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ABSTRACT

In this paper, we introduce the big.LITTLE Vision Transformer, an innovative
architecture aimed at achieving efficient visual recognition. This dual-transformer
system is composed of two distinct blocks: the big performance block, character-
ized by its high capacity and substantial computational demands, and the LITTLE
efficiency block, designed for speed with lower capacity. The key innovation of
our approach lies in its dynamic inference mechanism. When processing an image,
our system determines the importance of each token and allocates them accord-
ingly: essential tokens are processed by the high-performance big model, while
less critical tokens are handled by the more efficient little model. This selective
processing significantly reduces computational load without sacrificing the overall
performance of the model, as it ensures that detailed analysis is reserved for the
most important information. To validate the effectiveness of our big.LITTLE Vision
Transformer, we conducted comprehensive experiments on image classification and
segment anything task. Our results demonstrate that the big.LITTLE architecture
not only maintains high accuracy but also achieves substantial computational sav-
ings. Specifically, our approach enables the efficient handling of large-scale visual
recognition tasks by dynamically balancing the trade-offs between performance
and efficiency. The success of our method underscores the potential of hybrid
models in optimizing both computation and performance in visual recognition
tasks, paving the way for more practical and scalable deployment of advanced
neural networks in real-world applications.

1 INTRODUCTION

Vision Transformer (ViT) (Dosovitskiy et al., 2020) has increasingly influenced the field of computer
vision since its introduction. It demonstrates exceptional performance in fundamental tasks such
as image classification (Deng et al., 2009), image segmentation (Kirillov et al., 2023), and object
detection (Li et al., 2022). Furthermore, the flexibility of the transformer architecture enables ViT
to act as a crucial conduit between visual and linguistic information in multimodal models (Liu
et al., 2023a; Chen et al., 2023), significantly contributing to their rapid development. Additionally,
due to the scalability of ViT, as the model sizes increase, ViT is able to effectively learn richer
representations of images. Therefore, making large ViT is highly desirable for downstream tasks and
applications.

Despite the impressive performance of ViT, its slow inference speed remains a notable drawback. For
instance, models utilizing ViT-Huge with more than 600M parameters as a core component, such as
the Segment Anything Model (SAM) (Kirillov et al., 2023), may operate at less than 2 FPS on a high-
end NVIDIA A100 GPU (Xiong et al., 2023), not to mention ViTs with billion-level parameters (Zhai
et al., 2022; Sun et al., 2023; Dehghani et al., 2023; Chen et al., 2023). This limitation significantly
hinders the practical deployment of ViT-based models in real-world applications and there is an
urgent need for improving the inference speed of ViT models.

To tackle this issue, a variety of strategies have been developed to enhance the inference speed of ViT
in recent years. Some works address the problem from the model perspective, either by distilling
the knowledge into a lighter-weight model (Xiong et al., 2023), or lowering the precision of model
parameters (Dettmers et al., 2022). Instead, inspired by the discovery that only representative tokens
are crucial for the final prediction, token pruning methods emerge and speed up the inference by
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Figure 1: Comparison between big.LITTLE and conventional token pruning and Performance of
various token pruning strategies. The left diagram compares the standard ViT, token pruning which
selectively removes less important tokens, and big.LITTLE ViT that integrates both high-capacity
performance blocks (P-Block) and high-efficiency blocks (E-Block) for dynamic token processing.
The right demonstrates the performance and efficiency of different models and our big.LITTLE ViT
on the ImageNet classification task. Here, shape represents the baseline corresponding to the model.
This visual comparison underscores the ability of big.LITTLE ViT to maintain high accuracy while
significantly enhancing processing speed.

reducing the number of tokens layer by layer (Xu et al., 2022; Liang et al., 2022). Although they have
shown promising results with the enhanced model speed on the image classification task, which only
requires predicting one class label for each image, directly dropping the unrepresentative tokens can
disrupt the spatial structure of image tokens and lose the context information. Such incomplete infor-
mation flow may lead to sub-optimal model performance when performing downstream perception
tasks, such as image segmentation.

Therefore, to achieve higher inference speed while preserving the context information images, we
recognize that all tokens are needed, but not all tokens are equally important. Intuitively, we humans
have a large field of view, but will only focus on a small area each time when we see the world.
For the focused area, we pay more attention to detailed processing while keeping an eye on the
surroundings.

Motivated by this observation, we introduce a novel system called big.LITTLE Vision Transformer
(bLViT), which comprises big performance blocks and LITTLE efficiency blocks within the ViT
architecture. In our design, only a few important tokens are updated with the performance blocks each
time, which ensures the performance of the model during the inference with a reduced computation.
For the less important areas, we keep the context information but pay less computation cost to enable
high inference efficiency with the efficiency blocks. Although most image tokens are pruned from the
performance blocks based on their importance, the efficiency blocks ensure that all tokens continue
to update layer by layer, preserving the structured attributes of image tokens. Whether a token is
processed by the big model is determined by its importance score from prediction layers. Throughout
training, our differential design on token selection enables the prediction layers to appropriately route
critical tokens to the performance blocks, ensuring intensive computation for those deemed most
significant.

We demonstrate the efficacy of our bLViT through applications in image classification and image
segmentation tasks, employing DeiT (Touvron et al., 2021) and SAM (Kirillov et al., 2023) as the
base models within our big.LITTLE system. The experimental results exhibit a competitive trade-off
between computational speed and accuracy, highlighting our model’s capability to effectively balance
performance and efficiency.

To summarize, our contributions are as follows:

1. We propose a big.LITTLE Vision Transformer (bLViT) model which effectively prunes
tokens to reduce computational overhead while preserving the context information and
achieve a better speed-accuracy tradeoff.
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2. We conduct experiments on image classification and image segmentation tasks and demon-
strate the efficacy and efficiency of our bLViT.

3. We perform extensive ablation studies to verify the design choice of our models and improve
its performance. We hope these designs could benefit the future development of such
heterogeneous model architecture.

2 RELATED WORK

Vision Transformer. Vision Transformer (Dosovitskiy et al., 2020) has achieved a great success
and shows state-of-the-art performance on many tasks including image classification (Touvron
et al., 2021), object detection (Li et al., 2022), semantic segmentation (Strudel et al., 2021; Cheng
et al., 2022; 2021), etc. The long-range dependency modulation enables its capability to encode rich
contextual information, which can benefit downstream tasks by providing better image representations.
Therefore, a stream of work studies how to adapt plain ViT to different tasks to optimal the network
architecture and boost the performance (Wang et al., 2022; Zhang et al., 2022a; Yao et al., 2024),
using the pretrained model on large-scale datasets with different pretraining strategies (Zhang et al.,
2022b; Oquab et al., 2023). Despite its wide application and high performance, the computational
burden poses challenges to the inference speed and practical deployment in resource-constrained
environments. A better speed-accuracy tradeoff for the model is desirable.

Computation Reduction. To reduce the computation of existing models, several works have
attempted to prune the input tokens (Liang et al., 2022; Xu et al., 2022; Rao et al., 2021) or merge the
input tokens (Marin et al., 2021; Bolya et al., 2022). This is achieved by identifying and retaining only
the most informative tokens, effectively reducing the number of tokens to process. AdaViT (Meng
et al., 2022) further tries to partially or entirely drop the layers for all tokens. This type of method
can achieve good speedup with only marginal performance decreases on ImageNet classification.
However, few of them have proven the model can work with downstream tasks besides image
classification as many tokens are dropped in a very early stage.

Speedup with Small Model. Leveraging a smaller model is another way to speed up model
inference. The speculative decoding framework (Kim et al., 2023) introduces a mechanism using a
separate large language model along with a smaller one to improve inference speed in natural language
processing. Big-little Net (Chen et al., 2018) proposes to learn multi-scale feature representations
with Big-Branches process the low-resolution input and Little-Branches process the high-resolution
input to balance the computation on image and speech recognition. Mixture-of-Expert (Jacobs et al.,
1991; Eigen et al., 2013; Ahmed et al., 2016; Riquelme et al., 2021) can also be seen as a way to speed
up the inference by selecting a part of the model (“experts”) at each time. While our method shares
a similar spirit with these works, our model focuses on developing a single model instead of two
separate models and still works on the same input resolution. Our “model experts” also have different
computation complexity, which allows it to be more adaptive and achieves a better speed-accuracy
tradeoff.

There are also some works that focus on the model distillation (Hinton et al., 2015; Touvron et al.,
2021; Xiong et al., 2023) as well as model quantization (Dettmers et al., 2022; Xiao et al., 2023; Ma
et al., 2024) to speed up the computation. Since our goal is to propose a general model architecture that
incorporates computation-intensive and efficient blocks, we argue that our model is complementary
to these methods and the speed can be further improved.

3 BIG.LITTLE VISION TRANSFORMER

3.1 OVERVIEW

The core big.LITTLE module in the bLViT architecture comprises two components: a performance
block (P-block) and an efficiency block (E-block). The token processing pipeline is illustrated in
Fig. 2. This module processes a sequence of image tokens as input. The importance of each token
is predicted beforehand by the prediction layers, allowing for the ranking of tokens based on their
importance. The top-K tokens, deemed the most critical, are processed by the P-block, which,
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Figure 2: The Pipeline of big.LITTLE Vision Transformer module. Left: The module takes the
image token sequence as input. The efficiency block (E-Block) updates all tokens with high speed.
Then the importance scores from a prediction layer are used to select tokens, where a higher score
means more important for the final prediction. The selected tokens are then fed into the performance
block (P-Block) with a high capacity. Finally, we fuse the outputs from E-Block and P-Block to
form new image representations. Right: P-Block uses semi cross attention to facilitate information
interaction between the selected tokens and all tokens, while E-Block is a vanilla ViT block with
dimension matching.

though having higher computational capacity, operates at a slower speed. In contrast, the entire
token sequence is passed through the E-blocks, which prioritize efficiency, offering faster processing
at the cost of lower capacity. The P-block handles the crucial tokens in detail to maintain model
performance, while the E-block efficiently updates all tokens to preserve context information at a
lower computational cost. The output of P-block and E-block are then fused to form the final output
of the big.LITTLE module.

3.2 PERFORMANCE-EFFICIENCY BLOCK

Algorithm 1 Pseudo Code of big.LITTLE module in a PyTorch-like style.

def big_little_forward(x, importance_score, p_ratio):
# x: input image tokens with shape N x C
# importance_score: scores from prediction layers
# p_ratio : the ratio of tokens processed by P_Block

# top_mask indicates the selected token position
topk_mask = topk(importance_score, k=p_ratio)

# Process selected tokens in the dual attention
x_primary = P_Attention(q=get_primary_tokens(x, topk_mask), kv=x)
x_secondary = E_Attention(x)
# fuse the dual data flow, skip connection
x = x + fuse(x_primary, X_secondary)

# Process selected tokens in the dual ffn
x_primary = P_FFN(get_primary_tokens(x, topk_mask))
x_secondary = E_FFN(x)
# fuse the dual data flow, skip connection
x = x + fuse(x_primary, X_secondary)

return x

In a big.LITTLE module, the forward function is shown in Algo. 1. We begin with a set of image
token x ∈ RN×C .

Token Selection and Routing. Before the dual blocks, a prediction layer—composed of a linear
layer followed by a softmax function—estimates the importance scores of all image tokens, identifying
the most crucial tokens for further processing, as shown in Fig. 2. We employ a top-k selection
mechanism to select primary tokens based on these importance scores. These selected tokens are
then routed to the more computationally intensive P-block. As described in Algo. 1, only a subset
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of tokens is processed by the attention and FFN layers of the P-block, while all tokens are updated
by the E-block. To enable back-propagation through the prediction layer, we follow (Raposo et al.,
2024) by multiplying the scores of selected tokens with the P-block output, formulated as

outputi = (α · si + 1) · module(inputi),

where si is the importance score of the token in the i-th layer, the module can be the FFN or attention
layer in the P-block, and α is a learnable parameter initialized at 0 to stabilize the training process.
For simplicity, this part is omitted in the pseudo-code.

Dimension Matching As the E-block and P-block have different model capacities, the hidden
dimensions of the representations are inevitably different. To reconcile these differences and ac-
commodate the requirements of both the efficiency and performance blocks, we modify the vallina
ViT block for the E-block. Specially, we insert two linear layers in the beginning and ending in the
FFN layer to conduct dimension mapping; as for the attention layer, input and output dimensions
are modified directly to match the dimension of the main flow. These operations are conducted in
E_Attention and E_FFN in the pseudocode.

Semi-Cross Attention In the previous token pruning method, unimportant tokens were directly
removed, preventing the remaining tokens from exchanging information with the pruned tokens in the
attention layer. To address this issue, we propose a Semi-Cross Attention mechanism for P-blocks.
Specifically, in the attention layer of the P-block, we use the primary tokens as queries (q) and all
tokens (both selected and unselected) as keys (k) and values (v), instead of only using the same tokens
as queries. This allows the primary tokens to still gather information from all tokens, not just from
themselves.

Token Fusion. After processing through the dual blocks, the output of the P-block is fused with
that of the E-block with the globally updated context. This fusion is performed using a learnable
parameter γ, which adjusts the influence of the tokens on the final output, formulated as

xfused,i =

{
xprimary,i + γ · xsecondary,i, if Mi = 1

xsecondary,i, if Mi = 0

Here, M is a binary mask indicating whether the i-th token is a primary token (Mi = 1) or not
(Mi = 0). This ensures that the most significant features are emphasized while maintaining the
overall integrity of the data representation.

Variants of P-E block. In practice, the configuration of P-block and E-block can vary depending
on the model size, and inner dimensions of both P-block and E-block follow variants of the vanilla
ViT block. For instance, we can set the dimensions of the P-block and E-block as those of ViT-Base
block and ViT-Tiny block respectively, as the E-block to match ViT-Base performance while saving
computation. Here, we adopt a 1:1 stacking ratio of P and E blocks, meaning each layer of image
tokens passes through one P-block and one E-block. In models with a larger size, such as a huge-base
combination, we might employ a 2:1 stacking ratio or other variations.

Theoretical Computation Analysis. To reduce computational demands, we empirically let the
performance blocks process the top 25% most important tokens by default, while the efficiency
block updates all tokens, ensuring comprehensive coverage of context information. In this way, our
model allocates computational resources for each token adaptively based on its content, leading to
a better speed-accuracy tradeoff. We conduct a simple analysis of how much computation we can
save: for input with shape N × C, where N is the number of tokens and C is the hidden dimensions
of tokens, the computation cost of a vanilla ViT block is 12NC2 + 2N2C(4NC2 + 2N2C is for
attention layer and 8NC2 is for FFN). A performance block updates 25% tokens with a cost of
4.5NC2 + 0.5N2C(2.5NC2 + 0.5N2C is for semi-cross attention and 2NC2 is for FFN) and an
efficiency block with 1

4C hidden dimensions costs 2NC2+0.5N2C(NC2+0.5N2C is for attention
layer and NC2 is for FFN, which is larger than the result of substituting 1

4C into C in vanilla cost
because of additional overhead incurred by dimension matching) when processing all tokens. This
leads to a total cost of 6.5NC2 +N2C, over 1.84× theoretical speedup for each layer, which could
further be higher as the efficiency block becomes smaller.
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3.3 TRAINING STRATEGY

In practice, we find that naively training a model with big.LITTLE modules may lead to suboptimal
performance, possibly due to the high pruning ratio, and we empirically find that feature distillation
can improve its performance.

During training, feature distillation is used to transfer knowledge from a pre-trained vallina ViT to
our big.LITTLE ViT. By aligning the features learned by the student with those of the teacher, the
model can retain critical information even when aggressive pruning is applied. The feature distillation
loss is formulated as:

Lfd = cos_similarity(feat_bLViT, feat_vallinaViT),

where feat_bLViT represents the feature embeddings from the big.LITTLE model, and
feat_vallinaViT represents the embeddings from the pre-trained teacher model. The cosine sim-
ilarity function ensures that the feature representations of our model are as close as possible to those
of the teacher. The total loss used for training combines the supervised loss Lsupervised with the feature
distillation loss, weighted by a scalar λfd:

Ltotal = Lsupervised + λfd · Lfd.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In our experiments, we employ two variants of the bLViT. In the first variant, we use the ViT-Base as
the P-block and the ViT-Tiny as the E-block, denoted as B+T. The model consists of 12 layers as the
vanilla ViT-Base, the first layer is the ViT-Base layer where it can see all tokens, and starting from the
second layer we start to use big.LITTLE modules, therefore this model consists of 12 P-blocks and 11
E-blocks in total. The prediction layers are used after layers 1, 4, 7 and 10. In the second variant, we
test it with a larger model size and use the ViT-Huge as the P-block and the ViT-Base as the E-block,
denoted as H+B. This model follows the 32-layer architecture of the standard ViT-Huge, with the first
9 layers exclusively using the ViT-Huge, fully processing all tokens. Starting from the tenth layer, a
big.LITTLE module is alternately used in every other layer. In layers without an E-block, only 25%
of tokens are updated by the P-block, resulting in a configuration of 32 P-blocks and 12 E-blocks in
total. Here, the prediction layers are used after layers 8, 16 and 24.

For models with window attention such as SAM (Kirillov et al., 2023), token selection occurs within
each window, ensuring the same number of tokens in different windows, which facilitates parallel
computation.

All experiments are conducted on 8 NVIDIA A100 GPUs. γ is initialized to 10−5. λfd is set to 2.5
by default. AdamW optimizer is applied in the experiment, with learning rate of 5× 10−4 in both
sets of tasks.

4.2 BASELINES AND EVALUATION METRICS

We compare our method with existing token pruning methods for ViT structure, i.e., AdaViT (Meng
et al., 2022), ATS (Fayyaz et al., 2022), A-ViT (Yin et al., 2022), DynamicViT (Rao et al., 2021),
Evo-ViT (Xu et al., 2022), E-ViT (Liang et al., 2022), efficient ViT models, i.e., EfficientViT (Liu
et al., 2023b), MobileViT (Mehta & Rastegari, 2021), and also include the comparison with vanilla
ViT (Touvron et al., 2021). We validate the performance on two tasks including image classification
and segment anything task.

Image Classification. We choose the vanilla ViT as the baseline. The Top-1 accuracy is employed
as the evaluation metric. Three vanilla ViT variants from DeiT were employed. For ATS, A-
ViT, DynamicViT, Evo-ViT, E-ViT, and our method, the pretrained weights of DeiT were used
for initialization, followed by training on the ImageNet-1K dataset for 300 epochs with a batch
size of 1024 on 8 GPUs, and then tested for top-1 accuracy in image classification. The training
details followed DeiT (Touvron et al., 2021). For AdaViT, it was initilaized by T2T-ViT (Yuan et al.,
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Figure 3: Token Selection Visualization. In bLViT, the tokens processed in the high-capacity P-block
highlight areas crucial for image classification.

2021), which is marked with an asterisk in Table 1. We adopted multiple settings in some methods.
For EfficientViT, we used the models corresponding to resolutions of 224 and 512 under the M5
configuration. DynamicViT utilized two model sizes (base and small), and EViT used two keep ratios
of 0.5 and 0.6.

Segment Anything. The evaluation is similar to SAM, where segmentation is performed from
a single foreground point, a single box, and multiple points. Here, random points are uniformly
sampled within the ground truth mask for clicking, and the ground truth box is used as the prompt box.
We also conduct zero-shot instance segmentation experiments, following the setting of SAM (Kirillov
et al., 2023). Regarding the baseline, vanilla variants of SAM were trained on the complete SA-1B
dataset for 2 epochs. For Evo-ViT and E-ViT, two experimental setups were divided: ViT-Base
and ViT-Huge. In both setups, the pretrained weights of vanilla SAM were used for initialization.
Correspondingly, the big.LITTLE configurations B+T and H+B were used. During training, the
models were trained for 10 epochs on 2% of the SA-1B dataset with a batch size of 8. For testing, the
LVIS (Gupta et al., 2019) dataset was utilized to evaluate the mask prediction performance of the
models, and the COCO dataset was used in zero-shot instance segmentation.

4.3 IMAGE CLASSIFICATION

We conducted experiments on the ImageNet-1k classification dataset (Krizhevsky et al., 2012) and
report the top-1 accuracy and GFLOPs in Table 1. The results demonstrate that our method achieves
the best performance. Specifically, our Base + Tiny bLViT reduces computations by about 50%
while outperforming ViT-B. Although methods utilizing light architectures exhibit significantly lower
computational costs compared to most efficient ViT approaches, their performance is severely limited
by model capacity. In the efficient ViT group, the performance of ATS and A-ViT, both based on
ViT-Small, significantly lags behind our model. Our method achieves the best performance and the
second-best computational efficiency compared to models based on ViT-Base. Notably, our model
is the only one based on ViT-B that surpasses its performance, while other similar models tend to
sacrifice performance for reduced computational costs, as illustrated in Fig. 1.

Further, we visualize which tokens pass through the P-block in the 11-layer big.LITTLE module. As
illustrated in Fig. 3, after training, the model effectively selects regions critical for image classification
to be processed by the high-capacity P-block. This capability highlights the architectural efficiency
and targeted processing power of our bLViT.

4.4 SEGMENT ANYTHING TASK

With the models trained on SA-1B dataset, we validate them on two types of experiments, as
shown in Table 2. We report mIoU under three settings of mask prediction and AP under zero shot
instance segmentation, respectively. From the table, one can see that our model largely reduces the

7
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Table 1: ImageNet classification results. We report Top-1 accuracy and GFLOPs for vanilla ViT
models with different scales, light architectures of ViT and efficient ViTs based on token pruning.
Our model achieves better accuracy-computation tradeoff.

Type Model Acc GFLOPs

Vallina ViT
ViT-T 72.2 1.08
ViT-S 79.9 4.24
ViT-B 81.8 16.86

Light architecture
EfficientViT-M5 77.1 0.52

EfficientViT-M5-512 80.8 2.67
MobileViT-XS 74.8 0.7

Efficient ViT

AdaViT* 81.1 4.0
ATS-S 79.7 2.9

A-ViT-S 80.7 3.6
DynamicViT-S 79.6 3.4
DynamicViT-B 81.3 11.2

Evo-ViT-B 81.2 11.30
EViT-B @ 0.5 80.0 8.40
EViT-B @ 0.6 81.7 9.66
Ours (B + T) 81.9 9.89

computation, reflected in that our B+T version reduces about half of the GLOPs compared with
ViT-B. Also, our approach outperforms other accelerating techniques significantly, with the highest
performance and also the highest efficiency. Notably, under the testing settings of three points and
bounding boxes, our models even surpasses ViT-B and ViT-H respectively. The potential explanation
for this phenomenon could be attributed to the signals obtained from both the distillation loss and the
supervision loss.

Table 2: Segment anything results. Our big.LITTLE not only demonstrate a substantial reduction in
computational demand, but also achieve comparable performance, outperforming other acceleration
techniques, even baselines.

Model 1 Point 3 Points Box Zero shot instance segmentation GFLOPs

ViT-B 53.6 65.2 76.6 40.2 372.0
ViT-H 59.4 70.7 80.4 46.1 2736.6

Evo-ViT-B 39.9 61.4 71.1 30.7 266.0
EViT-B @ 0.5 40.1 60.8 70.1 32.4 216.4
Ours (B + T) 52.0 71.1 78.1 39.2 210.5

Evo-ViT-H 42.3 63.1 72.5 38.8 1840.5
EViT-H @ 0.5 40.5 62.7 72.2 39.5 1597.2
Ours (H + B) 58.6 72.6 81.4 45.0 1993.3

4.5 ABLATION STUDY

Model design. We conduct ablation studies on the ImageNet classification task to verify our model
design choices. Besides the vanilla DeiT-Base model without any token pruning, we also select
Evo-ViT with 81.0 Top-1 Accuracy and 50% token pruning ratio as our baseline model and illustrate
how we reach our final model design. We can see that, while naively increasing the pruning ratio
to 75% and reducing the number of performance blocks (Early Prune) can save the computation
and we observe a decent FLOPs reduction, the performance also drops severely. Simply adding
the efficiency block (E-Block) can mitigate this issue, but still fall behind the baseline. We then
apply prediction layers (Predictor) and semi-cross attention (Semi-CA) to bridge this gap. Then,
we leverage the pretrained weights initialization, where the weights of the performance blocks are
pretrained without any token pruning. We empirically find this yields better performance. Finally, we
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use feature distillation (Feat. Dis.) that are described in § 3.3 during the training process to obtain the
best performance.

Table 3: Ablation studies on ImageNet classification task. We start from ViT-Base and Evo-ViT-
Base and verify our design choice step by step.

Prune Ratio Early Prune E-Block Predictor Semi-CA Pretrain Feat. Dis. Acc GFLOPs

0% 81.8 16.8
50% 81.0 11.3

75% 79.0 8.5
75% ✓ 74.2 5.4
75% ✓ ✓ 78.7 7.9
75% ✓ ✓ ✓ 78.8 8.0
75% ✓ ✓ ✓ ✓ 79.5 9.9
75% ✓ ✓ ✓ ✓ ✓ 80.8 9.9
75% ✓ ✓ ✓ ✓ ✓ ✓ 81.9 9.9

Table 4: Ablation studies on distillation loss scalar.

λfd Acc

1.0 81.3
2.5 81.9
5.0 81.7
10.0 81.2

Table 5: Ablation studies on pruning ratio.

Pruning Ratio Acc

0.5 82.3
0.625 82.1
0.75 81.9
0.875 81.2

Distillation loss scalar. When using feature distillation loss for model training, the coefficient for
this loss needs to be set empirically, as values that are too large or too small can hinder optimal
performance. In Table 4, one can observe that 2.5 is a notable discrete peak value worth adopting.

Pruning ratio. In our model, when entering the P-block, a portion of the tokens will be discarded,
and this proportion is referred to as the pruning ratio. Intuitively, the performance tends to decrease as
the pruning ratio increases. Therefore, we need to balance the trade-off between model performance
and computational efficiency. In Table 5, we can roughly observe that when the pruning ratio is
less than 0.75, the decline in performance becomes less pronounced as the pruning ratio increases;
however, beyond this point, the decline becomes noticeably faster. Consequently, we empirically
adopt a pruning ratio of 0.75.

5 CONCLUSION

This paper introduces the big.LITTLE Vision Transformer (bLViT), an innovative architecture
designed to enhance the efficiency of visual recognition systems. By strategically allocating image
tokens between a high-capacity performance block and a speed-optimized efficiency block, this
architecture significantly reduces computational demands while maintaining high accuracy. Our
experimental results demonstrate that the bLViT not only preserves robust accuracy but also boosts
computational efficiency, making it a practical choice for scalable and adaptable AI deployments.

BROADER IMPACT

Our work aims to improve the inference speed of the vision transformer models. Our model design
can allow the vision transformer model to run on cheaper and more energy-efficient hardware at an
acceptable speed. It would benefit people without access to expensive hardware and make a positive
impact on combating climate change since the inference becomes more efficient. We acknowledge
unknown risks can be brought by the development of AI technology; however, the contribution of this
paper has no greater risk than any other generic deep-learning paper that studies standard datasets
such as ImageNet and MSCOCO.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. Network of experts for large-scale
image categorization. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part VII 14, pp. 516–532. Springer, 2016.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Chun-Fu Chen, Quanfu Fan, Neil Mallinar, Tom Sercu, and Rogerio Feris. Big-little net: An
efficient multi-scale feature representation for visual and speech recognition. arXiv preprint
arXiv:1807.03848, 2018.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023.

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need
for semantic segmentation. Advances in neural information processing systems, 34:17864–17875,
2021.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jürgen Gall. Adaptive token sampling
for efficient vision transformers. In European Conference on Computer Vision, pp. 396–414.
Springer, 2022.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 2012.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
backbones for object detection. In European Conference on Computer Vision, pp. 280–296.
Springer, 2022.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. arXiv preprint
arXiv:2202.07800, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 2023a.

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14420–14430, 2023b.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers. arXiv preprint arXiv:2110.03860, 2021.

Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. arXiv preprint arXiv:2110.02178, 2021.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam
Lim. Adavit: Adaptive vision transformers for efficient image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12309–12318, 2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 7262–7272, 2021.

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Di Wang, Qiming Zhang, Yufei Xu, Jing Zhang, Bo Du, Dacheng Tao, and Liangpei Zhang. Ad-
vancing plain vision transformer toward remote sensing foundation model. IEEE Transactions on
Geoscience and Remote Sensing, 61:1–15, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiaoliang
Dai, Dilin Wang, Fei Sun, Forrest Iandola, et al. Efficientsam: Leveraged masked image pretraining
for efficient segment anything. arXiv preprint arXiv:2312.00863, 2023.

Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke Li, Weiming Dong, Liqing Zhang,
Changsheng Xu, and Xing Sun. Evo-vit: Slow-fast token evolution for dynamic vision transformer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 2964–2972, 2022.

Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. Vitmatte: Boosting image
matting with pre-trained plain vision transformers. Information Fusion, 103:102091, 2024.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10809–10818, 2022.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
558–567, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit:
Semantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971–4982, 2022a.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605, 2022b.

12


	Introduction
	Related Work
	big.LITTLE Vision Transformer
	Overview
	Performance-Efficiency Block
	Training Strategy

	Experiments
	Implementation Details
	Baselines and Evaluation Metrics
	Image Classification
	Segment Anything Task
	Ablation Study

	Conclusion

