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ABSTRACT

Recent advances in sequence modeling have highlighted Mamba as a state space
architecture offering efficient long-range dependency modeling and providing a
viable alternative to Transformers. Building upon this, Mamba-2 introduces the
Structured State Space Duality (SSD), which integrates recurrent and attention
modes to achieve efficiency and scalability. However, this architectural expansion
substantially increases memory and latency overhead, underscoring the need for
efficient compression strategies tailored to SSD. In this work, we present SSDi8,
the first post-training quantization framework specifically designed for SSD to
maintain a persistent INT8 path. SSDi8 introduces a reformulation that decouples
element-wise multiplications from matrix multiplications, enabling reuse of quan-
tized activations across modules. Moreover, SSDi8 adaptively quantizes channel-
varying activations at cost-effective points, further reducing latency. On the ac-
curacy side, SSDi8 explicitly leverages the intrinsic dimensional decomposition
of SSD, exploiting distinct outlier distributions across axes, and incorporates an
error correction term based on per-channel error statistics. Comprehensive exper-
iments demonstrate that SSDi8 achieves accuracy comparable to FP16 while de-
livering up to 1.4× speedup in W4A8 and W8A8 settings. We further validate its
robustness in resource-constrained environments by deploying it on the Orin Nano
device.

1 INTRODUCTION

Mamba (Gu & Dao, 2024) is a recent state space sequence model that builds upon the Structured
State Space Model (SSM) (Gu et al., 2020; 2022) to provide efficient long-range dependency model-
ing with constant computation and memory usage. While global attention in Transformers (Vaswani
et al., 2017) can enhance performance as model size increases, it also incurs quadratic growth in
computation and memory with respect to sequence length, which poses substantial challenges for
large-scale training and deployment. In contrast, Mamba achieves performance comparable to or ex-
ceeding state-of-the-art architectures across billion-scale language models, positioning it as a strong
candidate for next-generation sequence modeling.

Despite its algorithmic efficiency, Mamba faces practical limitations: its specialized state space re-
currence is difficult to parallelize on modern accelerators, making it less hardware-friendly than
optimized Transformer kernels, and it shows relatively diminishing efficiency when scaled to larger
parameter sizes. To overcome these issues, Mamba-2 (Dao & Gu, 2024) introduces the Structured
State Space Duality (SSD), a hybrid design that integrates recurrent mode with attention mode.
Mamba-2 adds a head dimension analogous to multi-head attention to enhance scalability and em-
ploys a dual representation that improves general matrix multiplication (GEMM) utilization, yield-
ing higher throughput on GPUs and TPUs. While the original Mamba exhibited limited efficiency
beyond 2.7B parameters, Mamba-2 scales effectively to over 8B parameters and achieves competi-
tive performance across language, audio (Lee et al., 2025), vision (Shi et al., 2024), and multimodal
tasks (Huang et al., 2024). Yet this expansion also intensifies memory and latency overhead, high-
lighting the need for efficient compression and optimization.

The recurrent mode of SSD is computationally efficient but system-inefficient, while the attention
mode is relatively computationally demanding. During its operation, SSD repeatedly invokes acti-
vations across modules and performs sequential updates. In this process, activations reuse across
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modules necessitates frequent DRAM accesses, and the intrinsically higher latency of DRAM intro-
duces considerable overhead.

Table 1: Accuracy under major layer
quantization of Mamba-2. Significant
degradation arises when SSD is quan-
tized per-tensor.

Model Bitwidth Quantized
Layer(s) ACC

2.7B

FP16 – 63.8%

W4A8
+ In Proj 63.6%

+ SSD 58.4%
+ Out Proj 54.6%

As shown in Tab. 1, directly applying quantization methods
originally designed for Transformers—such as Hadamard
rotation or GPTQ—to SSD layers leads to substantial ac-
curacy degradation. This stems from the distinctive com-
putational organization of SSD. First, the model dimen-
sion is partitioned into the number of heads and the per-
head dimension, each following markedly different statis-
tical distributions; failure to account for this property re-
sults in significant performance loss. Second, SSD contains
dimension-varying activations whose shapes differ between
memory storage and computation, and these activations are
repeatedly invoked across multiple modules. Third, element-wise multiplications are extensively in-
tertwined with matrix multiplications, further complicating quantization. In this work, we conduct
the first comprehensive analysis of SSD to maintain a persistent INT8 path , providing observations
that reveal the internal factors contributing to its quantization sensitivity.

Accordingly, we propose SSDi8, an accurate and efficient post-training quantization framework
that reduces both inference latency and performance degradation within SSD. For latency reduc-
tion, SSDi8 quantizes channel-variant and recurrent activations at optimal points and reuses them,
ensuring an uninterrupted INT8 execution path from input to output. Furthermore, we address
element-wise operations that disrupt this path by introducing a sparse-aware reformulation, with the
guarantee formally established through mathematical analysis. This design keeps the execution in
INT8 while substantially alleviating memory bottlenecks and computational overhead. For accuracy,
SSDi8 leverages the intrinsic dimensional structure and properties of SSD. Specifically, external di-
mensions entering SSD are decomposed into two axes, each exhibiting distinct outlier distributions,
which are explicitly exploited to reduce quantization error. Furthermore, we introduce an error cor-
rection term based on per-channel error means, yielding consistent gains in accuracy. Through these
mechanisms, SSDi8 achieves a balanced optimization of both efficiency and performance.

SSDi8 achieves accuracy comparable to FP16 while enabling up to 1.4× inference speedup under
both W4A8 and W8A8 configurations, while excluding W4A4 due to hardware-induced slowdowns
as discussed in Lin et al. Notably, in the context of SSD—where error sensitivity often causes se-
vere degradation—our method incurs negligible accuracy loss while delivering substantial latency
reductions, with single-inference speedups reaching 1.5×. To the best of our knowledge, this repre-
sents the first successful application of persistenct INT8 path within the Mamba-2 SSD architecture.
Furthermore, we demonstrate that SSDi8 maintains efficiency in resource-constrained environments
through deployment on the Orin Nano device.

2 RELATED WORKS

Mamba Architecture. Mamba is a sequence modeling architecture built on SSMs, which have been
explored as an alternative to Transformers in order to circumvent the quadratic complexity of self-
attention (Gu & Dao, 2024). Unlike conventional linear SSMs (Gu et al., 2022; Smith et al., 2023),
Mamba incorporates a selective state space mechanism that adaptively gates input-dependent state
transitions and output projections, enabling more expressive sequence modeling. Mamba-2 extends
this framework by introducing the structured SSDs (Dao & Gu, 2024), which establishes a formal
equivalence between SSMs and linear attention and enables optimized GEMM-based implementa-
tions. This design substantially improves hardware utilization on modern accelerators. Furthermore,
Mamba-2 allowing the state dimension—previously constrained to N = 16 in Mamba-1—to scale
stably to N = 64–128 and beyond. In addition, Mamba-2 integrates a multi-head structure anal-
ogous to multi-head attention, further enhancing scalability. These advancements make large-scale
parameter expansion feasible, but they also intensify memory and latency overhead, motivating the
need for compression and deployment strategies.

Quantization for Mamba Models. Recently, several studies have begun to explore quantization
for the Mamba models (Tang et al., 2024; Yu et al., 2025). MambaQuant (Xu et al., 2025) and
Quamba1 (Chiang et al., 2025b) introduced Post-Training Quantization (PTQ) methods targeting
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Figure 1: (a) Mamba-2 block architecture. (b) SSD pipeline in SSDi8. SSDi8 enables the persistent
INT8 representation path through reformulation and quantized activation reuse, while mitigating
performance degradation via channel-aware quantization and mean correction.

the original Mamba-1 architecture, but their approaches are not directly applicable to SSD-based
Mamba-2. Quamba2 (Chiang et al., 2025a) extended quantization to Mamba-2, applying W4A8
and W8A8 settings that include SSD blocks. However, its method is limited to the inputs of SSD
layers and does not adequately address precision issues within internal SSD computations, leaving
the INT8 execution path incomplete and constraining latency optimization.

3 BACKGROUND

3.1 QUANTIZATION

Quantization discretizes continuous values into a finite set of integer levels. In particular, uniform
quantization divides the value range into equal intervals, mapping each element of a tensor X to its
nearest quantized level as follows:

X̃ = round

(
X

αX

)
, αX =

max(|X|)
2 b−1 − 1

, (1)

where X̃ is the quantized tensor, αX is the scaling factor that defines the step size based on the
maximum absolute value of X , and b is the bit-width.

3.2 MAMBA-1

Mamba is an architecture built upon State Space Models (SSMs), composed solely of activation
operations, where a hidden state variable is employed to efficiently compress and propagate mem-
ory (Gu & Dao, 2024). The fundamental state update and output equations are defined as follows:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t). (2)

Eq. 2 builds on the theoretical foundations of HiPPO (Gu et al., 2020) and S4 (Gu et al., 2022),
which substantially improve both performance and efficiency. However, since SSMs are defined in
continuous time, applying them to discrete inputs requires discretization. In practice, Zero-Order
Hold is used to preserve previous values, and a time-step activation ∆ is introduced to discretize
matrices A and B. These operations are performed independently along the channel dimension of
the input x, so that each channel independently follows its own SSM formulation:

SB(x) = xWB , SC(x) = xWC , S∆(x) = xW∆. (3)

Through input-dependent activations, Mamba highlights important information while suppressing
noise, improving long-range dependency modeling.

3
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4 METHODOLOGY

The overall workflow of SSDi8 is illustrated in Fig. 1. A substantial portion of SSD modules is
executed along the persistent INT8 representation path, reusing quantized activations and applying
a sparse-aware reformulation to element-wise operations that disrupt this path. The output tensor
dAcs from ChunkCumsum is negligible in size compared to other tensors, yet its recovery after
quantization is challenging due to the element-wise multiplication; hence, it is retained in FP16.
In the same vein, ChunkScan2 remains in FP16 for analogous reasons. These choices are further
elaborated within this section.

4.1 PRELIMINARY STUDY: MAMBA-2’S STRUCTURED STATE SPACE DUALITY

The Structured State Space Duality (SSD) in Mamba-2 consists solely of activation operations and
unifies the recurrent and attention modes, thereby reducing computational cost and improving effi-
ciency over the recurrence-dominated operations of conventional SSMs. Concretely, the SSM com-
putation can be expressed as a lower-triangular structured matrix: the diagonal block, which directly
influences the output, is computed via the attention formulation using matrix multiplications, while
the off-diagonal blocks, which require recurrence, are computed by leveraging the semiseparable
property, which admits low-rank factorizations.

A key distinction from Mamba is that Mamba-2 introduces a number of heads H, analogous to
the multi-head structure in Transformers. As shown in Fig. 2, the value of H is formally defined by
D = H⊙P, where D denotes the model dimension and P the head dimension. Notably, H and P remain
independent axes, with H chosen to be much larger than P. For efficiency, the input-dependent B and
C are parameterized with an auxiliary dimension G, and broadcast to H when required.

Formally, the input activations of SSD and its dimension before discretization are given as follows:

A ∈ R(H), ∆ ∈ R(B,L,H), X ∈ R(B,L,H,P),

B ∈ R(B,L,G,N), C ∈ R(B,L,G,N), Y ∈ R(B,L,H,P),

where B denotes the batch size, L the sequence length, H the number of heads, G the number of
groups, P the head dimension, N the state dimension, and Y the final output of SSD. To shorten the
effective recurrent path and enable parallelism, the sequence is partitioned as L = c ⊙ l, where c
is the number of chunks and l is the chunk size. The computation then proceeds through five mod-
ules—ChunkCumsum, ChunkState, StatePassing, ChunkBMM, and ChunkScan—which
together yield the SSD output Y. Additional details are provided in Appendix B .

ChunkCumsum (Input (∆, A) 7→ Output (∆, dAcs)). ChunkCumsum applies a softplus trans-
formation to ∆, a time-step dependent scaling factor introduced for discretization, and discretizes
the decay activation A that governs recurrent dynamics. It then prepares the cumulative decay term
dAcs, which is subsequently consumed by downstream modules for state updates.

ChunkState (Input (dAcs,∆, B, X) 7→ Output (State)). The ChunkState module dis-
cretizes the projection matrix B, applies the decay factor, and multiplies it with the input X to gener-
ate the hidden state. The cumulative decay is computed as Decaystate = exp

(
dAfinal

cs −dAcs

)
. For

simplicity, we denote ∆ ⊙ Decaystate by LUTstate where ⊙ denotes element-wise multiplication,
in the following modules. The resulting state update is formulated as

State = X ×
(
B ⊙ LUTstate

)
(4)

StatePassing (Input (State, dAcs) 7→Output (State)). This module integrates the states com-
puted from independent chunks into the actual recurrent state through decay. The decay term is given
by

Decaypass = exp
(
dAfinal

cs ), (5)
and the recurrent update is performed over the chunk as

Statec ∈ Statei+1 ← Statei+1 + Decayi+1 ⊙ Statei, i = 0, 1, . . . , c− 2. (6)

ChunkBMM (Input (B,C) 7→ Output (CB)). ChunkBMM performs a batched matrix multiplica-
tion between C and B. This operation extracts the diagonal blocks of the product, yielding CB,
which is used in the output computation within SSD.

4
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Activation X outside SSD Activation X inside SSD
Separable patterns

appear along H-dim

Figure 2: Visualization of activation X in the 16th block of Mamba-2 8B before and after the SSD in-
put transformation. The pre-SSD dimension (B,L,D) exhibits no clear token-wise pattern, whereas
the transformed dimension (B,L,H,P) within SSD reveals distinct patterns along the H-dim.

ChunkScan1 (Input (State, C, dAcs,∆) 7→ Output (outoff-diag)). ChunkScan1 computes the
off-diagonal interaction term by performing a matrix multiplication between the recurrent state State
and the projection matrix C. The decay contribution is modeled as Decayscan1 = exp(dAcs), and
combined with ∆ to form LUTscan1 (= ∆⊙ Decayscan1). The final off-diagonal output is obtained
as outoff-diag =

(
State× C

)
⊙ LUTscan1.

ChunkScan2 (Input (X,CB, dAcs,∆) 7→ Output (outdiag)). ChunkScan2 computes the diag-
onal contribution by projecting the input representation X with the combined activation CB, while
modulating the result using the decay and discretization terms (dAcs,∆). This module complements
the off-diagonal pathway from ChunkScan1, and together they form the complete output of SSD:
Y = outoff-diag + outdiag.

4.2 SSDI8

Quantization of B,C. Within SSDi8, the handling of the channel-dependent activations B and C
constitutes one of the strategies, since they are repeatedly invoked across three SSD submodules.
Rather than quantizing them separately within each module, SSDi8 quantizes once and reuses the
resulting INT8 tensors, thereby reducing memory traffic and enabling a consistent low-precision
execution path. A challenge arises because B and C are defined along the group dimension G but
are broadcast to the head dimension H during computation, with H typically an order of magnitude
larger than G. Naively applying quantization after broadcasting induces significant overhead (up to
4×), which SSDi8 addresses by optimizing the placement of quantization operations.

To minimize redundant overhead, SSDi8 performs an early quantization of the channel-varying ac-
tivations B and C once along the group axis G at the beginning of each SSD layer. The resulting
INT8 tensors are then reused across all downstream modules, maintaining a consistent low-bitwidth
representation without repeated quantization. Since |G|≪ |H|, quantization along G is considerably
more efficient, adding only about 3% to the total SSD latency. Moreover, as shown in Figs. 2 and 8,
the head dimension H exhibits highly heterogeneous value distributions across heads—up to 5×
variation—making direct per-head quantization unstable, Similarly, the group dimension G shows
distinct characteristics and must be considered in quantization. While the state dimension N exhibits
relatively consistent statistics, it directly participates in subsequent matrix multiplications, where
quantization errors cannot be restored. Thus, it is excluded from the quantization axes.

Sparse-aware Reformulation. As defined in Eq. 4, the ChunkState computation applies B ⊙
LUTstate prior to the matrix multiplication with X ∈ R(B,H,c,l,P). Here, LUTstate ∈ R(B,H,c,l) is
multiplied element-wise with B ∈ R(B,H,c,l,N) to impose a decay pattern across the steps within
each B, H, and c. The resulting B ⊙ LUTstate is then multiplied with X along the l-axis to project
the l sequence steps into N. The operations are executed independently and in parallel across B,
H, and c. However, this ordering introduces three critical limitations: (i) although B is quantized
to INT8, the presence of LUTstate in FP16 enforces a floating-point execution path, undermining
the efficiency of INT8 GEMM; (ii) because LUTstate exhibits exponential variation along the chunk
axis l, any quantization scheme other than per-l quantization introduces substantial error, while
even per-l quantization is infeasible due to quantization error accumulation after the l-axis matrix
multiplication; (iii) attempting Q(B ⊙ LUTstate) requires quantization after the G→ H expansion,
which incurs significant overhead. To enable a fully INT8 execution path, SSDi8 reformulates the
computation as

StateINT32 = Q(Xscaled)×Q(B), Xscaled = LUTstate ⊙X, StateINT32 ∈ R(B,H,c,P,N), (7)

5
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Figure 3: (a) Distribution plots of head-wise X and LUTstate in the 27th block of the ChunkState
module, and their element-wise product after reformulation Xscaled. The channel-wise (P-dim) dis-
tribution of Xscaled is highly sparse. (b) Head-wise distribution plots of State.

where Q(·) denotes quantization. This reformulation is valid because LUTstate applies its multi-
plication along the l-dimension shared by both X and B, while all other dimensions operate in-
dependently. This property ensures that moving the scaling operation from B to X preserves the
computational result, and quantizing the resulting Xscaled mitigates the limitations. In this case,
Q(Xscaled) is quantized along the (P,H) axes because LUTstate is broadcast along the P axis while
X preserves consistency across P and per-(H) heterogeneity as shown in Fig. 3(a) and Fig. 2. Quan-
tization simulations show that Xscaled exhibits pronounced outliers along the channel axis, which
makes accurate quantization challenging. However, the actual quantization error of Q(Xscaled) does
not significantly increase despite the presence of such outliers. From a distributional perspective,
this robustness can be attributed to the high sparsity of Xscaled as shown in Fig. 3 (a), which leads
to reduced quantization errors overall. To formally validate this property, we prove in Appendix A
that, under mild conditions, the quantization error of Xscaled is smaller than that of Q(X)⊙LUTstate.
This sparsity-aware proof justifies the proposed reformulation, and empirical results further confirm
that the resulting performance degradation remains negligible.

Persistent INT8 Representation of Recurrent States. StateINT32 obtained from the proposed re-
formulation is accumulated in INT32. Since INT32 consumes twice the memory of FP16, SSDi8
reduces memory traffic by directly converting INT32 to INT8 in registers with quantization scales:

StateINT8 = Round

(
StateINT32 ⊙

sxsbqmax

ss

)
, qmax = 2b−1 − 1, (8)

where sx, sb, ss denote the quantization scales of X , B, and State, respectively. The resulting INT8
tensor is then stored in DRAM, avoiding intermediate FP16 representations and thereby reducing
memory bandwidth usage. State also exhibits variation across heads H. As shown in Fig. 3 (b),
consistency is observed along both the P and N, since N participates in subsequent multiplications
within ChunkScan1, quantization along N is not adopted. StateINT8 is thus quantized per-(H,P).

In the StatePassing module, independently computed chunkwise states are recurrently accu-
mulated with decay to form the actual state, as shown in Eq. 6. Since State is already in INT8,
maintaining the INT8 execution path requires quantizing the FP16 Decay. The computation pro-
ceeds independently along B,H and recurrently along c, where each Decay is a scalar. This enables
element-wise fixed-point quantization of Decay. Formally,

Q(Statei+1) ← Q(Statei+1) +
Q(Decayi+1)

S
⊙Q(Statei), i = 0, 1, . . . , c− 2, (9)

where S is a gating constant chosen as 2k to enable bit-shift operations for minimal latency (with
k = 7 in experiments). Per-H,P quantization ensures that all StateINT8 across c share a common
scale. This allows recurrent updates to be performed by simple bit-shift operations. As a result,
StateINT8 can be persisted through ChunkScan1, enabling INT8 Tensor Core multiplications with
CINT8. Here, Decay ∈ R(B,H,c,l) aligns with the output outoff-diag ∈ R(B,H,c,l,P), so element-wise
multiplication is applied directly after the matrix multiplication.

6
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Table 2: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with three quantization methods (Quamba,
Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model Size Methods Bitwidth LA HS PIQA Arc-E Arc-C WG Avg.

Mamba-2

1.3B

- FP16 65.6% 59.9% 73.3% 64.1% 33.3% 60.8% 59.5%

Quamba W8A8 49.8% 58.5% 71.2% 61.9% 32.1% 58.1% 55.2%

Quamba2 W8A8 62.0% 59.2% 72.5% 63.4% 32.7% 60.0% 58.3%
W4A8 61.0% 58.8% 72.4% 62.7% 32.6% 59.1% 57.7%

SSDi8 (Ours) W8A8 64.7% 59.7% 72.7% 64.0% 32.8% 60.9% 59.1%
W4A8 63.6% 59.2% 72.7% 63.5% 33.5% 60.4% 58.8%

2.7B

- FP16 69.5% 66.6% 76.4% 69.5% 36.4% 64.2% 63.8%

Quamba W8A8 52.4% 60.4% 71.6% 62.9% 33.7% 58.0% 56.5%

Quamba2 W8A8 66.1% 65.5% 74.4% 68.4% 37.1% 63.7% 62.5%
W4A8 65.6% 65.1% 74.7% 68.1% 36.1% 62.8% 62.1%

SSDi8 (Ours) W8A8 68.3% 66.2% 75.6% 69.0% 36.8% 63.4% 63.2%
W4A8 67.4% 65.3% 75.6% 68.9% 35.2% 63.5% 62.6%

8B

- FP16 70.9% 77.7% 79.7% 76.0% 48.0% 72.0% 70.7%

Quamba W8A8 54.0% 74.6% 77.1% 73.5% 44.2% 65.5% 64.8%

Quamba2 W8A8 69.8% 77.8% 79.1% 75.9% 46.9% 69.0% 69.8%
W4A8 68.8% 77.1% 79.1% 75.0% 46.0% 68.7% 69.1%

SSDi8 (Ours) W8A8 70.4% 77.2% 79.6% 75.5% 47.2% 71.2% 70.2%
W4A8 69.9% 76.5% 79.1% 75.4% 46.2% 70.6% 69.6%

Quantization on ChunkBMM and ChunkScan2. As shown in Fig. 1, the quantized activations
BINT8 and CINT8 are reused in the ChunkBMM module. Because both are defined on the group
dimension G, the multiplication proceeds without conversion to the head dimension H , producing
CBINT32. The tensor CB ∈ R(B,G,c,l,l) is larger than X , so its quantization yields substantial
memory savings. Similar to ChunkState, a single INT32 → INT8 step is applied to minimize
memory traffic. In ChunkScan2, (LUTScan2 ⊙ Q(CB)) × X involves X in FP16, enforcing a
floating-point path. Due to its shape, LUTScan2 is element-wise multiplied with CB, making post-
quantization recovery difficult and rendering reformulation infeasible due to a shape mismatch with
X . The dequantization scale of CB is fused into LUTScan2, reducing overhead while allowing partial
FP16 execution. Experiments demonstrate that this process alone yields substantial latency gains.

Leveraging the persistent INT8 representation of recurrent states together with the sparse-aware re-
formulation and reuse of activation, SSDi8 achieves up to 1.38× speedup overall, with gains reach-
ing 1.6× in the ChunkScan module compared to FP16 execution.

Mean Correction for SSD Quantization Error. To further mitigate the accumulation of quanti-
zation errors across SSD layers, we introduce a per-channel mean correction strategy. Given full-
precision and quantized results XW = Y ∈ RN,P and X ′W ′ = Y ′ ∈ RN,P , the problem of
minimizing the error between Y and Y ′ is convex, and the optimal correction vector c⋆ can be
derived in closed form as the channel-wise mean of the quantization error:

Ec = ∥Y − (Y ′ + c)∥2F =

P∑
p=1

N∑
i=1

(
(Y − Y ′)i,p − cp

)2
, c⋆p = 1

N

N∑
i=1

(Y − Y ′)i,p. (10)

To ensure accurate estimation, we adopt a layer-wise sequential update strategy, enabling subsequent
layers to reflect the applied corrections and, thereby, capture activation shifts induced by earlier
updates. For a detailed description of the sequential update algorithm, please refer to Algorithm B.
To minimize overhead, c is applied only to the output projection layer, whose dimensionality is
half that of the input projection layer and where quantization error is most pronounced. This design
achieves consistent accuracy gains while incurring only marginal latency overhead (≈ 1–2%).

5 EXPERIMENTS

Experimental Setup. We conduct PTQ experiments on Mamba-2 (Dao & Gu, 2024) models with
1.3B, 2.7B, and 8B parameters. Experiments are primarily conducted on NVIDIA A5000 GPUs.

7
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Figure 5: SSD latency of quantization methods on Mamba-2 2.7B: (a) varying batch (L = 2048), (b)
varying length (B = 32), and (c) module-wise latency (B = 32, L = 2048). PIR denotes Persistent
INT8 Representation. SSDi8 achieves up to 1.47× overall speedup and 1.77× in the State path.

We evaluate zero-shot performance on LAMBADA (Paperno et al., 2016), WinoGrande (Sakaguchi
et al., 2020), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), ARC-Easy, and ARC-
Challenge (Clark et al., 2018) benchmarks, and additionally assess language modeling capability
via WikiText2 perplexity. Results are compared against the FP16 baseline, Quamba (Chiang et al.,
2025b) and Quamba2 (Chiang et al., 2025a), and the HAD (HadMamba2) baseline, where HAD ap-
plies the Hadamard rotation to the Mamba-2 projection layers (Chiang et al., 2025a), GPTQ weight
quantization and RTN quantization of SSD inputs.

Quantization Setup. We use symmetric, static quantization on both W8A8 and W4A8 configu-
rations. For 4-bit weight quantization, we employ GPTQ (Frantar et al., 2023), combined with
Hadamard-transformed (Ashkboos et al., 2024) projection layers. To handle RMSNorm-induced
outliers, we migrate the γ parameter (Wei et al., 2022), and apply mean correction with a factor of
0.15 to prevent estimation overfitting.

5.1 EVALUATION OF ZERO-SHOT AND GENERALIZATION PERFORMANCE

Table 3: Wikitext2 perplexity with L = 2048.

Methods Bitwidth
Wikitext2 Perplexity (↓)

1.3B 2.7B 8B

- FP16 10.42 9.06 7.25

HAD W8A8 11.31 11.42 8.57
W4A8 11.63 11.85 8.79

Quamba2 W8A8 10.80 9.32 7.79
W4A8 11.08 9.54 7.94

SSDi8 (Ours) W8A8 10.63 9.22 7.49
W4A8 10.92 9.43 7.62

Tab. 2 reports zero-shot task performance
of Mamba-2 models (1.3B, 2.7B, 8B) un-
der FP16, Quamba, Quamba2, and our
SSDi8 quantization. Average accuracy is
computed over six benchmarks. Across
all bit-widths (W8A8, W4A8) and model
scales, SSDi8 consistently outperforms
Quamba2. For example, on the 2.7B
model with W4A8, SSDi8 improves over
Quamba2 (62.7% vs. 62.1%), and on the
8B model with W8A8, it achieves 70.2%
compared to 69.8%. These results underscore the robustness of SSDi8 across diverse configurations.
Full comparisons, including HadMamba-2 and Quamba2 with W4A16, are provided in Appendix E.

45.355

33.94232.392

66.107

62.589

87.702

Figure 4: Forward la-
tency of W8A8 (L =
2048) on 2.7B.

Perplexity Results. To assess linguistic fluency and generalization, we
report WikiText2 perplexity in Tab. 3. Across all model scales and bit-
widths, SSDi8 consistently achieves lower perplexity than Quamba2
while narrowing the gap to FP16. In particular, for the 8B model, SSDi8
yields reductions of 3.9% (7.49 vs. 7.79) under W8A8 and 4.0% (7.62
vs. 7.94) under W4A8. These results demonstrate that SSDi8 preserves
linguistic fluency and generalization under quantization.

5.2 LATENCY AND MODEL SIZE

In Fig. 5 (a) and (b), we compare SSDi8 with FP16 and Quamba2 on
NVIDIA A5000 (24GB) across varying batch sizes (B ≤ 32) and se-
quence lengths (L ≤ 2048). Latency is measured in milliseconds as the average of 100 runs after
warm-up. On Mamba-2 2.7B with B = 32, L = 2048, SSDi8 achieves a 1.47× speedup over FP16
and a 1.38× improvement over Quamba2. The benefit increases with larger batch sizes and longer
sequences, where greater chunk-level parallelism amplifies throughput, while short sequences (e.g.,
L = 256) may show higher FP16 efficiency due to lower computational intensity. Fig. 5 (c) reports

8
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module-level latency breakdown for 2.7B at B = 32, L = 2048. With persistent INT8 represen-
tation, ChunkScan achieves up to 1.77× speedup over FP16 and 1.50× over Quamba2, while
StatePassing yields 2.25× and 2.17× improvements, respectively. As demonstrated in Fig. 4,
similar gains are observed under W8A8, and results on Mamba-2 8B are provided in Appendix G.

Table 4: SSD latency (ms) of SSDi8 vs.
Quamba2 on Orin Nano 16G.

GPU Orin Nano 16G

Bitwidth W4A8 W8A8
Method Quamba2 SSDi8 Quamba2 SSDi8
L = 256 55.30 44.71 51.03 41.30
L = 512 76.10 68.00 70.95 60.49
L = 1024 134.40 127.51 139.10 114.36
L = 2048 262.90 240.54 249.29 217.69

To further assess deployability under resource-
constrained conditions, we evaluate SSDi8 on the
NVIDIA Orin Nano 16G, as shown in Tab. 4. Using
the Mamba-2 2.7B model, we measure SSD latency
across varying sequence lengths with a batch size
of 16, comparing W4A8 and W8A8 quantization
against Quamba2. Across all configurations, SSDi8
consistently outperforms Quamba2, demonstrating
its robustness beyond high-scale accelerators.

5.3 ABLATION STUDIES

Table 5: Ablation results for internal SSD quantization (Q(SSD)).

Bit-
width

ChunkState
Q(X)

Sparse
Reform.

Quant.
of B,C

Persistent
INT8

Quant. of
ChunkBMM Latency PPL

W4A8

– – – – – 8.63 9.34
✓ 8.58 9.35
✓ ✓ 8.05 9.37
✓ ✓ ✓ 7.60 9.39

✓ 8.35 9.36
✓ ✓ ✓ 8.00 9.42
✓ ✓ ✓ ✓ 6.53 9.43

In Tab. 5, we present ab-
lation results on Mamba-2
2.7B. The baseline retains
FP16 only within SSD
while applying W4A8 else-
where. Comparing Q(X)
with the proposed refor-
mulated Q(X ⊙ LUTstate)
shows negligible quantiza-
tion error, consistent with
our theoretical proof. Avoiding element-wise multiplications after head expansion of B yields mea-
surable latency gains. Without reformulation, quantizing X alone prevents the use of the persistent
INT8 path, and the final latency improvement from quantizing B, C, and CB is limited to 1.07×. By
contrast, our reformulation enables INT8 execution in ChunkScan1, improving latency by 1.08×,
and further quantization of ChunkBMM achieves a 1.32× speedup. Perplexity degradation remains
below 0.1, indicating that our channel-aware quantization preserves accuracy. Further results are
provided in Appendix F.

Table 6: Ablation results of SSDi8:
Q(SSD) and correction c.

Bitwidth SSDi8 Acc.
Q(SSD) Correct.

FP16 – – 69.5%

W4A8
51.2%

✓ 67.2%

✓ ✓ 67.4%

We perform an ablation study on SSD quantization and mean
correction using the Lambada dataset, which exhibits minimal
performance variance, and report in Tab. 6. On Mamba-2 2.7B
under the W4A8 setting, HadMamba quantization yields only
51.2% accuracy, whereas applying SSD quantization substan-
tially boosts performance to 67.2%. Incorporating mean cor-
rection provides an additional improvement to 67.4%, achiev-
ing consistent accuracy gains with only a ∼1–2% overhead.
These results demonstrate that SSDi8 achieves both accuracy
and efficiency, while mean correction offers effective error cor-
rection with negligible additional latency.

6 CONCLUSION

In this work, we presented SSDi8, an INT8 quantization framework developed in the context of the
SSD of Mamba-2. Unlike prior approaches limited to projections or partial SSD operations, SSDi8
establishes persistent INT8 representations through activation reuse and a sparse-enhanced refor-
mulation. It further explores optimal quantization strategies by analyzing internal activations and
incorporates mean correction to compensate for accumulated errors, enabling accurate and efficient
inference for large-scale Mamba-2 models. SSDi8 achieves FP16-level accuracy while delivering
up to 1.47× speedup over FP16 and 1.38× over Quamba2, and further demonstrates superior ef-
ficiency on edge devices such as NVIDIA Orin Nano, as well as across diverse batch–sequence
settings. SSDi8 provides mathematical intuition for sparse-tensor quantization and offers guidance
for quantization in environments where element-wise and recurrent operations are prevalent.
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A PROOF OF PROPOSED QUANTIZATION ERROR REDUCTION VIA
REFORMULATION

Proposition 1. Suppose that

P∑
p=1

∆2
x,p

12

(∆y,p

∆x,p

)2

· P (yp ̸= 0) ≤ ∥lut∥22
P∑

p=1

∆2
x,p

12
.

Then it holds that
MSExscaled ≤ MSEx.

Notation.
(1) We denote the Hadamard product by ⊙. The quantization step size is ∆ = Range

2b−1
.

(2) The dequantized input is x′ = deq(q(x)). The output is yl,p = xl,p ⊙ lutl.
(3) Let ρp = P (yp ̸= 0) and y∗l,p = {yp : yp ̸= 0}.
(4) Vectors are denoted by xp = (x0,p, . . . , xL,p) and yp = (y0,p, . . . , yL,p), with error vector
ex,p = (e0,x,p, . . . , eL,x,p).
(5) The L-vector lut = (lut0, . . . , lutL) is fixed and deterministic.

Assumptions.
(1) min(yp) < 0 and max(yp) > 0.
(2) Quantization errors satisfy ex,l,p ∼ U(−∆x,p

2 ,
∆x,p

2 ), ey,l,p ∼ U(−∆y,p

2 ,
∆y,p

2 ).
(3) Outliers are not considered in yp.
(4) 0 < ρp < 1.
(5) lut is not a random variable.

Proof. Step 1. Step size relation.
In symmetric quantization, the step size ∆ is determined by the min/max values.
By Assumption (1), we have ∆∗

y,p = ∆y,p. Let sp = ∆y,p/∆x,p, so that ∆y,p = sp∆x,p and hence
∆∗

y,p = s∆x,p.

Step 2. Case y′ = (x⊙ lut)′.
The reconstructed output is

y′l,p =

{
y∗l,p + e∗y,l,p, with prob. ρp,
0, with prob. 1− ρp.

Thus
MSExscaled,p = ρp E[(y′l,p − yl,p)

2].

Since the error e⋆y,l,p = y′l,p − y⋆l,p has zero mean, we have

E[(e⋆y,l,p)2] = Var(e⋆y,l,p).

Therefore,
MSExscaled,p = ρp · E[(e⋆y,l,p)2] = ρp ·Var(e⋆y,l,p).

Under the standard quantization noise model,

Var(e⋆y,l,p) =
(∆∗

y,p)
2

12
,

so that

MSExscaled,p = ρp ·
(∆∗

y,p)
2

12
.
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Averaging over p gives

MSExscaled =
1

P

P∑
p=1

ρp
(∆∗

y,p)
2

12
.

Step 3. Case y′ = x′ ⊙ lut.
We expand

MSEx,p = E
[
∥y′p − yp∥22

]
= E

[
∥(x′

p − xp)⊙ lut∥22
]
.

By component,

∥(x′
p − xp)⊙ lut∥22 =

L∑
l=1

(ex,l,p · lutl)2.

Taking expectation,

E[∥ex,p ⊙ lut∥22] =
L∑

l=1

lut2l · E[e2x,l,p].

Since ex,l,p is uniform, E[e2x,l,p] = ∆2
x,p/12. Therefore,

MSEx,p = ∥lut∥22 ·
∆2

x,p

12
.

Averaging gives

MSEx =
1

P

P∑
p=1

∥lut∥22
∆2

x,p

12
.

Step 4. Comparison.
Substituting ∆∗

y,p = sp∆x,p,

MSExscaled =
1

P

P∑
p=1

ρp s
2
p

∆2
x,p

12
.

Thus, if
P∑

p=1

ρps
2
p

∆2
x,p

12
≤

P∑
p=1

∥lut∥22
∆2

x,p

12
,

then
MSExscaled ≤ MSEx.

Mildness of the sufficient condition. This condition is mild. First, scaling typically reduces the
dynamic range so that ∆y,p ≤ ∆x,p, i.e., sp ≤ 1. Second, due to the sparsity of Xscaled, the activation
probability is small (ρp ≪ 1), which diminishes the left-hand side. Third, the lut vector carries non-
negligible energy across dimensions, so ∥lut∥22 is not small. Consequently, in these typical regimes,

P∑
p=1

ρps
2
p

∆2
x,p

12
≤

P∑
p=1

∥lut∥22
∆2

x,p

12
,

and thus MSExscaled ≤ MSEx follows naturally. For a detailed discussion of the empirical character-
istics of the distributions of x, xscaled, and lut, please refer to Fig. 3 and Appendix H.
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B ALGORITHM

Algorithm 1 Sequential Mean Correction Update

Require: Quantized Blocks B1:L, fp16 means µfp[1:L], number of samples S, sequence length T decaying
factor η, target-layer set Ltgt
Fix initial inputs

1: for s← 1 to S do
2: X[s]← Embedding(D[s], T )
3: end for
4: for l← 1 to L do
5: if l /∈ Ltgt then
6: for s← 1 to S do
7: Y ← Bl(X[s])
8: X[s]← Y
9: end for

10: continue
11: end if
12: µq ← 0; N ← 0
13: for s← 1 to S do
14: Y ← Bl(X[s])
15: ms ← Y.mean(0, 1)
16: ns ← Y.shape[0] ·Y.shape[1]

17: N ← N + ns; ws ←
ns

N
18: µq ← µq + ws · (ms − µq)
19: end for
20: δ ← µfp[l]− µq

21: c[l]← η · δ
22: for s← 1 to S do
23: Ycomp ← Bl

(
X[s]; apply c[l]

)
24: X[s]← Ycomp

25: end for
26: end for
27: return model with corrections applied

Sequential Mean Correction Update. Algorithm 1 shows the sequential update of the proposed
mean correction technique for efficiently mitigating quantization errors in SSD layers. The proce-
dure begins by initializing sample inputs through embeddings and then iteratively traversing all net-
work layers. For layers not subject to correction, a standard forward pass is performed to propagate
outputs to the next layer. Upon reaching a target correction layer, multiple sample outputs are used
to compute channel-wise means, which are then aggregated to estimate the mean µq of the quantized
output. This estimate is compared with the reference mean µfp[l] obtained in full precision, and their
difference δ = µfp[l]− µq is multiplied by a decay factor η to compute the correction term c[l]. The
correction is directly applied to the layer output, and the corrected output is propagated forward.

This process is repeated for all designated target correction layers, thereby alleviating accumulated
quantization errors through three steps: (i) channel-wise mean estimation, (ii) correction term
computation, and (iii) propagation of corrected outputs.
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Algorithm 2 SSD Layer

Require: X ∈ R(B,L,H, P ), ∆ ∈ R(B,L,H), decay activation A ∈ R(H),
1: B ∈ R(B,L,G,N), C ∈ R(B,L,G,N),
2: L = c · l

Module 1: ChunkCumsum (Input (∆, A) → Output (∆, dAcs))
3: ∆← softplus(∆)
4: A+ ← discretize(A)
5: dAcs ← CumSumDecay(A+) ▷ ∈ R(B,H, c, l)

Module 2: ChunkState (Input (dAcs,∆, B,X) → Output State)
6: Decaystate ← exp(dAcs[:, :, :, l−1])− dAcs

7: LUTstate ← ∆⊙Decaystate ▷ ∈ R(B,H, c, l)
8: State← X × (B ⊙ LUTstate) ▷ ∈ R(B,H, c, P,N)

Module 3: StatePassing (Input (State, dAcs) → Output State)
9: Decaypass ← exp(dAcs[:, :, :, l−1]) ▷ ∈ R(B,H, c)

10: for i = 0 to c−2 do
11: State[i+1]← State[i+1] + Decaypass[i+1]⊙ State[i]
12: end for

Module 4: ChunkBMM (Input (B,C) → Output CB)
13: CB ← C ×B ▷ ∈ R(B,H, c, l, l)

Module 5: ChunkScan1 (Input (State, C, dAcs,∆) → outoff )
14: Decayscan1 ← exp(dAcs)
15: LUTscan1 ← ∆⊙Decayscan1

16: outoff ← (State× C⊤)⊙ LUTscan1 ▷ ∈ R(B,H, c, P, l)

Module 6: ChunkScan2 (Input (X,CB, dAcs,∆) → outdiag)
17: Let dA(m)

cs ∈ R(B,H,c,l,1), dA
(n)
cs ∈ R(B,H,c,1,l) be the broadcasted forms of dAcs.

18: LUTscan2 ← ∆ ⊙ exp
(
dA

(m)
cs − dA

(n)
cs

)
▷ ∈ R(B,H, c, l, l)

19: outdiag ← X × (CB ⊙ LUTscan2) ▷ ∈ R(B,H, c, P, l)

Final Output
20: Y ← outoff + outdiag
21: return Y ▷ ∈ R(B,H, c, P, l)

SSD layer

Given input activations X, the layer first discretizes the step size Δ and decay activation A, and

constructs per-chunk cumulative decay factors through ChunkCumsum.

ChunkState performs the input-to-state projection within each chunk in parallel, while

StatePassing propagates recurrent information across chunks to restore the global sequence depen-
dency.

ChunkBMM computes the block-diagonal interaction matrix CB,

which is exclusively used in the diagonal path.

ChunkScan1 generates the off-diagonal contribution from the recurrent state, and

ChunkScan2 produces the diagonal contribution from the input representation with CB.

The final SSD output is obtained by summing these two terms.
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C ADDITIONAL RELATED WORKS

Post-Training Quantization and LLM Quantization. Quantization approaches are generally di-
vided into Quantization-Aware Training (QAT) (Gholami et al., 2022), which integrates quantiza-
tion into the training process, and Post-Training Quantization (PTQ) (Frantar et al., 2023; Xiao
et al., 2023; Lin et al., 2024), which applies quantization to models after pretraining. QAT is often
considered strong in preserving accuracy, but for large-scale models the associated retraining cost
can become prohibitively high. As a result, many recent studies have shifted attention toward PTQ,
particularly in the context of large language models (LLMs) (Touvron et al., 2023).

Among representative PTQ approaches, GPTQ (Frantar et al., 2023) proposes a weight-
compensation PTQ method by leveraging approximate second-order information via the Hessian.
SmoothQuant (Xiao et al., 2023) shifts the difficulty of activation quantization into weights, en-
abling stable W8A8 and W4A8 performance. QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu
et al.) achieve precise 4-bit quantization by applying random or learned rotation matrices to mitigate
outliers. QServe (Lin et al.) highlights the practicality of W4A8 quantization in real environments,
demonstrating its effectiveness in reducing inference latency for LLMs. However, these methods
are inherently optimized for the structural properties of Transformers—such as self-attention and
KV caching—and thus are not directly applicable to architectures like selective state space models,
where continuous state updates and activation reuse play a central role.

D ADDITIONAL EXPERIMENTAL SETTING

Implementation For quantization, we use a calibration set of 512 samples drawn from the Pile
dataset. We apply 4-bit weight quantization to the in projection and out projection layers using
GPTQ. To improve efficiency, the scaling parameter γ of RMSNorm is fused into the in projection
layer (Wei et al., 2022). Except for the SSD module, activations are quantized to 8-bit with per-
tensor quantization, while the fast Hadamard transform (Ashkboos et al., 2024) is fused into the
corresponding layers. Inside the SSD, we adopt the same Triton (Dao, 2024b;a) as used in Mamba-
2, but modified to fit the SSDi8 method. CUDA (LY, 2024a;b) based causal Conv1d operator is used
without modification.
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E ADDITIONAL ACCURACY RESULTS

The table below presents an extended version of the accuracy results in Tab. 2. Evaluations are con-
ducted on the same datasets, where HAD denotes applying Hadamard and 4-bit GPTQ quantization
to Mamba-2. SSDi8 achieves performance comparable to Quamba2 under W4A16 quantization,
even with W4A8 quantization.

Table 7: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with four quantization methods (HAD, Quamba,
Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model Size Methods Bitwidth LA HS PIQA Arc-E Arc-C WG Avg.

Mamba-2

1.3B

- FP16 65.6% 59.9% 73.3% 64.1% 33.3% 60.8% 59.5%

HAD W8A8 55.3% 59.4% 73.2% 64.0% 33.5% 58.2% 57.3%
W4A8 53.9% 58.9% 72.3% 63.6% 33.9% 59.1% 57.0%

Quamba W8A8 49.8% 58.5% 71.2% 61.9% 32.1% 58.1% 55.2%

Quamba2
W4A16 64.3% 59.2% 72.6% 63.8% 33.1% 60.3% 58.9%
W8A8 62.0% 59.2% 72.5% 63.4% 32.7% 60.0% 58.3%
W4A8 61.0% 58.8% 72.4% 62.7% 32.6% 59.1% 57.7%

SSDi8 (Ours) W8A8 64.7% 59.7% 72.7% 64.0% 32.8% 60.9% 59.1%
W4A8 63.6% 59.2% 72.7% 63.5% 33.5% 60.4% 58.8%

2.7B

- FP16 69.5% 66.6% 76.4% 69.5% 36.4% 64.2% 63.8%

HAD W8A8 53.8% 60.8% 73.8% 64.8% 35.8% 62.2% 58.5%
W4A8 51.2% 59.7% 73.0% 64.9% 34.6% 60.2% 57.3%

Quamba W8A8 52.4% 60.4% 71.6% 62.9% 33.7% 58.0% 56.5%

Quamba2
W4A16 68.8% 65.6% 75.5% 68.6% 36.6% 64.9% 63.3%
W8A8 66.1% 65.5% 74.4% 68.4% 37.1% 63.7% 62.5%
W4A8 65.6% 65.1% 74.7% 68.1% 36.1% 62.8% 62.1%

SSDi8 (Ours) W8A8 68.3% 66.2% 75.6% 69.0% 36.8% 63.4% 63.2%
W4A8 67.6% 65.3% 75.6% 68.9% 35.2% 63.5% 62.7%

8B

- FP16 70.9% 77.7% 79.7% 76.0% 48.0% 72.0% 70.7%

HAD W8A8 56.7% 75.3% 78.1% 74.1% 45.0% 65.6% 65.8%
W4A8 56.1% 74.6% 77.3% 73.8% 44.5% 66.0% 65.4%

Quamba W8A8 54.0% 74.6% 77.1% 73.5% 44.2% 65.5% 64.8%

Quamba2
W4A16 71.2% 76.8% 79.1% 75.2% 45.9% 70.8% 69.8%
W8A8 69.8% 77.8% 79.1% 75.9% 46.9% 69.0% 69.8%
W4A8 68.8% 77.1% 79.1% 75.0% 46.0% 68.7% 69.1%

SSDi8 (Ours) W8A8 70.4% 77.2% 79.6% 75.5% 47.2% 71.2% 70.2%
W4A8 69.9% 76.5% 79.1% 75.4% 46.2% 70.6% 69.6%

The table below shows pile perplexity comparison on 1.3B and 2.7B models. SSDi8 outperforms
Quamba2 in both cases and achieves performance close to FP16 under W8A8 quantization.

Table 8: Pile perplexity with L = 2048

Model Methods Bitwidth
Pile Perplexity (↓)

1.3B 2.7B

Mamba-2

- FP16 6.99 6.27

HAD W8A8 7.46 7.77
W4A8 7.87 8.17

Quamba2 W8A8 7.20 6.44
W4A8 7.55 6.68

SSDi8 (Ours) W8A8 7.08 6.34
W4A8 7.41 6.57
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F ADDITIONAL ABLATION STUDIES

The table below shows ablation results on the quantization axis of activations within SSD, evaluated
on Wikitext2 perplexity. For activations B,C, per-G,N yields the best performance, though the
difference from per-G is negligible (0.02). In contrast, X and State are highly sensitive to the choice
of quantization axis, showing substantial degradation when either the P or H axis is not considered.

Table 9: Ablation study for quantization axis.

Model Bitwidth Activation per-T per-P(N) per-H(G) Wikitext2 Perplexity

8B W4A8
SSD-FP16

– – – – 7.42

B,C

v 7.59
v 7.43

v 7.44
v v 7.42

X,State

v 11.97
v 8.59

v 8.15
v v 7.42

The figure below shows latency and accuracy variations with respect to the placement of mean
correction. The highest accuracy gain is observed when mean correction is applied immediately
after SSD layers, indicating error accumulation within SSD. In Mamba-2, the model dimension is
halved after the out-projection layer, yielding the lowest latency when mean correction is applied.
Considering the trade-off between latency and accuracy, we therefore apply mean correction only at
the out-projection layer.

Table 10: Accuracy and speedup for W4A8. Experiments are conducted on the LAMBADA dataset,
using SSDi8 without mean correction as the baseline.

Bitwidth Project Speedup Acc.

W4A8

None ×1.00 67.2%
In ×0.945 67.4%

SSD ×0.975 67.5%
Out ×0.987 67.4%
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G ADDITIONAL LATENCY AND MODEL SIZE RESULTS

This section presents results on additional memory usage and latency.

The memory footprint is nearly identical to that of the previous SOTA model, Quamba2, with only
a small increase due to the extra static quantization scales.

Model Size Method W8A8 W4A8

Mamba2

2.7B
FP16 5.154 GB
Quamba2 2.948GB 1.766GB
SSDi8 (Ours) 2.953GB 1.774GB

8B
FP16 15.710 GB
Quamba2 9.860GB 7.028GB
SSDi8 (Ours) 9.867GB 7.038GB

Table 11: Memory usage comparison

With W4A8 quantization on the 8B model, SSDi8 achieves lower SSD latency than FP16 and
Quamba, with improvements becoming more pronounced as computational intensity increases.

7.781
7.458

14.745
13.879

10.646

25.797

19.000

6.198

Figure 6: Comparison with Quamba2 under W4A8 quantization on the 8B model is also reported.
OOM denotes Out-Of-Memory.
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H DISTRIBUTIONS OF SSD TENSORS

Visualization of Activations The figure below represents that visualization of B, C, and CB by
group in the first, middle, and last blocks of the Mamba-2 8B model. As argued in Sec. 4, the
distributions differ across groups. CB is masked as it is used for computing outdiag.

B

3rd Group

CBC

0th Group

27th Block

3rd Group

B CBC

0th Block

0th Group

3rd Group

B

0th Group

55th Block

CBC

Figure 7: Visualization of the distributions of activations B, C, and CB in in the first, middle, and
last block of Mamba-2 8B.
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The figure below shows the visualization of X , LUTstate, and Xscaled in the last block of Mamba-2
8B. The first row illustrates the full sequence length, while the second row depicts its partition into
nchunks with the corresponding chunk size. Both LUTstate and Xscaled exhibit exponential growth
as the chunksize index increases.

X

H L

c l

LUTX state scaled

Figure 8: Visualization of the distributions of activations X , LUTstate, and Xscaled in the last block
of Mamba-2 8B.
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I LLM USAGE

During the manuscript preparation, we used OpenAI’s GPT5 (https://chatgpt.com/), a Large Lan-
guage Model, to proofread our work. Our interaction with the LLM was iterative and focused exclu-
sively on improving the quality of the writing. We affirm that the LLM served as an assistive tool
and did not contribute to core research ideas, experimental design, analysis, and results presented in
this paper. The final scientific content and all claims made in this paper are the sole responsibility of
the authors.
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