
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REFOCUS: RECURRENT FALSE OBJECT CORRECTION
USING GUIDANCE STRATEGIES IN OBJECT DETEC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

This work addresses the issue of recurrent false positive classification in object
detection. We consider two experimental setups imitating real-world scenarios
that lead to such errors: i) erroneous annotations, ii) non-objects that resemble
actual objects. We show that resulting models can be corrected efficiently using a
two-step protocol that leverages false positive annotations. For the first step, we
present and compare two correction approaches that guide false positives toward
true negatives, in either the latent or the logit space. The second step then con-
sists in standard continuous fine-tuning on correct annotations. The latent guid-
ance framework relies on a decoder that maps the bounding box of a given false
positive to its target true negative embedding. The decoder is trained as part of an
autoencoder, where appropriate true negative samples are generated by a learnable
Gaussian mixture model in the latent space. By leveraging the properties of the
Wasserstein distance, the mixture model is optimized through standard backprop-
agation. In both experimental setups, the two correction methods significantly
outperform standard continuous fine-tuning on correct annotations and demon-
strate competitive performance when compared to models retrained from scratch
on correct annotations. In particular, in the second experimental setup, the latent
guidance framework consistently outperforms these models, effectively enhanc-
ing detection performance at the cost of supplementary false positive annotations.
Additionally, the proposed techniques prove effective in a few-shot learning con-
text.

1 INTRODUCTION

The capacity to identify and locate objects is a fundamental aspect of computer vision, provid-
ing the basis for a vast array of applications, including autonomous driving, surveillance, robotics,
and medical imaging. This process entails not only the identification of objects within an image
but also precisely localizing them through bounding boxes. In recent years, significant advance-
ments in deep learning, particularly with Vision Transformers (ViT) (Dosovitskiy et al., 2021), have
greatly enhanced the accuracy and efficiency of object detection models. Despite these advance-
ments, recurrent errors remain a major challenge, hindering the performance and generalization of
these systems in industrial applications.

Errors in object detection can manifest in various forms, such as false positives (FPs), false negatives
(FNs), misclassifications, and localization errors (Bolya et al., 2020). These errors often arise due
to factors such as occlusion, varying object scales, complex backgrounds, or class imbalance in the
training data. While localization errors stem from inaccurate bounding box predictions, other errors
are typically the result of object misclassification. This study specifically addresses recurrent FP
classification errors, where the model consistently detects an object that should not be identified,
e.g. people on billboards as instances of real people. In this work, we examine two experimental
setups that contribute to the occurrence of such recurrent errors:

i) A model fNoisy trained on a noisy dataset DNoisy, where certain instances of recurrent FPs
are incorrectly labeled as objects.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ii) A model fTrue trained on a well-annotated dataset DTrue, where instances of recurrent FPs
are rightfully not annotated. However, these instances bear resemblance to another object
that is to be detected, causing fTrue to misidentify them as true objects.

The objective of this work is not only to correct the FP errors caused by one of the aforementioned
conditions, but simultaneously to ensure that these corrections do not negatively impact the model’s
performance on the rest of the dataset. By addressing these recurrent errors, our aim is to enhance
the overall performance of the model. Ultimately, this study seeks to contribute to the field of object
detection by introducing methodologies and insights that can be generalized across different datasets
and detection frameworks.

Our research is based on DETR model (Carion et al., 2020). For the correction process, we assume
that we have access to a corrective dataset DC, which is a subset of the correct dataset DTrue where
recurrent FPs are additionally annotated as ’FP’.

Motivations To improve fNoisy, one solution would be to retrain the model from scratch on DTrue.
Nevertheless, this approach is often impractical due to excessive computational time. Furthermore,
there are cases where the whole original training data may no longer be available. Therefore, a more
viable alternative is to develop correction frameworks based on continuous fine-tuning of the learned
model, preserving the knowledge gained from previous training data. Moreover, in the case of fTrue,
retraining on DTrue would be ineffective as it was already trained on this dataset in the first place.

Contributions We propose two innovative correction frameworks that guide FPs toward TNs in
either the latent space or the logit space. The latent guidance framework leverages an autoencoder
where a learnable Gaussian mixture model generates the embeddings of appropriate TNs, and a
straightforward decoder retrieves the TN embedding given a bounding box. We utilize the properties
of the Wasserstein distance to train the Gaussian mixture model through standard backpropagation.
Finally, we assess and compare the outcomes across these two distinct spaces.

2 RELATED WORK

Our work builds upon and draws inspiration from a range of research areas, including object detec-
tion, contrastive learning, and machine unlearning.

Object Detection Object detection is a well-explored field in Computer Vision. Traditional de-
tectors, such as HOG (Dalal & Triggs, 2005) and DPM (Felzenszwalb et al., 2010), relied on hand-
crafted image features as priors. However, the advent of end-to-end neural network-based methods
revolutionized the field over the past decade, beginning with Convolutional Neural Networks (CNN)
(Krizhevsky et al., 2012), and more recently, Vision Transformers (ViT) (Dosovitskiy et al., 2021).
Unlike CNN, which rely on convolutional layers, ViT use attention mechanisms to capture global
dependencies across an image. Modern deep learning-based object detectors can be broadly cate-
gorized into two main architectures: single-stage detectors, such as YOLO (Redmon et al., 2016)
and DETR (Carion et al., 2020), and two-stage detectors, like those based on the R-CNN family of
models (Girshick et al., 2014).

DETR In 2020, Carion et al. (2020) introduced an innovative one-stage architecture that leverages
ViT. After a ResNet backbone (He et al., 2015), the image features are extracted and then processed
by a transformer encoder, which captures global dependencies across the entire image through self-
attention. They are then used for cross-attention in the decoder. The decoder takes N learnable
object queries as input and applies a series of self-attention and cross-attention mechanisms with
the encoder’s image feature embeddings. The result is N potential objects in a latent space Z . Two
Multi-Layer Perceptrons (MLP), MLPclass and MLPbbox, then map each potential object to a class
label and a bounding box, as illustrated in Fig. 1. Since the number of object queries N is fixed, the
model can predict a ’no-object’ class, denoted as ∅.

After a bipartite matching, ensuring a one-to-one correspondence between predicted and ground
truth objects (or ∅ for no-object predictions), the loss of DETR consists of two components: one for
classification and another for localization accuracy. Following the notations from the original paper:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Architecture of DETR’s transformer. Taken from the original paper (Carion et al., 2020).

LDETR(y, ŷ) =

N∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci ̸=∅}

(
λiouLiou(bi, b̂σ̂(i)) + λL1||bi − b̂σ̂(i)||1

)]
(1)

Machine Unlearning Machine Unlearning (MU) serves as a data forgetting mechanism that aligns
with regulations like ”The Right to be Forgotten” under GDPR (Zhang et al., 2024). It aims to adjust
a trained model so that it behaves as though certain data has never been encountered, thereby pre-
serving performance while facilitating the removal of specific samples. Applications of this concept,
particularly in class forgetting, are explored by Tarun et al. (2024), who propose a framework utiliz-
ing data augmentation. This method involves an impair step to unlearn the forget classes, followed
by a repair step to restore accuracy on retained classes. There is a key distinction between MU and
our approach: while MU aims to forget specific samples, our objective is to generalize across all
samples of the same type.

Contrastive Learning The objective of contrastive learning is to construct an embedding space
where similar samples are close together and dissimilar samples are farther apart. A wealth of re-
search has developed various frameworks and methodologies with different loss functions, yielding
increasingly sophisticated results (Schroff et al., 2015; Sohn, 2016; Chen et al., 2020). Initially ef-
fective in unsupervised and self-supervised contexts, contrastive learning has also shown success in
supervised learning (Radford et al., 2021; Khosla et al., 2021). Most recent studies utilize a similar
loss function, analogous to a cross-entropy loss in the embedding space.

False Positive Suppression Cheng et al. (2020) propose decoupling classification refinement from
localization tasks, utilizing one model for bounding box predictions and another for class predictions
based on these candidates. This approach transforms the model into a two-stage detector, which is
not our objective here. Chen et al. (2020) tackle the problem of FPs in domain adaptation for pedes-
trian detection. Their key contribution is the introduction of an unsupervised re-ranking mechanism
that clusters bounding boxes and re-ranks them to suppress FPs, addressing domain shifts without
the need for annotated data. Although impressive, their results still lag behind oracle models trained
on annotated data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

3.1 CORE CONCEPT

Two correction frameworks are developed, both based on the same underlying concept of shift-
ing FPs toward TNs. From an optimization perspective, this can be achieved by minimizing the
discrepancy between FPs and TNs. We focus on two distinct spaces for that. The first is the logit
space, which directly influences the model’s class predictions. The second is the latent space Z ,
situated one level deeper, prior to the classifier MLPclass and the bounding box predictor MLPbbox.
This space is deemed pertinent because it encompasses all the extracted features necessary for both
class prediction and localization prediction of a potential object.

Our approach involves two steps and draws inspiration from the methodology introduced by Tarun
et al. (2024). The process begins with a guide step, where, notably, FPs are moved toward TNs by
minimizing Eq. 2. This step updates the model’s weights, which may inadvertently affect the accu-
racy for the remaining objects. To mitigate this, we introduce a repair step to restore the performance
on the remaining objects, achieved by fine-tuning the model on DTrue using only the standard DETR
loss.

LGuide(y, ŷ) = λCorrect

∑
ŷi∈FP

LCorrect(ŷi) + λDETR

∑
ŷj /∈FP

LDETR(yj , ŷj) (2)

3.2 LOGF: LOGIT GUIDANCE FRAMEWORK

We begin by developing the Logit Guidance Framework (LoGF), which aims to transform FPs
into TNs within the logit space. To convert FPs into TNs, the cross-entropy (CE) loss is utilized:

LCorrect(ŷ) = LCE(∅, ŷ) (3)

It is noteworthy that this term is already included in LDETR. However, Carion et al. (2020) down-
weight the log-probability term associated with the ’no-object’ class to mitigate class imbalance,
as only a small fraction of the numerous potential objects are actual objects. Consequently, this
correction specifically up-weights the cross-entropy associated with FPs in DC, thereby increasing
their significance.

3.3 LAGF: LATENT GUIDANCE FRAMEWORK

3.3.1 AUTOENCODER

We continue by developing the Latent Guidance Framework (LaGF), which aims to guide FPs
toward TNs within the latent space Z . The objective is to establish a more effective clustering
structure that assists the classifier in making more accurate predictions.

Unlike the logit space, where the target TN to which all the FPs should move is straightforward (∅),
Z is a high-dimensional space where many points represent TNs.

Since Z encodes both the class and the bounding box of an object simultaneously, objects that share
similarities (class and bounding box) should be proximate in this space. Therefore, a suitable TN
candidate for a given FP is one that shares the greatest similarity with that FP. Given that the class of
the TN is already determined, only its position remains to be defined. We can define an appropriate
TN for a FP as follows:

Definition 1 [Target ϵ-TN for a FP] Let zFP ∈ Z represent the embedding of a FP and ybbox denote
its bounding box prediction:

ybbox = σ ◦MLPbbox(zFP)

Let zTN ∈ Z . zTN is the embedding of a target ϵ-TN for zFP if zTN satisfies the following conditions:

[Softmax ◦MLPclass(zTN)]∅ ≥ 1− ϵ and σ ◦MLPbbox(zTN) = ybbox (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In other words, a target ϵ-TN for a given FP is a sample that belongs to the ’no-object’ class ∅ with
a probability of at least 1− ϵ and shares the same bounding box as the FP. In the following, we will
omit ϵ, implying that we are seeking target TNs with the highest probability.

An autoencoder architecture is proposed to identify the embeddings of target TNs for all FPs in
DC, which are close to those of the FPs. This autoencoder is based on a Gaussian Mixture Model
(GMM) that learns to generate embeddings of target TNs in Z for similar FPs in DC. Following the
GMM, a decoder learns to retrieve the embedding in Z of a target TN given a bounding box. The
end-to-end architecture described in Fig. 2a addresses the variance issues detailed in A.3.

Once the decoder Φ is trained, the embedding zf ∈ Z of a given FP ŷ is guided toward the
embedding of a close target TN z̃ = Φ ◦ σ ◦MLPbbox(z

f) using the following loss:

LCorrect(ŷ) = log

(
1 + exp

(
−sim(zf , z̃)

T

))
with sim(zf , z̃) =

⟨zf , z̃⟩
∥zf∥∥z̃∥

(5)

where T is a hyperparameter and sim denotes the cosine similarity. The schema for the guide step
is illustrated in Fig. 2b. Note that the distinction between FP embeddings {zfi }i and remaining
embeddings {zrj }j is obtained using a bipartite matching after the forward pass.

(a) Autoencoder architecture. (b) Schema of the guide step.

Figure 2: Architectures used for the latent guiding framework.

Note: During the guide step, FPs are converted into TNs, though not always with high confidence
in early updates. LaGF aims to progressively guide these samples toward TNs with increasing
confidence, until they reach a fixed point of the decoder. In this way, LaGF establishes an elegant
and natural displacement that facilitates correction.

3.3.2 GAUSSIAN MIXTURE MODEL

The purpose of the Gaussian Mixture Model (GMM) is to generate samples inZ that are embeddings
of target TNs for similar FPs in DC, which are close to the embeddings of FPs in DC, in order to
train the decoder effectively. We employ a GMM due to its property as a universal approximator of
smooth densities (Goodfellow et al., 2016).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Firstly, the GMM must generate TNs samples, which is ensured by:

LTN(z) = LCE (∅,MLPclass(z)) (6)

Secondly, the parameters of the GMM should be trained such that the image by σ◦MLPbbox of its
distribution in Z is similar to the distribution of the bounding boxes of FPs in DC. To measure the
similarity between these two distributions, the Wasserstein distance in the discrete case is employed,
since it is a very natural and canonical distance to optimize (Peyré & Cuturi, 2020). The Wasserstein
distance between two discrete distributions α =

∑n
i=1 aiδxi and β =

∑m
j=1 bjδyj , considering the

Euclidian distance as metric, is defined as follows:

W(α, β) = min
Π∈U(α,β)

n∑
i=1

m∑
j=1

∥xi − yj∥Πi,j (7)

where U(α, β) is the set of joint probability distributions with marginals α and β such that
U(α, β) = {Π ∈ Rn×m

+ | Π1m = a and Π⊤1n = b} and Π is the transport plan that
enables the movement from α to β.

Consider α as the discrete distribution defined as the image by σ◦MLPbbox of the samples generated
by the GMM, and β as the target discrete distribution of bounding boxes of FPs in DC. In order to
transport α toward β while avoiding the centres of mass, it is necessary to sample the same number
of points in α as in β (Peyré & Cuturi, 2020), as done by Arjovsky et al. (2017).

Let Z ∼ GMM
(
{πi, µi,Σi}Ki=1

)
be a random variable in Z that follows the distribution of a

mixture of K Gaussians. Let N be the number of samples of our target distribution and m the
number of points of our generated distribution. Now let U ∼ U({1, .., N}) be a random variable
that follows a uniform distribution in {1, .., N}. Let z1, ..., zm and u1, ..., um be m samples from Z
and U respectively. The loss to optimise is the following:

Lbbox-dist =W

(
1

m

m∑
i=1

δσ◦MLPbbox(zi),
1

m

m∑
i=1

δyFP
ui

)
(8)

where {yFP
i }Ni=1 is the set of bounding boxes of FPs in DC.

Thirdly, to ensure training stability by selecting target TN embeddings close to FP ones, we
initialize the GMM according to the initial latent distribution of FPs in DC using the Expectation-
Maximization (EM) algorithm (Dempster et al., 2018).

In summary, the loss that contributes to training the GMM within the total autoencoder loss is:

LGMM = Lbbox-dist + LTN (9)

Weight reparameterization trick In order to minimise the aforementioned loss with respect to
the parameters of the GMM ({πi, µi,Σi}Ki=1), gradient descent and classic backpropagation are em-
ployed. Nevertheless, it is not possible to perform backpropagation through a sample derived from a
random variable X. Kingma & Welling (2022) proposed a reparameterization trick to sample from
a normal distribution. However, to sample from a GMM, it is first necessary to sample from a cate-
gorical distribution to select which Gaussian should be sampled. This is a known issue that Graves
(2016) tackles for all continuous multivariate distributions with a differentiable density function by
computing explicitly the backpropagation over the weights. Nevertheless, we propose an alternative
method using conventional backpropagation that leverages the properties of Wasserstein distance,
which allows weighting of all data points within the histogram. Hence, we sample the same number
of points per Gaussian and then apply weighting within the histogram of the corresponding bound-
ing box distribution. More precisely, if we sample m points from the i-th Gaussian, each sample will
be weighted by a factor of πi

m within the histogram. The weight reparameterization trick is detailed
in the autoencoder training algorithm described in A.1 and the proof is provided in A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3.3 DECODER

The decoder is a function Φ : R4 → Z that takes the bounding box of a FP as input and outputs
the embedding of a target TN for that FP. A straightforward neural network is employed as the
decoder; further details regarding the network architecture can be found in A.4. The training of the
decoder is conducted by minimizing the following loss function:

Ldecoder (ybbox, z) = LMSE (Φ(ybbox), z) (10)

where z ∈ Z is a TN embedding generated by the GMM and ybbox = σ ◦MLPbbox(z). Since the
decoder’s parameters are optimized with fixed MLPs, the utilization of the decoder during the guide
step necessitates freezing MLPclass and MLPbbox.

4 EXPERIMENTAL SETUP

4.1 DATASET

For the experiments, we use the PASCAL VOC 2007 dataset that comprises 20 object classes,
including animals, vehicles, person and indoor categories of objects (Everingham et al.). In the
next sections, all datasets have the same support, only the annotations change. In a first dataset,
we intentionally misannotate all buses as cars, and in a second dataset, we misannotate all sofas as
chairs, given the notable similarities between these pairs of objects. This misannotation of buses
(resp. sofas) leads to the creation of the noisy dataset DNoisy, on which we train fNoisy. In contrast,
we train fTrue on the well-labeled dataset DTrue where buses (resp. sofas) are not annotated at all.

Additionally, two experimental cases are investigated: a single-class case that only considers the
confused-class objects (cars or chairs) and a multi-class case in which all classes are present. The
single-class case allows for a more detailed examination of the impact of the correction while main-
taining good performance on the confused class. The multi-class case also enables the assessment
of performance changes in other classes that are not directly affected by the correction.

4.2 METHODS TO COMPARE

We summarize all classes of experiments in Tab. 1. Some of the aforementioned methods allow
continuous fine-tuning whereas the others entail retraining from scratch. In particular, we train an
oracle model fOracle from scratch which identifies and classifies the FPs into a new dedicated class.
fTrue and fOracle serve as target models, while we benchmark our methods to classic continuous
fine-tuning.

Table 1: Models and methods of correction.

Corrected model Initial model Methods of correction Continous fine-tuning
fFine-tune

Noisy fNoisy Fine-tuning on the correct dataset DTrue ✓

fLoGF
Noisy (Ours) fNoisy Guiding in the logit space (LoGF) ✓

fLaGF
Noisy (Ours) fNoisy Guiding in the latent space Z (LaGF) ✓

fLoGF
True (Ours) fTrue Guiding in the logit space (LoGF) ✓

fLaGF
True (Ours) fTrue Guiding in the latent space Z (LaGF) ✓

fTrue - Training from scratch on the correct
dataset DTrue

✗

fOracle - Training from scratch with FP as a new
target class ✗

4.3 METRICS

To assess the performance of the model before and after the correction, we use mean Average
Precision (mAP). mAP averages precision over different recall thresholds for each class, and then
averages it across all classes. mAP is also averaged at various IoU thresholds (from 0.5 to 0.95

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

by steps of 0.05) to take into account the localization accuracy. In the single-class case, we also
compute precision and recall to assess the correction of FPs and the deterioration over TPs. We
choose the confidence threshold that maximizes the F1-score over the validation set. Precision and
recall are computed at a low IoU threshold (0.5) to avoid biases in localization and FN errors (Bolya
et al., 2020). In the multi-class case, we compute the Average Precision (AP) on the confused class
to assess the effectiveness of the correction of the FPs, and mAP on the other classes to evaluate the
incidental impact of our methods on these classes.

5 EXPERIMENTAL RESULTS

5.1 RESULTS

We use a DETR model with a ResNet-50 backbone, trained end-to-end on MS-COCO 2017 (Lin
et al., 2015) as a base model. We present the results in the single-class case in Tab. 2 and Tab. 3, and
the results in the multi-class case in Tab. 4. In all cases, five runs were conducted for each model,
except for the model to correct.

i) Correction of fNoisy In both single-class and multi-class cases, our correction frameworks
demonstrate superior performance in mAP compared to the standard continuous fine-tuning method,
highlighting the importance of FP guidance in the first step. The classic continuous fine-tuning
method can, in fact, be viewed as a version of our correction framework without the guide step. The
high improvement in precision in the single-class case with our correction frameworks (∼ +13 and
∼ +18) compared to the improvement with the classic continuous fine-tuning method (∼ +2 and
∼ +5) proves the efficiency of the suppression of FPs using the guidance framework. Therefore,
the guide step can be seen as a powerful correction step. The evolution of recall across the different
methods indicates that LoGF excessively increases FNs, unlike the continuous fine-tuning method
and LaGF. In addition to demonstrating the superiority of guidance methods over continuous fine-
tuning in terms of error correction, the multi-class case shows that none of the methods (including
guidance-based approaches) interfere with the detection of objects from other classes. Furthermore,
LaGF consistently outperforming the target models fTrue and fOracle in terms of mAP, proving more
stable than the other correction methods.

ii) Correction of fTrue Likewise, LaGF consistently improves the initial model fTrue, enhancing
its overall performance. In contrast, LoGF reduces the performance of fTrue in Tab. 2, indicating
that LoGF is less reliable than LaGF. An inspection of the precision and recall values indicates that
the overall improvements stem from the correction of annotated FPs.

Table 2: Results in the single-class case: bus and car.

mAP Precision Recall
mean std mean std mean std

fTrue 64.46 1.07 87.65 1.89 84.14 1.83
fOracle 63.88 1.30 86.39 2.82 85.93 2.70
fNoisy

1 61.39 – 75.62 – 85.14 –
fLoGF

Noisy 65.18 ↑ 0.22 88.46 ↑ 1.99 82.18 ↓ 2.28
fLaGF

Noisy 64.68 ↑ 0.38 88.17 ↑ 1.15 83.31 ↓ 1.16
fFine-tune

Noisy 63.31 ↑ 0.61 77.70 ↑ 0.63 84.94 ↓ 0.95
fTrue

12 65.08 – 85.73 – 86.18 –
fLoGF

True 64.86 ↓ 0.48 86.29 ↑ 0.56 85.04 ↓ 0.75
fLaGF

True 65.53 ↑ 0.32 86.50 ↑ 0.48 85.71 ↓ 0.75

5.2 FEW-SHOT

To clearly observe the evolution of performance with respect to the size of the training set, we
conduct few-shot experiments in the single-class case using the bus-car dataset, starting from fnoisy.

1This serves as the initial model to correct.
2Chosen randomly among the 5 runs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Results in the single-class case: sofa and chair.

mAP Precision Recall
mean std mean std mean std

fTrue 37.38 1.17 72.15 4.07 62.84 3.68
fOracle 35.51 1.64 70.22 3.57 59.67 3.97
fNoisy

1 27.89 – 56.77 – 59.53 –
fLoGF

Noisy 37.10 ↑ 1.50 74.16 ↑ 0.96 55.44 ↓ 2.54
fLaGF

Noisy 38.62 ↑ 0.33 75.16 ↑ 1.93 60.09 ↑ 1.93
fFine-tune

Noisy 31.90 ↑ 2.89 61.63 ↑ 4.61 56.90 ↓ 4.75
fTrue

12 39.22 – 72.38 – 64.26 –
fLoGF

True 39.64 ↑ 0.20 75.73 ↑ 1.99 60.74 ↓ 1.72
fLaGF

True 39.31 ↑ 0.54 75.79 ↑ 2.37 60.48 ↓ 1.90

Table 4: Results in the multi-class case: bus and car (left), sofa and chair (right).

AP confused class mAP other classes
mean std mean std

fTrue 62.40 1.17 54.17 0.43
fOracle 63.26 0.76 54.60 0.45
fNoisy

1 57.45 – 55.10 –
fLoGF

Noisy 61.34 ↑ 0.71 55.12 ↑ 0.18
fLaGF

Noisy 63.30 ↑ 0.52 54.88 ↓ 0.17
fFine-tune

Noisy 59.36 ↑ 1.63 54.46 ↓ 0.22
fTrue

12 61.38 – 53.45 –
fLoGF

True 63.14 ↑ 0.22 55.06 ↑ 0.19
fLaGF

True 63.37 ↑ 0.22 55.11 ↑ 0.30

AP confused class mAP other classes
mean std mean std

fTrue 35.97 0.60 55.60 0.44
fOracle 35.87 1.57 55.02 0.79
fNoisy

1 29.28 – 55.53 –
fLoGF

Noisy 35.38 ↑ 0.78 55.26 ↓ 0.41
fLaGF

Noisy 37.15 ↑ 0.42 55.84 ↑ 0.32
fFine-tune

Noisy 33.78 ↑ 1.68 55.03 ↓ 0.26
fTrue

12 35.36 – 56.01 –
fLoGF

True 35.51 ↑ 0.29 56.55 ↑ 0.16
fLaGF

True 35.63 ↑ 0.26 56.57 ↑ 0.21

The results are presented in Fig. 3. We do not observe a significant decrease in the performance of
any particular model: They all appear stable, with a slight preference for LaGF and the continuous
fine-tuning method. Even with 10% of the training set, LaGF improves the mAP of the initial model
by about 2 points, reaching around 60% of the maximum improvement seen when using the entire
training set.

Figure 3: Results in a few-shot context.

6 ABLATION STUDIES

We conduct ablation studies to emphasize the significance of main design choices within LaGF,
which has proven to be the most consistent and effective correction approach. These studies are
carried out in a multi-class setting using the bus-car dataset, starting from fnoisy. The results are
presented in Tab. 5.

First, we analyze the impact of removing the repair step. Results show that the detection performance
is degraded across all classes, including the confused class. While the guide step improves the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

clustering of the confused class in Z , unfreezing the MLPs during the repair step appears essential
for effective correction.

Next, we examine the effect of removing the DETR loss during the guide step. Interestingly, this has
no significant impact on detecting objects from other classes, but it leads to a sharp decline in AP
for the confused class. This can be attributed to the fact that using the DETR loss helps preserve the
model’s performance across other classes during the guide step, preventing drastic changes during
the repair step that could otherwise undermine the corrections made during the guide step.

Table 5: Ablation studies using the latent guidance framework in the multi-class case: bus and car.

Description AP confused class mAP other classes
mean std mean std

– Initial model to correct fNoisy 57.45 – 55.10 –
– Reference model fLaGF

Noisy 63.30 0.52 54.88 0.17
1 Remove the repair step 61.35 0.70 52.65 0.26
2 LGuide = LCorrect 61.11 0.40 55.03 0.24

7 CONCLUSION

We introduced two novel frameworks for correcting recurrent FP classification errors in object
detection. These frameworks focus on guiding FPs toward TNs in either the latent space or the
logit space. Identifying suitable TNs in the latent space proved to be a challenging task, which we
addressed by using an autoencoder architecture that incorporates a learnable GMM and a straight-
forward decoder. By applying these correction mechanisms, we achieved significant and consistent
improvements in model performance, with the latent guidance framework being especially effective.

Future work could extend the latent guidance framework to other object detection architectures.
Additionally, an interesting direction would be to correct other recurring confusion errors, where
instances of one class are often misclassified as another. In such cases, the framework could guide
these FPs back to their true class, rather than to ∅. Moreover, we believe that this correction frame-
work can be extended to any classification task, beyond object detection.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017. URL https:
//arxiv.org/abs/1701.07875.

Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman. Tide: A general toolbox for identifying
object detection errors, 2020. URL https://arxiv.org/abs/2008.08115.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers, 2020. URL https:
//arxiv.org/abs/2005.12872.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations, 2020. URL https://arxiv.org/abs/
2002.05709.

Bowen Cheng, Yunchao Wei, Rogerio Feris, Jinjun Xiong, Wen mei Hwu, Thomas Huang, and
Humphrey Shi. Decoupled classification refinement: Hard false positive suppression for object
detection, 2020. URL https://arxiv.org/abs/1810.04002.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pp.
886–893 vol. 1, 2005. doi: 10.1109/CVPR.2005.177.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data Via
the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 12 2018. ISSN 0035-9246. doi: 10.1111/j.2517-6161.1977.tb01600.x. URL https:
//doi.org/10.1111/j.2517-6161.1977.tb01600.x.

10

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/2008.08115
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1810.04002
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627–1645, 2010. doi: 10.1109/TPAMI.2009.167.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation, 2014. URL https://arxiv.org/abs/
1311.2524.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Alex Graves. Stochastic backpropagation through mixture density distributions, 2016. URL
https://arxiv.org/abs/1607.05690.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2021. URL https:
//arxiv.org/abs/2004.11362.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https:
//arxiv.org/abs/1312.6114.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020. URL https://arxiv.
org/abs/1803.00567.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection, 2016. URL https://arxiv.org/abs/1506.02640.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE, June 2015. doi: 10.1109/cvpr.2015.7298682. URL http://dx.doi.
org/10.1109/CVPR.2015.7298682.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objec-
tive. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

11

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1607.05690
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1506.02640
http://dx.doi.org/10.1109/CVPR.2015.7298682
http://dx.doi.org/10.1109/CVPR.2015.7298682
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
machine unlearning. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–10,
2024. ISSN 2162-2388. doi: 10.1109/tnnls.2023.3266233. URL http://dx.doi.org/10.
1109/TNNLS.2023.3266233.

Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhenchang Xing, Mark
Staples, and Xiwei Xu. Right to be forgotten in the era of large language models: Implications,
challenges, and solutions, 2024. URL https://arxiv.org/abs/2307.03941.

A APPENDIX

A.1 PSEUDO-CODE FOR AUTOENCODER TRAINING

We present the pseudo-code for autoencoder training that includes the weight reparameterization
trick in Alg. 4.

Algorithm 1 Autoencoder training

Input: Number of Gaussians K, Latent Samples
{
zFP
i

}N
i=1

and Bounding Box Samples{
ybox, FP
i

}N

i=1
of FP in DC, the number of samples to sample per Gaussian m.

Output: GMM parameters {πi, µi,Σi}Ki=1 optimized, and the parameters Θ of the Decoder ΦΘ

optimized.

1: LGMM ←−∞
2: Initialize {πi, µi,Σi}Ki=1 to optimize a GMM over

{
zFP
i

}N
i=1

thanks to EM algorithm
3: while LAutoencoder has not converged do
4: z ←− Empty Tensor
5: ybbox ←− Empty Tensor
6: yclass ←− Empty Tensor
7: for i=1 to K do
8: Sample m times from N (µi,Σi) with the reparameterization trick:

{
z
(i)
j

}
j=1,..,m

and

concatenate with z

9: Compute
{
y
(i)
j,bbox = σ ◦MLPbbox

(
z
(i)
j

)}
j=1,..,m

and concatenate with ybbox

10: Compute
{
y
(i)
j,class = MLPclass

(
z
(i)
j

)}
j=1,..,m

and concatenate with yclass

11: end for
12: Sample m×K times from

{
ybbox, FP
i

}N

i=1
:
{
ybbox, FP
τ(i)

}m×K

i=1

13: Compute LGMM =W
(∑K

i=1
πi

m

∑m
j=1 δy(i)

j,bbox

, 1
m×K

∑m×K
i=1 δybbox, FP

τ(i)

)
+ LCE (∅,yclass)

14: Compute LDecoder = LMSE (ΦΘ(ybbox), z)
15: Compute LAutoEncoder = LGMM + LDecoder
16: Gradient step over LAutoEncoder with respect to {πi, µi,Σi}Ki=1 and Θ
17: end while

Figure 4: Pseudo-code for autoencoder training.

12

http://dx.doi.org/10.1109/TNNLS.2023.3266233
http://dx.doi.org/10.1109/TNNLS.2023.3266233
https://arxiv.org/abs/2307.03941

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THE WEIGHT REPARAMETERIZATION TRICK

The weight reparameterization trick is based on the law of total probability. Indeed, let Z ∼
GMM

(
{πi, µi,Σi}Ki=1

)
and Y = f(Z) where f should be σ ◦MLPbbox or MLPclass. We have

P (Y = y) = P (f(Z) = y) (11)

=

K∑
i=1

P (f(Z) = y|Z ∼ N (µi,Σi))P (Z ∼ N (µi,Σi)) (12)

=

K∑
i=1

πiP (f(Z) = y|Z ∼ N (µi,Σi)) (13)

Therefore, if we sample m times from each K Gaussians {z(i)j }
1≤i≤K
1≤j≤m, the discrete distribution α

in the final space (of logits or bounding boxes) is:

α =

K∑
i=1

m∑
j=1

πi

m
δ
f
(
z
(i)
j

) (14)

Since {πi}1≤i≤K appears in the discrete distribution and consequently in the expression of the
Wasserstein loss, we can now backpropagate this loss over the weights {πi}1≤i≤K .

A.3 DESIGN CHOICES FOR THE AUTOENCODER

We chose to train the GMM and the decoder simultaneously using an autoencoder, though this
approach might seem suboptimal at first. Indeed, the GMM initially fails to generate suitable training
samples for the decoder, leading the latter to learn from inaccurate samples during the first epochs.
A potential alternative is to first train the GMM separately, followed by training the decoder with
the GMM frozen. This method is expected to improve stability and accelerate the overall process.
Nevertheless, as demonstrated in Fig. 5, this approach does not work as intended. While the GMM
performs well and generates target TNs for similar FPs in DC, the decoder struggles to retrieve
the embedding. The inability to correctly predict the position of the embedding of a TN given a
bounding box is due to the average variance of Normal distributions that compose the GMM (which
can be defined as 1

K

∑K
i=1

(∑dim(Z)
j=1 [Σi]j,j

)
) which produces suitable samples but spans a large

region in Z . Consequently, the decoder faces an overly difficult task, as two samples generated by
the GMM could be far apart in Z despite having nearly identical bounding boxes. Interestingly,
when the GMM is initialized with the current latent distribution of FPs inDC, it shows low variance,
indicating the feasibility of achieving a more focused distribution.

Thus, training the GMM and decoder together within an end-to-end autoencoder introduces a form
of regularization on the GMM’s variance. As shown in Fig. 6 the GMM is initially optimized
with high variance, followed by the decoder’s optimization, which adapts to the GMM’s decreasing
variance. This process can be interpreted as: after identifying large regions containing target TNs,
the GMM then narrows down its focus within those regions.

A.4 IMPLEMENTATION DETAILS

DETR We present the hyperparameters that have been employed during the training and the cor-
rection of DETR model in 6. Unless otherwise noted, the hyperparameters remain consistent during
both training and correction phases. During the guide step, the model is exclusively fed with images
that contain instances of the confused class. The training set is split into two subsets, reserving 30%
of the data as a validation set.

Autoencoder To parameterize the GMM, certain established techniques must be employed. First,
we optimize the unnormalized weights, ensuring the normalization condition

∑K
i=1 πi = 1 by ap-

plying the Softmax function. A covariance matrix must be a symmetric positive definite matrix, and

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Evolution of the losses and the average variance of the Gaussians when we train separately
the GMM and then the decoder.

Figure 6: Evolution of the losses and the average variance of the Gaussians when we train the GMM
and the decoder simultaneously.

since all symmetric positive matrices possess a square root, we train the square root matrix and sub-
sequently derive the covariance matrix by multiplying it by its transpose. To maintain the positive
definiteness, we add 1.10−4 to all diagonal elements. The architecture of the decoder is detailed in
Tab. 7

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters during the training and the correction.

Hyperparameter Value
Batch size 4

Gradient accumulation 8
Early stopping criterion

(training) If the validation loss does not decrease over 10 epochs

Optimizer (training) AdamW; lrbackbone = 1e− 5; lrrest = 1e− 4;
weight decay = 1e− 4

Weight decay 1e− 4

Learning step scheduler Divide by 2 if the validation loss does not decrease over 5
epochs

Guidance stopping criterion If the validation correction loss does not decrease over 5
epochs

Repair stopping criterion If the validation loss does not decrease over 5 epochs

Optimizer (correction) AdamW; lrbackbone = 1e− 6; lrrest = 1e− 5;
weight decay = 1e− 4

Temperature T in LGuide in
LaGF T = 1

Table 7: Architecture of the decoder.

Decoder

Input ∈ R4

Linear(4, 256)

Linear(256, 256)

Linear(256, 256)

Output ∈ R256

15

	Introduction
	Related Work
	Method
	Core concept
	LoGF: Logit Guidance Framework
	LaGF: Latent Guidance Framework
	Autoencoder
	Gaussian Mixture Model
	Decoder

	Experimental Setup
	Dataset
	Methods to Compare
	Metrics

	Experimental Results
	Results
	Few-Shot

	Ablation Studies
	Conclusion
	Appendix
	Pseudo-code for autoencoder training
	Proof of the weight reparameterization trick
	Design choices for the autoencoder
	Implementation Details

