
TrajGPT: Healthcare Time-Series Representation
Learning for Trajectory Prediction

Ziyang Song1 Qincheng Lu1 He Zhu 1 David Buckeridge 2 Yue Li1 ∗

1 School of Computer Science, McGill University 2 School of Population and Global Health, McGill University

Abstract

In many domains, such as healthcare, time-series data is irregularly sampled with
varying time intervals. It creates challenges for classical time-series models that
require equally spaced data. To address this, we propose a novel time-series
Transformer called Trajectory Generative Pre-trained Transformer (TrajGPT).
It proposes a data-dependent decay mechanism that adaptively forgets irrelevant
information based on clinical context. By interpreting as ordinary differential
equations, our approach captures the continuous dynamics from irregular time-
series data. Experimental results show that TrajGPT, with its time-specific inference
approach, accurately predicts trajectories without requiring fine-tuning.

1 Introduction

Time-series representation learning plays a crucial role in various domains, as it extracts generalizable
temporal patterns from large-scale, unlabeled data that can be adapted for specific tasks. A major
challenge arises when dealing with irregularly-sampled time series, where observations occur at
uneven intervals. This irregularity poses challenges for classical time-series models that are restricted
to regular sampling [1, 26]. This issue is particularly significant in healthcare domain since lon-
gitudinal medical records are updated sporadically during outpatient visits or inpatient stays [26].
Additionally, most patients’ medical histories are sparse, making it difficult to predict long-term
health trajectories. Addressing these challenges requires the development of novel representation
learning approaches that can learn meaningful patterns from irregular and sparse data, enabling
accurate trajectory prediction.

Recent progresses in modeling irregularly-sampled time series have been achieved through specialized
deep learning architectures [2, 7, 14, 16, 26], but these models lack the ability to pre-train general-
izable representations. Though time-series Transformer models have gained attention [11, 24, 25],
they are primarily designed for continuous data and often struggle to extrapolate over long sequences
[17]. To handle both continuous and irregularly-sampled time series, TimelyGPT addresses these
limitations by incorporating extrapolatable position embedding (xPos) for forecasting long sequences
beyond the training length [17]. BiTimelyGPT extends the unidirectional TimelyGPT by pre-training
bidirectional contextualized representations for discriminative tasks [18]. Nonetheless, these models
only utilize data-independent decay mechanism, which is not content-aware and fails to capture the
complex temporal dependencies in healthcare data.

In this study, we propose a Trajectory Generative Pre-trained Transformer (TrajGPT), a novel
architecture for healthcare time-series representation learning. TrajGPT introduces a data-dependent
decay mechanism that adaptively forgets past information based on the medical context of obser-
vations. By interpreting our model as ODEs, TrajGPT effectively models continuous dynamics in
irregularly-sampled time series, facilitating accurate forecasting of patient health trajectories.

∗Correspondence to yue.yl.li@mcgill.ca.

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

yue.yl.li@mcgill.ca


Observed

TrajGPT

Forecasted

a. TrajGPT Architecture

Linear

Attention

Layer

Input

Layer

Output

Layer

Next-token

Prediction

biploarschizo
paranoid

Irregularly-sampled time series

from longitudinal EHRs

RoPE

Input

Embedding

depression

b. Time-specific Inference

Forecast irregular samples

Figure 1: Overview of the TrajGPT architecture and time-specific inference. (a) TrajGPT processes
time-series data by embedding an input sequence with RoPE and passing it through L linear attention
layers. (b) Time-specific inference operates as neural ODEs, directly predicting irregular samples
using historical hidden states and target timesteps.

2 Methodology

We denote an irregularly-sampled time series as x = {s1, . . . , sN}, where N is the total number
of samples. Each samples sn is represented as a tuple (xn, tn), with xn as the observation (e.g., a
structured diagnosis code) and tn as the corresponding timestep. The input sequence is then projected
into embeddings X ∈ RN×d, where d denotes the embedding size, through an input projection layer.

2.1 TrajGPT Methodology

Our proposed TrajGPT utilizes rotary position embedding (RoPE) to encode relative positional
information between tokens n and m based on their interval n−m [19]:

Qn = XnWQe
iθn, Km = XmWKe−iθm, Vm = XmWV (1)

We propose the TrajGPT architecture, built on the linear Transformer framework [10]. To compute
the output embedding O, we introduce the recurrent form of the linear attention layer as follows:

Sn = γnSn−1 +K⊤
n Vn, On = QnSn, where γn = Sigmoid(XnW

⊤
γ )

1
τ (2)

where Sn and γn represent the state variable and the data-dependent decay rate, respectively. The
temperature parameter τ = 16 prevents rapid decay of past information, allowing the model to retain
relevant information over long sequences. The data-dependent decay rate γn enables the model to
adapt to clinical contexts based on observations, efficiently forgetting irrelevant information. For
chronic diseases, the model assigns higher γn values, which slow forgetting process and capture
long-term dependencies. Conversely, lower γn values accelerate decay to prioritize recent events,
enhancing the model’s responsiveness to acute conditions. The parallel forward pass of our linear
attention is efficiently computed using a precomputed decay matrix D:

O = (QK⊤ ⊙D)V , Dnm =

{
bn
bm

, n ≥ m

0, n < m
, where bn =

n∏
t=1

γt (3)

A detailed derivation is provided in Appendix A. This parallel formulation allows for efficient training
with linear complexity, while the recurrent form ensures constant complexity during inference [10].
To capture a broader range of contexts, We extend the single-head SRA in Eq. 2 to a multi-head SRA:

Oh
n = Qh

nS
h
n, S

h
n = γh

nS
h
n−1 +Kh⊤

n V h
n , where γh

n = Sigmoid(Xnw
h⊤
γ )

1
τ , (4)

2.2 Connection to SSM and ODE

We establish a theoretical connection between our proposed linear attention layer and state space
models (SSMs) and ODEs. Due to space limitations, we provide only a high-level summary in this
section, with detailed derivations available in Appendix B. At a high level, each head of the linear
attention layer in Eq. 4 can be interpreted as a discrete SSM that approximates a continuous SSM [6].
This continuous SSM is mathematically formulated as an ODE, where the continuous dynamics are
captured by data-dependent parameters.

We consider a neural ODE defined as dS(t)
dt = f(S(t), t, θt), where f is a differentiable neural

network and θt represents data-dependent, time-varying parameters [3]. Our linear attention layer in

2



Eq. 4 can be approximated by the following neural ODE with a discrete step size ∆:

dS(t)

dt
= AS(t) +B⊤V (t) ⇐⇒ f(S(t), t, θt)

where θt = (A,B,C), A =
ln(γh

t )

∆
, B = A(e∆A − I)−1K⊤

t , C = Qt (5)

As a result, each head of TrajGPT captures unique dynamics of patient health trajectories through
the neural ODE framework. Therefore, our model can forecast irregular observations in the time-
series by taking into account the discretization step size ∆ [3, 14]. We thus propose an effective
time-specific inference that makes predictions at arbitrary timesteps. For each sample sn = (xn, tn),
the model utilizes both the timestep tn and the preceding sample sn−1 = (xn−1, tn−1) to predict the
observation xn based on its discrete step size ∆tn,n−1 = tn − tn−1.

3 Experiments

3.1 Dataset and Pre-processing

The Population Health Record (PopHR) database hosts massive amounts of longitudinal claim data
from the provincial government health insurer in Quebec, Canada (Régie de l’assurance maladie du
Québec, RAMQ) [15, 23]. There are approximately 1.3 million participants in the PopHR database,
which represents a randomly sampled 25% of the Montreal population between 1998 and 2014. We
extracted irregularly-sampled time series from the PopHR database. Specifically, we converted ICD-9
diagnostic codes to phenotype codes (PheCodes) using the PheWAS [4, 5]. We selected 315 unique
PheCodes, each with over 50,000 occurrences, and excluded patients with fewer than 50 PheCode
records. This resulted in a dataset of 489,000 patients, with an average of 112 records per patient.
The dataset was then split into training (80%), validation (10%), and testing (10%) sets.

3.2 Forecasting irregularly-sampled diagnostic codes

We evaluated the long-term forecasting task using irregularly-sampled time series data from the
PopHR database. We set a look-up window of 50 timestamps, using the remaining codes as the
forecasting windows, which can extend to over 100 timestamps (e.g., diagnosis codes). To assess
model performance, we used the top-K recall metric with K = (5, 10, 15).

We compared our model against several time-series transformer baselines, including TimelyGPT
[17], BiTimelyGPT [18], Informer [27], Fedformer [28], AutoFormer [22], and PatchTST [11].
Notably, TimelyGPT and BiTimelyGPT are specifically designed to handle irregularly-sampled time
series through a time decay mechanism. Additionally, we evaluated models designed for irregularly-
sampled time series, including mTAND [16], GRU-D [2], RAINDROP [26], and SeFT [7]. For the
Transformer models, we followed established pre-training procedures [17], pre-training on the entire
training data and forecasting without additional fine-tuning. In contrast, the models designed for
irregular time-series were trained from scratch on the training set. We followed previous works to set
Transformer model parameters to about 7.5 million, as detailed in Table 2.

Figure 2: Health trajectories for a diabetic patient. (a) and (b) show the inferred disease trajectories
with look-up and forecast windows. Matched predictions (solid circles) occur when the top 10
predicted PheCodes match the ground-truth. Larger solid circles indicate correctly predicted diabetes.

3

https://phewascatalog.org/phecodes


Table 1: Forecasting performance on PopHR’s irregular-sampled time series dataset. TrajGPT
achieved the highest recall at K = 10 and K = 15 and second highest at K = 5. The bold and
underline indicate the best and second best results, respectively.

Metrics Recall @K (%)
K = 5 K = 10 K = 15

TrajGPT (Time-specific inference) 57.42 71.67 84.05
TrajGPT (Standard inference) 53.26 65.48 77.21
TimelyGPT 58.65 70.83 82.69
BiTimelyGPT 48.17 63.26 70.53
Informer 46.37 60.14 71.24
Autoformer 42.87 57.43 68.59
Fedformer 43.31 58.34 69.60
PatchTST 48.17 65.55 73.31
MTand 52.59 70.21 83.73
GRU-D 54.25 69.48 80.51
RAINDROP 46.52 67.21 72.20
SeFT 49.26 68.10 79.39

3.3 Forecasting Results

TrajGPT with time-specific inference achieves the highest recall rates at K = 10 and K = 15,
with scores of 71.67% and 84.05%, respectively (Table 1). Notably, the time-specific inference
outperforms the standard inference approach, demonstrating the advantage of modeling continuous
dynamics through the neural ODE framework. These results highlight TrajGPT’s superior ability to
forecast healthcare trajectories, even when dealing with sparse and irregular time-series data.

We then examined the distributions of the top-10 recall across 3 forecast windows, comparing
TrajGPT with TimelyGPT, PatchTST, and mTAND. As shown in Fig. 3, all models experience a
performance decline as the forecast window increased, reflecting the increased uncertainty in the
long-term trajectory prediction. Despite this, TrajGPT achieves better and more stable performance
within the first 100 steps. This stability is attributed to the time-specific inference, which takes into
account the evolving states and query timestep over irregular intervals. As a result, our TrajGPT offers
a more effective approach for forecasting patient health trajectories compared to existing methods.

We aimed to demonstrate TrajGPT’s effectiveness with a case study on a diabetic patient. We
visualized the observed and predicted disease trajectories for this patient. Specifically, we estimate
the probabilities of the diabetes token across timesteps. We also calculated risk growth by comparing
each timestep to the previous one, identifying the ages with high risk growth as well as the associated
phenotypes. In Fig. 2, TrajGPT with time-specific inference achieves a top-10 recall of 90.1% for
this diabetic patient. TrajGPT predicts most diseases in endocrine/metabolic and circulatory systems.
Although this patient has no prior diabetes diagnosis in the observed data, TrajGPT successfully
forecasts diabetes onset by identifying related metabolic and circulatory symptoms. Fig. 2.b displays
predicted risk trajectory for this patient, indicating a gradual increase in diabetes risk with age. We
highlight specific phenotypes that contribute to the noticeable high risk growth between ages 59 and
62, including chronic IHD, hypothyroidism, obesity, and arrhythmia. These conditions are common
comorbidities of diabetes, substantially elevating the likelihood of diabetes onset over time.

4 Conclusion and Further Work

In this study, our goal was to develop a representation learning approach capable of handling
irregularly-sampled healthcare time series and predicting patient health trajectories. To achieve this,
we introduced TrajGPT, a novel time-series Transformer that incorporates a data-dependent decay
mechanism and time-specific inference. By linking our model with the Neural ODE framework,
we demonstrated its ability to capture continuous dynamics from sparse and irregular observations,
achieving superior forecasting performance without task-specific fine-tuning.

To further validate the generalizability, we plan to extend our experiments to public datasets such
as MIMIC [9], EHRSHOT [21], and INSPECT [8]. Additionally, we will explore the potential of
foundation LLMs, such as GPT-based [20] and Llama-based [13] methods.

4



References
[1] Jose Roberto Ayala Solares, Francesca Elisa Diletta Raimondi, Yajie Zhu, Fatemeh Rahimian,

Dexter Canoy, Jenny Tran, Ana Catarina Pinho Gomes, Amir H. Payberah, Mariagrazia Zottoli,
Milad Nazarzadeh, Nathalie Conrad, Kazem Rahimi, and Gholamreza Salimi-Khorshidi. 2020.
Deep learning for electronic health records: A comparative review of multiple deep neural
architectures. Journal of Biomedical Informatics 101 (2020), 103337. https://doi.org/
10.1016/j.jbi.2019.103337

[2] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. 2018.
Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific
Reports 8 (04 2018). https://doi.org/10.1038/s41598-018-24271-9

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural
ordinary differential equations. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red
Hook, NY, USA, 6572–6583.

[4] Joshua Denny, Lisa Bastarache, Marylyn Ritchie, Robert Carroll, Raquel Zink, Jonathan Mosley,
Julie Field, Jill Pulley, Andrea Ramirez, Erica Bowton, Melissa Basford, David Carrell, Peggy
Peissig, Abel Kho, Jennifer Pacheco, Luke Rasmussen, David Crosslin, Paul Crane, Jyotishman
Pathak, and Dan Roden. 2013. Systematic comparison of phenome-wide association study of
electronic medical record data and genome-wide association study data. Nature biotechnology
31 (11 2013). https://doi.org/10.1038/nbt.2749

[5] Joshua C. Denny, Marylyn D. Ritchie, Melissa A. Basford, Jill M. Pulley, Lisa Bastarache,
Kristin Brown-Gentry, Deede Wang, Dan R. Masys, Dan M. Roden, and Dana C. Crawford.
2010. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease
associations. Bioinformatics 26, 9 (03 2010), 1205–1210. https://doi.org/10.1093/
bioinformatics/btq126

[6] Albert Gu, Karan Goel, and Christopher Ré. 2022. Efficiently Modeling Long Sequences with
Structured State Spaces. arXiv:2111.00396 [cs.LG] https://arxiv.org/abs/2111.00396

[7] Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. 2020. Set
Functions for Time Series. arXiv:1909.12064 [cs.LG]

[8] Shih-Cheng Huang, Zepeng Huo, Ethan Steinberg, Chia-Chun Chiang, Curtis Langlotz,
Matthew P Lungren, Serena Yeung, Nigam Shah, and Jason Alan Fries. 2023. INSPECT:
A Multimodal Dataset for Pulmonary Embolism Diagnosis and Prognosis. arXiv preprint
arXiv:2311.10798 (2023).

[9] Alistair E. W. Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven
Horng, Tom J. Pollard, Benjamin Moody, Brian Gow, Li wei H. Lehman, Leo Anthony Celi, and
Roger G. Mark. 2023. MIMIC-IV, a freely accessible electronic health record dataset. Scientific
Data 10 (2023). https://api.semanticscholar.org/CorpusID:255439889

[10] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. 2020.
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention.
arXiv:2006.16236 [cs.LG]

[11] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023. A Time Series
is Worth 64 Words: Long-term Forecasting with Transformers. arXiv:2211.14730 [cs.LG]

[12] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language Models are Unsupervised Multitask Learners. https://api.semanticscholar.
org/CorpusID:160025533

[13] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar,
Arian Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi,
Nadhir Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre
Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. 2024. Lag-Llama: Towards
Foundation Models for Probabilistic Time Series Forecasting. arXiv:2310.08278 [cs.LG]
https://arxiv.org/abs/2310.08278

5

https://doi.org/10.1016/j.jbi.2019.103337
https://doi.org/10.1016/j.jbi.2019.103337
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1038/nbt.2749
https://doi.org/10.1093/bioinformatics/btq126
https://doi.org/10.1093/bioinformatics/btq126
https://arxiv.org/abs/2111.00396
https://api.semanticscholar.org/CorpusID:255439889
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2310.08278


[14] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. 2019. Latent ODEs for irregularly-
sampled time series. Curran Associates Inc., Red Hook, NY, USA.

[15] Arash Shaban-Nejad, Maxime Lavigne, Anya Okhmatovskaia, and David Buckeridge. 2016.
PopHR: a knowledge-based platform to support integration, analysis, and visualization of
population health data: The Population Health Record (PopHR). Annals of the New York
Academy of Sciences 1387 (10 2016). https://doi.org/10.1111/nyas.13271

[16] Satya Narayan Shukla and Benjamin M. Marlin. 2021. Multi-Time Attention Networks for
Irregularly Sampled Time Series. arXiv:2101.10318 [cs.LG]

[17] Ziyang Song, Qincheng Lu, Hao Xu, He Zhu, David L. Buckeridge, and Yue Li. 2024. Time-
lyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in
Healthcare. arXiv:2312.00817 [cs.LG] https://arxiv.org/abs/2312.00817

[18] Ziyang Song, Qincheng Lu, He Zhu, David Buckeridge, and Yue Li. 2024. Bidirec-
tional Generative Pre-training for Improving Healthcare Time-series Representation Learning.
arXiv:2402.09558 [cs.AI] https://arxiv.org/abs/2402.09558

[19] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. 2022. Ro-
Former: Enhanced Transformer with Rotary Position Embedding. arXiv:2104.09864 [cs.CL]

[20] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. 2024. TimeMixer: Decomposable Multiscale Mixing for Time Series Fore-
casting. In International Conference on Learning Representations (ICLR).

[21] Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Fries, and Nigam Shah. 2023.
EHRSHOT: An EHR Benchmark for Few-Shot Evaluation of Foundation Models. (2023).
arXiv:2307.02028 [cs.LG]

[22] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2022. Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting.
arXiv:2106.13008 [cs.LG]

[23] Mengru Yuan, Guido Powell, Maxime Lavigne, Anya Okhmatovskaia, and David Buckeridge.
2018. Initial Usability Evaluation of a Knowledge-Based Population Health Information
System: The Population Health Record (PopHR). AMIA ... Annual Symposium proceedings.
AMIA Symposium 2017 (04 2018), 1878–1884.

[24] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. 2020. A Transformer-based Framework for Multivariate Time Series Representation
Learning. arXiv:2010.02803 [cs.LG]

[25] Wenrui Zhang, Ling Yang, Shijia Geng, and Shenda Hong. 2023. Self-Supervised Time Series
Representation Learning via Cross Reconstruction Transformer. arXiv:2205.09928 [cs.LG]

[26] Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. 2022. Graph-Guided
Network for Irregularly Sampled Multivariate Time Series. arXiv:2110.05357 [cs.LG]

[27] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan-
cai Zhang. 2021. Informer: Beyond Efficient Transformer for Long Sequence Time-Series
Forecasting. arXiv:2012.07436 [cs.LG]

[28] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022. FED-
former: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting.
arXiv:2201.12740 [cs.LG]

6

https://doi.org/10.1111/nyas.13271
https://arxiv.org/abs/2312.00817
https://arxiv.org/abs/2402.09558


A Detailed Derivation of TrajGPT

Given the recurrent form of the TrajGPT model in Eq. 2, assuming S0 = 0, we can derive the
cumulative state variable S as follows:

Sn = γnSn−1 +K⊤
n Vn

S1 = K⊤
1 V1

S2 = γ2K
⊤
1 V1 +K⊤

2 V2

S3 = γ3γ2K
⊤
1 V1 + γ2K

⊤
2 V2 +KT

3 V3

...

Sn =

n∑
m=1

(
n∏

t=m+1

γt

)
K⊤

mVm =

n∑
m=1

(
bn
bm

)
K⊤

mVm, where bn =

n∏
t=1

γt (6)

We can compute the output On using the Qn:

On = QnSn = Qn

n∑
m=1

(
bn
bm

)
K⊤

mVm

= QnK
⊤
m≤nDm≤nVm≤n, where Dm≤n =

bn
bm

(7)

We generalize the parallel computation for all tokens as follows:

O = (QK⊤ ⊙D)V , Dnm =

{
bn
bm

, n ≥ m

0, n < m
(8)

The parallel computation of On can be rewritten as a matrix product between (Qnbn) and
(

K⊤
m

bm

)
.

On = Qn

n∑
m=1

(
bn
bm

)
K⊤

mVm =

n∑
m=1

(Qnbn)

(
K⊤

m

bm

)
⊙D′Vm, D′

nm =

{
1, n ≥ m

0, n < m
(9)

However, when the cumulative decay term bm =
∏m

t=1 γt becomes very small, it can lead to
computational errors due to numerical instability. To address this issue, we a temperature term τ = 16
in Eq. 2. This helps to mitigate the effects of rapid decay and retains long-term dependencies.

B TrajGPT as SSM and Neural ODE

The continuous SSM defines a linear mapping from an t-step input signal X(t) to output O(t) via a
state variable S(t). It is formulated as an ODE:

S′(t) = AS(t) +BX(t), O(t) = CS(t) (10)

where A,B,C denote the state matrix, input matrix, and output matrices, respectively. Since data
in real-world is typically discrete instead of continuous, continuous SSMs require discretization
process to align with the sample rate of the data. This transformation is commonly achieved using
the zero-order hold (ZOH) rule, which is detailed in Appendix C [6]:

St = ĀSt−1 + B̄Xt, Ot = CSt

Ā = e∆A, B̄ = (e∆A − I)A−1B (11)

where Ā and B̄ are the discretized state matrices and ∆ is the discrete step size.

We start with the single-head linear attention proposed in Section. 2.1. We rewrite the recurrent form
of our TrajGPT in Eq. 2 as follows:

St = ΛtSt−1 +K⊤
t Vt (12)

7



where Λt is a diagonal matrix, with each element equals to γt. This recurrent forward pass of TrajGPT
is a discrete SSM [6]:

St = ΛtSt−1 +K⊤
t Vt ⇐⇒ St = ĀSt−1 + B̄Xt

Ot = QtSt ⇐⇒ Ot = CSt (13)

where (Λt,K,Q) draw parallel to (Ā, B̄,C). We thus derive the connection between (A,B,C)
and TrajGPT’s parameters:

Ā = e∆A = Λt =⇒ A =
ln(Λt)

∆

B̄ = (e∆A − I)A−1B = K⊤
t =⇒ B = A(e∆A − I)−1K⊤

t

C = Qt =⇒ C = Qt (14)

As a result, our TrajGPT can be viewed as a discretized continuous SSM, which is represented as an
ODE. Note that (A,B,C) are data-dependent with respect to the t-th observation Xt. Therefore,
we can interpret it as a Neural ODE as follows:

dS(t)

dt
= AS(t) +BTV (t) = f(S(t), t, θ) (15)

Consequently, our TrajGPT serves as a discretized neural ODE. In the multi-head attention proposed
in Section. ??, each head of TrajGPT functions as its own neural ODE.

C Proof of SSM Discretization via ZOH rule

To discretize the continuous model SSM, it has to compute the cumulative updates of the state S(t)
over a discrete step size. For the continuous ODE in Eq. 10, we have a continuous-time integral as
follows:

S′(t) = AS(t) +BX(t)

S(t+ 1) = S(t) +

∫ t+1

t

(AS(τ) +BX(τ)) dτ (16)

In the discrete-time system, we need to rewrite the integral as we cannot obtain all values of X(τ)
over a continuous interval t → t+ 1:

S(t+ 1) = S(t) +

t+1∑
t

(AS(τ) +BX(τ)∆τ (17)

We replace X(t) in the time derivative S′(t) as follows:

S′(t) = AS(t) +BX(t)

S′(t)−AS(t) = BX(t)

e−AtS′(t)− e−AtAS(t) = e−AtBX(t)

d

dt

(
e−AtS(t)

)
= e−AtBX(t)

e−AtS(t) = S(0) +

∫ t

0

e−AτBX(τ)dτ

S(t) = eAtS(0) +

∫ t

0

eA(t−τ)BX(τ)dτ (18)

8



By introducing a discrete step size ∆ = tk+1− tk, we transform the above equation to a discrete-time
system as follows.

S(tk+1) = eA(tk+1−tk)S(tk) +

∫ tk+1

tk

eA(tk+1−τ)BX(τ)dτ

S(tk+1) = eA(tk+1−tk)S(tk) +

(∫ tk+1

tk

eA(tk+1−τ)dτ

)
BX(tk) (assuming x(τ) ≈ x(tk) over the interval)

S(tk+1) = e∆AS(tk) +BX(tk)

∫ tk+1

tk

eA(tk+1−τ)dτ

S(tk+1) = e∆AS(tk) +BX(tk)

∫ ∆

0

eAτ ′
dτ ′ (letting τ ′ = tk+1 − τ )

S(tk+1) = e∆AS(tk) +BX(tk)

∫ ∆

0

eAτdτ

S(tk+1) = e∆AS(tk) +BX(tk)
(
e∆A − I

)
A−1 (integral of matrix exponential function)

Sk+1 = ASk +BXk (19)

where the discretized state matrices Ā = e∆A and B̄ = (e∆A − I)A−1B. Note that we apply the
ZOH approach considering that x(τ) is constant between tk and tk+1, we can rewrite the Eq. 19 by
assuming X(τ) ≈ X(tk + 1):

S(tk+1) = eA(tk+1−tk)S(tk) +

∫ tk+1

tk

eA(tk+1−τ)BX(τ)dτ

S(tk+1) = eA(tk+1−tk)S(tk) +

(∫ tk+1

tk

eA(tk+1−τ)dτ

)
BX(tk+1)

Sk+1 = ĀSk + B̄Xk+1 (20)
The resulting equation is the discrete SSM using ZOH discretization in eq. 11.

Derivation of B̄. We use the equation eAτ = I +Aτ + 1
2!A

2τ2 + · · · , we have this integral of
exponential function of A:

B̄ =

∫ ∆

0

eAτBdτ

=

∫ ∆

0

(
I +Aτ +

1

2!
A2τ2 + · · ·

)
dτB

=

(
I∆+

1

2
A∆2 +

1

3!
A2∆3 + · · ·

)
B

=
(
e∆A − I

)
A−1B (21)

D Details of Experiment

D.1 Pre-training and fine-tuning

During pre-training, TrajGPT utilizes a next-token prediction task to learn general temporal repre-
sentations from unlabeled data [12]. Given a sequence with a [SOS] token, TrajGPT predicts the
subsequent tokens by shifting the sequence to the right. At the last layer, each token’s output repre-
sentation is fed into a linear layer for next-token prediction. The pre-training loss is cross-entropy for
discrete diagnosis codes.

Among other Transformer baselines, PatchTST adopted a masking-based approach, masking 40%
of its patches as zeros [11]. For the Transformer models without established pre-training methods,
we used a masking-based method by randomly masking 40% of timesteps [24].For downstream
forecasting tasks, we employ end-to-end fine-tuning on the entire model. The final linear layer is
utilized for making the forecasts. All Transformer models performed 20 epochs of pre-training with
cross-entropy loss, followed by 5 epochs of end-to-end fine-tuning.

9



Table 2: Configurations of TrajGPT and other transformer baselines on the PopHR dataset.

Data Size (timesteps) 54.9M
Model Parameters 7.5M
TrajGPT
Decoder Layers 8
Heads 4
Dim (Q, K, V , FF) 200,200,400,400
Transformer baselines including Encoder-decoder and Encoder-only models
Enc-Dec Layers 4 & 4
Encoder Layers 8
Decoder Layers 8
Heads 4
Dim (Q, K, V , FF) 200,200,200,400

D.2 Results

Figure 3: Top-10 recall rates for TrajGPT and baseline methods across three forecasting windows.

10


	Introduction
	Methodology
	TrajGPT Methodology
	Connection to SSM and ODE

	Experiments
	Dataset and Pre-processing
	Forecasting irregularly-sampled diagnostic codes
	Forecasting Results

	Conclusion and Further Work
	Detailed Derivation of TrajGPT
	TrajGPT as SSM and Neural ODE
	Proof of SSM Discretization via ZOH rule
	Details of Experiment
	Pre-training and fine-tuning
	Results


