Under review as a conference paper at ICLR 2026

SSDI8: ACCURATE AND EFFICIENT
8-BIT QUANTIZATION FOR STATE SPACE DUALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in sequence modeling have highlighted Mamba as a state space
architecture offering efficient long-range dependency modeling and providing a
viable alternative to Transformers. Building upon this, Mamba-2 introduces the
Structured State Space Duality (SSD), which integrates recurrent and attention
modes to achieve efficiency and scalability. However, this architectural expansion
substantially increases memory and latency overhead, underscoring the need for
efficient compression strategies tailored to SSD. In this work, we present SSDi8,
the first post-training quantization framework specifically designed for SSD to
maintain a persistent INT8 path. SSDi8 introduces a reformulation that decouples
element-wise multiplications from matrix multiplications, enabling reuse of quan-
tized activations across modules. Moreover, SSDi8 adaptively quantizes channel-
varying activations at cost-effective points, further reducing latency. On the ac-
curacy side, SSDi8 explicitly leverages the intrinsic dimensional decomposition
of SSD, exploiting distinct outlier distributions across axes, and incorporates an
error correction term based on per-channel error statistics. Comprehensive exper-
iments demonstrate that SSDi8 achieves accuracy comparable to FP16 while de-
livering up to 1.4x speedup in W4A8 and W8AS settings. We further validate its
robustness in resource-constrained environments by deploying it on the Orin Nano
device.

1 INTRODUCTION

Mamba (Gu & Dao, 2024)) is a recent state space sequence model that builds upon the Structured
State Space Model (SSM) (Gu et al.|, 2020;2022) to provide efficient long-range dependency model-
ing with constant computation and memory usage. While global attention in Transformers (Vaswani
et al.| [2017) can enhance performance as model size increases, it also incurs quadratic growth in
computation and memory with respect to sequence length, which poses substantial challenges for
large-scale training and deployment. In contrast, Mamba achieves performance comparable to or ex-
ceeding state-of-the-art architectures across billion-scale language models, positioning it as a strong
candidate for next-generation sequence modeling.

Despite its algorithmic efficiency, Mamba faces practical limitations: its specialized state space re-
currence is difficult to parallelize on modern accelerators, making it less hardware-friendly than
optimized Transformer kernels, and it shows relatively diminishing efficiency when scaled to larger
parameter sizes. To overcome these issues, Mamba-2 (Dao & Gu, 2024) introduces the Structured
State Space Duality (SSD), a hybrid design that integrates recurrent mode with attention mode.
Mamba-2 adds a head dimension analogous to multi-head attention to enhance scalability and em-
ploys a dual representation that improves general matrix multiplication (GEMM) utilization, yield-
ing higher throughput on GPUs and TPUs. While the original Mamba exhibited limited efficiency
beyond 2.7B parameters, Mamba-2 scales effectively to over 8B parameters and achieves competi-
tive performance across language, audio (Lee et al., [2025)), vision (Shi et al., [2024])), and multimodal
tasks (Huang et al.| [2024). Yet this expansion also intensifies memory and latency overhead, high-
lighting the need for efficient compression and optimization.

The recurrent mode of SSD is computationally efficient but system-inefficient, while the attention
mode is relatively computationally demanding. During its operation, SSD repeatedly invokes acti-
vations across modules and performs sequential updates. In this process, activations reuse across

Under review as a conference paper at ICLR 2026

modules necessitates frequent DRAM accesses, and the intrinsically higher latency of DRAM intro-
duces considerable overhead.

As shown in Tab.[I] directly applying quantization methods Table 1: Accuracy under major layer
originally designed for Transformers—such as Hadamard quantization of Mamba-2. Significant
rotation or GPTQ—to SSD layers leads to substantial ac- degradation arises when SSD is quan-
curacy degradation. This stems from the distinctive com- tized per-tensor.

putational organization of SSD. First, the model dimen-
sion is partitioned into the number of heads and the per-
head dimension, each following markedly different statis-
tical distributions; failure to account for this property re- | FPl6 | - | 63.8%

Quantized

Model Layer(s)

Bitwidth ‘ ‘ ACC

sults in significant performance loss. Second, SSD contains ;7 +In Proj 63.6%
dimension-varying activations whose shapes differ between W4A8 | +SSD 58.4%
memory storage and computation, and these activations are +Out Proj | 54.6%

repeatedly invoked across multiple modules. Third, element-wise multiplications are extensively in-
tertwined with matrix multiplications, further complicating quantization. In this work, we conduct
the first comprehensive analysis of SSD to maintain a persistent INT8 path , providing observations
that reveal the internal factors contributing to its quantization sensitivity.

Accordingly, we propose SSDi8, an accurate and efficient post-training quantization framework
that reduces both inference latency and performance degradation within SSD. For latency reduc-
tion, SSDi8 quantizes channel-variant and recurrent activations at optimal points and reuses them,
ensuring an uninterrupted INT8 execution path from input to output. Furthermore, we address
element-wise operations that disrupt this path by introducing a sparse-aware reformulation, with the
guarantee formally established through mathematical analysis. This design keeps the execution in
INTS while substantially alleviating memory bottlenecks and computational overhead. For accuracy,
SSDi8 leverages the intrinsic dimensional structure and properties of SSD. Specifically, external di-
mensions entering SSD are decomposed into two axes, each exhibiting distinct outlier distributions,
which are explicitly exploited to reduce quantization error. Furthermore, we introduce an error cor-
rection term based on per-channel error means, yielding consistent gains in accuracy. Through these
mechanisms, SSDi8 achieves a balanced optimization of both efficiency and performance.

SSDi8 achieves accuracy comparable to FP16 while enabling up to 1.4x inference speedup under
both W4A8 and W8AS configurations, while excluding W4A4 due to hardware-induced slowdowns
as discussed in [Lin et al.| Notably, in the context of SSD—where error sensitivity often causes se-
vere degradation—our method incurs negligible accuracy loss while delivering substantial latency
reductions, with single-inference speedups reaching 1.5x. To the best of our knowledge, this repre-
sents the first successful application of persistenct INT8 path within the Mamba-2 SSD architecture.
Furthermore, we demonstrate that SSDi8 maintains efficiency in resource-constrained environments
through deployment on the Orin Nano device.

2 RELATED WORKS

Mamba Architecture. Mamba is a sequence modeling architecture built on SSMs, which have been
explored as an alternative to Transformers in order to circumvent the quadratic complexity of self-
attention (Gu & Dao, 2024)). Unlike conventional linear SSMs (Gu et al., 2022; Smith et al.,[2023)),
Mamba incorporates a selective state space mechanism that adaptively gates input-dependent state
transitions and output projections, enabling more expressive sequence modeling. Mamba-2 extends
this framework by introducing the structured SSDs (Dao & Gu, |2024)), which establishes a formal
equivalence between SSMs and linear attention and enables optimized GEMM-based implementa-
tions. This design substantially improves hardware utilization on modern accelerators. Furthermore,
Mamba-2 allowing the state dimension—previously constrained to N = 16 in Mamba-1—to scale
stably to N = 64-128 and beyond. In addition, Mamba-2 integrates a multi-head structure anal-
ogous to multi-head attention, further enhancing scalability. These advancements make large-scale
parameter expansion feasible, but they also intensify memory and latency overhead, motivating the
need for compression and deployment strategies.

Quantization for Mamba Models. Recently, several studies have begun to explore quantization
for the Mamba models (Tang et al., 2024} |Yu et al., 2025). MambaQuant (Xu et al.l [2025) and
Quambal (Chiang et al.| 2025b)) introduced Post-Training Quantization (PTQ) methods targeting

Under review as a conference paper at ICLR 2026

Persistent INT8 Representation R
(\ Chunk Stat -
7 Reformulation o ae Chunk
CRstom)4 Stare Passing Scan(1)
T
SSD .y ®
et
Al X BC H
I—T—j © Q“a“z%zes Chunk Chunk
Gl’) QUi Cumsum Scan(2)
®
_InProj 2~ i) : mt8 |
T ' . ' Chunk
i J->:FPi6 ! BMM

(a) : Mamba-2 (b) : SSDi8
Figure 1: (a) Mamba-2 block architecture. (b) SSD pipeline in SSDi8. SSDi8 enables the persistent

INT8 representation path through reformulation and quantized activation reuse, while mitigating
performance degradation via channel-aware quantization and mean correction.

the original Mamba-1 architecture, but their approaches are not directly applicable to SSD-based
Mamba-2. Quamba2 (Chiang et al., 2025a) extended quantization to Mamba-2, applying W4AS8
and W8AS settings that include SSD blocks. However, its method is limited to the inputs of SSD
layers and does not adequately address precision issues within internal SSD computations, leaving
the INTS execution path incomplete and constraining latency optimization.

3 BACKGROUND

3.1 QUANTIZATION

Quantization discretizes continuous values into a finite set of integer levels. In particular, uniform
quantization divides the value range into equal intervals, mapping each element of a tensor X to its
nearest quantized level as follows:

max (| X|)

~ X
X = round(oz)() , ax = 531 (1)

where X is the quantized tensor, ax is the scaling factor that defines the step size based on the
maximum absolute value of X, and b is the bit-width.

3.2 MAMBA-1

Mamba is an architecture built upon State Space Models (SSMs), composed solely of activation
operations, where a hidden state variable is employed to efficiently compress and propagate mem-
ory (Gu & Daol 2024). The fundamental state update and output equations are defined as follows:

B (t) = Ah(t) + Bxz(t), y(t) = Ch(t). (2)

Eq. E] builds on the theoretical foundations of HiPPO (Gu et al.| 2020) and S4 (Gu et al., [2022),
which substantially improve both performance and efficiency. However, since SSMs are defined in
continuous time, applying them to discrete inputs requires discretization. In practice, Zero-Order
Hold is used to preserve previous values, and a time-step activation A is introduced to discretize
matrices A and B. These operations are performed independently along the channel dimension of
the input x, so that each channel independently follows its own SSM formulation:

SB(x) = IWB, SC(I) = .Z‘VVC7 SA(I) =zWa. 3)

Through input-dependent activations, Mamba highlights important information while suppressing
noise, improving long-range dependency modeling.

Under review as a conference paper at ICLR 2026

4 METHODOLOGY

The overall workflow of SSDi8 is illustrated in Fig. [I] A substantial portion of SSD modules is
executed along the persistent INT8 representation path, reusing quantized activations and applying
a sparse-aware reformulation to element-wise operations that disrupt this path. The output tensor
dA.s from ChunkCumsum is negligible in size compared to other tensors, yet its recovery after
quantization is challenging due to the element-wise multiplication; hence, it is retained in FP16.
In the same vein, ChunkScan?2 remains in FP16 for analogous reasons. These choices are further
elaborated within this section.

4.1 PRELIMINARY STUDY: MAMBA-2’S STRUCTURED STATE SPACE DUALITY

The Structured State Space Duality (SSD) in Mamba-2 consists solely of activation operations and
unifies the recurrent and attention modes, thereby reducing computational cost and improving effi-
ciency over the recurrence-dominated operations of conventional SSMs. Concretely, the SSM com-
putation can be expressed as a lower-triangular structured matrix: the diagonal block, which directly
influences the output, is computed via the attention formulation using matrix multiplications, while
the off-diagonal blocks, which require recurrence, are computed by leveraging the semiseparable
property, which admits low-rank factorizations.

A key distinction from Mamba is that Mamba-2 introduces a number of heads H, analogous to
the multi-head structure in Transformers. As shown in Fig. [2] the value of H is formally defined by
D = HOP, where D denotes the model dimension and P the head dimension. Notably, H and P remain
independent axes, with H chosen to be much larger than P. For efficiency, the input-dependent B and
C are parameterized with an auxiliary dimension G, and broadcast to H when required.

Formally, the input activations of SSD and its dimension before discretization are given as follows:
A € R®, A e RELH - x ¢ RELEE)
B € R(B,L,G,N), C € R(B,L,G,N)’ Y € R(B,L,H,P)7

where B denotes the batch size, L the sequence length, H the number of heads, G the number of
groups, P the head dimension, N the state dimension, and Y the final output of SSD. To shorten the
effective recurrent path and enable parallelism, the sequence is partitioned as L = ¢ ® 1, where ¢
is the number of chunks and 1 is the chunk size. The computation then proceeds through five mod-
ules—ChunkCumsum, ChunkState, StatePassing, ChunkBMM, and ChunkScan—which
together yield the SSD output Y. Additional details are provided in Appendix [B].

ChunkCumsum (Input (A, A) — Output (A, dA)). ChunkCumsum applies a softplus trans-
formation to A, a time-step dependent scaling factor introduced for discretization, and discretizes
the decay activation A that governs recurrent dynamics. It then prepares the cumulative decay term
d A, which is subsequently consumed by downstream modules for state updates.

ChunkState (Input (dAg, A, B, X) — Output (State)). The ChunkState module dis-
cretizes the projection matrix B, applies the decay factor, and multiplies it with the input X to gener-
ate the hidden state. The cumulative decay is computed as Decay . = €xp (dA{Si”‘” — dACS). For
simplicity, we denote A ® Decayg; i by LU Tstate Where ® denotes element-wise multiplication,
in the following modules. The resulting state update is formulated as

State = X x (B ® LUTyate) S

StatePassing (Input (State, dA.s) — Output (State)). This module integrates the states com-
puted from independent chunks into the actual recurrent state through decay. The decay term is given
by

Decay g = exp (dA(Jme“l), (5)
and the recurrent update is performed over the chunk as
State. € State;1 < State;y1 + Decay;,; © State;, 1=0,1,....,.c—2. (6)

ChunkBMM (Input (B, C) — Output (C'B)). ChunkBMM performs a batched matrix multiplica-
tion between C and B. This operation extracts the diagonal blocks of the product, yielding C'B,
which is used in the output computation within SSD.

Under review as a conference paper at ICLR 2026

Activation X outside SSD ; Activation X inside SSD
Separable patterns

0 2000 4000 6000 800
D

500 1()1?0 1500 20000'00

=10.25 -di
'-.><L 64 appear along H-dim
D 4000 0.20 —» : 2—:"
=015 -§20§ 7

0 20 40 6
P

Figure 2: Visualization of activation X in the 16th block of Mamba-2 8B before and after the SSD in-
put transformation. The pre-SSD dimension (B, L, D) exhibits no clear token-wise pattern, whereas
the transformed dimension (B, L, H, P) within SSD reveals distinct patterns along the H-dim.

ChunkScanl (Input (State, C,dAc, A) — Output (outyfigiag)). ChunkScanl computes the
off-diagonal interaction term by performing a matrix multiplication between the recurrent state State
and the projection matrix C. The decay contribution is modeled as Decay,,,; = exp(dAcs), and
combined with A to form LU Tyan (= A ® Decayy,, ;). The final off-diagonal output is obtained
as Outoff_diag = (State X O) ® LUTan1.

ChunkScan2 (Input (X, CB, dAc, A) — Output (outgi,)). ChunkScan2 computes the diag-
onal contribution by projecting the input representation X with the combined activation C' B, while
modulating the result using the decay and discretization terms (dAs, A). This module complements
the off-diagonal pathway from ChunkScan1, and together they form the complete output of SSD:
Y = outoff.diag + OULgiag.

4.2 SSD18

Quantization of B,C. Within SSDi8, the handling of the channel-dependent activations B and C
constitutes one of the strategies, since they are repeatedly invoked across three SSD submodules.
Rather than quantizing them separately within each module, SSDi8 quantizes once and reuses the
resulting INTS8 tensors, thereby reducing memory traffic and enabling a consistent low-precision
execution path. A challenge arises because B and C' are defined along the group dimension G but
are broadcast to the head dimension H during computation, with H typically an order of magnitude
larger than G. Naively applying quantization after broadcasting induces significant overhead (up to
4x), which SSDi8 addresses by optimizing the placement of quantization operations.

To minimize redundant overhead, SSDi8 performs an early quantization of the channel-varying ac-
tivations B and C' once along the group axis G at the beginning of each SSD layer. The resulting
INTS8 tensors are then reused across all downstream modules, maintaining a consistent low-bitwidth
representation without repeated quantization. Since |G| < |H|, quantization along G is considerably
more efficient, adding only about 3% to the total SSD latency. Moreover, as shown in Figs. and
the head dimension H exhibits highly heterogeneous value distributions across heads—up to 5x
variation—making direct per-head quantization unstable, Similarly, the group dimension G shows
distinct characteristics and must be considered in quantization. While the state dimension N exhibits
relatively consistent statistics, it directly participates in subsequent matrix multiplications, where
quantization errors cannot be restored. Thus, it is excluded from the quantization axes.

Sparse-aware Reformulation. As defined in Eq.] the ChunkState computation applies B ®
LU Tyae prior to the matrix multiplication with X € R(®/ ¢/ 1:%) Here, LU Tyye € R® 71 is
multiplied element-wise with B € R(®/ %</ 1Y) to impose a decay pattern across the steps within
each B, H, and c. The resulting B ® LU Ty is then multiplied with X along the 1-axis to project
the 1 sequence steps into N. The operations are executed independently and in parallel across B,
H, and c. However, this ordering introduces three critical limitations: (i) although B is quantized
to INTS, the presence of LU T, in FP16 enforces a floating-point execution path, undermining
the efficiency of INT8 GEMM,; (ii) because LU Ty, exhibits exponential variation along the chunk
axis 1, any quantization scheme other than per-/ quantization introduces substantial error, while
even per-/ quantization is infeasible due to quantization error accumulation after the [-axis matrix
multiplication; (iii) attempting Q (B ® LU Ty,) requires quantization after the G — H expansion,
which incurs significant overhead. To enable a fully INT8 execution path, SSDi8 reformulates the
computation as

StateINT32 = Q(Xscaled) X Q(B), Xscaled = LUTstate © X7 StateINTSZ € R(B'HICVP'N)a (7)

Under review as a conference paper at ICLR 2026

X X State
/ 020 | jothhead | >

0.1005

il
0 il 30 p
1000 o

L 2000

@,

60 x 30 p 10th head
N 120 © 15th chunk

i 0.040

LUT st B
< | 0.020 £

®, 0.000
60

0‘\4‘\ W p 20thhead |o

30 p 20th head
N 120 ° 15th chunk

(@)Xscaled with Sparse - Aware Reformulation T (b) State per head

Figure 3: (a) Distribution plots of head-wise X and LU T, in the 27th block of the ChunkState
module, and their element-wise product after reformulation Xeq. The channel-wise (P-dim) dis-
tribution of X.4eq i highly sparse. (b) Head-wise distribution plots of State.

where Q(-) denotes quantization. This reformulation is valid because LU Tyate applies its multi-
plication along the [-dimension shared by both X and B, while all other dimensions operate in-
dependently. This property ensures that moving the scaling operation from B to X preserves the
computational result, and quantizing the resulting Xgcajeq mitigates the limitations. In this case,
Q(Xscalea) is quantized along the (P, H) axes because LU Ty, is broadcast along the P axis while
X preserves consistency across P and per-(H) heterogeneity as shown in Fig. a) and Fig.|2| Quan-
tization simulations show that X .,eq €xhibits pronounced outliers along the channel axis, which
makes accurate quantization challenging. However, the actual quantization error of (Q(Xcaea) does
not significantly increase despite the presence of such outliers. From a distributional perspective,
this robustness can be attributed to the high sparsity of X ceq as shown in Fig. E| (a), which leads
to reduced quantization errors overall. To formally validate this property, we prove in Appendix [A]
that, under mild conditions, the quantization error of Xcyeq is smaller than that of Q(X) ® LU Tyyee-
This sparsity-aware proof justifies the proposed reformulation, and empirical results further confirm
that the resulting performance degradation remains negligible.

Persistent INT8 Representation of Recurrent States. State;yrs, obtained from the proposed re-
formulation is accumulated in INT32. Since INT32 consumes twice the memory of FP16, SSDi8
reduces memory traffic by directly converting INT32 to INTS8 in registers with quantization scales:

S

S8
Statents = Round (StateINT32 © xwmax) ; Gmax =271 — 1, ®)
s

where s,, sp, ss denote the quantization scales of X, B, and State, respectively. The resulting INT8
tensor is then stored in DRAM, avoiding intermediate FP16 representations and thereby reducing
memory bandwidth usage. State also exhibits variation across heads H. As shown in Fig. | (b),
consistency is observed along both the P and N, since N participates in subsequent multiplications
within ChunkScan1, quantization along N is not adopted. Stateirs is thus quantized per-(H, P).

In the StatePassing module, independently computed chunkwise states are recurrently accu-
mulated with decay to form the actual state, as shown in Eq. [6] Since State is already in INTS,
maintaining the INT8 execution path requires quantizing the FP16 Decay. The computation pro-
ceeds independently along B, H and recurrently along c, where each Decay is a scalar. This enables
element-wise fixed-point quantization of Decay. Formally,

Q(Decay; ;)
S

where S is a gating constant chosen as 2% to enable bit-shift operations for minimal latency (with
k = 7 in experiments). Per-H, P quantization ensures that all Staterrg across ¢ share a common
scale. This allows recurrent updates to be performed by simple bit-shift operations. As a result,
Statents can be persisted through ChunkScanl, enabling INT8 Tensor Core multiplications with
Cints. Here, Decay € R(® </ 1) aligns with the output Ut ofi-diag € R E e, 1B) g6 element-wise
multiplication is applied directly after the matrix multiplication.

Q(State;11) « Q(State;11) + ©® Q(State;), i=0,1,...,c—2, (9

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with three quantization methods (Quamba,
Quamba?2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model | Size | Methods | Bitwidth | LA HS PIQA Arc-E Arc-C WG | Avg.
T - | FPI6 | 656% 59.9% 733% 641% 333% 60.8% | 59.5%

| | Quamba | WB8A8 | 49.8% 58.5% 712% 619% 32.1% 58.1% | 55.2%
Quamba2 WB8AS8 62.0% 592% 72.5% 63.4% 32.7% 60.0% | 58.3%

1.3B W4A8 61.0% 588% 72.4% 62.7% 32.6% 59.1% | 57.7%

SSDi8 (Ours) WSA8 | 64.7% 59.7% 72.7% 64.0% 32.8% 60.9% | 59.1%

W4A8 | 63.6% 592% 72.7% 63.5% 33.5% 60.4% | 58.8%

‘ ‘ - ‘ FP16 ‘ 69.5% 66.6% 76.4% 69.5% 36.4% 64.2% ‘ 63.8%
|| Quamba | WSAS | 524% 604% 71.6% 629% 337% 58.0% | 56.5%
Quamba? WBAS8 66.1% 65.5% 74.4% 68.4% 371% 63.7% | 62.5%

Mamba-2 | 2.7B W4A8 65.6% 65.1% T47% 68.1% 361% 62.8% | 62.1%
SSDi8 (Ours) W8A8 | 68.3% 662% 75.6% 69.0% 36.8% 63.4% | 63.2%

W4A8 | 674% 653% 75.6% 689% 352% 63.5% | 62.6%

I - | FPI6 | 709% 777% 197% 760% 48.0% 72.0% | 70.7%

\ | Quamba | WBAS | 540% 746% 77.1% 713.5% 442% 65.5% | 64.8%
Quamba? WB8AS8 69.8% 77.8% 191% 759% 46.9% 69.0% | 69.8%

8B W4A8 68.8% 771% 791% 75.0% 46.0% 68.7% | 69.1%

SSDi8 (Ours) W8A8 | 704% 772% 79.6% 755% 472% 71.2% | 70.2%

W4A8 | 699% 76.5% 791% 75.4% 462% 70.6% | 69.6%

Quantization on ChunkBMM and ChunkScan2. As shown in Fig. [I] the quantized activations
Bints and Cng are reused in the ChunkBMM module. Because both are defined on the group
dimension G, the multiplication proceeds without conversion to the head dimension H, producing
CBintsz. The tensor CB € R(®/6¢:1:1) g Jarger than X, so its quantization yields substantial
memory savings. Similar to ChunkState, a single INT32 — INTS8 step is applied to minimize
memory traffic. In ChunkScan2, (LUTscan2 @ Q(CB)) x X involves X in FP16, enforcing a
floating-point path. Due to its shape, LU Ts.n; is element-wise multiplied with C'B, making post-
quantization recovery difficult and rendering reformulation infeasible due to a shape mismatch with
X . The dequantization scale of C'B is fused into LU Ts,n2, reducing overhead while allowing partial
FP16 execution. Experiments demonstrate that this process alone yields substantial latency gains.

Leveraging the persistent INTS representation of recurrent states together with the sparse-aware re-
formulation and reuse of activation, SSDi8 achieves up to 1.38x speedup overall, with gains reach-
ing 1.6 in the ChunkScan module compared to FP16 execution.

Mean Correction for SSD Quantization Error. To further mitigate the accumulation of quanti-
zation errors across SSD layers, we introduce a per-channel mean correction strategy. Given full-
precision and quantized results XW = Y € RM? and X'W’ = Y’ € RN:P, the problem of
minimizing the error between Y and Y is convex, and the optimal correction vector ¢* can be
derived in closed form as the channel-wise mean of the quantization error:

P N N
Ee=ly Y+ =YY (v -Y)ip—¢)’, =53 -Y)y, (10

p=1i=1 i=1

To ensure accurate estimation, we adopt a layer-wise sequential update strategy, enabling subsequent
layers to reflect the applied corrections and, thereby, capture activation shifts induced by earlier
updates. For a detailed description of the sequential update algorithm, please refer to Algorithm B}
To minimize overhead, c is applied only to the output projection layer, whose dimensionality is
half that of the input projection layer and where quantization error is most pronounced. This design
achieves consistent accuracy gains while incurring only marginal latency overhead (=~ 1-2%).

5 EXPERIMENTS

Experimental Setup. We conduct PTQ experiments on Mamba-2 (Dao & Gu, [2024) models with
1.3B, 2.7B, and 8B parameters. Experiments are primarily conducted on NVIDIA A5000 GPUs.

Under review as a conference paper at ICLR 2026

FP Quamba2 [SSDi8 (!
| v
"20 ,,,,,,,,,, "\20 T e [ChunkCumsum
£15 X108 R 47\&:15 e 1) E 20 — @ ChunkBMM
= - i i \; I N Quantizepc
> 210 : H e 1.7 J,XI.SOE B.C
8 10 — 8 = i s 1oH s Y= | @ ChunkScan
3 < i HRES)
% 5 %5 ; Hig — PIR| Lo [StatePassing
S m S oL = 3 i oL D | e | @ Chunkstate
Batch 8 16 32 Length 256 512 1024 2048 FP Quamba2 SSDi8
(a) Latency vs. Batch size (b) Latency vs. Sequence length (c) Module wise latency breakdown in SSD

Figure 5: SSD latency of quantization methods on Mamba-2 2.7B: (a) varying batch (L = 2048), (b)
varying length (B = 32), and (c) module-wise latency (B = 32, L = 2048). PIR denotes Persistent
INTS8 Representation. SSDi8 achieves up to 1.47x overall speedup and 1.77x in the State path.

We evaluate zero-shot performance on LAMBADA (Paperno et al.| 2016), WinoGrande (Sakaguchi
et al.l [2020), PIQA (Bisk et al, 2020), HellaSwag (Zellers et al.l |2019), ARC-Easy, and ARC-
Challenge (Clark et al., |2018) benchmarks, and additionally assess language modeling capability
via WikiText2 perplexity. Results are compared against the FP16 baseline, Quamba (Chiang et al.,
2025b)) and Quamba2 (Chiang et al.,2025a), and the HAD (HadMamba2) baseline, where HAD ap-
plies the Hadamard rotation to the Mamba-2 projection layers (Chiang et al., 2025a)), GPTQ weight
quantization and RTN quantization of SSD inputs.

Quantization Setup. We use symmetric, static quantization on both W8A8 and W4AS8 configu-
rations. For 4-bit weight quantization, we employ GPTQ (Frantar et al., |2023), combined with
Hadamard-transformed (Ashkboos et al., 2024) projection layers. To handle RMSNorm-induced
outliers, we migrate the ~ parameter (Wei et al., 2022), and apply mean correction with a factor of
0.15 to prevent estimation overfitting.

5.1 EVALUATION OF ZERO-SHOT AND GENERALIZATION PERFORMANCE

Tab. 2] reports zero-shot task performance Table 3: Wikitext2 perplexity with L = 2048.

of Mamba-2 models (1.3B, 2.7B, 8B) un- — :

der FP16, Quamba, Quamba2, and our Methods | Bitwidth | Wikitext2 Perplexity (1)

SSDi8 quantization. Average accuracy is \ | 138 278 8B

computed over six benchmarks. Across - | FPI6 | 1042 9.06 7.25

all bit-widths (W8A8, W4A8) and model HAD ‘ WSAS ‘ 11.31 11.42 8.57

scales, SSDi8 consistently outperforms WA4AS 11.63 11.85 8.79
uamba2. For example, on the 2.7B WSAS 10.80 9.32 7.79

p Quamba2
model with W4A8, SSDi8 improves over W4A3 11.08 9.54 7.94
Quamba2 (627% VS. 621%), and on the SSDi8 (Ours) gjﬁg ‘ iggg 3i§ ;22

8B model with W8AS, it achieves 70.2%
compared to 69.8%. These results underscore the robustness of SSDi8 across diverse configurations.
Full comparisons, including HadMamba-2 and Quamba2 with W4A 16, are provided in Appendix [E]

Perplexity Results. To assess linguistic fluency and generalization, we

report WikiText2 perplexity in Tab. [3] Across all model scales and bit- FP [| Quambaz [7] SSDi8
widths, SSDi8 consistently achieves lower perplexity than Quamba2 90

while narrowing the gap to FP16. In particular, for the 8B model, SSDi8 T

yields reductions of 3.9% (7.49 vs. 7.79) under W8AS8 and 4.0% (7.62 =

vs. 7.94) under W4A8. These results demonstrate that SSDi8 preserves £ 60

linguistic fluency and generalization under quantization. 3

B 16 32
5.2 LATENCY AND MODEL SIZE Figure 4: Forward la-
tency of W8A8 (L =
In Fig. E] (a) and (b), we compare SSDi8 with FP16 and Quamba2 on 2048) on 2.7B.
NVIDIA A5000 (24GB) across varying batch sizes (B < 32) and se-
quence lengths (L < 2048). Latency is measured in milliseconds as the average of 100 runs after
warm-up. On Mamba-2 2.7B with B = 32, L = 2048, SSDi8 achieves a 1.47x speedup over FP16
and a 1.38x improvement over Quamba2. The benefit increases with larger batch sizes and longer
sequences, where greater chunk-level parallelism amplifies throughput, while short sequences (e.g.,
L = 256) may show higher FP16 efficiency due to lower computational intensity. Fig. 5] (c) reports

Under review as a conference paper at ICLR 2026

module-level latency breakdown for 2.7B at B = 32, L = 2048. With persistent INT8 represen-
tation, ChunkScan achieves up to 1.77x speedup over FP16 and 1.50x over Quamba2, while
StatePassing yields 2.25x and 2.17x improvements, respectively. As demonstrated in Fig.[4]
similar gains are observed under W8AS, and results on Mamba-2 8B are provided in Appendix [G|

To further assess deployability under resource- Taple 4: SSD latency (ms) of SSDi8 vs.
constrained conditions, we evaluate SSDi8 on the Quamba2 on Orin Nano 16G.

NVIDIA Orin Nano 16G, as shown in Tab. [Z_f} Using

the Mamba-2 2.7B model, we measure SSD latency GPU | Orin Nano 16G

across varying sequence lengths with a batch size Bitwidth | W4AS WSAS

of 16, comparing W4A8 and W8AS quantization Method | Quamba2 SSDi8 Quamba2 SSDi8
against Quamba2. Across all configurations, SSDi8 7 = 256 5530 4471 5103 4130
consistently outperforms Quamba2, demonstrating L =512 76.10 68.00 70.95 60.49
. . L=1024 | 13440 12751 139.10 114.36
its robustness beyond high-scale accelerators. L —92048 | 26290 24054 24929 217.69

5.3 ABLATION STUDIES

In Tab. §] we present ab- Table 5: Ablation results for internal SSD quantization (Q(SSD)).
lation results on Mamba-2

27b. The bascline retains i | 60" | o, | a8 | TS| chneing | L | P
while applying W4AS else- Y - - - - g:gg g:gg
where. Comparing Q(X) v v 8.05 | 937
with the proposed refor- W4A8 v v v 7.60 1 9.39
mulated Q(X © LUT) 5 v v gf)(s) gjzg
shows negligible quantiza- v v v v 6.53 | 9.43

tion error, consistent with
our theoretical proof. Avoiding element-wise multiplications after head expansion of B yields mea-
surable latency gains. Without reformulation, quantizing X alone prevents the use of the persistent
INTS path, and the final latency improvement from quantizing B, C', and C'B is limited to 1.07 x. By
contrast, our reformulation enables INT8 execution in ChunkScan1, improving latency by 1.08x,
and further quantization of ChunkBMM achieves a 1.32x speedup. Perplexity degradation remains
below 0.1, indicating that our channel-aware quantization preserves accuracy. Further results are
provided in Appendix [

We perform an ablation study on SSD quantization and mean T.p1e 6: Ablation results of SSDi8:
correction using the Lambada dataset, which exhibits minimal Q(SSD.) and correction ¢ '
performance variance, and report in Tab. [} On Mamba-2 2.7B '

under the W4AS setting, HadMamba quantization yields only Bitwidih SSDi8 N
51.2% accuracy, whereas applying SSD quantization substan- WAt | O(ssD) Correct. | 2
tially boosts performance to 67.2%. Incorporating mean cor- FPI6 | - — | 695%
rection provides an additional improvement to 67.4%, achiev-
. . . . | | 51.2%
ing consistent accuracy gains with only a ~1-2% overhead. WA4AS v 2%
These results demonstrate that SSDi8 achieves both accuracy | | 67.2%
| v v | 67.4%

and efficiency, while mean correction offers effective error cor-
rection with negligible additional latency.

6 CONCLUSION

In this work, we presented SSDi8, an INT8 quantization framework developed in the context of the
SSD of Mamba-2. Unlike prior approaches limited to projections or partial SSD operations, SSDi8
establishes persistent INTS8 representations through activation reuse and a sparse-enhanced refor-
mulation. It further explores optimal quantization strategies by analyzing internal activations and
incorporates mean correction to compensate for accumulated errors, enabling accurate and efficient
inference for large-scale Mamba-2 models. SSDi8 achieves FP16-level accuracy while delivering
up to 1.47x speedup over FP16 and 1.38x over Quamba?2, and further demonstrates superior ef-
ficiency on edge devices such as NVIDIA Orin Nano, as well as across diverse batch—sequence
settings. SSDi8 provides mathematical intuition for sparse-tensor quantization and offers guidance
for quantization in environments where element-wise and recurrent operations are prevalent.

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alis-
tarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated 1lms.
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Mohamed S Abdelfattah,
and Diana Marculescu. Quamba2: A robust and scalable post-training quantization framework
for selective state space models. In Forty-second International Conference on Machine Learning,
2025a.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
Quamba: A post-training quantization recipe for selective state space models. In International
Conference on Learning Representations (ICLR), 2025b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, 2018.

Tri Dao. Causal depthwise convld in cuda with a pytorch interface, 2024a. URL https://
github.com/Dao—-AILab/causal-convld.

Tri Dao. Fast hadamard transform in cuda, with a pytorch interface, 2024b. URL https://
github.com/Dao—-AILab/fast—-hadamard-transform.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning, pp. 10041—
10071. PMLR, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. International Conference on Learning Rep-
resentations (ICLR), 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291-326. Chapman and Hall/CRC, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskwlVY2.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474-1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL |https:
//openreview.net/forum?id=uYLFozl1v1AC.

Wenjun Huang, Jiakai Pan, Jiahao Tang, Yanyu Ding, Yifei Xing, Yuhe Wang, Zhengzhuo Wang,
and Jianguo Hu. MI-mamba: Efficient multi-modal large language model utilizing mamba-2.
arXiv preprint arXiv:2407.19832, 2024.

Taehan Lee, Jachan Jung, and Hyukjun Lee. Mamba-2 audio captioning: design space exploration
and analysis, 2025. URL https://arxiv.org/abs/2509.15680.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems
(MLSYS), 2024.

10

https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/causal-conv1d
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2509.15680

Under review as a conference paper at ICLR 2026

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient 1lm serving. In Eighth
Conference on Machine Learning and Systems.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LIm quantization
with learned rotations. In The Thirteenth International Conference on Learning Representations.

Bruce Lee LY. Cuda hgemm, 2024a. URL https://github.com/Bruce-Lee-LY/cuda_
hgemm.

Bruce Lee LY. Cuda hgemv, 2024b. URL https://github.com/Bruce-Lee-L1Y/cuda_
hgemv,

Denis Paperno, Germédn Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, (ACL). The Association for Computer Linguis-
tics, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Yuheng Shi, Minjing Dong, Mingjia Li, and Chang Xu. Vssd: Vision mamba with non-casual state
space duality. CoRR, 2024.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In International Conference on Learning Representations (ICLR), 2023.

Shengkun Tang, Liqun Ma, Haonan Li, Mingjie Sun, and Zhigiang Shen. Bi-mamba: Towards
accurate 1-bit state space models. arXiv preprint arXiv:2411.11843, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:17402—-17414, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning (ICML), 2023.

Zukang Xu, Yuxuan Yue, Xing Hu, Zhihang Yuan, Zixu Jiang, Zhixuan Chen, Jiangyong Yu, Chen
Xu, Sifan Zhou, and Dawei Yang. Mambaquant: Quantizing the mamba family with variance
aligned rotation methods. In International Conference on Learning Representations (ICLR), 2025.

Zhenxuan Yu, Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Slender-mamba: Fully quan-
tized mamba in 1.58 bits from head to toe. In Proceedings of the 31st International Conference
on Computational Linguistics (COLING), 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez (eds.), Pro-
ceedings of the 57th Conference of the Association for Computational Linguistics (ACL), 2019.

11

https://github.com/Bruce-Lee-LY/cuda_hgemm
https://github.com/Bruce-Lee-LY/cuda_hgemm
https://github.com/Bruce-Lee-LY/cuda_hgemv
https://github.com/Bruce-Lee-LY/cuda_hgemv

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

|A" Proof of Proposed Quantization Error Reduction via Reformulation|

|D__Additional Experimental Setting|

| Additional Accuracy Results|

IF_Additional Ablation Studies|

|G Additional Latency and Model Size Results|

[Distribugi FSSD T |

VI Usag

12

13

15

17

17

18

19

20

21

23

Under review as a conference paper at ICLR 2026

A PROOF OF PROPOSED QUANTIZATION ERROR REDUCTION VIA
REFORMULATION

Proposition 1. Suppose that

S S (ReY by, £0) < Y
p=1

p=1 z,p

Az
12

Then it holds that

MSE;,... < MSE,.
Notation.
(1) We denote the Hadamard product by ®. The quantization step size is A = %.
(2) The dequantized input is 2’ = deq(q(x)). The output is y; , = 7, © lut;.
(3) Let p, = P(y, # 0) and Yip = {yp : yp # 0}.
(4) Vectors are denoted by x, = (zop,...,21rp) and yp = (Yop,---,YL,p), With error vector
€xp = (eo,x,pa oo »eL,x,p)-
(5) The L-vector lut = (lutg, ..., luty) is fixed and deterministic.
Assumptions.
(1) min(y,) < 0 and max(y,) > 0.
(2) Quantization errors satisfy e, ; , ~ U(— A;”’, A; 2), eyip~U(— Ag £, A;’p)

(3) Outliers are not considered in .
@ 0<p, <l
(5) lut is not a random variable.

Proof. Step 1. Step size relation.

In symmetric quantization, the step size A is determined by the min/max values.

By Assumption (1), we have A = A, ;. Let s, = A, /Ay p, so that A,), = s, A, , and hence
A =5Agp.

Y,p
Step 2. Case y' = (z © lut)’.
The reconstructed output is
y = yzp + e;l?p, with prob. p,,
Lp 0, with prob. 1 — p,.
Thus
MSEIscaledyp = p;D E[(yl/,p - yl,P>2]'

Since the error e; ; , = y; , — y;', has zero mean, we have

E[(e;l}p)z] = Var(e} ;).

y:l,p

Therefore,

MSEIscaledyp = pp : E[(e;,lﬂp)Q} = p;D ' Var(e;,l7p)'

Under the standard quantization noise model,

(A7,5)°
Var(e;,lm) =15
so that
(Ay)2
MSEwscaled:p = pp .]1-/72p :

13

Under review as a conference paper at ICLR 2026

Averaging over p gives

*

P
Txmlul - E .

Step 3. Case ' = 2’ © lut.
We expand
MSE, = E[lly, — 93] = E[ll(z}, — zp) © lut||3].

By component,
L

(@}, = 2p) © Lut3 = (ewp - Lutr)?.
=1
Taking expectation,

E[Hew,PQIUtH ZlU’tl : rlp

Since ey ; p is uniform, Efe / 12. Therefore,

:rlp]
2

MSE, , = ||lut]]3 - o

Averaging gives

1« A2
MSE, = — [|lut;—=2
S P2 ltutllz—5

Step 4. Comparison.
Substituting A} |, = spAz p,

— I P
:Es(,d]cd - P Pp p :

Thus, if
A2

P
[[Tut
gmuzl,

2
pr v

then

MSE < MSE,.

Lscaled —

O

Mildness of the sufficient condition. This condition is mild. First, scaling typically reduces the
dynamic range so that A, , < A, ,,,i.e., s, < 1. Second, due to the sparsity of Xcaeq, the activation
probability is small (p, < 1), which diminishes the left-hand side. Third, the lut vector carries non-
negligible energy across dimensions, so ||lut||3 is not small. Consequently, in these typical regimes,

A2

P
> iy antnz =2,

and thus MSE,, ., < MSE, follows naturally. For a detailed discussion of the empirical character-
istics of the distributions of x, xsied, and lut, please refer to Fig. l 3]and Appendix H|

14

Under review as a conference paper at ICLR 2026

B ALGORITHM

Algorithm 1 Sequential Mean Correction Update

Require: Quantized Blocks Bi.r, fpl6 means pusp[1: L], number of samples .S, sequence length 7" decaying
factor 7, target-layer set Ly
Fix initial inputs

1: for s+ 1to S do

2: X[s] + Embedding(D[s], T')
3: end for

4: for [+ 1to L do

5: if [¢ Ltgl then

6: for s < 1to S do
7 Y «+ Bi(X[s])
8: X[s]«+Y

9: end for
10: continue
11: end if

12: fg < 0; N <0
13: for s < 1to .S do

14: Y « Bi(X[s])

15: ms Y.mean(0, 1)

16: ns < Y.shape[0] - Y.shape[1]
17: N < N + ng; wﬂ—%

18: Hq < Hq + Ws + (Ms — [1q)

19: end for

20: 6« pipll] — g
21: cll]«<n-6
22: for s <— 1to S do

23: Y::omp <~ BZ(X[SL apply C[l])
24 X[S] — Ycomp

25: end for

26: end for

27: return model with corrections applied

Sequential Mean Correction Update. Algorithm 1 shows the sequential update of the proposed
mean correction technique for efficiently mitigating quantization errors in SSD layers. The proce-
dure begins by initializing sample inputs through embeddings and then iteratively traversing all net-
work layers. For layers not subject to correction, a standard forward pass is performed to propagate
outputs to the next layer. Upon reaching a target correction layer, multiple sample outputs are used
to compute channel-wise means, which are then aggregated to estimate the mean i, of the quantized
output. This estimate is compared with the reference mean 5, [!] obtained in full precision, and their
difference § = g, (1] — 24 is multiplied by a decay factor 7 to compute the correction term c[l]. The
correction is directly applied to the layer output, and the corrected output is propagated forward.

This process is repeated for all designated target correction layers, thereby alleviating accumulated

quantization errors through three steps: (i) channel-wise mean estimation, (ii) correction term
computation, and (iii) propagation of corrected outputs.

15

Under review as a conference paper at ICLR 2026

Algorithm 2 SSD Layer

Require: X € R(B,L,H,P), A € R(B, L, H), decay activation A € R(H),
I: BeR(B,L,G,N), Ce€R(B,L,G,N),
2: L=c-l

Module 1: ChunkCumsum (Input (A, A) — Output (A, dAc))
: A + softplus(A)
: AT + discretize(A)
¢ dAcs < CumSumDecay(A™) >€ R(B, H,c,

|9 SN

Module 2: ChunkState (Input (dA.s, A, B, X) — Output State)
: Decayg e < exp(dAcs|:, :, 0 1—1]) — dAcs
1 LUTate < A © Decay oo >eR(B,H,c
: State < X x (B ® LUTkate) >eR(B,H,c, P

[c BN o)

Module 3: StatePassing (Input (State, d A.s) — Output State)

9: Decay,, < exp(dAcs[:,:,:, 1—1]) >€R(B,H,c)

10: fori = 0toc—2do
11: State[i+1] < State[i+1] + Decay . [i+1] © State[s]
12: end for

Module 4: ChunkBMM (Input (B, C') — Output C B)
13 CB+ CxB >€R(B, H,ec,l,

Module 5: ChunkScanl (Input (State, C, dAcs, A) — outog)
14: Decay, ., < exp(dAcs)
15: LUTscan1 < A © Decay,.,,1
16: outes + (State x CT) ® LUTscan1 >€R(B,H,c, P,

Module 6: ChunkScan2 (Input (X, CB, dAcs, A) — outdiag)
17: Let dAgn) S R<B’H’C’l’1>, dAéz) € RB-H.e.1.D) e the broadcasted forms of dAgs.
18: LUTscanz ¢ A © exp(dALY — dAT) >eR(B, H,c,l,
19: outdiag < X X (CB ® LUTscan2) >e R(B,H,c, P,

Final Output
20: Y <+ outos + outdiag
21: return Y >e R(B,H,c, P,

1)

)

!
)

)

SSD layer
Given input activations X, the layer first discretizes the step size A and decay activation A, and
constructs per-chunk cumulative decay factors through ChunkCumsum.

ChunkState performs the input-to-state projection within each chunk in parallel, while

StatePassing propagates recurrent information across chunks to restore the global sequence depen-

dency.

ChunkBMM computes the block-diagonal interaction matrix CB,

which is exclusively used in the diagonal path.

ChunkScanl generates the off-diagonal contribution from the recurrent state, and
ChunkScan2 produces the diagonal contribution from the input representation with CB.

The final SSD output is obtained by summing these two terms.

16

Under review as a conference paper at ICLR 2026

C ADDITIONAL RELATED WORKS

Post-Training Quantization and LLM Quantization. Quantization approaches are generally di-
vided into Quantization-Aware Training (QAT) (Gholami et al., 2022), which integrates quantiza-
tion into the training process, and Post-Training Quantization (PTQ) (Frantar et al., 2023} Xiao
et al., 2023; [Lin et al., 2024), which applies quantization to models after pretraining. QAT is often
considered strong in preserving accuracy, but for large-scale models the associated retraining cost
can become prohibitively high. As a result, many recent studies have shifted attention toward PTQ,
particularly in the context of large language models (LLMs) (Touvron et al., [2023).

Among representative PTQ approaches, GPTQ (Frantar et al.| [2023) proposes a weight-
compensation PTQ method by leveraging approximate second-order information via the Hessian.
SmoothQuant (Xiao et al. [2023) shifts the difficulty of activation quantization into weights, en-
abling stable W8AS8 and W4AS8 performance. QuaRot (Ashkboos et al [2024) and SpinQuant (Liu
et al.)) achieve precise 4-bit quantization by applying random or learned rotation matrices to mitigate
outliers. QServe (Lin et al.) highlights the practicality of W4AS8 quantization in real environments,
demonstrating its effectiveness in reducing inference latency for LLMs. However, these methods
are inherently optimized for the structural properties of Transformers—such as self-attention and
KV caching—and thus are not directly applicable to architectures like selective state space models,
where continuous state updates and activation reuse play a central role.

D ADDITIONAL EXPERIMENTAL SETTING

Implementation For quantization, we use a calibration set of 512 samples drawn from the Pile
dataset. We apply 4-bit weight quantization to the in projection and out projection layers using
GPTQ. To improve efficiency, the scaling parameter v of RMSNorm is fused into the in projection
layer (Wei et al.l 2022)). Except for the SSD module, activations are quantized to 8-bit with per-
tensor quantization, while the fast Hadamard transform (Ashkboos et al., [2024) is fused into the
corresponding layers. Inside the SSD, we adopt the same Triton (Daol 2024bza) as used in Mamba-
2, but modified to fit the SSDi8 method. CUDA (LY}, 2024ajb) based causal Conv1d operator is used
without modification.

17

Under review as a conference paper at ICLR 2026

E ADDITIONAL ACCURACY RESULTS

The table below presents an extended version of the accuracy results in Tab. [2| Evaluations are con-
ducted on the same datasets, where HAD denotes applying Hadamard and 4-bit GPTQ quantization
to Mamba-2. SSDi8 achieves performance comparable to Quamba2 under W4A16 quantization,
even with W4AS8 quantization.

Table 7: Evaluation of Mamba-2 (1.3B, 2.7B, 8B) with four quantization methods (HAD, Quamba,
Quamba2, and SSDi8) on six zero-shot tasks (LA, HS, PIQA, Arc-E, Arc-C, WG).

Model | Size | Methods | Bitwidth | LA~ HS PIQA Arc-E Arc-C WG | Avg.
\ \ - | FPI6 | 65.6% 59.9% 733% 64.1% 333% 60.8% | 59.5%

HAD W8A8 | 553% 594% 732% 64.0% 33.5% 582% | 57.3%

W4A8 | 53.9% 589% 723% 63.6% 339% 59.1% | 57.0%

| |3 | Quamba | W8AS | 49.8% S8.5% 712% 61.9% 321% 58.1% | 55.2%
' W4AL6 | 64.3% 592% 72.6% 638% 33.1% 60.3% | 58.9%
Quamba2 | W8A8 | 62.0% 59.2% 72.5% 634% 327% 60.0% | 58.3%

W4A8 | 61.0% 588% 724% 62.7% 32.6% 59.1% | 57.7%

SSDi8 (Ours) | WBAB | 647% 59.7% 727% 64.0% 328% 60.9% | 59.1%

] W4A8 | 63.6% 592% 727% 635% 335% 60.4% | 58.8%

| | - | FPI6 | 69.5% 66.6% 764% 69.5% 364% 64.2% | 63.8%
HAD W8A8 | 53.8% 60.8% 73.8% 64.8% 358% 622% | 58.5%

W4A8 | 51.2% 59.7% 73.0% 64.9% 34.6% 60.2% | 57.3%

Mamba-2 | g | Quamba | WBA8 | 524% 604% 716% 62.9% 337% 58.0% | 56.5%
' W4A16 | 688% 65.6% 75.5% 68.6% 36.6% 649% | 63.3%
Quamba2 | W8A8 | 66.1% 65.5% 74.4% 684% 37.1% 63.7% | 62.5%

W4A8 | 65.6% 65.1% T47% 68.1% 36.1% 62.8% | 62.1%

SSDig (Ours) | WBAB | 683% 662% T5.6% 69.0% 368% 634% | 632%

W4A8 | 67.6% 653% 75.6% 68.9% 352% 63.5% | 62.7%

| | - | FPI6 | 709% 77.7% 797% 760% 480% 72.0% | 70.7%
HAD W8A8 | 56.7% 753% 78.1% T4.1% 450% 65.6% | 65.8%

W4A8 | 56.1% 74.6% T13% T3.8% 44.5% 66.0% | 65.4%

| gp | Quamba | WBAS | 540% 74.6% T11% T73.5% 442% 65.5% | 64.8%
W4AL6 | 712% 768% 79.1% 752% 45.9% 70.8% | 69.8%

Quamba2 | W8A8 | 69.8% 77.8% 79.1% 759% 469% 69.0% | 69.8%

W4A8 | 68.8% 77.1% 79.1% 750% 46.0% 68.7% | 69.1%

SSDig (Ours) | WBA8 | 704% 772% 79.6% 75.5% 412% 712% | 70.2%

| W4A8 | 69.9% 765% 79.1% 754% 462% 70.6% | 69.6%

The table below shows pile perplexity comparison on 1.3B and 2.7B models. SSDi8 outperforms
Quamba?2 in both cases and achieves performance close to FP16 under W8AS8 quantization.

Table 8: Pile perplexity with L = 2048

Pile Perplexity (|

Model Methods ‘ Bitwidth ‘ P Yo
1.3B 2.7B

| . | FPl6 | 6.99 6.27

WS8AS 7.46 .77

HAD W4AS8 7.87 8.17

Mamba-2 Quamba2 WS8AS 7.20 6.44
uamba’ W4AS 7.55 6.68

) WS8AS8 7.08 6.34

SSDi8 (Ours) W4AS 7.41 6.57

18

Under review as a conference paper at ICLR 2026

F ADDITIONAL ABLATION STUDIES

The table below shows ablation results on the quantization axis of activations within SSD, evaluated
on Wikitext2 perplexity. For activations B, C, per-G, N yields the best performance, though the
difference from per-G is negligible (0.02). In contrast, X and State are highly sensitive to the choice
of quantization axis, showing substantial degradation when either the P or H axis is not considered.

Table 9: Ablation study for quantization axis.

Model ‘ Bitwidth ‘ Activation ‘ per-T ‘ per-P(N) ‘ per-H(G) ‘ Wikitext2 Perplexity

| - -1 - 1 - | 742
v 7.59
B.C v 7.43

W4AS v 7.44
SSD-FP16 v v 7.42

\% 11.97
v 8.59

v 8.15
v v 7.42

8B

X,State

The figure below shows latency and accuracy variations with respect to the placement of mean
correction. The highest accuracy gain is observed when mean correction is applied immediately
after SSD layers, indicating error accumulation within SSD. In Mamba-2, the model dimension is
halved after the out-projection layer, yielding the lowest latency when mean correction is applied.
Considering the trade-off between latency and accuracy, we therefore apply mean correction only at
the out-projection layer.

Table 10: Accuracy and speedup for W4AS8. Experiments are conducted on the LAMBADA dataset,
using SSDi8 without mean correction as the baseline.

Bitwidth | Project | Speedup Acc.

None x1.00 67.2%
In x0.945 67.4%
SSD x0.975 67.5%
Out x0.987 67.4%

WA4A8

19

Under review as a conference paper at ICLR 2026

G ADDITIONAL LATENCY AND MODEL SIZE RESULTS

This section presents results on additional memory usage and latency.

The memory footprint is nearly identical to that of the previous SOTA model, Quamba2, with only
a small increase due to the extra static quantization scales.

Model | Size | Method | WBA8 | W4A8
FP16 5.154 GB

2.7B | Quamba2 2.948GB | 1.766GB

Mamba2 SSDi8 (Ours) | 2.953GB | 1.774GB
FP16 15.710 GB

8B | Quamba2 9.860GB | 7.028GB

SSDi8 (Ours) | 9.867GB | 7.038GB

Table 11: Memory usage comparison

With W4A8 quantization on the 8B model, SSDi8 achieves lower SSD latency than FP16 and
Quamba, with improvements becoming more pronounced as computational intensity increases.

FP Quamba2 D SSD;8
30

|

o
o
3
2
S

15

_____S°S

1474543 879

0.64,¢
7.458 I—QI{,,,.,

0
Batch 8 16 32

7781

Latency (ms)

e |

Figure 6: Comparison with Quamba2 under W4AS8 quantization on the 8B model is also reported.
OOM denotes Out-Of-Memory.

20

Under review as a conference paper at ICLR 2026

1080
1081

1082 Visualization of Activations The figure below represents that visualization of B, C, and C'B by
1085 oroup in the first, middle, and last blocks of the Mamba-2 8B model. As argued in Sec. [the

1084 distributions differ across groups. CB is masked as it is used for computing out gise.
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124 3rd Group
1125

1126

1127

1128 Figure 7: Visualization of the distributions of activations B, C, and C'B in in the first, middle, and

1129 1ast block of Mamba-2 8B.
1130

1131
1132
1133

H DISTRIBUTIONS OF SSD TENSORS

3rd Group

oth Group

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The figure below shows the visualization of X, LU T;4¢e, and X¢qieq in the last block of Mamba-2
8B. The first row illustrates the full sequence length, while the second row depicts its partition into
nchunks with the corresponding chunk size. Both LU T4t and X qieq €xhibit exponential growth
as the chunksize index increases.

X ’ % : - Xscaled

HXL

cX1

Figure 8: Visualization of the distributions of activations X, LU Tst4te, and Xeq1eq in the last block
of Mamba-2 8B.

22

Under review as a conference paper at ICLR 2026

I LLM USAGE

During the manuscript preparation, we used OpenAl’s GPTS5 (https://chatgpt.com/), a Large Lan-
guage Model, to proofread our work. Our interaction with the LLM was iterative and focused exclu-
sively on improving the quality of the writing. We affirm that the LLM served as an assistive tool
and did not contribute to core research ideas, experimental design, analysis, and results presented in
this paper. The final scientific content and all claims made in this paper are the sole responsibility of
the authors.

23

	Introduction
	Related Works
	Background
	Quantization
	Mamba-1

	Methodology
	Preliminary Study: Mamba-2's Structured State Space Duality
	SSDi8

	Experiments
	Evaluation of Zero-shot and Generalization Performance
	Latency and Model Size
	Ablation Studies

	Conclusion
	Proof of Proposed Quantization Error Reduction via Reformulation
	Algorithm
	Additional Related Works
	Additional Experimental Setting
	Additional Accuracy Results
	Additional Ablation Studies
	Additional Latency and Model Size Results
	Distributions of SSD Tensors
	LLM Usage

