
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SSDI8: ACCURATE AND EFFICIENT
8-BIT QUANTIZATION FOR STATE SPACE DUALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in sequence modeling have highlighted Mamba as a state space
architecture offering efficient long-range dependency modeling and providing a
viable alternative to Transformers. Building upon this, Mamba-2 introduces the
Structured State Space Duality (SSD), which integrates recurrent and attention
modes to achieve efficiency and scalability. However, this architectural expansion
substantially increases memory and latency overhead, underscoring the need for
efficient compression strategies tailored to SSD. In this work, we present SSDi8,
the first post-training quantization framework specifically designed for SSD to
maintain a persistent INT8 path. SSDi8 introduces a reformulation that decouples
element-wise multiplications from matrix multiplications, enabling reuse of quan-
tized activations across modules. Moreover, SSDi8 adaptively quantizes channel-
varying activations at cost-effective points, further reducing latency. On the ac-
curacy side, SSDi8 explicitly leverages the intrinsic dimensional decomposition
of SSD, exploiting distinct outlier distributions across axes, and incorporates an
error correction term based on per-channel error statistics. Comprehensive exper-
iments demonstrate that SSDi8 achieves accuracy comparable to FP16 while de-
livering up to 1.4× speedup in W4A8 and W8A8 settings. We further validate its
robustness in resource-constrained environments by deploying it on the Orin Nano
device.

1 INTRODUCTION

Mamba (Gu & Dao, 2024) is a recent state space sequence model that builds upon the Structured
State Space Model (SSM) (Gu et al., 2020; 2022) to provide efficient long-range dependency model-
ing with constant computation and memory usage. While global attention in Transformers (Vaswani
et al., 2017) can enhance performance as model size increases, it also incurs quadratic growth in
computation and memory with respect to sequence length, which poses substantial challenges for
large-scale training and deployment. In contrast, Mamba achieves performance comparable to or ex-
ceeding state-of-the-art architectures across billion-scale language models, positioning it as a strong
candidate for next-generation sequence modeling.

Despite its algorithmic efficiency, Mamba faces practical limitations: its specialized state space re-
currence is difficult to parallelize on modern accelerators, making it less hardware-friendly than
optimized Transformer kernels, and it shows relatively diminishing efficiency when scaled to larger
parameter sizes. To overcome these issues, Mamba-2 (Dao & Gu, 2024) introduces the Structured
State Space Duality (SSD), a hybrid design that integrates recurrent mode with attention mode.
Mamba-2 adds a head dimension analogous to multi-head attention to enhance scalability and em-
ploys a dual representation that improves general matrix multiplication (GEMM) utilization, yield-
ing higher throughput on GPUs and TPUs. While the original Mamba exhibited limited efficiency
beyond 2.7B parameters, Mamba-2 scales effectively to over 8B parameters and achieves competi-
tive performance across language, audio (Lee et al., 2025), vision (Shi et al., 2024), and multimodal
tasks (Huang et al., 2024). Yet this expansion also intensifies memory and latency overhead, high-
lighting the need for efficient compression and optimization.

The recurrent mode of SSD is computationally efficient but system-inefficient, while the attention
mode is relatively computationally demanding. During its operation, SSD repeatedly invokes acti-
vations across modules and performs sequential updates. In this process, activations reuse across

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

modules necessitates frequent DRAM accesses, and the intrinsically higher latency of DRAM intro-
duces considerable overhead.

Table 1: Accuracy under major layer
quantization of Mamba-2. Significant
degradation arises when SSD is quan-
tized per-tensor.

Model Bitwidth Quantized
Layer(s) ACC

2.7B

FP16 – 63.8%

W4A8
+ In Proj 63.6%

+ SSD 58.4%
+ Out Proj 54.6%

As shown in Tab. 1, directly applying quantization methods
originally designed for Transformers—such as Hadamard
rotation or GPTQ—to SSD layers leads to substantial ac-
curacy degradation. This stems from the distinctive com-
putational organization of SSD. First, the model dimen-
sion is partitioned into the number of heads and the per-
head dimension, each following markedly different statis-
tical distributions; failure to account for this property re-
sults in significant performance loss. Second, SSD contains
dimension-varying activations whose shapes differ between
memory storage and computation, and these activations are
repeatedly invoked across multiple modules. Third, element-wise multiplications are extensively in-
tertwined with matrix multiplications, further complicating quantization. In this work, we conduct
the first comprehensive analysis of SSD to maintain a persistent INT8 path , providing observations
that reveal the internal factors contributing to its quantization sensitivity.

Accordingly, we propose SSDi8, an accurate and efficient post-training quantization framework
that reduces both inference latency and performance degradation within SSD. For latency reduc-
tion, SSDi8 quantizes channel-variant and recurrent activations at optimal points and reuses them,
ensuring an uninterrupted INT8 execution path from input to output. Furthermore, we address
element-wise operations that disrupt this path by introducing a sparse-aware reformulation, with the
guarantee formally established through mathematical analysis. This design keeps the execution in
INT8 while substantially alleviating memory bottlenecks and computational overhead. For accuracy,
SSDi8 leverages the intrinsic dimensional structure and properties of SSD. Specifically, external di-
mensions entering SSD are decomposed into two axes, each exhibiting distinct outlier distributions,
which are explicitly exploited to reduce quantization error. Furthermore, we introduce an error cor-
rection term based on per-channel error means, yielding consistent gains in accuracy. Through these
mechanisms, SSDi8 achieves a balanced optimization of both efficiency and performance.

SSDi8 achieves accuracy comparable to FP16 while enabling up to 1.4× inference speedup under
both W4A8 and W8A8 configurations, while excluding W4A4 due to hardware-induced slowdowns
as discussed in Lin et al. Notably, in the context of SSD—where error sensitivity often causes se-
vere degradation—our method incurs negligible accuracy loss while delivering substantial latency
reductions, with single-inference speedups reaching 1.5×. To the best of our knowledge, this repre-
sents the first successful application of persistenct INT8 path within the Mamba-2 SSD architecture.
Furthermore, we demonstrate that SSDi8 maintains efficiency in resource-constrained environments
through deployment on the Orin Nano device.

2 RELATED WORKS

Mamba Architecture. Mamba is a sequence modeling architecture built on SSMs, which have been
explored as an alternative to Transformers in order to circumvent the quadratic complexity of self-
attention (Gu & Dao, 2024). Unlike conventional linear SSMs (Gu et al., 2022; Smith et al., 2023),
Mamba incorporates a selective state space mechanism that adaptively gates input-dependent state
transitions and output projections, enabling more expressive sequence modeling. Mamba-2 extends
this framework by introducing the structured SSDs (Dao & Gu, 2024), which establishes a formal
equivalence between SSMs and linear attention and enables optimized GEMM-based implementa-
tions. This design substantially improves hardware utilization on modern accelerators. Furthermore,
Mamba-2 allowing the state dimension—previously constrained to N = 16 in Mamba-1—to scale
stably to N = 64–128 and beyond. In addition, Mamba-2 integrates a multi-head structure anal-
ogous to multi-head attention, further enhancing scalability. These advancements make large-scale
parameter expansion feasible, but they also intensify memory and latency overhead, motivating the
need for compression and deployment strategies.

Quantization for Mamba Models. Recently, several studies have begun to explore quantization
for the Mamba models (Tang et al., 2024; Yu et al., 2025). MambaQuant (Xu et al., 2025) and
Quamba1 (Chiang et al., 2025b) introduced Post-Training Quantization (PTQ) methods targeting

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A

x

B
C C

QuantizeB

RMSNorm

In Proj

Conv

SSD

RMSNorm

Out Proj

x B C

z

Chunk
State

State
Passing

Chunk
Scan(1)

Chunk
Scan(2)

Chunk
BMM

Chunk
CumsumQuantize

Y

State State

CB Int 8:

: FP16

(a) : Mamba-2 (b) : SSDi8

Correction

Persistent INT8 Representation

Reformulation

Figure 1: (a) Mamba-2 block architecture. (b) SSD pipeline in SSDi8. SSDi8 enables the persistent
INT8 representation path through reformulation and quantized activation reuse, while mitigating
performance degradation via channel-aware quantization and mean correction.

the original Mamba-1 architecture, but their approaches are not directly applicable to SSD-based
Mamba-2. Quamba2 (Chiang et al., 2025a) extended quantization to Mamba-2, applying W4A8
and W8A8 settings that include SSD blocks. However, its method is limited to the inputs of SSD
layers and does not adequately address precision issues within internal SSD computations, leaving
the INT8 execution path incomplete and constraining latency optimization.

3 BACKGROUND

3.1 QUANTIZATION

Quantization discretizes continuous values into a finite set of integer levels. In particular, uniform
quantization divides the value range into equal intervals, mapping each element of a tensor X to its
nearest quantized level as follows:

X̃ = round

(
X

αX

)
, αX =

max(|X|)
2 b−1 − 1

, (1)

where X̃ is the quantized tensor, αX is the scaling factor that defines the step size based on the
maximum absolute value of X , and b is the bit-width.

3.2 MAMBA-1

Mamba is an architecture built upon State Space Models (SSMs), composed solely of activation
operations, where a hidden state variable is employed to efficiently compress and propagate mem-
ory (Gu & Dao, 2024). The fundamental state update and output equations are defined as follows:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t). (2)

Eq. 2 builds on the theoretical foundations of HiPPO (Gu et al., 2020) and S4 (Gu et al., 2022),
which substantially improve both performance and efficiency. However, since SSMs are defined in
continuous time, applying them to discrete inputs requires discretization. In practice, Zero-Order
Hold is used to preserve previous values, and a time-step activation ∆ is introduced to discretize
matrices A and B. These operations are performed independently along the channel dimension of
the input x, so that each channel independently follows its own SSM formulation:

SB(x) = xWB , SC(x) = xWC , S∆(x) = xW∆. (3)

Through input-dependent activations, Mamba highlights important information while suppressing
noise, improving long-range dependency modeling.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHODOLOGY

The overall workflow of SSDi8 is illustrated in Fig. 1. A substantial portion of SSD modules is
executed along the persistent INT8 representation path, reusing quantized activations and applying
a sparse-aware reformulation to element-wise operations that disrupt this path. The output tensor
dAcs from ChunkCumsum is negligible in size compared to other tensors, yet its recovery after
quantization is challenging due to the element-wise multiplication; hence, it is retained in FP16.
In the same vein, ChunkScan2 remains in FP16 for analogous reasons. These choices are further
elaborated within this section.

4.1 PRELIMINARY STUDY: MAMBA-2’S STRUCTURED STATE SPACE DUALITY

The Structured State Space Duality (SSD) in Mamba-2 consists solely of activation operations and
unifies the recurrent and attention modes, thereby reducing computational cost and improving effi-
ciency over the recurrence-dominated operations of conventional SSMs. Concretely, the SSM com-
putation can be expressed as a lower-triangular structured matrix: the diagonal block, which directly
influences the output, is computed via the attention formulation using matrix multiplications, while
the off-diagonal blocks, which require recurrence, are computed by leveraging the semiseparable
property, which admits low-rank factorizations.

A key distinction from Mamba is that Mamba-2 introduces a number of heads H, analogous to
the multi-head structure in Transformers. As shown in Fig. 2, the value of H is formally defined by
D = H⊙P, where D denotes the model dimension and P the head dimension. Notably, H and P remain
independent axes, with H chosen to be much larger than P. For efficiency, the input-dependent B and
C are parameterized with an auxiliary dimension G, and broadcast to H when required.

Formally, the input activations of SSD and its dimension before discretization are given as follows:

A ∈ R(H), ∆ ∈ R(B,L,H), X ∈ R(B,L,H,P),

B ∈ R(B,L,G,N), C ∈ R(B,L,G,N), Y ∈ R(B,L,H,P),

where B denotes the batch size, L the sequence length, H the number of heads, G the number of
groups, P the head dimension, N the state dimension, and Y the final output of SSD. To shorten the
effective recurrent path and enable parallelism, the sequence is partitioned as L = c ⊙ l, where c
is the number of chunks and l is the chunk size. The computation then proceeds through five mod-
ules—ChunkCumsum, ChunkState, StatePassing, ChunkBMM, and ChunkScan—which
together yield the SSD output Y. Additional details are provided in Appendix B .

ChunkCumsum (Input (∆, A) 7→ Output (∆, dAcs)). ChunkCumsum applies a softplus trans-
formation to ∆, a time-step dependent scaling factor introduced for discretization, and discretizes
the decay activation A that governs recurrent dynamics. It then prepares the cumulative decay term
dAcs, which is subsequently consumed by downstream modules for state updates.

ChunkState (Input (dAcs,∆, B, X) 7→ Output (State)). The ChunkState module dis-
cretizes the projection matrix B, applies the decay factor, and multiplies it with the input X to gener-
ate the hidden state. The cumulative decay is computed as Decaystate = exp

(
dAfinal

cs −dAcs

)
. For

simplicity, we denote ∆ ⊙ Decaystate by LUTstate where ⊙ denotes element-wise multiplication,
in the following modules. The resulting state update is formulated as

State = X ×
(
B ⊙ LUTstate

)
(4)

StatePassing (Input (State, dAcs) 7→Output (State)). This module integrates the states com-
puted from independent chunks into the actual recurrent state through decay. The decay term is given
by

Decaypass = exp
(
dAfinal

cs), (5)
and the recurrent update is performed over the chunk as

Statec ∈ Statei+1 ← Statei+1 + Decayi+1 ⊙ Statei, i = 0, 1, . . . , c− 2. (6)

ChunkBMM (Input (B,C) 7→ Output (CB)). ChunkBMM performs a batched matrix multiplica-
tion between C and B. This operation extracts the diagonal blocks of the product, yielding CB,
which is used in the output computation within SSD.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Activation X outside SSD Activation X inside SSD
Separable patterns

appear along H-dim

Figure 2: Visualization of activation X in the 16th block of Mamba-2 8B before and after the SSD in-
put transformation. The pre-SSD dimension (B,L,D) exhibits no clear token-wise pattern, whereas
the transformed dimension (B,L,H,P) within SSD reveals distinct patterns along the H-dim.

ChunkScan1 (Input (State, C, dAcs,∆) 7→ Output (outoff-diag)). ChunkScan1 computes the
off-diagonal interaction term by performing a matrix multiplication between the recurrent state State
and the projection matrix C. The decay contribution is modeled as Decayscan1 = exp(dAcs), and
combined with ∆ to form LUTscan1 (= ∆⊙ Decayscan1). The final off-diagonal output is obtained
as outoff-diag =

(
State× C

)
⊙ LUTscan1.

ChunkScan2 (Input (X,CB, dAcs,∆) 7→ Output (outdiag)). ChunkScan2 computes the diag-
onal contribution by projecting the input representation X with the combined activation CB, while
modulating the result using the decay and discretization terms (dAcs,∆). This module complements
the off-diagonal pathway from ChunkScan1, and together they form the complete output of SSD:
Y = outoff-diag + outdiag.

4.2 SSDI8

Quantization of B,C. Within SSDi8, the handling of the channel-dependent activations B and C
constitutes one of the strategies, since they are repeatedly invoked across three SSD submodules.
Rather than quantizing them separately within each module, SSDi8 quantizes once and reuses the
resulting INT8 tensors, thereby reducing memory traffic and enabling a consistent low-precision
execution path. A challenge arises because B and C are defined along the group dimension G but
are broadcast to the head dimension H during computation, with H typically an order of magnitude
larger than G. Naively applying quantization after broadcasting induces significant overhead (up to
4×), which SSDi8 addresses by optimizing the placement of quantization operations.

To minimize redundant overhead, SSDi8 performs an early quantization of the channel-varying ac-
tivations B and C once along the group axis G at the beginning of each SSD layer. The resulting
INT8 tensors are then reused across all downstream modules, maintaining a consistent low-bitwidth
representation without repeated quantization. Since |G|≪ |H|, quantization along G is considerably
more efficient, adding only about 3% to the total SSD latency. Moreover, as shown in Figs. 2 and 8,
the head dimension H exhibits highly heterogeneous value distributions across heads—up to 5×
variation—making direct per-head quantization unstable, Similarly, the group dimension G shows
distinct characteristics and must be considered in quantization. While the state dimension N exhibits
relatively consistent statistics, it directly participates in subsequent matrix multiplications, where
quantization errors cannot be restored. Thus, it is excluded from the quantization axes.

Sparse-aware Reformulation. As defined in Eq. 4, the ChunkState computation applies B ⊙
LUTstate prior to the matrix multiplication with X ∈ R(B,H,c,l,P). Here, LUTstate ∈ R(B,H,c,l) is
multiplied element-wise with B ∈ R(B,H,c,l,N) to impose a decay pattern across the steps within
each B, H, and c. The resulting B ⊙ LUTstate is then multiplied with X along the l-axis to project
the l sequence steps into N. The operations are executed independently and in parallel across B,
H, and c. However, this ordering introduces three critical limitations: (i) although B is quantized
to INT8, the presence of LUTstate in FP16 enforces a floating-point execution path, undermining
the efficiency of INT8 GEMM; (ii) because LUTstate exhibits exponential variation along the chunk
axis l, any quantization scheme other than per-l quantization introduces substantial error, while
even per-l quantization is infeasible due to quantization error accumulation after the l-axis matrix
multiplication; (iii) attempting Q(B ⊙ LUTstate) requires quantization after the G→ H expansion,
which incurs significant overhead. To enable a fully INT8 execution path, SSDi8 reformulates the
computation as

StateINT32 = Q(Xscaled)×Q(B), Xscaled = LUTstate ⊙X, StateINT32 ∈ R(B,H,c,P,N), (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

X

X

X Scaled

X Scaled

State

20th head

10th head

10th head

15th chunk

20th head

15th chunk

(a)X with Sparse - Aware Reformulation (b) State per head

State

LUTState

 High Sparsity

scaled

Figure 3: (a) Distribution plots of head-wise X and LUTstate in the 27th block of the ChunkState
module, and their element-wise product after reformulation Xscaled. The channel-wise (P-dim) dis-
tribution of Xscaled is highly sparse. (b) Head-wise distribution plots of State.

where Q(·) denotes quantization. This reformulation is valid because LUTstate applies its multi-
plication along the l-dimension shared by both X and B, while all other dimensions operate in-
dependently. This property ensures that moving the scaling operation from B to X preserves the
computational result, and quantizing the resulting Xscaled mitigates the limitations. In this case,
Q(Xscaled) is quantized along the (P,H) axes because LUTstate is broadcast along the P axis while
X preserves consistency across P and per-(H) heterogeneity as shown in Fig. 3(a) and Fig. 2. Quan-
tization simulations show that Xscaled exhibits pronounced outliers along the channel axis, which
makes accurate quantization challenging. However, the actual quantization error of Q(Xscaled) does
not significantly increase despite the presence of such outliers. From a distributional perspective,
this robustness can be attributed to the high sparsity of Xscaled as shown in Fig. 3 (a), which leads
to reduced quantization errors overall. To formally validate this property, we prove in Appendix A
that, under mild conditions, the quantization error of Xscaled is smaller than that of Q(X)⊙LUTstate.
This sparsity-aware proof justifies the proposed reformulation, and empirical results further confirm
that the resulting performance degradation remains negligible.

Persistent INT8 Representation of Recurrent States. StateINT32 obtained from the proposed re-
formulation is accumulated in INT32. Since INT32 consumes twice the memory of FP16, SSDi8
reduces memory traffic by directly converting INT32 to INT8 in registers with quantization scales:

StateINT8 = Round

(
StateINT32 ⊙

sxsbqmax

ss

)
, qmax = 2b−1 − 1, (8)

where sx, sb, ss denote the quantization scales of X , B, and State, respectively. The resulting INT8
tensor is then stored in DRAM, avoiding intermediate FP16 representations and thereby reducing
memory bandwidth usage. State also exhibits variation across heads H. As shown in Fig. 3 (b),
consistency is observed along both the P and N, since N participates in subsequent multiplications
within ChunkScan1, quantization along N is not adopted. StateINT8 is thus quantized per-(H,P).

In the StatePassing module, independently computed chunkwise states are recurrently accu-
mulated with decay to form the actual state, as shown in Eq. 6. Since State is already in INT8,
maintaining the INT8 execution path requires quantizing the FP16 Decay. The computation pro-
ceeds independently along B,H and recurrently along c, where each Decay is a scalar. This enables
element-wise fixed-point quantization of Decay. Formally,

Q(Statei+1) ← Q(Statei+1) +
Q(Decayi+1)

S
⊙Q(Statei), i = 0, 1, . . . , c− 2, (9)

where S is a gating constant chosen as 2k to enable bit-shift operations for minimal latency (with
k = 7 in experiments). Per-H,P quantization ensures that all StateINT8 across c share a common
scale. This allows recurrent updates to be performed by simple bit-shift operations. As a result,
StateINT8 can be persisted through ChunkScan1, enabling INT8 Tensor Core multiplications with
CINT8. Here, Decay ∈ R(B,H,c,l) aligns with the output outoff-diag ∈ R(B,H,c,l,P), so element-wise
multiplication is applied directly after the matrix multiplication.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with three quantization methods (Quamba,
Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model Size Methods Bitwidth LA HS PIQA Arc-E Arc-C WG Avg.

Mamba-2

1.3B

- FP16 65.6% 59.9% 73.3% 64.1% 33.3% 60.8% 59.5%

Quamba W8A8 49.8% 58.5% 71.2% 61.9% 32.1% 58.1% 55.2%

Quamba2 W8A8 62.0% 59.2% 72.5% 63.4% 32.7% 60.0% 58.3%
W4A8 61.0% 58.8% 72.4% 62.7% 32.6% 59.1% 57.7%

SSDi8 (Ours) W8A8 64.7% 59.7% 72.7% 64.0% 32.8% 60.9% 59.1%
W4A8 63.6% 59.2% 72.7% 63.5% 33.5% 60.4% 58.8%

2.7B

- FP16 69.5% 66.6% 76.4% 69.5% 36.4% 64.2% 63.8%

Quamba W8A8 52.4% 60.4% 71.6% 62.9% 33.7% 58.0% 56.5%

Quamba2 W8A8 66.1% 65.5% 74.4% 68.4% 37.1% 63.7% 62.5%
W4A8 65.6% 65.1% 74.7% 68.1% 36.1% 62.8% 62.1%

SSDi8 (Ours) W8A8 68.3% 66.2% 75.6% 69.0% 36.8% 63.4% 63.2%
W4A8 67.4% 65.3% 75.6% 68.9% 35.2% 63.5% 62.6%

8B

- FP16 70.9% 77.7% 79.7% 76.0% 48.0% 72.0% 70.7%

Quamba W8A8 54.0% 74.6% 77.1% 73.5% 44.2% 65.5% 64.8%

Quamba2 W8A8 69.8% 77.8% 79.1% 75.9% 46.9% 69.0% 69.8%
W4A8 68.8% 77.1% 79.1% 75.0% 46.0% 68.7% 69.1%

SSDi8 (Ours) W8A8 70.4% 77.2% 79.6% 75.5% 47.2% 71.2% 70.2%
W4A8 69.9% 76.5% 79.1% 75.4% 46.2% 70.6% 69.6%

Quantization on ChunkBMM and ChunkScan2. As shown in Fig. 1, the quantized activations
BINT8 and CINT8 are reused in the ChunkBMM module. Because both are defined on the group
dimension G, the multiplication proceeds without conversion to the head dimension H , producing
CBINT32. The tensor CB ∈ R(B,G,c,l,l) is larger than X , so its quantization yields substantial
memory savings. Similar to ChunkState, a single INT32 → INT8 step is applied to minimize
memory traffic. In ChunkScan2, (LUTScan2 ⊙ Q(CB)) × X involves X in FP16, enforcing a
floating-point path. Due to its shape, LUTScan2 is element-wise multiplied with CB, making post-
quantization recovery difficult and rendering reformulation infeasible due to a shape mismatch with
X . The dequantization scale of CB is fused into LUTScan2, reducing overhead while allowing partial
FP16 execution. Experiments demonstrate that this process alone yields substantial latency gains.

Leveraging the persistent INT8 representation of recurrent states together with the sparse-aware re-
formulation and reuse of activation, SSDi8 achieves up to 1.38× speedup overall, with gains reach-
ing 1.6× in the ChunkScan module compared to FP16 execution.

Mean Correction for SSD Quantization Error. To further mitigate the accumulation of quanti-
zation errors across SSD layers, we introduce a per-channel mean correction strategy. Given full-
precision and quantized results XW = Y ∈ RN,P and X ′W ′ = Y ′ ∈ RN,P , the problem of
minimizing the error between Y and Y ′ is convex, and the optimal correction vector c⋆ can be
derived in closed form as the channel-wise mean of the quantization error:

Ec = ∥Y − (Y ′ + c)∥2F =

P∑
p=1

N∑
i=1

(
(Y − Y ′)i,p − cp

)2
, c⋆p = 1

N

N∑
i=1

(Y − Y ′)i,p. (10)

To ensure accurate estimation, we adopt a layer-wise sequential update strategy, enabling subsequent
layers to reflect the applied corrections and, thereby, capture activation shifts induced by earlier
updates. For a detailed description of the sequential update algorithm, please refer to Algorithm B.
To minimize overhead, c is applied only to the output projection layer, whose dimensionality is
half that of the input projection layer and where quantization error is most pronounced. This design
achieves consistent accuracy gains while incurring only marginal latency overhead (≈ 1–2%).

5 EXPERIMENTS

Experimental Setup. We conduct PTQ experiments on Mamba-2 (Dao & Gu, 2024) models with
1.3B, 2.7B, and 8B parameters. Experiments are primarily conducted on NVIDIA A5000 GPUs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

17.724
16.701

12.074

2.812

3.524
3.253

5.050
5.379

4.413

9.169 9.020

6.600

(a) Latency vs. Batch size (b) Latency vs. Sequence length (c) Module wise latency breakdown in SSD

0.282
0.389

1.730

4.816

1.662

11.219

0.261
0.256

3.014

10.215

0.439
0.417

3.205

PIR
6.089

1.730 0.767

0.416

1.77 1.50

4.816

5.349

4.427

9.294 9.067

6.509

16.701

12.074

17.7241.06
1.47

Figure 5: SSD latency of quantization methods on Mamba-2 2.7B: (a) varying batch (L = 2048), (b)
varying length (B = 32), and (c) module-wise latency (B = 32, L = 2048). PIR denotes Persistent
INT8 Representation. SSDi8 achieves up to 1.47× overall speedup and 1.77× in the State path.

We evaluate zero-shot performance on LAMBADA (Paperno et al., 2016), WinoGrande (Sakaguchi
et al., 2020), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), ARC-Easy, and ARC-
Challenge (Clark et al., 2018) benchmarks, and additionally assess language modeling capability
via WikiText2 perplexity. Results are compared against the FP16 baseline, Quamba (Chiang et al.,
2025b) and Quamba2 (Chiang et al., 2025a), and the HAD (HadMamba2) baseline, where HAD ap-
plies the Hadamard rotation to the Mamba-2 projection layers (Chiang et al., 2025a), GPTQ weight
quantization and RTN quantization of SSD inputs.

Quantization Setup. We use symmetric, static quantization on both W8A8 and W4A8 configu-
rations. For 4-bit weight quantization, we employ GPTQ (Frantar et al., 2023), combined with
Hadamard-transformed (Ashkboos et al., 2024) projection layers. To handle RMSNorm-induced
outliers, we migrate the γ parameter (Wei et al., 2022), and apply mean correction with a factor of
0.15 to prevent estimation overfitting.

5.1 EVALUATION OF ZERO-SHOT AND GENERALIZATION PERFORMANCE

Table 3: Wikitext2 perplexity with L = 2048.

Methods Bitwidth
Wikitext2 Perplexity (↓)

1.3B 2.7B 8B

- FP16 10.42 9.06 7.25

HAD W8A8 11.31 11.42 8.57
W4A8 11.63 11.85 8.79

Quamba2 W8A8 10.80 9.32 7.79
W4A8 11.08 9.54 7.94

SSDi8 (Ours) W8A8 10.63 9.22 7.49
W4A8 10.92 9.43 7.62

Tab. 2 reports zero-shot task performance
of Mamba-2 models (1.3B, 2.7B, 8B) un-
der FP16, Quamba, Quamba2, and our
SSDi8 quantization. Average accuracy is
computed over six benchmarks. Across
all bit-widths (W8A8, W4A8) and model
scales, SSDi8 consistently outperforms
Quamba2. For example, on the 2.7B
model with W4A8, SSDi8 improves over
Quamba2 (62.7% vs. 62.1%), and on the
8B model with W8A8, it achieves 70.2%
compared to 69.8%. These results underscore the robustness of SSDi8 across diverse configurations.
Full comparisons, including HadMamba-2 and Quamba2 with W4A16, are provided in Appendix E.

45.355

33.94232.392

66.107

62.589

87.702

Figure 4: Forward la-
tency of W8A8 (L =
2048) on 2.7B.

Perplexity Results. To assess linguistic fluency and generalization, we
report WikiText2 perplexity in Tab. 3. Across all model scales and bit-
widths, SSDi8 consistently achieves lower perplexity than Quamba2
while narrowing the gap to FP16. In particular, for the 8B model, SSDi8
yields reductions of 3.9% (7.49 vs. 7.79) under W8A8 and 4.0% (7.62
vs. 7.94) under W4A8. These results demonstrate that SSDi8 preserves
linguistic fluency and generalization under quantization.

5.2 LATENCY AND MODEL SIZE

In Fig. 5 (a) and (b), we compare SSDi8 with FP16 and Quamba2 on
NVIDIA A5000 (24GB) across varying batch sizes (B ≤ 32) and se-
quence lengths (L ≤ 2048). Latency is measured in milliseconds as the average of 100 runs after
warm-up. On Mamba-2 2.7B with B = 32, L = 2048, SSDi8 achieves a 1.47× speedup over FP16
and a 1.38× improvement over Quamba2. The benefit increases with larger batch sizes and longer
sequences, where greater chunk-level parallelism amplifies throughput, while short sequences (e.g.,
L = 256) may show higher FP16 efficiency due to lower computational intensity. Fig. 5 (c) reports

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

module-level latency breakdown for 2.7B at B = 32, L = 2048. With persistent INT8 represen-
tation, ChunkScan achieves up to 1.77× speedup over FP16 and 1.50× over Quamba2, while
StatePassing yields 2.25× and 2.17× improvements, respectively. As demonstrated in Fig. 4,
similar gains are observed under W8A8, and results on Mamba-2 8B are provided in Appendix G.

Table 4: SSD latency (ms) of SSDi8 vs.
Quamba2 on Orin Nano 16G.

GPU Orin Nano 16G

Bitwidth W4A8 W8A8
Method Quamba2 SSDi8 Quamba2 SSDi8
L = 256 55.30 44.71 51.03 41.30
L = 512 76.10 68.00 70.95 60.49
L = 1024 134.40 127.51 139.10 114.36
L = 2048 262.90 240.54 249.29 217.69

To further assess deployability under resource-
constrained conditions, we evaluate SSDi8 on the
NVIDIA Orin Nano 16G, as shown in Tab. 4. Using
the Mamba-2 2.7B model, we measure SSD latency
across varying sequence lengths with a batch size
of 16, comparing W4A8 and W8A8 quantization
against Quamba2. Across all configurations, SSDi8
consistently outperforms Quamba2, demonstrating
its robustness beyond high-scale accelerators.

5.3 ABLATION STUDIES

Table 5: Ablation results for internal SSD quantization (Q(SSD)).

Bit-
width

ChunkState
Q(X)

Sparse
Reform.

Quant.
of B,C

Persistent
INT8

Quant. of
ChunkBMM Latency PPL

W4A8

– – – – – 8.63 9.34
✓ 8.58 9.35
✓ ✓ 8.05 9.37
✓ ✓ ✓ 7.60 9.39

✓ 8.35 9.36
✓ ✓ ✓ 8.00 9.42
✓ ✓ ✓ ✓ 6.53 9.43

In Tab. 5, we present ab-
lation results on Mamba-2
2.7B. The baseline retains
FP16 only within SSD
while applying W4A8 else-
where. Comparing Q(X)
with the proposed refor-
mulated Q(X ⊙ LUTstate)
shows negligible quantiza-
tion error, consistent with
our theoretical proof. Avoiding element-wise multiplications after head expansion of B yields mea-
surable latency gains. Without reformulation, quantizing X alone prevents the use of the persistent
INT8 path, and the final latency improvement from quantizing B, C, and CB is limited to 1.07×. By
contrast, our reformulation enables INT8 execution in ChunkScan1, improving latency by 1.08×,
and further quantization of ChunkBMM achieves a 1.32× speedup. Perplexity degradation remains
below 0.1, indicating that our channel-aware quantization preserves accuracy. Further results are
provided in Appendix F.

Table 6: Ablation results of SSDi8:
Q(SSD) and correction c.

Bitwidth SSDi8 Acc.
Q(SSD) Correct.

FP16 – – 69.5%

W4A8
51.2%

✓ 67.2%

✓ ✓ 67.4%

We perform an ablation study on SSD quantization and mean
correction using the Lambada dataset, which exhibits minimal
performance variance, and report in Tab. 6. On Mamba-2 2.7B
under the W4A8 setting, HadMamba quantization yields only
51.2% accuracy, whereas applying SSD quantization substan-
tially boosts performance to 67.2%. Incorporating mean cor-
rection provides an additional improvement to 67.4%, achiev-
ing consistent accuracy gains with only a ∼1–2% overhead.
These results demonstrate that SSDi8 achieves both accuracy
and efficiency, while mean correction offers effective error cor-
rection with negligible additional latency.

6 CONCLUSION

In this work, we presented SSDi8, an INT8 quantization framework developed in the context of the
SSD of Mamba-2. Unlike prior approaches limited to projections or partial SSD operations, SSDi8
establishes persistent INT8 representations through activation reuse and a sparse-enhanced refor-
mulation. It further explores optimal quantization strategies by analyzing internal activations and
incorporates mean correction to compensate for accumulated errors, enabling accurate and efficient
inference for large-scale Mamba-2 models. SSDi8 achieves FP16-level accuracy while delivering
up to 1.47× speedup over FP16 and 1.38× over Quamba2, and further demonstrates superior ef-
ficiency on edge devices such as NVIDIA Orin Nano, as well as across diverse batch–sequence
settings. SSDi8 provides mathematical intuition for sparse-tensor quantization and offers guidance
for quantization in environments where element-wise and recurrent operations are prevalent.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alis-
tarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms.
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Mohamed S Abdelfattah,
and Diana Marculescu. Quamba2: A robust and scalable post-training quantization framework
for selective state space models. In Forty-second International Conference on Machine Learning,
2025a.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
Quamba: A post-training quantization recipe for selective state space models. In International
Conference on Learning Representations (ICLR), 2025b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, 2018.

Tri Dao. Causal depthwise conv1d in cuda with a pytorch interface, 2024a. URL https://
github.com/Dao-AILab/causal-conv1d.

Tri Dao. Fast hadamard transform in cuda, with a pytorch interface, 2024b. URL https://
github.com/Dao-AILab/fast-hadamard-transform.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning, pp. 10041–
10071. PMLR, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. International Conference on Learning Rep-
resentations (ICLR), 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Wenjun Huang, Jiakai Pan, Jiahao Tang, Yanyu Ding, Yifei Xing, Yuhe Wang, Zhengzhuo Wang,
and Jianguo Hu. Ml-mamba: Efficient multi-modal large language model utilizing mamba-2.
arXiv preprint arXiv:2407.19832, 2024.

Taehan Lee, Jaehan Jung, and Hyukjun Lee. Mamba-2 audio captioning: design space exploration
and analysis, 2025. URL https://arxiv.org/abs/2509.15680.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems
(MLSYS), 2024.

10

https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2509.15680

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. In Eighth
Conference on Machine Learning and Systems.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. In The Thirteenth International Conference on Learning Representations.

Bruce Lee LY. Cuda hgemm, 2024a. URL https://github.com/Bruce-Lee-LY/cuda_
hgemm.

Bruce Lee LY. Cuda hgemv, 2024b. URL https://github.com/Bruce-Lee-LY/cuda_
hgemv.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, (ACL). The Association for Computer Linguis-
tics, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Yuheng Shi, Minjing Dong, Mingjia Li, and Chang Xu. Vssd: Vision mamba with non-casual state
space duality. CoRR, 2024.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In International Conference on Learning Representations (ICLR), 2023.

Shengkun Tang, Liqun Ma, Haonan Li, Mingjie Sun, and Zhiqiang Shen. Bi-mamba: Towards
accurate 1-bit state space models. arXiv preprint arXiv:2411.11843, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning (ICML), 2023.

Zukang Xu, Yuxuan Yue, Xing Hu, Zhihang Yuan, Zixu Jiang, Zhixuan Chen, Jiangyong Yu, Chen
Xu, Sifan Zhou, and Dawei Yang. Mambaquant: Quantizing the mamba family with variance
aligned rotation methods. In International Conference on Learning Representations (ICLR), 2025.

Zhenxuan Yu, Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Slender-mamba: Fully quan-
tized mamba in 1.58 bits from head to toe. In Proceedings of the 31st International Conference
on Computational Linguistics (COLING), 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.), Pro-
ceedings of the 57th Conference of the Association for Computational Linguistics (ACL), 2019.

11

https://github.com/Bruce-Lee-LY/cuda_hgemm
https://github.com/Bruce-Lee-LY/cuda_hgemm
https://github.com/Bruce-Lee-LY/cuda_hgemv
https://github.com/Bruce-Lee-LY/cuda_hgemv

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

A Proof of Proposed Quantization Error Reduction via Reformulation 13

B Algorithm 15

C Additional Related Works 17

D Additional Experimental Setting 17

E Additional Accuracy Results 18

F Additional Ablation Studies 19

G Additional Latency and Model Size Results 20

H Distributions of SSD Tensors 21

I LLM Usage 23

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF PROPOSED QUANTIZATION ERROR REDUCTION VIA
REFORMULATION

Proposition 1. Suppose that

P∑
p=1

∆2
x,p

12

(∆y,p

∆x,p

)2

· P (yp ̸= 0) ≤ ∥lut∥22
P∑

p=1

∆2
x,p

12
.

Then it holds that
MSExscaled ≤ MSEx.

Notation.
(1) We denote the Hadamard product by ⊙. The quantization step size is ∆ = Range

2b−1
.

(2) The dequantized input is x′ = deq(q(x)). The output is yl,p = xl,p ⊙ lutl.
(3) Let ρp = P (yp ̸= 0) and y∗l,p = {yp : yp ̸= 0}.
(4) Vectors are denoted by xp = (x0,p, . . . , xL,p) and yp = (y0,p, . . . , yL,p), with error vector
ex,p = (e0,x,p, . . . , eL,x,p).
(5) The L-vector lut = (lut0, . . . , lutL) is fixed and deterministic.

Assumptions.
(1) min(yp) < 0 and max(yp) > 0.
(2) Quantization errors satisfy ex,l,p ∼ U(−∆x,p

2 ,
∆x,p

2), ey,l,p ∼ U(−∆y,p

2 ,
∆y,p

2).
(3) Outliers are not considered in yp.
(4) 0 < ρp < 1.
(5) lut is not a random variable.

Proof. Step 1. Step size relation.
In symmetric quantization, the step size ∆ is determined by the min/max values.
By Assumption (1), we have ∆∗

y,p = ∆y,p. Let sp = ∆y,p/∆x,p, so that ∆y,p = sp∆x,p and hence
∆∗

y,p = s∆x,p.

Step 2. Case y′ = (x⊙ lut)′.
The reconstructed output is

y′l,p =

{
y∗l,p + e∗y,l,p, with prob. ρp,
0, with prob. 1− ρp.

Thus
MSExscaled,p = ρp E[(y′l,p − yl,p)

2].

Since the error e⋆y,l,p = y′l,p − y⋆l,p has zero mean, we have

E[(e⋆y,l,p)2] = Var(e⋆y,l,p).

Therefore,
MSExscaled,p = ρp · E[(e⋆y,l,p)2] = ρp ·Var(e⋆y,l,p).

Under the standard quantization noise model,

Var(e⋆y,l,p) =
(∆∗

y,p)
2

12
,

so that

MSExscaled,p = ρp ·
(∆∗

y,p)
2

12
.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Averaging over p gives

MSExscaled =
1

P

P∑
p=1

ρp
(∆∗

y,p)
2

12
.

Step 3. Case y′ = x′ ⊙ lut.
We expand

MSEx,p = E
[
∥y′p − yp∥22

]
= E

[
∥(x′

p − xp)⊙ lut∥22
]
.

By component,

∥(x′
p − xp)⊙ lut∥22 =

L∑
l=1

(ex,l,p · lutl)2.

Taking expectation,

E[∥ex,p ⊙ lut∥22] =
L∑

l=1

lut2l · E[e2x,l,p].

Since ex,l,p is uniform, E[e2x,l,p] = ∆2
x,p/12. Therefore,

MSEx,p = ∥lut∥22 ·
∆2

x,p

12
.

Averaging gives

MSEx =
1

P

P∑
p=1

∥lut∥22
∆2

x,p

12
.

Step 4. Comparison.
Substituting ∆∗

y,p = sp∆x,p,

MSExscaled =
1

P

P∑
p=1

ρp s
2
p

∆2
x,p

12
.

Thus, if
P∑

p=1

ρps
2
p

∆2
x,p

12
≤

P∑
p=1

∥lut∥22
∆2

x,p

12
,

then
MSExscaled ≤ MSEx.

Mildness of the sufficient condition. This condition is mild. First, scaling typically reduces the
dynamic range so that ∆y,p ≤ ∆x,p, i.e., sp ≤ 1. Second, due to the sparsity of Xscaled, the activation
probability is small (ρp ≪ 1), which diminishes the left-hand side. Third, the lut vector carries non-
negligible energy across dimensions, so ∥lut∥22 is not small. Consequently, in these typical regimes,

P∑
p=1

ρps
2
p

∆2
x,p

12
≤

P∑
p=1

∥lut∥22
∆2

x,p

12
,

and thus MSExscaled ≤ MSEx follows naturally. For a detailed discussion of the empirical character-
istics of the distributions of x, xscaled, and lut, please refer to Fig. 3 and Appendix H.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ALGORITHM

Algorithm 1 Sequential Mean Correction Update

Require: Quantized Blocks B1:L, fp16 means µfp[1:L], number of samples S, sequence length T decaying
factor η, target-layer set Ltgt
Fix initial inputs

1: for s← 1 to S do
2: X[s]← Embedding(D[s], T)
3: end for
4: for l← 1 to L do
5: if l /∈ Ltgt then
6: for s← 1 to S do
7: Y ← Bl(X[s])
8: X[s]← Y
9: end for

10: continue
11: end if
12: µq ← 0; N ← 0
13: for s← 1 to S do
14: Y ← Bl(X[s])
15: ms ← Y.mean(0, 1)
16: ns ← Y.shape[0] ·Y.shape[1]

17: N ← N + ns; ws ←
ns

N
18: µq ← µq + ws · (ms − µq)
19: end for
20: δ ← µfp[l]− µq

21: c[l]← η · δ
22: for s← 1 to S do
23: Ycomp ← Bl

(
X[s]; apply c[l]

)
24: X[s]← Ycomp

25: end for
26: end for
27: return model with corrections applied

Sequential Mean Correction Update. Algorithm 1 shows the sequential update of the proposed
mean correction technique for efficiently mitigating quantization errors in SSD layers. The proce-
dure begins by initializing sample inputs through embeddings and then iteratively traversing all net-
work layers. For layers not subject to correction, a standard forward pass is performed to propagate
outputs to the next layer. Upon reaching a target correction layer, multiple sample outputs are used
to compute channel-wise means, which are then aggregated to estimate the mean µq of the quantized
output. This estimate is compared with the reference mean µfp[l] obtained in full precision, and their
difference δ = µfp[l]− µq is multiplied by a decay factor η to compute the correction term c[l]. The
correction is directly applied to the layer output, and the corrected output is propagated forward.

This process is repeated for all designated target correction layers, thereby alleviating accumulated
quantization errors through three steps: (i) channel-wise mean estimation, (ii) correction term
computation, and (iii) propagation of corrected outputs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 SSD Layer

Require: X ∈ R(B,L,H, P), ∆ ∈ R(B,L,H), decay activation A ∈ R(H),
1: B ∈ R(B,L,G,N), C ∈ R(B,L,G,N),
2: L = c · l

Module 1: ChunkCumsum (Input (∆, A) → Output (∆, dAcs))
3: ∆← softplus(∆)
4: A+ ← discretize(A)
5: dAcs ← CumSumDecay(A+) ▷ ∈ R(B,H, c, l)

Module 2: ChunkState (Input (dAcs,∆, B,X) → Output State)
6: Decaystate ← exp(dAcs[:, :, :, l−1])− dAcs

7: LUTstate ← ∆⊙Decaystate ▷ ∈ R(B,H, c, l)
8: State← X × (B ⊙ LUTstate) ▷ ∈ R(B,H, c, P,N)

Module 3: StatePassing (Input (State, dAcs) → Output State)
9: Decaypass ← exp(dAcs[:, :, :, l−1]) ▷ ∈ R(B,H, c)

10: for i = 0 to c−2 do
11: State[i+1]← State[i+1] + Decaypass[i+1]⊙ State[i]
12: end for

Module 4: ChunkBMM (Input (B,C) → Output CB)
13: CB ← C ×B ▷ ∈ R(B,H, c, l, l)

Module 5: ChunkScan1 (Input (State, C, dAcs,∆) → outoff)
14: Decayscan1 ← exp(dAcs)
15: LUTscan1 ← ∆⊙Decayscan1

16: outoff ← (State× C⊤)⊙ LUTscan1 ▷ ∈ R(B,H, c, P, l)

Module 6: ChunkScan2 (Input (X,CB, dAcs,∆) → outdiag)
17: Let dA(m)

cs ∈ R(B,H,c,l,1), dA
(n)
cs ∈ R(B,H,c,1,l) be the broadcasted forms of dAcs.

18: LUTscan2 ← ∆ ⊙ exp
(
dA

(m)
cs − dA

(n)
cs

)
▷ ∈ R(B,H, c, l, l)

19: outdiag ← X × (CB ⊙ LUTscan2) ▷ ∈ R(B,H, c, P, l)

Final Output
20: Y ← outoff + outdiag
21: return Y ▷ ∈ R(B,H, c, P, l)

SSD layer

Given input activations X, the layer first discretizes the step size Δ and decay activation A, and

constructs per-chunk cumulative decay factors through ChunkCumsum.

ChunkState performs the input-to-state projection within each chunk in parallel, while

StatePassing propagates recurrent information across chunks to restore the global sequence depen-
dency.

ChunkBMM computes the block-diagonal interaction matrix CB,

which is exclusively used in the diagonal path.

ChunkScan1 generates the off-diagonal contribution from the recurrent state, and

ChunkScan2 produces the diagonal contribution from the input representation with CB.

The final SSD output is obtained by summing these two terms.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ADDITIONAL RELATED WORKS

Post-Training Quantization and LLM Quantization. Quantization approaches are generally di-
vided into Quantization-Aware Training (QAT) (Gholami et al., 2022), which integrates quantiza-
tion into the training process, and Post-Training Quantization (PTQ) (Frantar et al., 2023; Xiao
et al., 2023; Lin et al., 2024), which applies quantization to models after pretraining. QAT is often
considered strong in preserving accuracy, but for large-scale models the associated retraining cost
can become prohibitively high. As a result, many recent studies have shifted attention toward PTQ,
particularly in the context of large language models (LLMs) (Touvron et al., 2023).

Among representative PTQ approaches, GPTQ (Frantar et al., 2023) proposes a weight-
compensation PTQ method by leveraging approximate second-order information via the Hessian.
SmoothQuant (Xiao et al., 2023) shifts the difficulty of activation quantization into weights, en-
abling stable W8A8 and W4A8 performance. QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu
et al.) achieve precise 4-bit quantization by applying random or learned rotation matrices to mitigate
outliers. QServe (Lin et al.) highlights the practicality of W4A8 quantization in real environments,
demonstrating its effectiveness in reducing inference latency for LLMs. However, these methods
are inherently optimized for the structural properties of Transformers—such as self-attention and
KV caching—and thus are not directly applicable to architectures like selective state space models,
where continuous state updates and activation reuse play a central role.

D ADDITIONAL EXPERIMENTAL SETTING

Implementation For quantization, we use a calibration set of 512 samples drawn from the Pile
dataset. We apply 4-bit weight quantization to the in projection and out projection layers using
GPTQ. To improve efficiency, the scaling parameter γ of RMSNorm is fused into the in projection
layer (Wei et al., 2022). Except for the SSD module, activations are quantized to 8-bit with per-
tensor quantization, while the fast Hadamard transform (Ashkboos et al., 2024) is fused into the
corresponding layers. Inside the SSD, we adopt the same Triton (Dao, 2024b;a) as used in Mamba-
2, but modified to fit the SSDi8 method. CUDA (LY, 2024a;b) based causal Conv1d operator is used
without modification.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E ADDITIONAL ACCURACY RESULTS

The table below presents an extended version of the accuracy results in Tab. 2. Evaluations are con-
ducted on the same datasets, where HAD denotes applying Hadamard and 4-bit GPTQ quantization
to Mamba-2. SSDi8 achieves performance comparable to Quamba2 under W4A16 quantization,
even with W4A8 quantization.

Table 7: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with four quantization methods (HAD, Quamba,
Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model Size Methods Bitwidth LA HS PIQA Arc-E Arc-C WG Avg.

Mamba-2

1.3B

- FP16 65.6% 59.9% 73.3% 64.1% 33.3% 60.8% 59.5%

HAD W8A8 55.3% 59.4% 73.2% 64.0% 33.5% 58.2% 57.3%
W4A8 53.9% 58.9% 72.3% 63.6% 33.9% 59.1% 57.0%

Quamba W8A8 49.8% 58.5% 71.2% 61.9% 32.1% 58.1% 55.2%

Quamba2
W4A16 64.3% 59.2% 72.6% 63.8% 33.1% 60.3% 58.9%
W8A8 62.0% 59.2% 72.5% 63.4% 32.7% 60.0% 58.3%
W4A8 61.0% 58.8% 72.4% 62.7% 32.6% 59.1% 57.7%

SSDi8 (Ours) W8A8 64.7% 59.7% 72.7% 64.0% 32.8% 60.9% 59.1%
W4A8 63.6% 59.2% 72.7% 63.5% 33.5% 60.4% 58.8%

2.7B

- FP16 69.5% 66.6% 76.4% 69.5% 36.4% 64.2% 63.8%

HAD W8A8 53.8% 60.8% 73.8% 64.8% 35.8% 62.2% 58.5%
W4A8 51.2% 59.7% 73.0% 64.9% 34.6% 60.2% 57.3%

Quamba W8A8 52.4% 60.4% 71.6% 62.9% 33.7% 58.0% 56.5%

Quamba2
W4A16 68.8% 65.6% 75.5% 68.6% 36.6% 64.9% 63.3%
W8A8 66.1% 65.5% 74.4% 68.4% 37.1% 63.7% 62.5%
W4A8 65.6% 65.1% 74.7% 68.1% 36.1% 62.8% 62.1%

SSDi8 (Ours) W8A8 68.3% 66.2% 75.6% 69.0% 36.8% 63.4% 63.2%
W4A8 67.6% 65.3% 75.6% 68.9% 35.2% 63.5% 62.7%

8B

- FP16 70.9% 77.7% 79.7% 76.0% 48.0% 72.0% 70.7%

HAD W8A8 56.7% 75.3% 78.1% 74.1% 45.0% 65.6% 65.8%
W4A8 56.1% 74.6% 77.3% 73.8% 44.5% 66.0% 65.4%

Quamba W8A8 54.0% 74.6% 77.1% 73.5% 44.2% 65.5% 64.8%

Quamba2
W4A16 71.2% 76.8% 79.1% 75.2% 45.9% 70.8% 69.8%
W8A8 69.8% 77.8% 79.1% 75.9% 46.9% 69.0% 69.8%
W4A8 68.8% 77.1% 79.1% 75.0% 46.0% 68.7% 69.1%

SSDi8 (Ours) W8A8 70.4% 77.2% 79.6% 75.5% 47.2% 71.2% 70.2%
W4A8 69.9% 76.5% 79.1% 75.4% 46.2% 70.6% 69.6%

The table below shows pile perplexity comparison on 1.3B and 2.7B models. SSDi8 outperforms
Quamba2 in both cases and achieves performance close to FP16 under W8A8 quantization.

Table 8: Pile perplexity with L = 2048

Model Methods Bitwidth
Pile Perplexity (↓)

1.3B 2.7B

Mamba-2

- FP16 6.99 6.27

HAD W8A8 7.46 7.77
W4A8 7.87 8.17

Quamba2 W8A8 7.20 6.44
W4A8 7.55 6.68

SSDi8 (Ours) W8A8 7.08 6.34
W4A8 7.41 6.57

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F ADDITIONAL ABLATION STUDIES

The table below shows ablation results on the quantization axis of activations within SSD, evaluated
on Wikitext2 perplexity. For activations B,C, per-G,N yields the best performance, though the
difference from per-G is negligible (0.02). In contrast, X and State are highly sensitive to the choice
of quantization axis, showing substantial degradation when either the P or H axis is not considered.

Table 9: Ablation study for quantization axis.

Model Bitwidth Activation per-T per-P(N) per-H(G) Wikitext2 Perplexity

8B W4A8
SSD-FP16

– – – – 7.42

B,C

v 7.59
v 7.43

v 7.44
v v 7.42

X,State

v 11.97
v 8.59

v 8.15
v v 7.42

The figure below shows latency and accuracy variations with respect to the placement of mean
correction. The highest accuracy gain is observed when mean correction is applied immediately
after SSD layers, indicating error accumulation within SSD. In Mamba-2, the model dimension is
halved after the out-projection layer, yielding the lowest latency when mean correction is applied.
Considering the trade-off between latency and accuracy, we therefore apply mean correction only at
the out-projection layer.

Table 10: Accuracy and speedup for W4A8. Experiments are conducted on the LAMBADA dataset,
using SSDi8 without mean correction as the baseline.

Bitwidth Project Speedup Acc.

W4A8

None ×1.00 67.2%
In ×0.945 67.4%

SSD ×0.975 67.5%
Out ×0.987 67.4%

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G ADDITIONAL LATENCY AND MODEL SIZE RESULTS

This section presents results on additional memory usage and latency.

The memory footprint is nearly identical to that of the previous SOTA model, Quamba2, with only
a small increase due to the extra static quantization scales.

Model Size Method W8A8 W4A8

Mamba2

2.7B
FP16 5.154 GB
Quamba2 2.948GB 1.766GB
SSDi8 (Ours) 2.953GB 1.774GB

8B
FP16 15.710 GB
Quamba2 9.860GB 7.028GB
SSDi8 (Ours) 9.867GB 7.038GB

Table 11: Memory usage comparison

With W4A8 quantization on the 8B model, SSDi8 achieves lower SSD latency than FP16 and
Quamba, with improvements becoming more pronounced as computational intensity increases.

7.781
7.458

14.745
13.879

10.646

25.797

19.000

6.198

Figure 6: Comparison with Quamba2 under W4A8 quantization on the 8B model is also reported.
OOM denotes Out-Of-Memory.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H DISTRIBUTIONS OF SSD TENSORS

Visualization of Activations The figure below represents that visualization of B, C, and CB by
group in the first, middle, and last blocks of the Mamba-2 8B model. As argued in Sec. 4, the
distributions differ across groups. CB is masked as it is used for computing outdiag.

B

3rd Group

CBC

0th Group

27th Block

3rd Group

B CBC

0th Block

0th Group

3rd Group

B

0th Group

55th Block

CBC

Figure 7: Visualization of the distributions of activations B, C, and CB in in the first, middle, and
last block of Mamba-2 8B.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The figure below shows the visualization of X , LUTstate, and Xscaled in the last block of Mamba-2
8B. The first row illustrates the full sequence length, while the second row depicts its partition into
nchunks with the corresponding chunk size. Both LUTstate and Xscaled exhibit exponential growth
as the chunksize index increases.

X

H L

c l

LUTX state scaled

Figure 8: Visualization of the distributions of activations X , LUTstate, and Xscaled in the last block
of Mamba-2 8B.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I LLM USAGE

During the manuscript preparation, we used OpenAI’s GPT5 (https://chatgpt.com/), a Large Lan-
guage Model, to proofread our work. Our interaction with the LLM was iterative and focused exclu-
sively on improving the quality of the writing. We affirm that the LLM served as an assistive tool
and did not contribute to core research ideas, experimental design, analysis, and results presented in
this paper. The final scientific content and all claims made in this paper are the sole responsibility of
the authors.

23

	Introduction
	Related Works
	Background
	Quantization
	Mamba-1

	Methodology
	Preliminary Study: Mamba-2's Structured State Space Duality
	SSDi8

	Experiments
	Evaluation of Zero-shot and Generalization Performance
	Latency and Model Size
	Ablation Studies

	Conclusion
	Proof of Proposed Quantization Error Reduction via Reformulation
	Algorithm
	Additional Related Works
	Additional Experimental Setting
	Additional Accuracy Results
	Additional Ablation Studies
	Additional Latency and Model Size Results
	Distributions of SSD Tensors
	LLM Usage

