as in 8 (Peyré & Cuturil [2020), as done by |Arjovsky et al.| (2017).

Let Z ~ GMM ({77,», i Zi}fil) be a random variable in Z that follows the distribution of a

mixture of K Gaussians. Let N be the number of samples of our target distribution and m the
number of points of our generated distribution. Now let U ~ U({1,.., N}) be a random variable
that follows a uniform distribution in {1, .., N}. Let 21, ..., 2, and 41, ..., u,, be m samples from Z
and U respectively. The loss to optimise is the following:

m m
Libox-dist = ( Z 0 oMLPyoor (24 ) Z 5yu1> ¥

N | is the set of bounding boxes of FPs in Dc.

where {yfP}N

Thirdly, to ensure training stability by selecting target TN embeddings close to FP ones, we
initialize the GMM according to the initial latent distribution of FPs in D¢ using the Expectation-
Maximization (EM) algorithm (Dempster et al., 2018).

In summary, the loss that contributes to training the GMM within the total autoencoder loss is:

Lovm = Lobox-dist + LN &)

Weight reparameterization trick In order to minimise the aforementioned loss with respect to
the parameters of the GMM ({m;, 4, Ei}fil), gradient descent and classic backpropagation are em-
ployed. Nevertheless, it is not possible to perform backpropagation through a sample derived from a
random variable X. Kingma & Welling| (2022) proposed a reparameterization trick to sample from
a normal distribution. However, to sample from a GMM, it is first necessary to sample from a cate-
gorical distribution to select which Gaussian should be sampled. This is a known issue that|Graves
(2016) tackles for all continuous multivariate distributions with a differentiable density function by
computing explicitly the backpropagation over the weights. Nevertheless, we propose an alternative
method using conventional backpropagation that leverages the properties of Wasserstein distance,
which allows weighting of all data points within the histogram. Hence, we sample the same number
of points per Gaussian and then apply weighting within the histogram of the corresponding bound-
ing box distribution. More precisely, if we sample m points from the ¢-th Gaussian, each sample will
be weighted by a factor of 7 within the histogram. The weight reparameterization trick is detailed
in the autoencoder training algorithm described in[A.T]and the proof is provided in
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3.3.3 DECODER

The decoder is a function ® : R* — Z that takes the bounding box of a FP as input and outputs
the embedding of a target TN for that FP. A straightforward neural network is employed as the
decoder; further details regarding the network architecture can be found in The training of the
decoder is conducted by minimizing the following loss function:

['decoder (ybboxv Z) = »CMSE ((I)(ybbox); Z) (10)

where z € Z is a TN embedding generated by the GMM and yypox = 0 © MLPppox(2). Since the
decoder’s parameters are optimized with fixed MLPs, the utilization of the decoder during the guide
step necessitates freezing MLP,j,5s and MLPppox.

4 EXPERIMENTAL SETUP

4.1 DATASET

For the experiments, we use the PASCAL VOC 2007 dataset that comprises 20 object classes,
including animals, vehicles, person and indoor categories of objects (Everingham et al.). In the
next sections, all datasets have the same support, only the annotations change. In a first dataset,
we intentionally misannotate all buses as cars, and in a second dataset, we misannotate all sofas as
chairs, given the notable similarities between these pairs of objects. This misannotation of buses
(resp. sofas) leads to the creation of the noisy dataset Dygjisy, On Which we train foisy. In contrast,
we train fr on the well-labeled dataset Dry,e Where buses (resp. sofas) are not annotated at all.

Additionally, two experimental cases are investigated: a single-class case that only considers the
confused-class objects (cars or chairs) and a multi-class case in which all classes are present. The
single-class case allows for a more detailed examination of the impact of the correction while main-
taining good performance on the confused class. The multi-class case also enables the assessment
of performance changes in other classes that are not directly affected by the correction.

4.2 METHODS TO COMPARE

We summarize all classes of experiments in Tab. |I} Some of the aforementioned methods allow
continuous fine-tuning whereas the others entail retraining from scratch. In particular, we train an
oracle model foce from scratch which identifies and classifies the FPs into a new dedicated class.
Srrue and foracle Serve as target models, while we benchmark our methods to classic continuous
fine-tuning.

Table 1: Models and methods of correction.

Corrected model Initial model Methods of correction Continous fine-tuning
fﬁg};‘““ Soisy Fine-tuning on the correct dataset Dryue 4
fﬁ;’gf (Ours) Soisy Guiding in the logit space (LoGF) v
flL“ﬂSyF (Ours) FNoisy Guiding in the latent space Z (LaGF) v
LOGE (Ours) frrue Guiding in the logit space (LoGF) v/
LaGE(Ours) Srrue Guiding in the latent space Z (LaGF) v
Training from scratch on the correct
Jrmae ) dataset Dryue X
Training from scratch with FP as a new
foracte ) target class X

4.3 METRICS

To assess the performance of the model before and after the correction, we use mean Average
Precision (mAP). mAP averages precision over different recall thresholds for each class, and then
averages it across all classes. mAP is also averaged at various IoU thresholds (from 0.5 to 0.95



Under review as a conference paper at ICLR 2025

by steps of 0.05) to take into account the localization accuracy. In the single-class case, we also
compute precision and recall to assess the correction of FPs and the deterioration over TPs. We
choose the confidence threshold that maximizes the F1-score over the validation set. Precision and
recall are computed at a low IoU threshold (0.5) to avoid biases in localization and FN errors (Bolya
et al.,|2020). In the multi-class case, we compute the Average Precision (AP) on the confused class
to assess the effectiveness of the correction of the FPs, and mAP on the other classes to evaluate the
incidental impact of our methods on these classes.

5 EXPERIMENTAL RESULTS

5.1 RESULTS

We use a DETR model with a ResNet-50 backbone, trained end-to-end on MS-COCO 2017 (Lin
et al., [2015) as a base model. We present the results in the single-class case in Tab. 2]and Tab. 3] and
the results in the multi-class case in Tab. In all cases, five runs were conducted for each model,
except for the model to correct.

i) Correction of fnoisy In both single-class and multi-class cases, our correction frameworks
demonstrate superior performance in mAP compared to the standard continuous fine-tuning method,
highlighting the importance of FP guidance in the first step. The classic continuous fine-tuning
method can, in fact, be viewed as a version of our correction framework without the guide step. The
high improvement in precision in the single-class case with our correction frameworks (~ +13 and
~ +18) compared to the improvement with the classic continuous fine-tuning method (~ +2 and
~ +5) proves the efficiency of the suppression of FPs using the guidance framework. Therefore,
the guide step can be seen as a powerful correction step. The evolution of recall across the different
methods indicates that LoGF excessively increases FNs, unlike the continuous fine-tuning method
and LaGF. In addition to demonstrating the superiority of guidance methods over continuous fine-
tuning in terms of error correction, the multi-class case shows that none of the methods (including
guidance-based approaches) interfere with the detection of objects from other classes. Furthermore,
LaGF consistently outperforming the target models frye and forcle in terms of mAP, proving more
stable than the other correction methods.

ii) Correction of fr.. Likewise, LaGF consistently improves the initial model fr,, enhancing
its overall performance. In contrast, LoGF reduces the performance of frye in Tab. [2| indicating
that LoGF is less reliable than LaGF. An inspection of the precision and recall values indicates that
the overall improvements stem from the correction of annotated FPs.

Table 2: Results in the single-class case: bus and car.

mAP Precision Recall
mean std mean std mean std
STiue 64.46 1.07 87.65 1.89 84.14 1.83
Soracte 63.88 1.30 86.39 2.82 85.93 2.70
| fnoisy || 6139 [ -1 7562 | -1 85.14 | - -

Yinewne | 63314 | 0.61 77701 | 0.63 8494 | 0.5
I }T;,f”’ 1 65.08 T -1 8573 | -1 86.18 | - -
"LoGE 64.86 | 0.48 86.29 1 0.56 85.04 | 0.75
‘LaGE 65.53 1 0.32 86.50 1 0.48 85.71 | 0.75

5.2 FEW-SHOT

To clearly observe the evolution of performance with respect to the size of the training set, we
conduct few-shot experiments in the single-class case using the bus-car dataset, starting from fpojsy-

I"This serves as the initial model to correct.
2Chosen randomly among the 5 runs.
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Table 3: Results in the single-class case: sofa and chair.

mAP Precision Recall

mean std mean std mean std

Frrue 37.38 1.17 72.15 4.07 62.84 3.68

Jforacte 35.51 1.64 70.22 3.57 59.67 3.97
| faoiy | | 2789 | = 75677 | = ] 5953 | - ]

LoGF 37.10 1 1.50 74.16 1 0.96 55.44 | 2.54

fioo 38621 | 0.33 75.16 1 1.93 60.09 1 1.93

fnetune | 31901 | 2.89 61.631 | 4.61 5690, | 4.75
Fre 2] 73922 ] 2 T 7238 [ = ] ea26 | = ]

LoGE 39.64 0.20 75.73 4 1.99 60.74 | 1.72

LaGE 39.31 1 0.54 75.79 + 2.37 60.48 | 1.90

Table 4: Results in the multi-class case: bus and car (left), sofa and chair (right).

AP confused class

mAP other classes

AP confused class

mAP other classes

mean std mean std mean std mean std
Frrue 6240 | 1.17 5417 | 043 Frrue 3597 | 0.60 55.60 | 044
foracle 6326 | 0.76 54.60 | 0.45 foracle | 35.87 1.57 55.02 | 0.79
froisy | | 57.45 - ] 5510 -] froisy | 29.28 - 55.53 .
LGl 1 61341 | 0.71 55121 | 0.18 LoGF 1 35384 | 0.78 5526) | 0.41
Ny | 63301 | 052 | 54388 | 0.17 o | 3751 | 042 | 55841 | 0.32
o " | 59.361 | 1.63 5446 | 0.22 Tine-tune | 33 78 4 | 1.68 55.03) | 0.26
| fme 2| 6138 [ = 7| 5345 | - ] | ?T?uflf 3536 | - | 5601 | - |
oGE 1 63141 | 0.22 55.061 | 0.19 LoGE | 35514 | 0.29 56.551 | 0.16
LaGE 1 63371 | 0.22 55111 | 0.30 LaGE 1 35631 | 0.26 56.571 | 0.21

The results are presented in Fig. [}] We do not observe a significant decrease in the performance of
any particular model: They all appear stable, with a slight preference for LaGF and the continuous
fine-tuning method. Even with 10% of the training set, LaGF improves the mAP of the initial model
by about 2 points, reaching around 60% of the maximum improvement seen when using the entire
training set.
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Figure 3: Results in a few-shot context.

6 ABLATION STUDIES

-~ Latent
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- Finetune

80 60 40 20
Percentage of the training set used (%)

We conduct ablation studies to emphasize the significance of main design choices within LaGF,
which has proven to be the most consistent and effective correction approach. These studies are
carried out in a multi-class setting using the bus-car dataset, starting from fyoisy. The results are
presented in Tab. [3

First, we analyze the impact of removing the repair step. Results show that the detection performance
is degraded across all classes, including the confused class. While the guide step improves the
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clustering of the confused class in Z, unfreezing the MLPs during the repair step appears essential
for effective correction.

Next, we examine the effect of removing the DETR loss during the guide step. Interestingly, this has
no significant impact on detecting objects from other classes, but it leads to a sharp decline in AP
for the confused class. This can be attributed to the fact that using the DETR loss helps preserve the
model’s performance across other classes during the guide step, preventing drastic changes during
the repair step that could otherwise undermine the corrections made during the guide step.

Table 5: Ablation studies using the latent guidance framework in the multi-class case: bus and car.

. AP confused class | mAP other classes
# | Description
mean std mean std
— | Initial model to correct fxoisy 57.45 - 55.10 -
— | Reference model fk‘;g 63.30 0.52 54.88 0.17
1 | Remove the repair step 61.35 0.70 52.65 0.26
2 | Lcuide = Lcorrect 61.11 0.40 55.03 0.24

7 CONCLUSION

We introduced two novel frameworks for correcting recurrent FP classification errors in object
detection. These frameworks focus on guiding FPs toward TNs in either the latent space or the
logit space. Identifying suitable TNs in the latent space proved to be a challenging task, which we
addressed by using an autoencoder architecture that incorporates a learnable GMM and a straight-
forward decoder. By applying these correction mechanisms, we achieved significant and consistent
improvements in model performance, with the latent guidance framework being especially effective.

Future work could extend the latent guidance framework to other object detection architectures.
Additionally, an interesting direction would be to correct other recurring confusion errors, where
instances of one class are often misclassified as another. In such cases, the framework could guide
these FPs back to their true class, rather than to &. Moreover, we believe that this correction frame-
work can be extended to any classification task, beyond object detection.
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A APPENDIX

A.1 PSEUDO-CODE FOR AUTOENCODER TRAINING

We present the pseudo-code for autoencoder training that includes the weight reparameterization
trick in Alg.

Algorithm 1 Autoencoder training

Input: Number of Gaussians K, Latent Samples {sz }Z]\Ll and Bounding Box Samples

N
{y;m‘ FP} of FP in D¢, the number of samples to sample per Gaussian m.
i=1
Output: GMM parameters {;, it;, ¥; } £ | optimized, and the parameters © of the Decoder ®¢
optimized.
1: Lomm — o0
2: Initialize {7;, p1;, ¥;} 2, to optimize a GMM over {ZFP}?; thanks to EM algorithm
3: while £ ayencoder has not converged do
4: z < Empty Tensor
5: Ybbox < Empty Tensor
6: Yelass <— Empty Tensor
7: for i=1to K do _
8: Sample m times from A (y;, 3;) with the reparameterization trick: {z](-l)} and
j=1,...m
concatenate with z ‘
9: Compute {y(.lgbow = 0 0 MLPppox (zj(l)) } and concatenate with Ygpox
’ j=1,...m
10: Compute {yﬁl ass = MLPclag (257)) }j:1 o and concatenate with Ycjass

11: end for

N mx K
12: Sample m x K times from {y';box’ P } : {yt;tg‘z’; P }
=1 i=1

K i L 1 x K
13: Compute Loym = W (Zizl m z;n:l 6y(_,-zb e ) 6ybb(n?(),FP) + Lk (D, Yelass)
j,bbox (i

14: ComPUte LDecoder = EMSE ((I)Q (ybbox)a z)

15: COI’Ilpl]tG »C'AutoEncoder = »C'GMM + »CDecoder

16: Gradient step over £auoEncoder With respect to {7, 115, ;1 | and ©
17: end while

Figure 4: Pseudo-code for autoencoder training.
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A.2 PROOF OF THE WEIGHT REPARAMETERIZATION TRICK

The weight reparameterization trick is based on the law of total probability. Indeed, let Z ~
GMM ({m, L Ei}fil) and Y = f(Z) where f should be 0 © MLPypox 0r MLP,j,s,. We have

P(Y =y)=P(f(Z)=y) (11
K
=Y P(f(2) =y|Z ~ N (i, i) P(Z ~ N (i, %)) (12)
i=1
K
ZZﬂiP(f(Z) =ylZ ~ N(pi, %)) (13)

Therefore, if we sample m times from each K Gaussians {zj(l) }E;g}n{w the discrete distribution «

in the final space (of logits or bounding boxes) is:

K m
a= ZZ%‘%‘(%“) (14)
=1 j=1

Since {m;}1<;<x appears in the discrete distribution and consequently in the expression of the
Wasserstein loss, we can now backpropagate this loss over the weights {m; }1<;< k.

A.3 DESIGN CHOICES FOR THE AUTOENCODER

We chose to train the GMM and the decoder simultaneously using an autoencoder, though this
approach might seem suboptimal at first. Indeed, the GMM initially fails to generate suitable training
samples for the decoder, leading the latter to learn from inaccurate samples during the first epochs.
A potential alternative is to first train the GMM separately, followed by training the decoder with
the GMM frozen. This method is expected to improve stability and accelerate the overall process.
Nevertheless, as demonstrated in Fig. [5] this approach does not work as intended. While the GMM
performs well and generates target TNs for similar FPs in D, the decoder struggles to retrieve
the embedding. The inability to correctly predict the position of the embedding of a TN given a
bounding box is due to the average variance of Normal distributions that compose the GMM (which

can be defined as = S8 | (Z;i;nl(z)[ili} ja’)) which produces suitable samples but spans a large

region in Z. Consequently, the decoder faces an overly difficult task, as two samples generated by
the GMM could be far apart in Z despite having nearly identical bounding boxes. Interestingly,
when the GMM is initialized with the current latent distribution of FPs in Dc, it shows low variance,
indicating the feasibility of achieving a more focused distribution.

Thus, training the GMM and decoder together within an end-to-end autoencoder introduces a form
of regularization on the GMM’s variance. As shown in Fig. [6]the GMM is initially optimized
with high variance, followed by the decoder’s optimization, which adapts to the GMM’s decreasing
variance. This process can be interpreted as: after identifying large regions containing target TN,
the GMM then narrows down its focus within those regions.

A.4 IMPLEMENTATION DETAILS

DETR We present the hyperparameters that have been employed during the training and the cor-
rection of DETR model in[6] Unless otherwise noted, the hyperparameters remain consistent during
both training and correction phases. During the guide step, the model is exclusively fed with images
that contain instances of the confused class. The training set is split into two subsets, reserving 30%
of the data as a validation set.

Autoencoder To parameterize the GMM, certain established techniques must be employed. First,

we optimize the unnormalized weights, ensuring the normalization condition ZZK:1 m; = 1 by ap-
plying the Softmax function. A covariance matrix must be a symmetric positive definite matrix, and
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CE loss and average variance of the Gaussians during the GMM training MSE loss during the decoder training
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Figure 5: Evolution of the losses and the average variance of the Gaussians when we train separately
the GMM and then the decoder.

MSE loss, CE loss and average variance of the Gaussians during the autoencoder training
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Figure 6: Evolution of the losses and the average variance of the Gaussians when we train the GMM
and the decoder simultaneously.

since all symmetric positive matrices possess a square root, we train the square root matrix and sub-
sequently derive the covariance matrix by multiplying it by its transpose. To maintain the positive

definiteness, we add 1.10~* to all diagonal elements. The architecture of the decoder is detailed in
Tab. [7]
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Table 6: Hyperparameters during the training and the correction.

Hyperparameter Value
Batch size 4
Gradient accumulation 8

Early stopping criterion
(training)

If the validation loss does not decrease over 10 epochs

Optimizer (training)

AdamW; Irpackbone = 1€ — 5; Irrest = 1le — 4;
weight_decay = le — 4

Weight decay le—4
. Divide by 2 if the validation loss does not decrease over 5
Learning step scheduler
epochs
. . . If the validation correction loss does not decrease over 5
Guidance stopping criterion epochs

Repair stopping criterion

If the validation loss does not decrease over 5 epochs

Optimizer (correction)

AdamW; Irpackbone = 1€ — 6; lirest = 1le — 5;
weight_decay = le — 4

Temperature 1" in Lguige in
LaGF

T=1

Table 7: Architecture of the decoder.

Decoder

Input € R*
Linear(4, 256)
Linear(256, 256)
Linear(256, 256)
Output € R?%¢
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