

000 001 002 003 004 005 SSDi8: ACCURATE AND EFFICIENT 006 8-BIT QUANTIZATION FOR STATE SPACE DUALITY 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Recent advances in sequence modeling have highlighted Mamba as a state space architecture offering efficient long-range dependency modeling and providing a viable alternative to Transformers. Building upon this, Mamba-2 introduces the Structured State Space Duality (SSD), which integrates recurrent and attention modes to achieve efficiency and scalability. However, this architectural expansion substantially increases memory and latency overhead, underscoring the need for efficient compression strategies tailored to SSD. In this work, we present SSDi8, the first post-training quantization framework specifically designed for SSD [to maintain a persistent INT8 path](#). SSDi8 introduces a reformulation that decouples element-wise multiplications from matrix multiplications, enabling reuse of quantized activations across modules. Moreover, SSDi8 adaptively quantizes channel-varying activations at cost-effective points, further reducing latency. On the accuracy side, SSDi8 explicitly leverages the intrinsic dimensional decomposition of SSD, exploiting distinct outlier distributions across axes, and incorporates an error correction term based on per-channel error statistics. Comprehensive experiments demonstrate that SSDi8 achieves accuracy comparable to FP16 while delivering up to $1.4\times$ speedup in W4A8 and W8A8 settings. We further validate its robustness in resource-constrained environments by deploying it on the Orin Nano device.

1 INTRODUCTION

Mamba (Gu & Dao, 2024) is a recent state space sequence model that builds upon the Structured State Space Model (SSM) (Gu et al., 2020; 2022) to provide efficient long-range dependency modeling with constant computation and memory usage. While global attention in Transformers (Vaswani et al., 2017) can enhance performance as model size increases, it also incurs quadratic growth in computation and memory with respect to sequence length, which poses substantial challenges for large-scale training and deployment. In contrast, Mamba achieves performance comparable to or exceeding state-of-the-art architectures across billion-scale language models, positioning it as a strong candidate for next-generation sequence modeling.

Despite its algorithmic efficiency, Mamba faces practical limitations: its specialized state space recurrence is difficult to parallelize on modern accelerators, making it less hardware-friendly than optimized Transformer kernels, and it shows relatively diminishing efficiency when scaled to larger parameter sizes. To overcome these issues, Mamba-2 (Dao & Gu, 2024) introduces the Structured State Space Duality (SSD), a hybrid design that integrates recurrent mode with attention mode. Mamba-2 adds a head dimension analogous to multi-head attention to enhance scalability and employs a dual representation that improves general matrix multiplication (GEMM) utilization, yielding higher throughput on GPUs and TPUs. While the original Mamba exhibited limited efficiency beyond 2.7B parameters, Mamba-2 scales effectively to over 8B parameters and achieves competitive performance across language, audio (Lee et al., 2025), vision (Shi et al., 2024), and multimodal tasks (Huang et al., 2024). Yet this expansion also intensifies memory and latency overhead, highlighting the need for efficient compression and optimization.

The recurrent mode of SSD is computationally efficient but system-inefficient, while the attention mode is relatively computationally demanding. During its operation, SSD repeatedly invokes activations across modules and performs sequential updates. In this process, activations reuse across

054 modules necessitates frequent DRAM accesses, and the intrinsically higher latency of DRAM intro-
 055 duces considerable overhead.
 056

057 As shown in Tab. 1, directly applying quantization methods
 058 originally designed for Transformers—such as Hadamard
 059 rotation or GPTQ—to SSD layers leads to substantial
 060 accuracy degradation. This stems from the distinctive
 061 computational organization of SSD. First, the model dimen-
 062 sion is partitioned into the number of heads and the per-
 063 head dimension, each following markedly different statis-
 064 tical distributions; failure to account for this property re-
 065 sults in significant performance loss. Second, SSD contains
 066 dimension-varying activations whose shapes differ between
 067 memory storage and computation, and these activations are
 068 repeatedly invoked across multiple modules. Third, element-wise multiplications are extensively in-
 069 tertwined with matrix multiplications, further complicating quantization. In this work, we conduct
 070 the first comprehensive analysis of SSD to maintain a persistent INT8 path , providing observations
 071 that reveal the internal factors contributing to its quantization sensitivity.
 072

073 Accordingly, we propose SSDi8, an accurate and efficient post-training quantization framework
 074 that reduces both inference latency and performance degradation within SSD. For latency reduc-
 075 tion, SSDi8 quantizes channel-variant and recurrent activations at optimal points and reuses them,
 076 ensuring an uninterrupted INT8 execution path from input to output. Furthermore, we address
 077 element-wise operations that disrupt this path by introducing a sparse-aware reformulation, with the
 078 guarantee formally established through mathematical analysis. This design keeps the execution in
 079 INT8 while substantially alleviating memory bottlenecks and computational overhead. For accuracy,
 080 SSDi8 leverages the intrinsic dimensional structure and properties of SSD. Specifically, external di-
 081 mensions entering SSD are decomposed into two axes, each exhibiting distinct outlier distributions,
 082 which are explicitly exploited to reduce quantization error. Furthermore, we introduce an error cor-
 083 rection term based on per-channel error means, yielding consistent gains in accuracy. Through these
 084 mechanisms, SSDi8 achieves a balanced optimization of both efficiency and performance.
 085

086 SSDi8 achieves accuracy comparable to FP16 while enabling up to $1.4 \times$ inference speedup under
 087 both W4A8 and W8A8 configurations, while excluding W4A4 due to hardware-induced slowdowns
 088 as discussed in Lin et al. Notably, in the context of SSD—where error sensitivity often causes se-
 089 vere degradation—our method incurs negligible accuracy loss while delivering substantial latency
 090 reductions, with single-inference speedups reaching $1.5 \times$. To the best of our knowledge, this repre-
 091 sents the first successful application of persistent INT8 path within the Mamba-2 SSD architecture.
 092 Furthermore, we demonstrate that SSDi8 maintains efficiency in resource-constrained environments
 093 through deployment on the Orin Nano device.
 094

095 2 RELATED WORKS

096 **Mamba Architecture.** Mamba is a sequence modeling architecture built on SSMs, which have been
 097 explored as an alternative to Transformers in order to circumvent the quadratic complexity of self-
 098 attention (Gu & Dao, 2024). Unlike conventional linear SSMs (Gu et al., 2022; Smith et al., 2023),
 099 Mamba incorporates a selective state space mechanism that adaptively gates input-dependent state
 100 transitions and output projections, enabling more expressive sequence modeling. Mamba-2 extends
 101 this framework by introducing the structured SSDs (Dao & Gu, 2024), which establishes a formal
 102 equivalence between SSMs and linear attention and enables optimized GEMM-based implemen-
 103 tations. This design substantially improves hardware utilization on modern accelerators. Furthermore,
 104 Mamba-2 allowing the state dimension—previously constrained to $N = 16$ in Mamba-1—to scale
 105 stably to $N = 64\text{--}128$ and beyond. In addition, Mamba-2 integrates a multi-head structure anal-
 106 ogous to multi-head attention, further enhancing scalability. These advancements make large-scale
 107 parameter expansion feasible, but they also intensify memory and latency overhead, motivating the
 108 need for compression and deployment strategies.
 109

110 **Quantization for Mamba Models.** Recently, several studies have begun to explore quantization
 111 for the Mamba models (Tang et al., 2024; Yu et al., 2025). MambaQuant (Xu et al., 2025) and
 112 Quamba1 (Chiang et al., 2025b) introduced Post-Training Quantization (PTQ) methods targeting
 113

Table 1: Accuracy under major layer quantization of Mamba-2. Significant degradation arises when SSD is quantized per-tensor.

Model	Bitwidth	Quantized	ACC
		Layer(s)	
2.7B	FP16	–	63.8%
	W4A8	+ In Proj	63.6%
		+ SSD	58.4%
		+ Out Proj	54.6%

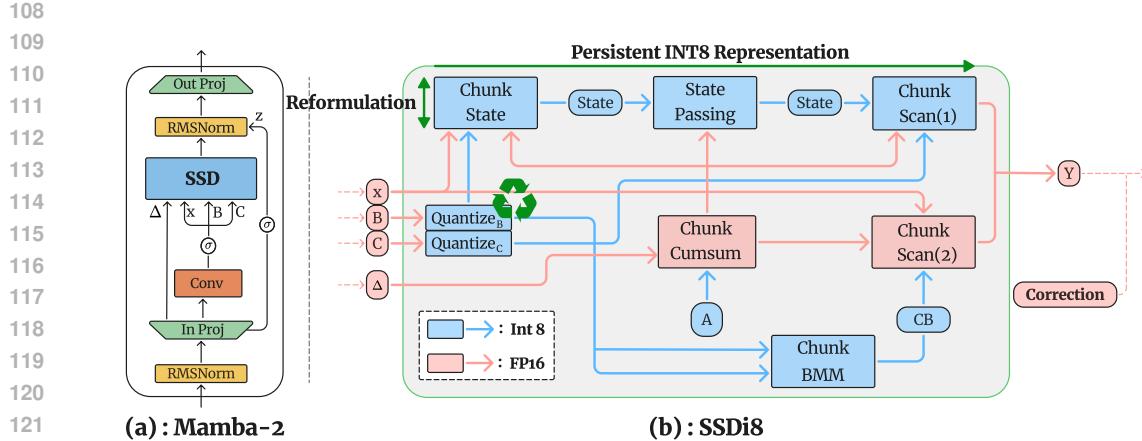


Figure 1: (a) Mamba-2 block architecture. (b) SSD pipeline in SSDi8. SSDi8 enables the persistent INT8 representation path through reformulation and quantized activation reuse, while mitigating performance degradation via channel-aware quantization and mean correction.

the original Mamba-1 architecture, but their approaches are not directly applicable to SSD-based Mamba-2. Quamba2 (Chiang et al., 2025a) extended quantization to Mamba-2, applying W4A8 and W8A8 settings that include SSD blocks. However, its method is limited to the inputs of SSD layers and does not adequately address precision issues within internal SSD computations, leaving the INT8 execution path incomplete and constraining latency optimization.

3 BACKGROUND

3.1 QUANTIZATION

Quantization discretizes continuous values into a finite set of integer levels. In particular, uniform quantization divides the value range into equal intervals, mapping each element of a tensor X to its nearest quantized level as follows:

$$\tilde{X} = \text{round}\left(\frac{X}{\alpha_X}\right), \quad \alpha_X = \frac{\max(|X|)}{2^{b-1} - 1}, \quad (1)$$

where \tilde{X} is the quantized tensor, α_X is the scaling factor that defines the step size based on the maximum absolute value of X , and b is the bit-width.

3.2 MAMBA-1

Mamba is an architecture built upon State Space Models (SSMs), composed solely of activation operations, where a hidden state variable is employed to efficiently compress and propagate memory (Gu & Dao, 2024). The fundamental state update and output equations are defined as follows:

$$h'(t) = Ah(t) + Bx(t), \quad y(t) = Ch(t). \quad (2)$$

Eq. 2 builds on the theoretical foundations of HiPPO (Gu et al., 2020) and S4 (Gu et al., 2022), which substantially improve both performance and efficiency. However, since SSMs are defined in continuous time, applying them to discrete inputs requires discretization. In practice, Zero-Order Hold is used to preserve previous values, and a time-step activation Δ is introduced to discretize matrices A and B . These operations are performed independently along the channel dimension of the input x , so that each channel independently follows its own SSM formulation:

$$S_B(x) = xW_B, \quad S_C(x) = xW_C, \quad S_\Delta(x) = xW_\Delta. \quad (3)$$

Through input-dependent activations, Mamba highlights important information while suppressing noise, improving long-range dependency modeling.

162 **4 METHODOLOGY**
 163

164 The overall workflow of SSDi8 is illustrated in Fig. 1. A substantial portion of SSD modules is
 165 executed along the persistent INT8 representation path, reusing quantized activations and applying
 166 a sparse-aware reformulation to element-wise operations that disrupt this path. The output tensor
 167 dA_{cs} from ChunkCumsum is negligible in size compared to other tensors, yet its recovery after
 168 quantization is challenging due to the element-wise multiplication; hence, it is retained in FP16.
 169 In the same vein, ChunkScan2 remains in FP16 for analogous reasons. These choices are further
 170 elaborated within this section.

171 **4.1 PRELIMINARY STUDY: MAMBA-2’S STRUCTURED STATE SPACE DUALITY**
 172

173 The Structured State Space Duality (SSD) in Mamba-2 consists solely of activation operations and
 174 unifies the recurrent and attention modes, thereby reducing computational cost and improving effi-
 175 ciency over the recurrence-dominated operations of conventional SSMs. Concretely, the SSM com-
 176 putation can be expressed as a lower-triangular structured matrix: the diagonal block, which directly
 177 influences the output, is computed via the attention formulation using matrix multiplications, while
 178 the off-diagonal blocks, which require recurrence, are computed by leveraging the semiseparable
 179 property, which admits low-rank factorizations.

180 A key distinction from Mamba is that Mamba-2 introduces a number of heads H , analogous to
 181 the multi-head structure in Transformers. As shown in Fig. 2, the value of H is formally defined by
 182 $D = H \odot P$, where D denotes the model dimension and P the head dimension. Notably, H and P remain
 183 independent axes, with H chosen to be much larger than P . For efficiency, the input-dependent B and
 184 C are parameterized with an auxiliary dimension G , and broadcast to H when required.

185 Formally, the input activations of SSD and its dimension before discretization are given as follows:

$$186 \begin{aligned} A &\in \mathbb{R}^{(H)}, & \Delta &\in \mathbb{R}^{(B, L, H)}, & X &\in \mathbb{R}^{(B, L, H, P)}, \\ 187 B &\in \mathbb{R}^{(B, L, G, N)}, & C &\in \mathbb{R}^{(B, L, G, N)}, & Y &\in \mathbb{R}^{(B, L, H, P)}, \end{aligned}$$

188 where B denotes the batch size, L the sequence length, H the number of heads, G the number of
 189 groups, P the head dimension, N the state dimension, and Y the final output of SSD. To shorten the
 190 effective recurrent path and enable parallelism, the sequence is partitioned as $L = c \odot 1$, where c
 191 is the number of chunks and 1 is the chunk size. The computation then proceeds through five mod-
 192 ules—ChunkCumsum, ChunkState, StatePassing, ChunkBMM, and ChunkScan—which
 193 together yield the SSD output Y . [Additional details are provided in Appendix B](#).

194 **ChunkCumsum (Input)** $(\Delta, A) \mapsto$ **Output** (Δ, dA_{cs}) . ChunkCumsum applies a softplus trans-
 195 formation to Δ , a time-step dependent scaling factor introduced for discretization, and discretizes
 196 the decay activation A that governs recurrent dynamics. It then prepares the cumulative decay term
 197 dA_{cs} , which is subsequently consumed by downstream modules for state updates.

198 **ChunkState (Input)** $(dA_{cs}, \Delta, B, X) \mapsto$ **Output** (State) . The ChunkState module dis-
 199 cretizes the projection matrix B , applies the decay factor, and multiplies it with the input X to gener-
 200 ate the hidden state. The cumulative decay is computed as $\text{Decay}_{\text{state}} = \exp(dA_{cs}^{\text{final}} - dA_{cs})$. For
 201 simplicity, we denote $\Delta \odot \text{Decay}_{\text{state}}$ by LUT_{state} where \odot denotes element-wise multiplication,
 202 in the following modules. The resulting state update is formulated as

$$203 \text{State} = X \times (B \odot LUT_{\text{state}}) \quad (4)$$

204 **StatePassing (Input)** $(\text{State}, dA_{cs}) \mapsto$ **Output** (State) . This module integrates the states com-
 205 puted from independent chunks into the actual recurrent state through decay. The decay term is given
 206 by

$$207 \text{Decay}_{\text{pass}} = \exp(dA_{cs}^{\text{final}}), \quad (5)$$

208 and the recurrent update is performed over the chunk as

$$209 \text{State}_c \in \text{State}_{i+1} \leftarrow \text{State}_{i+1} + \text{Decay}_{i+1} \odot \text{State}_i, \quad i = 0, 1, \dots, c-2. \quad (6)$$

210 **ChunkBMM (Input)** $(B, C) \mapsto$ **Output** (CB) . ChunkBMM performs a batched matrix multipli-
 211 cation between C and B . This operation extracts the diagonal blocks of the product, yielding CB ,
 212 which is used in the output computation within SSD.

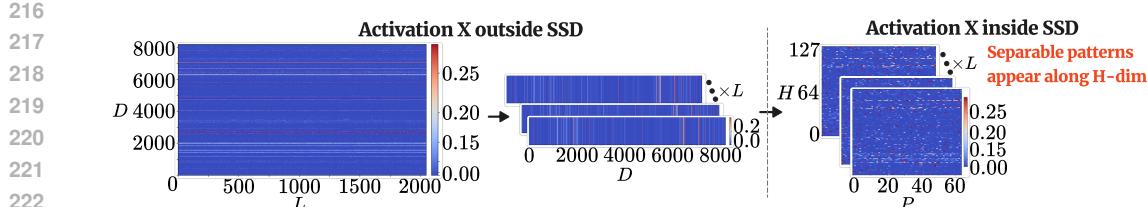


Figure 2: Visualization of activation X in the 16th block of Mamba-2 8B before and after the SSD input transformation. The pre-SSD dimension (B, L, D) exhibits no clear token-wise pattern, whereas the transformed dimension (B, L, H, P) within SSD reveals distinct patterns along the H-dim.

ChunkScan1 (Input $(\text{State}, C, dA_{\text{cs}}, \Delta) \mapsto \text{Output}$ $(out_{\text{off-diag}})$ **).** ChunkScan1 computes the off-diagonal interaction term by performing a matrix multiplication between the recurrent state State and the projection matrix C. The decay contribution is modeled as $\text{Decay}_{\text{scan1}} = \exp(dA_{\text{cs}})$, and combined with Δ to form $LUT_{\text{scan1}} (= \Delta \odot \text{Decay}_{\text{scan1}})$. The final off-diagonal output is obtained as $out_{\text{off-diag}} = (\text{State} \times C) \odot LUT_{\text{scan1}}$.

ChunkScan2 (Input $(X, CB, dA_{\text{cs}}, \Delta) \mapsto \text{Output}$ (out_{diag}) **).** ChunkScan2 computes the diagonal contribution by projecting the input representation X with the combined activation CB , while modulating the result using the decay and discretization terms (dA_{cs}, Δ). This module complements the off-diagonal pathway from ChunkScan1, and together they form the complete output of SSD: $Y = out_{\text{off-diag}} + out_{\text{diag}}$.

4.2 SSD18

Quantization of B,C. Within SSD18, the handling of the channel-dependent activations B and C constitutes one of the strategies, since they are repeatedly invoked across three SSD submodules. Rather than quantizing them separately within each module, SSD18 quantizes once and reuses the resulting INT8 tensors, thereby reducing memory traffic and enabling a consistent low-precision execution path. A challenge arises because B and C are defined along the group dimension G but are broadcast to the head dimension H during computation, with H typically an order of magnitude larger than G . Naively applying quantization after broadcasting induces significant overhead (up to $4\times$), which SSD18 addresses by optimizing the placement of quantization operations.

To minimize redundant overhead, SSD18 performs an early quantization of the channel-varying activations B and C once along the group axis G at the beginning of each SSD layer. The resulting INT8 tensors are then reused across all downstream modules, maintaining a consistent low-bitwidth representation without repeated quantization. Since $|G| \ll |H|$, quantization along G is considerably more efficient, adding only about 3% to the total SSD latency. Moreover, as shown in Figs. 2 and 8, the head dimension H exhibits highly heterogeneous value distributions across heads—up to $5\times$ variation—making direct per-head quantization unstable. Similarly, the group dimension G shows distinct characteristics and must be considered in quantization. While the state dimension N exhibits relatively consistent statistics, it directly participates in subsequent matrix multiplications, where quantization errors cannot be restored. Thus, it is excluded from the quantization axes.

Sparse-aware Reformulation. As defined in Eq. 4, the ChunkState computation applies $B \odot LUT_{\text{state}}$ prior to the matrix multiplication with $X \in \mathbb{R}^{(B, H, C, 1, P)}$. Here, $LUT_{\text{state}} \in \mathbb{R}^{(B, H, C, 1, 1)}$ is multiplied element-wise with $B \in \mathbb{R}^{(B, H, C, 1, N)}$ to impose a decay pattern across the steps within each B , H , and C . The resulting $B \odot LUT_{\text{state}}$ is then multiplied with X along the 1 -axis to project the 1 sequence steps into N . The operations are executed independently and in parallel across B , H , and C . However, this ordering introduces three critical limitations: (i) although B is quantized to INT8, the presence of LUT_{state} in FP16 enforces a floating-point execution path, undermining the efficiency of INT8 GEMM; (ii) because LUT_{state} exhibits exponential variation along the chunk axis 1 , any quantization scheme other than per- l quantization introduces substantial error, while even per- l quantization is infeasible due to quantization error accumulation after the l -axis matrix multiplication; (iii) attempting $Q(B \odot LUT_{\text{state}})$ requires quantization after the $G \rightarrow H$ expansion, which incurs significant overhead. To enable a fully INT8 execution path, SSD18 reformulates the computation as

$$\text{State}_{\text{INT32}} = Q(X_{\text{scaled}}) \times Q(B), \quad X_{\text{scaled}} = LUT_{\text{state}} \odot X, \quad \text{State}_{\text{INT32}} \in \mathbb{R}^{(B, H, C, P, N)}, \quad (7)$$

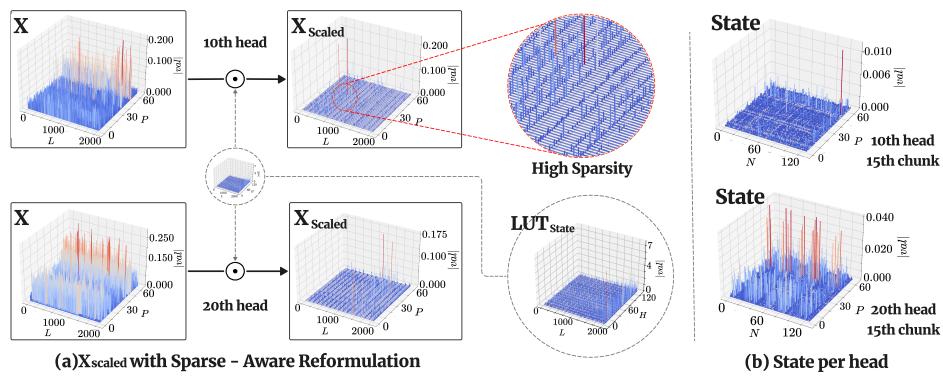


Figure 3: (a) Distribution plots of head-wise X and LUT_{state} in the 27th block of the ChunkState module, and their element-wise product after reformulation X_{scaled} . The channel-wise (\mathbb{P} -dim) distribution of X_{scaled} is highly sparse. (b) Head-wise distribution plots of State.

where $Q(\cdot)$ denotes quantization. This reformulation is valid because LUT_{state} applies its multiplication along the \mathbb{l} -dimension shared by both X and B , while all other dimensions operate independently. This property ensures that moving the scaling operation from B to X preserves the computational result, and quantizing the resulting X_{scaled} mitigates the limitations. In this case, $Q(X_{\text{scaled}})$ is quantized along the (\mathbb{P}, \mathbb{H}) axes because LUT_{state} is broadcast along the \mathbb{P} axis while X preserves consistency across \mathbb{P} and per-(\mathbb{H}) heterogeneity as shown in Fig. 3(a) and Fig. 2. Quantization simulations show that X_{scaled} exhibits pronounced outliers along the channel axis, which makes accurate quantization challenging. However, the actual quantization error of $Q(X_{\text{scaled}})$ does not significantly increase despite the presence of such outliers. From a distributional perspective, this robustness can be attributed to the high sparsity of X_{scaled} as shown in Fig. 3 (a), which leads to reduced quantization errors overall. To formally validate this property, we prove in Appendix A that, under mild conditions, the quantization error of X_{scaled} is smaller than that of $Q(X) \odot LUT_{\text{state}}$. This sparsity-aware proof justifies the proposed reformulation, and empirical results further confirm that the resulting performance degradation remains negligible.

Persistent INT8 Representation of Recurrent States. $\text{State}_{\text{INT32}}$ obtained from the proposed reformulation is accumulated in INT32. Since INT32 consumes twice the memory of FP16, SSDi8 reduces memory traffic by directly converting INT32 to INT8 in registers with quantization scales:

$$\text{State}_{\text{INT8}} = \text{Round} \left(\text{State}_{\text{INT32}} \odot \frac{s_x s_b q_{\max}}{s_s} \right), \quad q_{\max} = 2^{b-1} - 1, \quad (8)$$

where s_x , s_b , s_s denote the quantization scales of X , B , and State, respectively. The resulting INT8 tensor is then stored in DRAM, avoiding intermediate FP16 representations and thereby reducing memory bandwidth usage. State also exhibits variation across heads \mathbb{H} . As shown in Fig. 3 (b), consistency is observed along both the \mathbb{P} and \mathbb{N} , since \mathbb{N} participates in subsequent multiplications within ChunkScan1, quantization along \mathbb{N} is not adopted. $\text{State}_{\text{INT8}}$ is thus quantized per-(\mathbb{H}, \mathbb{P}).

In the StatePassing module, independently computed chunkwise states are recurrently accumulated with decay to form the actual state, as shown in Eq. 6. Since State is already in INT8, maintaining the INT8 execution path requires quantizing the FP16 Decay. The computation proceeds independently along \mathbb{B} , \mathbb{H} and recurrently along \mathbb{c} , where each Decay is a scalar. This enables element-wise fixed-point quantization of Decay. Formally,

$$Q(\text{State}_{i+1}) \leftarrow Q(\text{State}_{i+1}) + \frac{Q(\text{Decay}_{i+1})}{S} \odot Q(\text{State}_i), \quad i = 0, 1, \dots, c-2, \quad (9)$$

where S is a gating constant chosen as 2^k to enable bit-shift operations for minimal latency (with $k = 7$ in experiments). Per- \mathbb{H} , \mathbb{P} quantization ensures that all $\text{State}_{\text{INT8}}$ across \mathbb{c} share a common scale. This allows recurrent updates to be performed by simple bit-shift operations. As a result, $\text{State}_{\text{INT8}}$ can be persisted through ChunkScan1, enabling INT8 Tensor Core multiplications with C_{INT8} . Here, $\text{Decay} \in \mathbb{R}^{(\mathbb{B}, \mathbb{H}, \mathbb{c}, 1)}$ aligns with the output $\text{out}_{\text{off-diag}} \in \mathbb{R}^{(\mathbb{B}, \mathbb{H}, \mathbb{c}, 1, \mathbb{P})}$, so element-wise multiplication is applied directly after the matrix multiplication.

Table 2: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with three quantization methods (Quamba, Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model	Size	Methods	Bitwidth	LA	HS	PIQA	Arc-E	Arc-C	WG	Avg.
Mamba-2	1.3B	-	FP16	65.6%	59.9%	73.3%	64.1%	33.3%	60.8%	59.5%
		Quamba	W8A8	49.8%	58.5%	71.2%	61.9%	32.1%	58.1%	55.2%
		Quamba2	W8A8	62.0%	59.2%	72.5%	63.4%	32.7%	60.0%	58.3%
			W4A8	61.0%	58.8%	72.4%	62.7%	32.6%	59.1%	57.7%
		SSDi8 (Ours)	W8A8	64.7%	59.7%	72.7%	64.0%	32.8%	60.9%	59.1%
			W4A8	63.6%	59.2%	72.7%	63.5%	33.5%	60.4%	58.8%
	2.7B	-	FP16	69.5%	66.6%	76.4%	69.5%	36.4%	64.2%	63.8%
		Quamba	W8A8	52.4%	60.4%	71.6%	62.9%	33.7%	58.0%	56.5%
		Quamba2	W8A8	66.1%	65.5%	74.4%	68.4%	37.1%	63.7%	62.5%
			W4A8	65.6%	65.1%	74.7%	68.1%	36.1%	62.8%	62.1%
		SSDi8 (Ours)	W8A8	68.3%	66.2%	75.6%	69.0%	36.8%	63.4%	63.2%
			W4A8	67.4%	65.3%	75.6%	68.9%	35.2%	63.5%	62.6%
8B	8B	-	FP16	70.9%	77.7%	79.7%	76.0%	48.0%	72.0%	70.7%
		Quamba	W8A8	54.0%	74.6%	77.1%	73.5%	44.2%	65.5%	64.8%
		Quamba2	W8A8	69.8%	77.8%	79.1%	75.9%	46.9%	69.0%	69.8%
			W4A8	68.8%	77.1%	79.1%	75.0%	46.0%	68.7%	69.1%
		SSDi8 (Ours)	W8A8	70.4%	77.2%	79.6%	75.5%	47.2%	71.2%	70.2%
			W4A8	69.9%	76.5%	79.1%	75.4%	46.2%	70.6%	69.6%

Quantization on ChunkBMM and ChunkScan2. As shown in Fig. 1, the quantized activations B_{INT8} and C_{INT8} are reused in the ChunkBMM module. Because both are defined on the group dimension G , the multiplication proceeds without conversion to the head dimension H , producing CB_{INT32} . The tensor $CB \in \mathbb{R}^{(B, G, c, 1, 1)}$ is larger than X , so its quantization yields substantial memory savings. Similar to ChunkState, a single $\text{INT32} \rightarrow \text{INT8}$ step is applied to minimize memory traffic. In ChunkScan2, $(LUT_{\text{Scan2}} \odot Q(CB)) \times X$ involves X in FP16, enforcing a floating-point path. Due to its shape, LUT_{Scan2} is element-wise multiplied with CB , making post-quantization recovery difficult and rendering reformulation infeasible due to a shape mismatch with X . The dequantization scale of CB is fused into LUT_{Scan2} , reducing overhead while allowing partial FP16 execution. Experiments demonstrate that this process alone yields substantial latency gains.

Leveraging the persistent INT8 representation of recurrent states together with the sparse-aware reformulation and reuse of activation, SSDi8 achieves up to $1.38\times$ speedup overall, with gains reaching $1.6\times$ in the `ChunkScan` module compared to FP16 execution.

Mean Correction for SSD Quantization Error. To further mitigate the accumulation of quantization errors across SSD layers, we introduce a per-channel mean correction strategy. Given full-precision and quantized results $XW = Y \in \mathbb{R}^{N,P}$ and $X'W' = Y' \in \mathbb{R}^{N,P}$, the problem of minimizing the error between Y and Y' is convex, and the optimal correction vector c^* can be derived in closed form as the channel-wise mean of the quantization error:

$$E_c = \|Y - (Y' + c)\|_F^2 = \sum_{p=1}^P \sum_{i=1}^N ((Y - Y')_{i,p} - c_p)^2, \quad c_p^* = \frac{1}{N} \sum_{i=1}^N (Y - Y')_{i,p}. \quad (10)$$

To ensure accurate estimation, we adopt a layer-wise sequential update strategy, enabling subsequent layers to reflect the applied corrections and, thereby, capture activation shifts induced by earlier updates. For a detailed description of the sequential update algorithm, please refer to Algorithm B. To minimize overhead, c is applied only to the output projection layer, whose dimensionality is half that of the input projection layer and where quantization error is most pronounced. This design achieves consistent accuracy gains while incurring only marginal latency overhead ($\approx 1\text{--}2\%$).

5 EXPERIMENTS

Experimental Setup. We conduct PTQ experiments on Mamba-2 (Diao & Gu, 2024) models with 1.3B, 2.7B, and 8B parameters. Experiments are primarily conducted on NVIDIA A5000 GPUs.

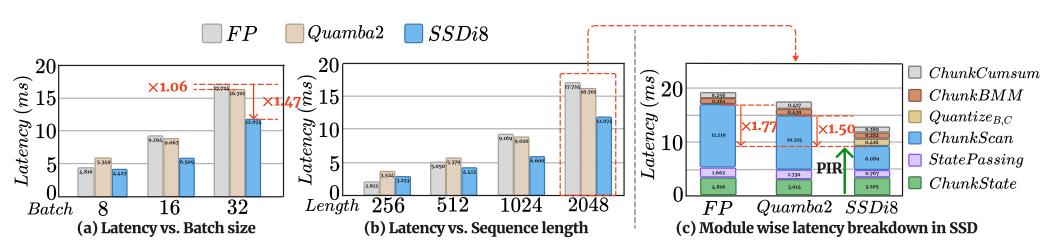


Figure 5: SSD latency of quantization methods on Mamba-2 2.7B: (a) varying batch ($L = 2048$), (b) varying length ($B = 32$), and (c) module-wise latency ($B = 32, L = 2048$). PIR denotes Persistent INT8 Representation. SSDi8 achieves up to $1.47\times$ overall speedup and $1.77\times$ in the State path.

We evaluate zero-shot performance on LAMBADA (Paperno et al., 2016), WinoGrande (Sakaguchi et al., 2020), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), ARC-Easy, and ARC-Challenge (Clark et al., 2018) benchmarks, and additionally assess language modeling capability via WikiText2 perplexity. Results are compared against the FP16 baseline, Quamba (Chiang et al., 2025b) and Quamba2 (Chiang et al., 2025a), and the HAD (HadMamba2) baseline, where HAD applies the Hadamard rotation to the Mamba-2 projection layers (Chiang et al., 2025a), GPTQ weight quantization and RTN quantization of SSD inputs.

Quantization Setup. We use symmetric, static quantization on both W8A8 and W4A8 configurations. For 4-bit weight quantization, we employ GPTQ (Frantar et al., 2023), combined with Hadamard-transformed (Ashkboos et al., 2024) projection layers. To handle RMSNorm-induced outliers, we migrate the γ parameter (Wei et al., 2022), and apply mean correction with a factor of 0.15 to prevent estimation overfitting.

5.1 EVALUATION OF ZERO-SHOT AND GENERALIZATION PERFORMANCE

Tab. 2 reports zero-shot task performance of Mamba-2 models (1.3B, 2.7B, 8B) under FP16, Quamba, Quamba2, and our SSDi8 quantization. Average accuracy is computed over six benchmarks. Across all bit-widths (W8A8, W4A8) and model scales, SSDi8 consistently outperforms Quamba2. For example, on the 2.7B model with W4A8, SSDi8 improves over Quamba2 (62.7% vs. 62.1%), and on the 8B model with W8A8, it achieves 70.2% compared to 69.8%. These results underscore the robustness of SSDi8 across diverse configurations. Full comparisons, including HadMamba-2 and Quamba2 with W4A16, are provided in Appendix E.

Perplexity Results. To assess linguistic fluency and generalization, we report WikiText2 perplexity in Tab. 3. Across all model scales and bit-widths, SSDi8 consistently achieves lower perplexity than Quamba2 while narrowing the gap to FP16. In particular, for the 8B model, SSDi8 yields reductions of 3.9% (7.49 vs. 7.79) under W8A8 and 4.0% (7.62 vs. 7.94) under W4A8. These results demonstrate that SSDi8 preserves linguistic fluency and generalization under quantization.

5.2 LATENCY AND MODEL SIZE

In Fig. 5 (a) and (b), we compare SSDi8 with FP16 and Quamba2 on NVIDIA A5000 (24GB) across varying batch sizes ($B \leq 32$) and sequence lengths ($L \leq 2048$). Latency is measured in milliseconds as the average of 100 runs after warm-up. On Mamba-2 2.7B with $B = 32, L = 2048$, SSDi8 achieves a $1.47\times$ speedup over FP16 and a $1.38\times$ improvement over Quamba2. The benefit increases with larger batch sizes and longer sequences, where greater chunk-level parallelism amplifies throughput, while short sequences (e.g., $L = 256$) may show higher FP16 efficiency due to lower computational intensity. Fig. 5 (c) reports

Table 3: Wikitext2 perplexity with $L = 2048$.

Methods	Bitwidth	Wikitext2 Perplexity (\downarrow)		
		1.3B	2.7B	8B
-	FP16	10.42	9.06	7.25
HAD	W8A8	11.31	11.42	8.57
	W4A8	11.63	11.85	8.79
Quamba2	W8A8	10.80	9.32	7.79
	W4A8	11.08	9.54	7.94
SSDi8 (Ours)	W8A8	10.63	9.22	7.49
	W4A8	10.92	9.43	7.62

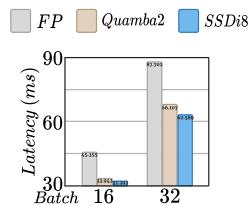


Figure 4: Forward latency of W8A8 ($L = 2048$) on 2.7B.

432 module-level latency breakdown for 2.7B at $B = 32, L = 2048$. With persistent INT8 representation,
 433 ChunkScan achieves up to $1.77\times$ speedup over FP16 and $1.50\times$ over Quamba2, while
 434 StatePassing yields $2.25\times$ and $2.17\times$ improvements, respectively. As demonstrated in Fig. 4,
 435 similar gains are observed under W8A8, and results on Mamba-2 8B are provided in Appendix G.
 436

437 To further assess deployability under resource-
 438 constrained conditions, we evaluate SSDi8 on the
 439 NVIDIA Orin Nano 16G, as shown in Tab. 4. Using
 440 the Mamba-2 2.7B model, we measure SSD latency
 441 across varying sequence lengths with a batch size
 442 of 16, comparing W4A8 and W8A8 quantization
 443 against Quamba2. Across all configurations, SSDi8
 444 consistently outperforms Quamba2, demonstrating
 445 its robustness beyond high-scale accelerators.

446 5.3 ABLATION STUDIES

447 In Tab. 5, we present ab-
 448 lation results on Mamba-2
 449 2.7B. The baseline retains
 450 FP16 only within SSD
 451 while applying W4A8 else-
 452 where. Comparing $Q(X)$
 453 with the proposed refor-
 454 mulated $Q(X \odot LUT_{\text{state}})$
 455 shows negligible quantiza-
 456 tion error, consistent with

457 our theoretical proof. Avoiding element-wise multiplications after head expansion of B yields mea-
 458 surable latency gains. Without reformulation, quantizing X alone prevents the use of the persistent
 459 INT8 path, and the final latency improvement from quantizing B, C , and CB is limited to $1.07\times$. By
 460 contrast, our reformulation enables INT8 execution in ChunkScan1, improving latency by $1.08\times$,
 461 and further quantization of ChunkBMM achieves a $1.32\times$ speedup. Perplexity degradation remains
 462 below 0.1, indicating that our channel-aware quantization preserves accuracy. Further results are
 463 provided in Appendix F.

464 We perform an ablation study on SSD quantization and mean
 465 correction using the Lambada dataset, which exhibits minimal
 466 performance variance, and report in Tab. 6. On Mamba-2 2.7B
 467 under the W4A8 setting, HadMamba quantization yields only
 468 51.2% accuracy, whereas applying SSD quantization substan-
 469 tially boosts performance to 67.2%. Incorporating mean cor-
 470 rection provides an additional improvement to 67.4%, achiev-
 471 ing consistent accuracy gains with only a $\sim 1\text{--}2\%$ overhead.
 472 These results demonstrate that SSDi8 achieves both accuracy
 473 and efficiency, while mean correction offers effective error cor-
 474 rection with negligible additional latency.

475 6 CONCLUSION

476 In this work, we presented SSDi8, an INT8 quantization framework developed in the context of the
 477 SSD of Mamba-2. Unlike prior approaches limited to projections or partial SSD operations, SSDi8
 478 establishes persistent INT8 representations through activation reuse and a sparse-enhanced refor-
 479 mulation. It further explores optimal quantization strategies by analyzing internal activations and
 480 incorporates mean correction to compensate for accumulated errors, enabling accurate and efficient
 481 inference for large-scale Mamba-2 models. SSDi8 achieves FP16-level accuracy while delivering
 482 up to $1.47\times$ speedup over FP16 and $1.38\times$ over Quamba2, and further demonstrates superior ef-
 483 ficiency on edge devices such as NVIDIA Orin Nano, as well as across diverse batch-sequence
 484 settings. SSDi8 provides mathematical intuition for sparse-tensor quantization and offers guidance
 485 for quantization in environments where element-wise and recurrent operations are prevalent.

Table 4: SSD latency (ms) of SSDi8 vs. Quamba2 on Orin Nano 16G.

GPU	Orin Nano 16G			
	Bitwidth	W4A8		W8A8
Method	Quamba2	SSDi8	Quamba2	SSDi8
$L = 256$	55.30	44.71	51.03	41.30
$L = 512$	76.10	68.00	70.95	60.49
$L = 1024$	134.40	127.51	139.10	114.36
$L = 2048$	262.90	240.54	249.29	217.69

Table 5: Ablation results for internal SSD quantization ($Q(\text{SSD})$).

Bitwidth	ChunkState $Q(X)$	Sparse Reform.	Quant. of B,C	Persistent INT8	Quant. of ChunkBMM	Latency	PPL
W4A8	–	–	–	–	–	8.63	9.34
	✓	–	–	–	–	8.58	9.35
	✓	–	✓	–	–	8.05	9.37
	✓	–	✓	✓	✓	7.60	9.39
	–	✓	✓	–	–	8.35	9.36
	–	✓	✓	✓	✓	8.00	9.42
–	–	✓	✓	✓	✓	6.53	9.43

Table 6: Ablation results of SSDi8: $Q(\text{SSD})$ and correction c .

Bitwidth	SSDi8 $Q(\text{SSD})$	SSDi8 Correct.	Acc.
FP16	–	–	69.5%
W4A8	–	–	51.2%
	✓	–	67.2%
–	✓	✓	67.4%

486 REFERENCES
487

488 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alis-
489 tarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms.
490 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

491 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
492 physical commonsense in natural language. In *The Thirty-Fourth AAAI Conference on Artificial
493 Intelligence (AAAI)*, 2020.

494 Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Mohamed S Abdelfattah,
495 and Diana Marculescu. Quamba2: A robust and scalable post-training quantization framework
496 for selective state space models. In *Forty-second International Conference on Machine Learning*,
497 2025a.

498 Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
499 Quamba: A post-training quantization recipe for selective state space models. In *International
500 Conference on Learning Representations (ICLR)*, 2025b.

502 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
503 Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
504 *CoRR*, 2018.

506 Tri Dao. Causal depthwise conv1d in cuda with a pytorch interface, 2024a. URL <https://github.com/Dao-AILab/causal-conv1d>.

508 Tri Dao. Fast hadamard transform in cuda, with a pytorch interface, 2024b. URL <https://github.com/Dao-AILab/fast-hadamard-transform>.

511 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
512 structured state space duality. In *International Conference on Machine Learning*, pp. 10041–
513 10071. PMLR, 2024.

514 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
515 quantization for generative pre-trained transformers. *International Conference on Learning Rep-
516 resentations (ICLR)*, 2023.

517 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
518 survey of quantization methods for efficient neural network inference. In *Low-power computer
519 vision*, pp. 291–326. Chapman and Hall/CRC, 2022.

521 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First
522 Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=tEYskw1VY2>.

524 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
525 with optimal polynomial projections. *Advances in neural information processing systems*, 33:
526 1474–1487, 2020.

528 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
529 state spaces. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=uYLFoz1vlAC>.

531 Wenjun Huang, Jiakai Pan, Jiahao Tang, Yanyu Ding, Yifei Xing, Yuhe Wang, Zhengzhuo Wang,
532 and Jianguo Hu. Ml-mamba: Efficient multi-modal large language model utilizing mamba-2.
533 *arXiv preprint arXiv:2407.19832*, 2024.

534 Taehan Lee, Jaehan Jung, and Hyukjun Lee. Mamba-2 audio captioning: design space exploration
535 and analysis, 2025. URL <https://arxiv.org/abs/2509.15680>.

537 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
538 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
539 for on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems
(MLSYS)*, 2024.

540 Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
 541 Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. In *Eighth*
 542 *Conference on Machine Learning and Systems*.

543

544 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 545 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
 546 with learned rotations. In *The Thirteenth International Conference on Learning Representations*.

547 Bruce Lee LY. Cuda hgemm, 2024a. URL https://github.com/Bruce-Lee-LY/cuda_hgemm.

548

549 Bruce Lee LY. Cuda hgemv, 2024b. URL https://github.com/Bruce-Lee-LY/cuda_hgemv.

550

551 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 552 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
 553 Word prediction requiring a broad discourse context. In *Proceedings of the 54th Annual Meeting*
 554 *of the Association for Computational Linguistics, (ACL)*. The Association for Computer Linguis-
 555 tics, 2016.

556

557 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 558 sarial winograd schema challenge at scale. In *The Thirty-Fourth AAAI Conference on Artificial*
 559 *Intelligence (AAAI)*, 2020.

560

561 Yuheng Shi, Minjing Dong, Mingjia Li, and Chang Xu. Vssd: Vision mamba with non-casual state
 562 space duality. *CoRR*, 2024.

563

564 Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
 565 sequence modeling. In *International Conference on Learning Representations (ICLR)*, 2023.

566

567 Shengkun Tang, Liqun Ma, Haonan Li, Mingjie Sun, and Zhiqiang Shen. Bi-mamba: Towards
 568 accurate 1-bit state space models. *arXiv preprint arXiv:2411.11843*, 2024.

569

570 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 571 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 572 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

573

574 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 575 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 576 *processing systems*, 30, 2017.

577

578 Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
 579 wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
 580 guage models. *Advances in Neural Information Processing Systems*, 35:17402–17414, 2022.

581

582 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 583 Accurate and efficient post-training quantization for large language models. In *International*
 584 *Conference on Machine Learning (ICML)*, 2023.

585

586 Zukang Xu, Yuxuan Yue, Xing Hu, Zhihang Yuan, Zixu Jiang, Zhixuan Chen, Jiangyong Yu, Chen
 587 Xu, Sifan Zhou, and Dawei Yang. Mambaquant: Quantizing the mamba family with variance
 588 aligned rotation methods. In *International Conference on Learning Representations (ICLR)*, 2025.

589

590 Zhenxuan Yu, Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Slender-mamba: Fully quan-
 591 tized mamba in 1.58 bits from head to toe. In *Proceedings of the 31st International Conference*
 592 *on Computational Linguistics (COLING)*, 2025.

593

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Márquez (eds.), *Pro-
 ceedings of the 57th Conference of the Association for Computational Linguistics (ACL)*, 2019.

594 APPENDIX

595

596

597

CONTENTS

598

599

A Proof of Proposed Quantization Error Reduction via Reformulation**13**

600

601

B Algorithm**15**

602

603

C Additional Related Works**17**

604

605

D Additional Experimental Setting**17**

606

607

E Additional Accuracy Results**18**

608

609

F Additional Ablation Studies**19**

610

611

G Additional Latency and Model Size Results**20**

612

613

H Distributions of SSD Tensors**21**

614

615

I LLM Usage**23**

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A PROOF OF PROPOSED QUANTIZATION ERROR REDUCTION VIA**
 649 **REFORMULATION**
 650

651 **Proposition 1.** *Suppose that*

$$653 \quad \sum_{p=1}^P \frac{\Delta_{x,p}^2}{12} \left(\frac{\Delta_{y,p}}{\Delta_{x,p}} \right)^2 \cdot P(y_p \neq 0) \leq \|lut\|_2^2 \sum_{p=1}^P \frac{\Delta_{x,p}^2}{12}.$$

656 *Then it holds that*

$$657 \quad \text{MSE}_{x_{\text{scaled}}} \leq \text{MSE}_x.$$

659 **Notation.**

660 (1) We denote the Hadamard product by \odot . The quantization step size is $\Delta = \frac{\text{Range}}{2^b - 1}$.
 661 (2) The dequantized input is $x' = \text{deq}(q(x))$. The output is $y_{l,p} = x_{l,p} \odot lut_l$.
 662 (3) Let $\rho_p = P(y_p \neq 0)$ and $y_{l,p}^* = \{y_p : y_p \neq 0\}$.
 663 (4) Vectors are denoted by $x_p = (x_{0,p}, \dots, x_{L,p})$ and $y_p = (y_{0,p}, \dots, y_{L,p})$, with error vector
 664 $e_{x,p} = (e_{0,x,p}, \dots, e_{L,x,p})$.
 665 (5) The L-vector $lut = (lut_0, \dots, lut_L)$ is fixed and deterministic.

667 **Assumptions.**

668 (1) $\min(y_p) < 0$ and $\max(y_p) > 0$.
 669 (2) Quantization errors satisfy $e_{x,l,p} \sim U(-\frac{\Delta_{x,p}}{2}, \frac{\Delta_{x,p}}{2})$, $e_{y,l,p} \sim U(-\frac{\Delta_{y,p}}{2}, \frac{\Delta_{y,p}}{2})$.
 670 (3) Outliers are not considered in y_p .
 671 (4) $0 < \rho_p < 1$.
 672 (5) lut is not a random variable.

676 **Proof. Step 1. Step size relation.**

677 In symmetric quantization, the step size Δ is determined by the min/max values.
 678 By Assumption (1), we have $\Delta_{y,p}^* = \Delta_{y,p}$. Let $s_p = \Delta_{y,p}/\Delta_{x,p}$, so that $\Delta_{y,p} = s_p \Delta_{x,p}$ and hence
 679 $\Delta_{y,p}^* = s_p \Delta_{x,p}$.

680 **Step 2. Case $y' = (x \odot lut)'$.**

681 The reconstructed output is

$$683 \quad y'_{l,p} = \begin{cases} y_{l,p}^* + e_{y,l,p}^*, & \text{with prob. } \rho_p, \\ 0, & \text{with prob. } 1 - \rho_p. \end{cases}$$

686 Thus

$$687 \quad \text{MSE}_{x_{\text{scaled}},p} = \rho_p \mathbb{E}[(y'_{l,p} - y_{l,p})^2].$$

689 Since the error $e_{y,l,p}^* = y'_{l,p} - y_{l,p}^*$ has zero mean, we have

$$691 \quad \mathbb{E}[(e_{y,l,p}^*)^2] = \text{Var}(e_{y,l,p}^*).$$

693 Therefore,

$$694 \quad \text{MSE}_{x_{\text{scaled}},p} = \rho_p \cdot \mathbb{E}[(e_{y,l,p}^*)^2] = \rho_p \cdot \text{Var}(e_{y,l,p}^*).$$

696 Under the standard quantization noise model,

$$698 \quad \text{Var}(e_{y,l,p}^*) = \frac{(\Delta_{y,p}^*)^2}{12},$$

700 so that

$$701 \quad \text{MSE}_{x_{\text{scaled}},p} = \rho_p \cdot \frac{(\Delta_{y,p}^*)^2}{12}.$$

702 Averaging over p gives

$$703 \quad \text{MSE}_{x_{\text{scaled}}} = \frac{1}{P} \sum_{p=1}^P \rho_p \frac{(\Delta_{y,p}^*)^2}{12}.$$

707 **Step 3. Case** $y' = x' \odot lut$.

708 We expand

$$709 \quad \text{MSE}_{x,p} = \mathbb{E}[\|y'_p - y_p\|_2^2] = \mathbb{E}[\|(x'_p - x_p) \odot lut\|_2^2].$$

710 By component,

$$712 \quad \|(x'_p - x_p) \odot lut\|_2^2 = \sum_{l=1}^L (e_{x,l,p} \cdot lut_l)^2.$$

714 Taking expectation,

$$716 \quad \mathbb{E}[\|e_{x,p} \odot lut\|_2^2] = \sum_{l=1}^L lut_l^2 \cdot \mathbb{E}[e_{x,l,p}^2].$$

718 Since $e_{x,l,p}$ is uniform, $\mathbb{E}[e_{x,l,p}^2] = \Delta_{x,p}^2/12$. Therefore,

$$720 \quad \text{MSE}_{x,p} = \|lut\|_2^2 \cdot \frac{\Delta_{x,p}^2}{12}.$$

722 Averaging gives

$$724 \quad \text{MSE}_x = \frac{1}{P} \sum_{p=1}^P \|lut\|_2^2 \frac{\Delta_{x,p}^2}{12}.$$

727 **Step 4. Comparison.**

728 Substituting $\Delta_{y,p}^* = s_p \Delta_{x,p}$,

$$730 \quad \text{MSE}_{x_{\text{scaled}}} = \frac{1}{P} \sum_{p=1}^P \rho_p s_p^2 \frac{\Delta_{x,p}^2}{12}.$$

733 Thus, if

$$735 \quad \sum_{p=1}^P \rho_p s_p^2 \frac{\Delta_{x,p}^2}{12} \leq \sum_{p=1}^P \|lut\|_2^2 \frac{\Delta_{x,p}^2}{12},$$

737 then

$$738 \quad \text{MSE}_{x_{\text{scaled}}} \leq \text{MSE}_x.$$

739 \square

741 **Mildness of the sufficient condition.** This condition is *mild*. First, scaling typically reduces the dynamic range so that $\Delta_{y,p} \leq \Delta_{x,p}$, i.e., $s_p \leq 1$. Second, due to the sparsity of X_{scaled} , the activation probability is small ($\rho_p \ll 1$), which diminishes the left-hand side. Third, the *lut* vector carries non-negligible energy across *dimensions*, so $\|lut\|_2^2$ is not small. Consequently, in these typical regimes,

$$746 \quad \sum_{p=1}^P \rho_p s_p^2 \frac{\Delta_{x,p}^2}{12} \leq \sum_{p=1}^P \|lut\|_2^2 \frac{\Delta_{x,p}^2}{12},$$

749 and thus $\text{MSE}_{x_{\text{scaled}}} \leq \text{MSE}_x$ follows naturally. For a detailed discussion of the empirical characteristics of the distributions of x , x_{scaled} , and *lut*, please refer to Fig. 3 and Appendix H.

751

752

753

754

755

756 **B ALGORITHM**
757
758
759
760
761
762
763
764
765

766 **Algorithm 1** Sequential Mean Correction Update

767 **Require:** Quantized Blocks $B_{1:L}$, fp16 means $\mu_{\text{fp}}[1:L]$, number of samples S , sequence length T decaying
768 factor η , target-layer set L_{tgt}
769 **Fix initial inputs**
770 1: **for** $s \leftarrow 1$ **to** S **do**
771 2: $X[s] \leftarrow \text{Embedding}(D[s], T)$
772 3: **end for**
773 4: **for** $l \leftarrow 1$ **to** L **do**
774 5: **if** $l \notin L_{\text{tgt}}$ **then**
775 6: **for** $s \leftarrow 1$ **to** S **do**
776 7: $Y \leftarrow B_l(X[s])$
777 8: $X[s] \leftarrow Y$
778 9: **end for**
779 10: **continue**
780 11: **end if**
781 12: $\mu_q \leftarrow 0$; $N \leftarrow 0$
782 13: **for** $s \leftarrow 1$ **to** S **do**
783 14: $Y \leftarrow B_l(X[s])$
784 15: $m_s \leftarrow Y.\text{mean}(0, 1)$
785 16: $n_s \leftarrow Y.\text{shape}[0] \cdot Y.\text{shape}[1]$
786 17: $N \leftarrow N + n_s$; $w_s \leftarrow \frac{n_s}{N}$
787 18: $\mu_q \leftarrow \mu_q + w_s \cdot (m_s - \mu_q)$
788 19: **end for**
789 20: $\delta \leftarrow \mu_{\text{fp}}[l] - \mu_q$
790 21: $c[l] \leftarrow \eta \cdot \delta$
791 22: **for** $s \leftarrow 1$ **to** S **do**
792 23: $Y_{\text{comp}} \leftarrow B_l(X[s]; \text{apply } c[l])$
793 24: $X[s] \leftarrow Y_{\text{comp}}$
794 25: **end for**
795 26: **end for**
796 27: **return** model with corrections applied

797
798

799 **Sequential Mean Correction Update.** Algorithm 1 shows the sequential update of the proposed
800 mean correction technique for efficiently mitigating quantization errors in SSD layers. The proce-
801 dure begins by initializing sample inputs through embeddings and then iteratively traversing all net-
802 work layers. For layers not subject to correction, a standard forward pass is performed to propagate
803 outputs to the next layer. Upon reaching a target correction layer, multiple sample outputs are used
804 to compute channel-wise means, which are then aggregated to estimate the mean μ_q of the quantized
805 output. This estimate is compared with the reference mean $\mu_{\text{fp}}[l]$ obtained in full precision, and their
806 difference $\delta = \mu_{\text{fp}}[l] - \mu_q$ is multiplied by a decay factor η to compute the correction term $c[l]$. The
807 correction is directly applied to the layer output, and the corrected output is propagated forward.

808 This process is repeated for all designated target correction layers, thereby alleviating accumulated
809 quantization errors through three steps: **(i) channel-wise mean estimation**, **(ii) correction term
computation**, and **(iii) propagation of corrected outputs**.

810 **Algorithm 2** SSD Layer

811 **Require:** $X \in \mathbb{R}(B, L, H, P)$, $\Delta \in \mathbb{R}(B, L, H)$, decay activation $A \in \mathbb{R}(H)$,

812 1: $B \in \mathbb{R}(B, L, G, N)$, $C \in \mathbb{R}(B, L, G, N)$,

813 2: $L = c \cdot l$

814

815 **Module 1: ChunkCumsum (Input (Δ, A) → Output (Δ, dA_{cs}))**

816 3: $\Delta \leftarrow \text{softplus}(\Delta)$

817 4: $A^+ \leftarrow \text{discretize}(A)$

818 5: $dA_{cs} \leftarrow \text{CumSumDecay}(A^+)$ $\triangleright \in \mathbb{R}(B, H, c, l)$

819

820 **Module 2: ChunkState (Input (dA_{cs}, Δ, B, X) → Output State)**

821 6: $\text{Decay}_{\text{state}} \leftarrow \exp(dA_{cs}[:, :, :, l-1]) - dA_{cs}$

822 7: $LUT_{\text{state}} \leftarrow \Delta \odot \text{Decay}_{\text{state}}$ $\triangleright \in \mathbb{R}(B, H, c, l)$

823 8: $\text{State} \leftarrow X \times (B \odot LUT_{\text{state}})$ $\triangleright \in \mathbb{R}(B, H, c, P, N)$

824

825 **Module 3: StatePassing (Input (State, dA_{cs}) → Output State)**

826 9: $\text{Decay}_{\text{pass}} \leftarrow \exp(dA_{cs}[:, :, :, l-1])$ $\triangleright \in \mathbb{R}(B, H, c)$

827 10: **for** $i = 0$ to $c-2$ **do**

828 11: $\text{State}[i+1] \leftarrow \text{State}[i+1] + \text{Decay}_{\text{pass}}[i+1] \odot \text{State}[i]$

829 12: **end for**

830

831 **Module 4: ChunkBMM (Input (B, C) → Output CB)**

832 13: $CB \leftarrow C \times B$ $\triangleright \in \mathbb{R}(B, H, c, l, l)$

833

834 **Module 5: ChunkScan1 (Input (State, C, dA_{cs}, Δ) → out_{off})**

835 14: $\text{Decay}_{\text{scan1}} \leftarrow \exp(dA_{cs})$

836 15: $LUT_{\text{scan1}} \leftarrow \Delta \odot \text{Decay}_{\text{scan1}}$

837 16: $\text{out}_{\text{off}} \leftarrow (\text{State} \times C^\top) \odot LUT_{\text{scan1}}$ $\triangleright \in \mathbb{R}(B, H, c, P, l)$

838

839 **Module 6: ChunkScan2 (Input (X, CB, dA_{cs}, Δ) → out_{diag})**

840 17: Let $dA_{cs}^{(m)} \in \mathbb{R}(B, H, c, l, 1)$, $dA_{cs}^{(n)} \in \mathbb{R}(B, H, c, 1, l)$ be the broadcasted forms of dA_{cs} .

841 18: $LUT_{\text{scan2}} \leftarrow \Delta \odot \exp(dA_{cs}^{(m)} - dA_{cs}^{(n)})$ $\triangleright \in \mathbb{R}(B, H, c, l, l)$

842 19: $\text{out}_{\text{diag}} \leftarrow X \times (CB \odot LUT_{\text{scan2}})$ $\triangleright \in \mathbb{R}(B, H, c, P, l)$

843

844 **Final Output**

845 20: $Y \leftarrow \text{out}_{\text{off}} + \text{out}_{\text{diag}}$

846 21: **return** Y $\triangleright \in \mathbb{R}(B, H, c, P, l)$

SSD layer

Given input activations X , the layer first discretizes the step size Δ and decay activation A , and constructs per-chunk cumulative decay factors through **ChunkCumsum**.

ChunkState performs the input-to-state projection within each chunk in parallel, while

StatePassing propagates recurrent information across chunks to restore the global sequence dependency.

ChunkBMM computes the block-diagonal interaction matrix CB , which is exclusively used in the diagonal path.

ChunkScan1 generates the off-diagonal contribution from the recurrent state, and

ChunkScan2 produces the diagonal contribution from the input representation with CB.

The final SSD output is obtained by summing these two terms.

864 C ADDITIONAL RELATED WORKS
865866 **Post-Training Quantization and LLM Quantization.** Quantization approaches are generally di-
867 vided into Quantization-Aware Training (QAT) (Gholami et al., 2022), which integrates quantiza-
868 tion into the training process, and Post-Training Quantization (PTQ) (Frantar et al., 2023; Xiao
869 et al., 2023; Lin et al., 2024), which applies quantization to models after pretraining. QAT is often
870 considered strong in preserving accuracy, but for large-scale models the associated retraining cost
871 can become prohibitively high. As a result, many recent studies have shifted attention toward PTQ,
872 particularly in the context of large language models (LLMs) (Touvron et al., 2023).873 Among representative PTQ approaches, GPTQ (Frantar et al., 2023) proposes a weight-
874 compensation PTQ method by leveraging approximate second-order information via the Hessian.
875 SmoothQuant (Xiao et al., 2023) shifts the difficulty of activation quantization into weights, en-
876 abling stable W8A8 and W4A8 performance. QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu
877 et al.) achieve precise 4-bit quantization by applying random or learned rotation matrices to mitigate
878 outliers. QServe (Lin et al.) highlights the practicality of W4A8 quantization in real environments,
879 demonstrating its effectiveness in reducing inference latency for LLMs. However, these methods
880 are inherently optimized for the structural properties of Transformers—such as self-attention and
881 KV caching—and thus are not directly applicable to architectures like selective state space models,
882 where continuous state updates and activation reuse play a central role.883 D ADDITIONAL EXPERIMENTAL SETTING
884885 **Implementation** For quantization, we use a calibration set of 512 samples drawn from the Pile
886 dataset. We apply 4-bit weight quantization to the in projection and out projection layers using
887 GPTQ. To improve efficiency, the scaling parameter γ of RMSNorm is fused into the in projection
888 layer (Wei et al., 2022). Except for the SSD module, activations are quantized to 8-bit with per-
889 tensor quantization, while the fast Hadamard transform (Ashkboos et al., 2024) is fused into the
890 corresponding layers. Inside the SSD, we adopt the same Triton (Dao, 2024b;a) as used in Mamba-
891 2, but modified to fit the SSDi8 method. CUDA (LY, 2024a;b) based causal Conv1d operator is used
892 without modification.893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 E ADDITIONAL ACCURACY RESULTS
919

920 The table below presents an extended version of the accuracy results in Tab. 2. Evaluations are con-
921 ducted on the same datasets, where HAD denotes applying Hadamard and 4-bit GPTQ quantization
922 to Mamba-2. SSDi8 achieves performance comparable to Quamba2 under W4A16 quantization,
923 even with W4A8 quantization.

924
925 Table 7: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with four quantization methods (HAD, Quamba,
926 Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

928	Model	Size	Methods	Bitwidth	LA	HS	PIQA	Arc-E	Arc-C	WG	Avg.
929	Mamba-2	1.3B	-	FP16	65.6%	59.9%	73.3%	64.1%	33.3%	60.8%	59.5%
930			HAD	W8A8	55.3%	59.4%	73.2%	64.0%	33.5%	58.2%	57.3%
931				W4A8	53.9%	58.9%	72.3%	63.6%	33.9%	59.1%	57.0%
932			Quamba	W8A8	49.8%	58.5%	71.2%	61.9%	32.1%	58.1%	55.2%
933			Quamba2	W4A16	64.3%	59.2%	72.6%	63.8%	33.1%	60.3%	58.9%
934				W8A8	62.0%	59.2%	72.5%	63.4%	32.7%	60.0%	58.3%
935				W4A8	61.0%	58.8%	72.4%	62.7%	32.6%	59.1%	57.7%
936		2.7B	SSDi8 (Ours)	W8A8	64.7%	59.7%	72.7%	64.0%	32.8%	60.9%	59.1%
937				W4A8	63.6%	59.2%	72.7%	63.5%	33.5%	60.4%	58.8%
938		8B	-	FP16	69.5%	66.6%	76.4%	69.5%	36.4%	64.2%	63.8%
939			HAD	W8A8	53.8%	60.8%	73.8%	64.8%	35.8%	62.2%	58.5%
940				W4A8	51.2%	59.7%	73.0%	64.9%	34.6%	60.2%	57.3%
941			Quamba	W8A8	52.4%	60.4%	71.6%	62.9%	33.7%	58.0%	56.5%
942			Quamba2	W4A16	68.8%	65.6%	75.5%	68.6%	36.6%	64.9%	63.3%
943				W8A8	66.1%	65.5%	74.4%	68.4%	37.1%	63.7%	62.5%
944				W4A8	65.6%	65.1%	74.7%	68.1%	36.1%	62.8%	62.1%
945			SSDi8 (Ours)	W8A8	68.3%	66.2%	75.6%	69.0%	36.8%	63.4%	63.2%
946				W4A8	67.6%	65.3%	75.6%	68.9%	35.2%	63.5%	62.7%
947			-	FP16	70.9%	77.7%	79.7%	76.0%	48.0%	72.0%	70.7%
948			HAD	W8A8	56.7%	75.3%	78.1%	74.1%	45.0%	65.6%	65.8%
949				W4A8	56.1%	74.6%	77.3%	73.8%	44.5%	66.0%	65.4%
950			Quamba	W8A8	54.0%	74.6%	77.1%	73.5%	44.2%	65.5%	64.8%
951			Quamba2	W4A16	71.2%	76.8%	79.1%	75.2%	45.9%	70.8%	69.8%
952				W8A8	69.8%	77.8%	79.1%	75.9%	46.9%	69.0%	69.8%
953				W4A8	68.8%	77.1%	79.1%	75.0%	46.0%	68.7%	69.1%
954			SSDi8 (Ours)	W8A8	70.4%	77.2%	79.6%	75.5%	47.2%	71.2%	70.2%
955				W4A8	69.9%	76.5%	79.1%	75.4%	46.2%	70.6%	69.6%

956 The table below shows pile perplexity comparison on 1.3B and 2.7B models. SSDi8 outperforms
957 Quamba2 in both cases and achieves performance close to FP16 under W8A8 quantization.

958
959 Table 8: Pile perplexity with $L = 2048$

961	Model	Methods	Bitwidth	Pile Perplexity (\downarrow)		
				1.3B	2.7B	
962	Mamba-2	HAD	-	FP16	6.99	6.27
963				W8A8	7.46	7.77
964				W4A8	7.87	8.17
965			Quamba2	W8A8	7.20	6.44
966				W4A8	7.55	6.68
967		SSDi8 (Ours)	W8A8		7.08	6.34
968			W4A8		7.41	6.57
969						
970						
971						

972 F ADDITIONAL ABLATION STUDIES
973974 The table below shows ablation results on the quantization axis of activations within SSD, evaluated
975 on Wikitext2 perplexity. For activations B, C , per-G, N yields the best performance, though the
976 difference from per-G is negligible (0.02). In contrast, X and State are highly sensitive to the choice
977 of quantization axis, showing substantial degradation when either the P or H axis is not considered.
978979 Table 9: Ablation study for quantization axis.
980

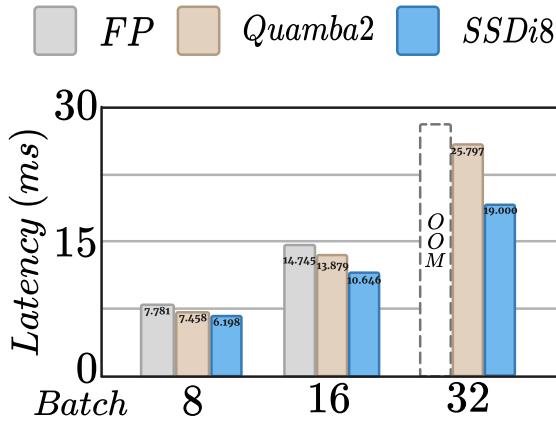
981 Model	982 Bitwidth	983 Activation	984 per-T	985 per-P(N)	986 per-H(G)	987 Wikitext2 Perplexity
983 8B	984 W4A8	985 B,C	986 -	987 -	988 -	989 7.42
			v	v	v	7.59
				v	v	7.43
				v	v	7.44
	990 SSD-FP16	991 X,State	v	v	v	992 7.42
				v	v	11.97
				v	v	8.59
				v	v	8.15

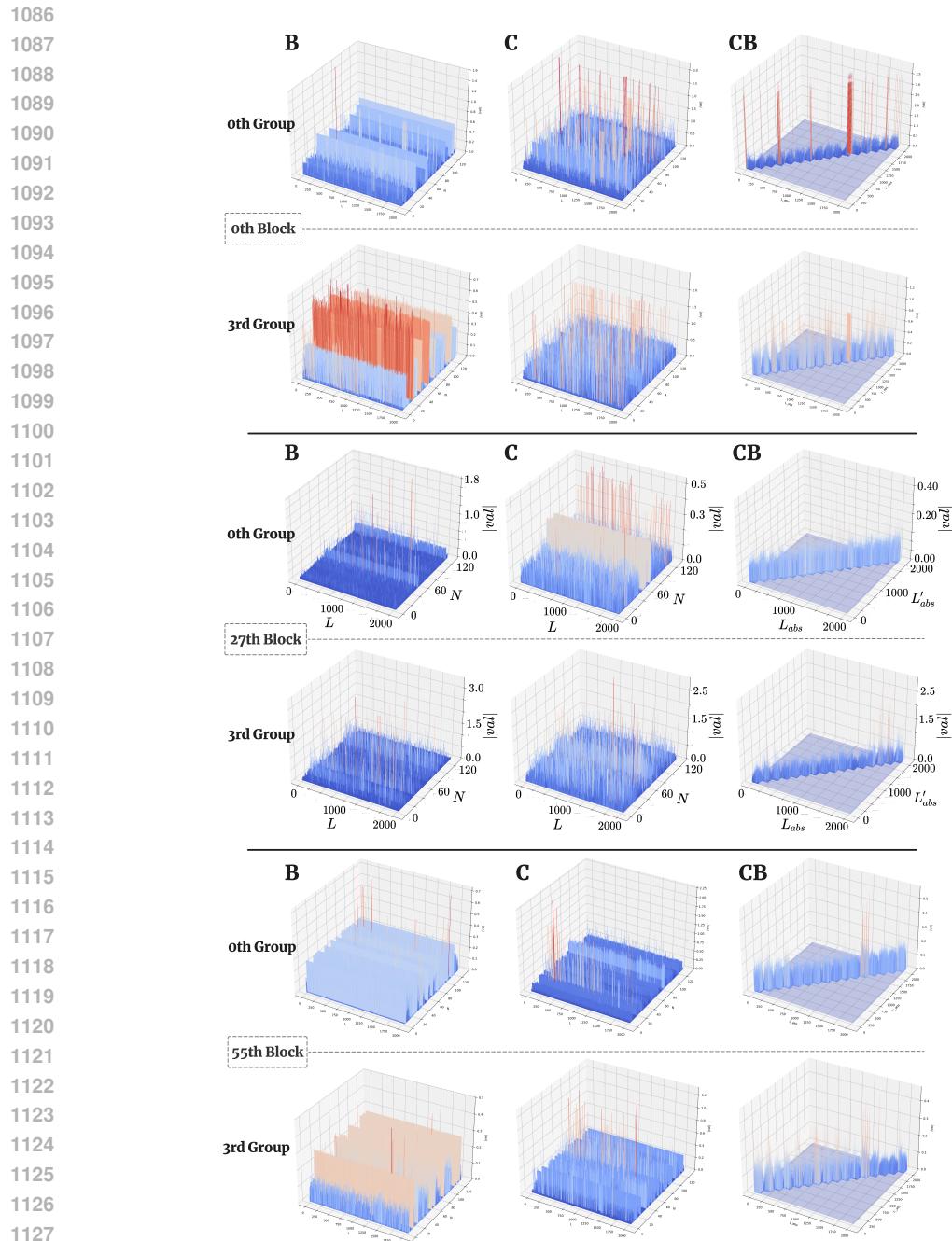
993 The figure below shows latency and accuracy variations with respect to the placement of mean
994 correction. The highest accuracy gain is observed when mean correction is applied immediately
995 after SSD layers, indicating error accumulation within SSD. In Mamba-2, the model dimension is
996 halved after the out-projection layer, yielding the lowest latency when mean correction is applied.
997 Considering the trade-off between latency and accuracy, we therefore apply mean correction only at
998 the out-projection layer.
9991000 Table 10: Accuracy and speedup for W4A8. Experiments are conducted on the LAMBADA dataset,
1001 using SSDi8 without mean correction as the baseline.
1002

1003	1004 Bitwidth	1005 Project	1006 Speedup	1007 Acc.
1005 1006 1007 1008	1006 W4A8	None	$\times 1.00$	67.2%
		In	$\times 0.945$	67.4%
		SSD	$\times 0.975$	67.5%
		Out	$\times 0.987$	67.4%

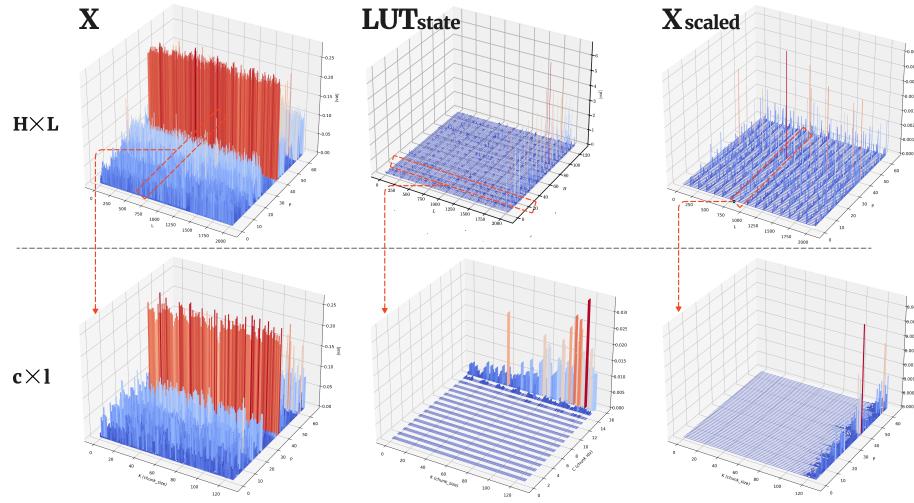
1026 **G ADDITIONAL LATENCY AND MODEL SIZE RESULTS**
10271028 This section presents results on additional memory usage and latency.
10291030 The memory footprint is nearly identical to that of the previous SOTA model, Quamba2, with only
1031 a small increase due to the extra static quantization scales.

Model	Size	Method	W8A8	W4A8
Mamba2	2.7B	FP16	5.154 GB	
		Quamba2	2.948GB	1.766GB
		SSDi8 (Ours)	2.953GB	1.774GB
	8B	FP16	15.710 GB	
		Quamba2	9.860GB	7.028GB
		SSDi8 (Ours)	9.867GB	7.038GB

1042 Table 11: Memory usage comparison
10431044 With W4A8 quantization on the 8B model, SSDi8 achieves lower SSD latency than FP16 and
1045 Quamba, with improvements becoming more pronounced as computational intensity increases.
10461062 Figure 6: Comparison with Quamba2 under W4A8 quantization on the 8B model is also reported.
1063 OOM denotes Out-Of-Memory.
1064

1080 **H DISTRIBUTIONS OF SSD TENSORS**
10811082 **Visualization of Activations** The figure below represents that visualization of B , C , and CB by
1083 group in the first, middle, and last blocks of the Mamba-2 8B model. As argued in Sec. 4, the
1084 distributions differ across groups. CB is masked as it is used for computing out_{diag} .
10851128 **Figure 7: Visualization of the distributions of activations B , C , and CB in the first, middle, and**
1129 **last block of Mamba-2 8B.**1130
1131
1132
1133

1134
 1135
 1136
 1137
 1138
 The figure below shows the visualization of X , LUT_{state} , and X_{scaled} in the last block of Mamba-2
 1139 8B. The first row illustrates the full sequence length, while the second row depicts its partition into
 1140 nchunks with the corresponding chunk size. Both LUT_{state} and X_{scaled} exhibit exponential growth
 1141 as the chunksize index increases.
 1142
 1143



1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156 Figure 8: Visualization of the distributions of activations X , LUT_{state} , and X_{scaled} in the last block
 1157 of Mamba-2 8B.
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **I LLM USAGE**
11891190 During the manuscript preparation, we used OpenAI’s GPT5 (<https://chatgpt.com/>), a Large Lan-
1191 guage Model, to proofread our work. Our interaction with the LLM was iterative and focused exclu-
1192 sively on improving the quality of the writing. We affirm that the LLM served as an assistive tool
1193 and did not contribute to core research ideas, experimental design, analysis, and results presented in
1194 this paper. The final scientific content and all claims made in this paper are the sole responsibility of
1195 the authors.
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241