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ABSTRACT

Unsupervised clustering under domain shift (UCDS) studies how to transfer the
knowledge from abundant unlabeled data from multiple source domains to learn the
representation of the unlabeled data in a target domain. In this paper, we introduce
Prototype-oriented Clustering with Distillation (PCD) to not only improve the
performance and applicability of existing methods for UCDS, but also address the
concerns on protecting the privacy of both the data and model of the source domains.
PCD first constructs a source clustering model by aligning the distributions of
prototypes and data. It then distills the knowledge to the target model through
cluster labels provided by the source model while simultaneously clustering the
target data. Finally, it refines the target model on the target domain data without
guidance from the source model. Experiments across multiple benchmarks show
the effectiveness and generalizability of our source-private clustering method.

1 INTRODUCTION

Supervised learning methods require a tremendous amount of labeled data, limiting their use cases in
many situations (Adadi, 2021). By contrast, unsupervised clustering seeks to group similar data points
into clusters without labels (Hartigan, 1972). Clustering has become one of the most popular methods
in various applications, such as computer vision (Coleman and Andrews, 1979; Lei et al., 2018;
Mittal et al., 2021), natural language processing (Biemann, 2006; Yoon et al., 2019), reinforcement
learning (Mannor et al., 2004; Xu et al., 2014; Ahmadi et al., 2021), and multi-modal learning (Hu
et al., 2019; Chen et al., 2021). In many of these applications, data naturally come from multiple
sources and may not contain labels since they are expensive to acquire (Girshick et al., 2014; Lin et al.,
2014). As an example, medical institutions collaborate to achieve a large and diverse dataset (Mojab
et al., 2020). However, this partnership faces privacy and ownership challenges (Sheller et al., 2020).
Across different domains, users may also have varying amounts of resources and data (Salehi et al.,
2019). Another example is the inference-as-a-service paradigm, a business scheme where providers
serve models trained on multiple sources of data as APIs (e.g., Google AI platforms, Amazon Web
Services, GPT-3 (Brown et al., 2020)) without giving clients direct access to them. To exploit the rich
data from multiple domains for limited-data-and-resource users while also taking into account privacy
challenges, one may consider applying methods from Unsupervised Domain Adaptation (UDA)
(Shimodaira, 2000; Farhadi and Tabrizi, 2008; Saenko et al., 2010). These methods nonetheless
require labeled data in the source domains, making them not applicable in many scenarios.

To overcome the assumption of UDA, Menapace et al. (2020) have recently introduced Unsupervised
Clustering under Domain Shift (UCDS), a learning scenario where both the source and target
domains have no labels. The goal of this problem setting is to transfer the knowledge from the
abundant unlabeled data from multiple source domains to a target domain with limited data. To solve
this problem, Menapace et al. (2020) propose Adaptive Clustering of Images under Domain Shift
(ACIDS), a method that uses an information-theoretic loss (Ji et al., 2019) for clustering and batch
normalization alignment (Li et al., 2016) for target adaptation. However, it has two major drawbacks.
First, it assumes that we have full access to the source model parameters to initialize the target model
before clustering, limiting its use in privacy-sensitive situations where access to the source model
is restricted. Second, it requires batch normalization, a specific architectural design of the source
model that may not be applicable in some recently proposed state-of-the-art models such as Vision
Transformer (Dosovitskiy et al., 2020).
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Table 1: Overview of different domain transfer settings.

Source labels Target labels Source data access Source model’s parameters access

Unsupervised Domain adaptation ✓ ✗ ✓ ✓
Source-free Unsupervised Domain Adaptation ✓ ✗ ✗ ✓
Unsupervised Clustering under Domain Shift ✗ ✗ ✗ ✓
Ours ✗ ✗ ✗ ✗

In this paper, we consider a more practical problem that is a variant of UCDS (see Table 1): in
addition to the data privacy, we also consider model privacy. Target data owners have no direct
access to the source model but can query it to obtain cluster labels during target adaptation. This
requirement is important because, given full access to the model, target users or other adversaries may
exploit it to recover the source data, jeopardizing source data privacy Chen et al. (2019); Luo et al.
(2020). To address this important and challenging problem, we propose Prototype-oriented Clustering
with Distillation (PCD), a holistic method that consists of three stages. First, we construct a source
clustering model from multiple-domain data. To achieve this, we use optimal transport (Kantorovich,
2006; Peyré and Cuturi, 2019) to align the distributions of data and prototypes, as well as a mutual-
information maximization to assist the learning of the feature encoder and prototypes (Krause et al.,
2010; Shi and Sha, 2012; Liang et al., 2020). Second, we use the target cluster assignments provided
by the source model to distill the knowledge to the target model while simultaneously clustering the
target data. Finally, we perform clustering on the target data alone to further refine the target model.
Figure 1 illustrates the schematic diagram of our approach.

PCD achieves the following benefits. Our approach can be directly applied to the inference-as-a-
service paradigm, which is becoming increasingly popular (Soifer et al., 2019). Many providers
currently serve users with API services without sharing direct access to their models. Our method
also protects the privacy of both the data and model in the source domains, which is especially critical
in practical applications such as healthcare. Moreover, we no longer require the source and target
models to share the same architecture, allowing for more flexibility in the training process. Unlike
source data owners, target users may have limited resources and cannot afford to train large models.

Our main contributions include: 1) We propose a generalized approach for tackling the problem
of data-and-model private unsupervised clustering under domain shift. PCD integrates a prototype-
oriented clustering algorithm and knowledge distillation into a unified method. Our clustering
algorithm synergistically combines optimal transport with the mutual-information objective for
prototype and data alignment. 2) We verify the effectiveness and general applicability of the proposed
method in practical settings: model transfer as well as limited-data and cluster-imbalanced scenarios.
3) We provide comprehensive study and experiments on multiple datasets and demonstrate consistent
gains over the baselines.

2 METHOD

To address the clustering problem under domain shift and privacy concerns, we provide a general
recipe that consists of three main parts: 1) source model learning: learn a transferable model that can
guide the target model; 2) target model clustering: train a target model with the knowledge from the
source model as well as the target data; and 3) target model refinement: refine the target model on
the target data alone. The resulting strategy, referred to as PCD, can effectively solve the clustering
problem under domain shift while fully preserving the privacy of the source data and model. We
include the pseudocode in Algorithm 1 in Appendix E.

2.1 BACKGROUND

In unsupervised clustering under domain shift, we are given D unlabeled datasets from the source
domains, denoted as X s = {X s

d }Dd=1 where X s
d = {xs

dj}
ns
d

j=1 represents a dataset from a source
domain d with ns

d samples. We are also given an unlabeled dataset from the target domain, denoted
as X t = {xt

j}
nt
j=1 with nt target samples. There are K underlying clusters in both the source and

target domains with similar semantic content, but there is a shift between the source and target data
distributions. The clustering model consists of a feature encoder, Fθ : X → Rdf , parameterized
by θ, and a linear clustering head Cµ : Rdf → RK , parameterized by µ. To simplify the notation,
G = Cµ(Fθ(·)) will denote the composition of the feature encoder and linear clustering head. We
denote Gs and Gt as the source and target models, respectively. The goal is to learn a model that
can discover the underlying clusters of target samples under domain shift. Although the existing
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Figure 1: The illustration of the proposed clustering framework under domain shift and privacy
concerns. The semantic content of the source (Art and Cartoon) and target (Photo) data stays the
same. However, the bias of the data in each domain leads to a distribution shift. During the adaptation
phase, target users are only allowed to query from the source model, protecting the privacy of the
source domain information.

approach by Menapace et al. (2020) can achieve this objective, it directly uses Gs to initialize
Gt, compromising the privacy of the source domain and requiring Gs and Gt to have the same
architecture. We now discuss how the different components of our method address these issues.

2.2 SOURCE MODEL LEARNING

To effectively capture the feature distribution of the source data and avoid clustering based on
domain information, we propose a clustering algorithm that consists of three components: prototype-
oriented clustering, mutual-information maximization, and regularization via CutMix. The first two
components help capture the feature distribution, while the last one curtails clustering based on
domain information.

2.2.1 PROTOTYPE-ORIENTED CLUSTERING

Our goal is to learn global representations of prototypes that capture the source data distributions and
a feature encoder that maps the data from different domains to the prototypes. In our model, we have
a linear clustering head, Cµ = [µ1,µ2, . . . ,µK ] ∈ Rdf×K , where df denotes the dimension of both
the prototype and the output of the feature encoder. The vector µk represents a prototype of the kth
cluster in the latent space. To discover the underlying clusters, we want to align the distribution of
the global prototypes with the distribution of the feature representations in each domain.

We represent the distribution of the feature in each domain using the empirical distribution which is
expressed as: Pd =

∑ns
d

j=1
1
ns
d
δfs

dj
where fs

dj = F s
θ (x

s
dj) denotes the output of the feature encoder.

While we use a set of global prototypes to learn domain-invariant representations, we carefully
construct the distribution of prototypes in each domain such that the prototypes can align well with
the data. Since the proportion of clusters in each domain may vary, we consider the domain-specific
distribution of prototypes, Qd, which is defined as: Qd =

∑K
k=1 Bdkδµk

, where Bdk denotes the
proportion of cluster k in domain d (Bdk ≥ 0 and

∑K
k=1 Bdk = 1 ∀d). We emphasize here that the

prototypes are shared across different domains, but the proportion of the prototypes is domain-specific.

To align the distributions of prototypes and data, we want to quantify their difference. A principled way
to compare two discrete distributions is to consider the optimal transport problem (Kantorovich, 2006;
Peyré and Cuturi, 2019). Thus, we consider the entropic regularized optimal transport formulation
(Cuturi, 2013) that is defined as:

OT (Pd, Qd) = min
Td∈Π(u,v)

Tr((Td)
TCd) + ϵh(Td), (1)
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where Cd ∈ Rns
d×K

≥0 stands for the transport cost matrix in domain d, Tr denotes the trace operation,
h(Td) = −

∑
j,k(Td)jk log(Td)jk is the entropy of the transport plan, ϵ controls the strength

of the regularization term, and Td ∈ Rns
d×K

>0 is a doubly stochastic matrix in domain d such that
Π(u,v) = {Td|Td1 = u,1TTd = v}. The probability vectors u = 1

ns
d
∈ Σns

d and v = Bd ∈ ΣK ,

where ΣM stands for the probability simplex of RM , denote the respective probabilities for Pd and Qd.

We define the point-wise transport cost (Cd)jk as the cosine dissimilarity: (Cd)jk = 1− µT
k fs

dj

||µk|| ||fs
dj ||

,

where fs
dj = F s

θ (x
s
dj) denotes the output of the feature encoder. The intuition here is that if (Cd)jk

is high, it is less likely for sample j to be transported to cluster k.

To summarize, for a fixed θ and µ, we can solve Eq. (1) to obtain Td, the probabilities of mov-
ing prototypes to data points in each domain. After obtaining the transport plans, we update the
parameters of the encoder θ and prototypes µ to minimize the total transport cost for the given
transport plan using mini-batch stochastic gradient descent. The final transport loss is expressed
as: Ltransport (G

s;X s) = 1
D

∑D
d=1 OT (Pd, Qd). The connections of our method with other deep

clustering algorithms (Caron et al., 2018; Asano et al., 2019) are provided in Appendix D.

2.2.2 LEARNING DOMAIN-SPECIFIC CLUSTER PROPORTIONS

In the previous section, we utilize cluster proportions, Bd, as the marginal constraint when solving
the optimal transport problems. Assuming that each cluster contains roughly the same number of
samples, we can use a uniform distribution for Bd. However, this assumption is not valid in practice.
Since each domain may have different distributions over the clusters, we propose a way to estimate
domain-specific cluster proportions, Bd. To infer these quantities, we first initialize them with a
uniform prior over clusters Bdk = 1

K and iteratively refine them using an EM-like update (Saerens
et al., 2002; Kang et al., 2018; Alexandari et al., 2020):

B̃l+1
dk = 1

Md

∑Md

j=1 π
l
θ(µk |f

s
dj), where πl

θ(µk |f
s
dj) =

exp(µT
k fs

dj)B
l
dk∑K

k′=1
exp(µT

k′f
s
dj)B

l
dk′

, (2)

where Md stands for the number of samples in domain d in a mini-batch, Bl+1
dk refers to the proportion

of cluster k in domain d at the l+1 th iteration, πl
θ(µk |f

s
dj) denotes the predicted cluster probabilities

at the l th iteration, and fs
dj indicates the j th feature sample in domain d. To obtain a reliable estimates

of the full dataset, we iteratively update the proportions with Bl+1
dk ← βlBl

dk + (1− βl)B̃l+1
dk , where

βl follows a cosine learning rate schedule.

2.2.3 GLOBAL ALIGNMENT WITH MUTUAL-INFORMATION MAXIMIZATION

The transport loss introduced in the previous section aligns the local distributions of data and
prototypes. To assist the learning of the feature encoder and prototypes on a global level, we utilize
the widely-adopted mutual-information objective (Krause et al., 2010; Shi and Sha, 2012). This
objective ensures that the feature representations are tightly clustered around each prototype. If the
data are close to the prototypes, we expect the posterior probabilities to be close to one-hot vectors. To
make this more likely, we minimize the entropy of the conditional distribution of cluster labels given
the data. However, minimizing this loss alone could lead to a degenerate solution since the model
can assign all the samples to one cluster (Morerio et al., 2017; Wu et al., 2020). To prevent such a
solution, we maximize the marginal entropy of the cluster label distribution. The mutual-information
objective is thus expressed as:

Lmi (G
s;X s) = −[H (Ys)−H (Ys | X s)]

= −[h (Exs∈X sGs (xs))− Exs∈X sh (Gs (xs))], (3)
where H (Ys) and H (Ys | X s) denote the marginal entropy and conditional entropy of the cluster
labels Ys, which are latent variables, respectively and h(p) = −

∑
i pi log pi.

To avoid clustering based on domain information, we add the CutMix (Yun et al., 2019) regularization,
which mixes two samples by interpolating images and labels. Since the data have no labels, the
predicted cluster probabilities are utilized as the pseudo-labels. The CutMix regularization is defined
as: Lcutmix = Exs

i ,x
s
j∈X sL(Gs(x̃), ỹ), where L(·, ·) is the cross-entropy loss and (x̃, ỹ) are the

interpolated samples from the pair (xs
i , G

s
∗(x

s
i )) and (xs

j , G
s
∗(x

s
j)), with Gs

∗ indicating no gradient
optimization. We construct the final objective function to update the prototypes and feature encoder.

Lclustering(G
s;X s) = Ltransport(G

s;X s) + Lmi(G
s;X s) + Lcutmix(G

s;X s). (4)
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2.3 TARGET MODEL LEARNING

Because of the domain shift, we divide our target model learning into two stages—target model
clustering and target model refinement—to ensure that the knowledge transferred from the source
domain does not interfere with the learning in the target domain (Shu et al., 2018). The first phase
aims to transfer the knowledge from the source model to the target model while protecting the privacy
of the source domain. The second phase focuses on refining the target model so that target samples
are tightly clustered around each prototype.

2.3.1 TARGET MODEL CLUSTERING

In many practical applications, it is crucial to preserve the privacy of both the source model and data
(Ziller et al., 2020; 2021). Thus, directly using the source model to initialize the target model is not
ideal. Instead, we consider the practical problem where the source model can only provide a cluster
label for each target example. The source model is simply an API, and we have access to neither its
architecture nor model parameters. With the predicted cluster assignments given by the source model,
we want to learn a well-trained clustering model on the target data.

Source knowledge transfer with knowledge distillation. Given unlabeled target samples, {xt
i}

nt
i=1,

we can obtain cluster assignments, Gs(xt
i), through the source model. Our algorithm can work

for both hard and soft labels; however, it is more practical to consider hard labels from the
source domain since soft labels may not be available for all models (Sanyal et al., 2022). Thus,
we consider hard label assignments from the source domain in our experiments. To transfer
the knowledge from the source to target models, we utilize a knowledge distillation loss (Hin-
ton et al., 2015) to train the target model to mimic the predicted output from the source. The
loss can be formulated as follows: Lkd (G

t;X t, Gs) = Ext∈X tDkl (G
s(xt)∥Gt(xt)), where

Dkl(G
s(xt)∥Gt(xt)) =

∑K
k=1 G

s(xt)k log
Gs(xt)k
Gt(xt)k

stands for the Kullback–Leibler divergence
between two distributions and Gt is initialized with a pre-trained feature encoder.

Because of the domain shift, the source model may not always cluster target samples based on
their semantic content. Thus, we propose to refine the predicted target assignments using two
simple strategies: label smoothing (Pereyra et al., 2017) and self-ensemble (Laine and Aila, 2016;
Kim et al., 2021). Müller et al. (2019) discover that label smoothing can help the penultimate
layer representation form tight clusters, allowing the model to discover underlying clusters more
easily. To utilize label smoothing, we interpolate the hard assignments with a uniform distribution to
obtain soft labels: ŷLS

k = (1− γ)Gs(xt)k + γ
K , where γ is the weight of the uniform distribution.

As the target model improves, we can leverage its predicted cluster probabilities across different
iterations to form a temporal ensemble: (ŷt)l ← τ(ŷt)l−1 + (1 − τ)Gt(xt)l, where τ determines
how much weight we give to past assignments, (ŷt)l−1 is the assignment at the l − 1 th iteration,
and Gt(xt)l is the current assignment. We initialize (ŷt)0 with the smooth assignments from the
source model. The refined cluster assignments from the source model ŷt then replaces Gs(xt) in
the distillation loss. Thus, for target model clustering, the training includes the following losses:
Ltarget_clustering(G

t;X t, Gs) = Ext∈X tDkl (ŷ
t∥Gt (xt)) + Lclustering(G

t;X t).

2.3.2 TARGET MODEL REFINEMENT

In the previous section, we use both source and target domain knowledge to learn our clustering
model. While the source domain knowledge can assist target domain learning, the bias in distribution
due to domain shift could lead the target model to learn noisy domain information from the source
model. Similar to the observation by Shu et al. (2018), we find that the target model could benefit
from further clustering on the target data alone. We utilize the clustering objective in Eq. (4) with
target data and model as arguments and without the CutMix loss. The CutMix regularization term
is not included since there is no source knowledge transfer and the target data come from a single
domain. Also, the regularizer makes the predicted probabilities unconfident. During this stage, we
want the target feature representations to be clustered tightly around the target prototypes (confident
network outputs). The target refinement loss is thus formulated as: Ltarget_refinement(G

t;X t) =
Ltransport(G

t;X t) + Lmi(G
t;X t).

3 RELATED WORK

Clustering. For a complete picture of the field, readers may refer to the survey by Min et al. (2018).
We emphasize deep-clustering-based approaches, which attempt to learn the feature representation
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of the data while simultaneously discovering the underlying clusters: K-means (Yang et al., 2017;
Caron et al., 2018), information maximization (Menapace et al., 2020; Ji et al., 2019; Kim and Ha,
2021; Do et al., 2021), transport alignment(Asano et al., 2019; Caron et al., 2020; Wang et al., 2022),
neighborhood-clustering (Xie et al., 2016; Huang et al., 2019; Dang et al., 2021), contrastive learning
(Pan and Kang, 2021; Shen et al., 2021), probabilistic approaches (Yang et al., 2020; Monnier et al.,
2020; Falck et al., 2021; Manduchi et al., 2021), and kernel density (Yang and Li, 2021). These
works primarily focus on clustering data for downstream tasks for a single domain, whereas our
clustering algorithm is designed to cluster the data from multiple domains. Moreover, our method
solves the problem of transferring the knowledge from the data-rich source domain to the target
domain. Distinct from ACIDS (Menapace et al., 2020) which maximizes the mutual information
between different views of the same image, our method maximizes the mutual information between
cluster labels and images. In addition to data privacy, we also consider model privacy.

Source-free knowledge transfer. Early domain adaptation methods (Ben-David et al., 2006; Blitzer
et al., 2006; Tzeng et al., 2014; Ganin and Lempitsky, 2015; Long et al., 2017; 2018; 2015; Tzeng
et al., 2017; Courty et al., 2017) focus on reducing the distributional discrepancies between the
source and target domain data. These methods, however, require access to the source and target data
simultaneously during the adaptation process, compromising the privacy of the source domain. To
overcome this issue, several methods (Kuzborskij and Orabona, 2013; Du et al., 2017; Liang et al.,
2020; Li et al., 2020; Kundu et al., 2020; Kurmi et al., 2021; Yeh et al., 2021; Tanwisuth et al., 2021)
have been developed for source data-free domain adaptation. For a more thorough literature review of
this field, we refer the reader to the survey paper by Yang et al. (2021). In contrast to those methods,
we consider a more challenging adaptation setting, as used in previous works (Lipton et al., 2018;
Deng et al., 2021; Liang et al., 2021; Zhang et al., 2021), where the privacy of both data and models
is the main concern. Different from these lines of work, our approach relies on labeled data in neither
the source nor target domain.

4 EXPERIMENTS

In this section, we evaluate our method on Office-31, Office-Home, and PACS datasets under three
different transfer learning scenarios. The first setting (standard setting) includes only input distribution
shift. The second setup (model transfer setting) contains both input and model shifts. The last scenario
(limited-data and cluster-imbalanced setting) involves both input and cluster-proportion shifts.

4.1 EXPERIMENTAL SETUP

Comparable methods. We benchmark against existing clustering approaches—DeepCluster of
Caron et al. (2018), Invariant Information Clustering (IIC) of Ji et al. (2019), and Adaptive Clustering
of Images under Domain Shift (ACIDS) of Menapace et al. (2020)—in the UCDS setting when the
results are available. Unless specified otherwise, the reported baseline results are directly taken from
Menapace et al. (2020). IIC and DeepCluster train on target data only while ACIDS trains a source
model and then adapts on the target data. We also compare our approach to the following alternative
methods, which are different components of our framework: Pre-trained Only (PO), which uses a
pre-trained network to cluster target data directly; Source training Only (SO), which trains a model
on all the source data using Eq. (4) and directly tests on the target data; Target Training Only (TO),
which trains a model on the target data using the loss in Section 2.3.2 without source knowledge
transfer; Adaptation Only (AO), which performs the first two stages of our framework, source model
training and target model clustering, without further refining on the target data; PCD (Ours) refers
to using all three stages of our approach: source model learning, target model clustering, and target
model refinement. SO allows us to see the significance of the source model training. Compared with
PCD, TO enables us to evaluate the importance of the source knowledge transfer, while AO helps us
see the improvement from target refinement.

Pre-trained networks. To verify the compatibility of our approach with different models, we consider
multiple types of pre-trained network architectures and pre-training schemes in our experiments.
For pre-training schemes, we explore supervised and self-supervised pre-trainings on ImageNet
(Russakovsky et al., 2015). For network architectures, we experiment with supervised ResNet-18 as
well as self-supervised ResNet-50 (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al.,
2020). In particular, we adopt the network trained by SWAV (Caron et al., 2020) for ResNet-50 and
that trained by DINO (Caron et al., 2021) for Vision Transformer for our self-supervised pre-training.
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Datasets and evaluation metric. We use the following datasets in our experiments: Office-31
(Saenko et al., 2010), Office-Home (Venkateswara et al., 2017), and PACS (Li et al., 2017). The
Office-31 dataset has three domains (Amazon, Webcam, DSLR) with 4,652 images. The Office-
Home dataset consists of 15,500 images with four domains (Art, Clipart, Product, and Real-world).
The PACS dataset contains four domains (Art, Painting, Cartoon, and Sketch) with 9,991 images.
Following prior works (Ji et al., 2019; Menapace et al., 2020), we evaluate all methods using clustering
accuracy on the target dataset. The metric is calculated by first solving a linear assignment problem
to match the clusters to ground-truth classes. We set K, the number of clusters, equal to the number
of classes in each dataset for evaluation purposes.

Implementation details. We follow the standard protocols for source-free domain adaptation
(Liang et al., 2020). Specifically, we use mini-batch SGD with a momentum of 0.9 and weight
decay of 0.001. Both source and target encoders are initialized with ImageNet pre-trained networks
(Russakovsky et al., 2015), but the prototypes and the projection layer of the encoder are initialized
with a random linear layer. The initial learning rates are set to 0.001 for the pre-trained encoders
and 0.01 for the randomly initialized layer. The learning rates, η, follows the following schedule:
η = η0(1 + 10p)−0.75 where η0 is the initial learning rate. We use the batch size of 64 in both source
and target learning. All three loss terms are equally weighted, while other choices are possible. We
report the sensitivity of the coefficients in front of the loss terms in Appendix B. The initial value
of β0 to learn domain-specific proportions is set to 0.9999 for source clustering and 0.99 for target
clustering in all settings. We run our method with three different random seeds to calculate the
standard deviation. Full implementation details are included in Appendix F

Table 2: Clustering accuracy (%) on different datasets for ResNet-18-based methods.
Settings Office-31 Office-Home PACS

R → A R →W R → D Avg R → Ar R → Cl R → Pr R → Rw Avg R → P R → A R → C R → S Avg

DeepCluster (Caron et al., 2018) 19.6 18.9 18.7 19.1 8.9 11.1 16.9 13.3 12.6 27.9 22.2 24.4 27.1 25.4
IIC (Ji et al., 2019) 31.9 37.0 34.0 34.4 12.0 15.2 22.5 15.9 16.4 70.6 39.8 39.6 46.6 49.2

ACIDS (Menapace et al., 2020) 33.4 37.5 36.1 35.7 12.0 16.2 23.9 15.7 17.0 64.4 42.1 44.5 51.1 50.5

PO 14.1 17.9 18.3 16.8 11.4 9.0 12.9 10.8 11.0 30.5 24.1 19.8 20.8 23.8
SO 34.5 46.7 43.0 41.4 23.6 15.6 23.1 21.8 21.0 30.8 35.7 27.6 26.0 30.0
TO 38.0 46.6 45.3 43.3 21.3 12.2 30.6 24.2 22.1 88.4 56.5 56.5 49.1 62.6
AO 42.8 58.4 55.8 52.3 30.0 22.7 29.3 24.4 26.6 91.5 47.7 52.3 49.1 60.2

PCD 46.8 60.0 57.8 54.9 33.3 24.4 31.4 28.1 29.3 92.6 49.7 56.7 53.4 63.4

4.2 MAIN RESULTS

Standard setting. In real-world applications, the source and target data distributions often differ. To
test our method under input distribution shift, we evaluate our method on Office-31, Office-Home, and
PACS datasets. For each experiment, we select one domain as the target and all the other, denoted as
R, as the source domains. We use the same model architecture in both the source and target domains.
We report the results for ResNet-18 (supervised pre-training) in Table 2. The full results with standard
error are shown in Appendix A. Compared with the results reported by Menapace et al. (2020), our
algorithm outperforms ACIDS consistently in all three datasets (see Table 2): 19.2% on Office-31,
12.3% on Office-Home, and 12.9% on PACS. Though ACIDS does not address the problem of our
setting with the same pre-training scheme and backbones as our method, we report the results for
comparison. The results of ACIDS with this pre-training scheme are included in Appendix A in
Table 7. We observe that our approach still outperforms ACIDS on three out of four tasks with 4%
higher in the average accuracy, emphasizing the general applicability and strong performance of
PCD. With no adaptation, TO achieves higher clustering accuracy than both IIC and DeepCluster,
demonstrating the effectiveness of our clustering method.

Compared with our own alternative methods (i.e., PO, SO, TO, and AO), PCD achieves steady gains
in performance except for one task. Notably, on the taskR → A of the PACS dataset, we notice a
negative transfer (Wang et al., 2019) as TO performs the best (56.5% vs. 49.7%). We hypothesize
that the Art domain looks quite distinct from the source domain data, and the supervised-pretraining
backbone is strong enough to yield good performance using target training only. SO improves upon
PO on all the tasks, showing that the knowledge from the source domain can benefit the target domain
learning. Likewise, we see consistent improvements around 2−3% over AO . This result illustrates the
importance of target model refinement. We observe similar patterns using self-supervised ResNet-50
as the backbone (see Appendix A).

Model transfer setting. In many applications, source and target data owners may have different
resource requirements. As an example, unlike source providers such as Google, target clients may
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Table 3: Clustering accuracy (%) on Office-31 for different model transfer settings. ssl and sup
denote self-supervised and supervised pre-trainings, respectively. (source)→ (target).

Settings ViT-B/16 (ssl)→ ResNet-50 (ssl) ViT-B/16 (ssl)→ ResNet-50 (sup) ViT-B/16 (ssl)→ ResNet-18 (sup)

R → A R →W R → D Avg R → A R →W R → D Avg R → A R →W R → D Avg

PO 20.1/13.5 26.7/16.7 27.2/19.3 24.7/16.5 20.1/15.7 26.7/24.2 27.2/18.8 24.7/19.6 20.1/14.1 26.7/17.9 27.2/18.3 24.7/16.8
SO 43.2 46.4 37.2 42.3 43.2 46.4 37.2 42.3 43.2 46.4 37.2 42.3
TO 32.6 34.3 33.7 33.5 43.7 55.8 52.0 50.5 38.0 45.3 46.6 43.3
AO 50.6 49.7 36.4 45.6 52.5 53.7 44.2 50.1 53.0 47.2 43.9 48.0

PCD 51.7 51.7 41.8 48.4 54.4 60.8 49.2 54.8 54.6 53.6 46.7 51.6

have limited resources. Thus, they may not be able to use the same model architecture as the source
provider. To illustrate the flexibility and demonstrate the generalizability of our framework under
model shift, we experiment with different model architectures and pre-training schemes in the source
and target domains. We explore three different combinations of source and target model architectures
and pre-training schemes: ViT-B/16 (self-supervised)→ ResNet-50 (self-supervised), ViT-B/16 (self-
supervised)→ ResNet-50 (supervised), and ViT-B/16 (self-supervised)→ ResNet-18 (supervised).
The results are reported in Table 3. In both settings, we continually see improvements in average
performance. This finding shows that our method still performs well even though the source and
target domain architectures differ, providing strong evidence for the generalizability and compatibility
of different components of our framework.

Limited-data and cluster-imbalanced setting. In real-world scenarios, target domain data are
often scarce and imbalanced. To further show the benefit of our clustering loss under this setting,
we follow the experimental procedures in Tachet des Combes et al. (2020). Specifically, we drop
70% of the target data in the first ⌊K/2⌋ clusters to create this scenario. The experiments are done
on the Office-31 dataset. To illustrate the use of our method in a label-free pipeline, we utilize
self-supervised ResNet-50 as the feature encoder for both source and target domains. This scenario
is extremely challenging for transfer learning methods since there are shifts in both image and
cluster-label distributions. However, as we see in Table 4, PCD still outperforms TO by 4%. We note
that TO also adaptively learns the target proportions but does not have to deal with distribution shifts.
We also observe consistent improvements over other alternative methods. This result highlights the
use of our method in practical settings with limited and imbalanced data.

Table 4: Clustering accuracy (%) on sub-sampled version of Office-31 for ResNet-50-based methods.

Settings R → sub-A R → sub-W R → sub-D Avg

PO 14.6 16.7 21.5 17.6
SO 21.1 32.5 36.0 29.9
TO 31.4 41.9 45.1 39.5
AO 34.7 40.8 43.9 39.8

PCD 37.8 46.4 47.0 43.7

5 ANALYSIS

Ablation study. To see the contribution of each component, we remove one part at a time from
the whole framework and present the results in Table 5. Overall, PCD achieves higher clustering
accuracy than all other alternative versions with privacy constraints. We observe that the clustering
accuracy drops dramatically (10.3%) without the prototype clustering, illustrating the importance of
this element. The mutual-information objective is also significant since omitting it leads to a drop
in clustering accuracy of 7.3%. This observation shows that the two losses are complementary to
each other. The temporal ensemble of the cluster labels produced by the source model still improves
the model but does not significantly hurt the performance if removed. We also report the result of
directly initializing the target model with the source model (w/o model privacy). We notice around
3% improvement. When pooling all the source domains together into a single source domain for
clustering (pooled source), we see a drop of 2.2%. This result indicates that we should respect the
local structures of data in each domain.

Table 5: Clustering accuracy (%) on the taskR→W (Office-31) under different variants (ResNet-18).
Full w/o prototype clustering w/o MI w/o CutMix w/o Temporal Ensemble w/o model privacy pooled source

60.0 49.7 52.7 54.5 58.3 63.1 57.8

8



Figure 2: Visualization of the cluster proportions for the sub-sampled version of the taskR→ sub-W
on the Office-31 dataset. To create this plot, we first match the predicted clusters with the true labels
using optimal assignment. The blue bars exhibit the true cluster proportions, whereas the orange bars
depict the estimated cluster proportions. The L1 loss of the estimated cluster distribution is lower
than that of the uniform proportion (0.26 vs. 0.6), demonstrating the success of our estimation.

(a) (b)

Figure 3: t-SNE visualizations of the encoder’s outputs on the taskR →W. Different colors represent
semantic classes from the ground-truth labels. Figure (a) shows the outputs trained with Target
training Only (TO), while Figure (b) depicts those trained with the whole framework. Samples with
similar semantic content are more tightly clustered around the prototypes (⋆) in Figure (b).

Results analysis. Visualization. In Figure 2, we visualize the estimated target proportions versus the
true proportions, which are calculated from the ground-truth labels. The learned cluster distribution
achieves lower L1 loss than the uniform distribution, meaning that the estimated values reflect the
data distribution better than the uniform proportions. We plot the t-SNE visualization of the outputs
of the feature encoder for the model trained with target training only (Section 2.3.2) in Figure 3a and
the one trained with the whole framework (Algorithm 1) in Figure 3b. Using the whole framework,
we can see that the samples are more tightly clustered around the prototypes, illustrating that the
knowledge from the source domain benefits the target model learning. Running time and parameter
size. We report the number of parameters and running time per step for comparison in Appendix C,
where we see that our method is more efficient in both time and memory than ACIDS.

6 CONCLUSION

We study a practical transfer learning setting that does not rely on labels in the source and target
domains and considers the privacy of both the source data and model. To solve this problem, we
provide a novel solution that utilizes prototype clustering, mutual-information maximization, data
augmentation, and knowledge distillation. Experiments show that our clustering approach consistently
outperforms the baselines and works well across different datasets and model architectures.
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A Prototype-oriented Clustering for Domain Shift
with Source Privacy: Appendix

A FULL EXPERIMENTAL RESULTS

A.1 STANDARD SETTING

Table 6: Clustering accuracy (%) on different datasets for ResNet-18-based methods (supervised
pre-training for all methods below the mid line) and (random initialization for all methods above the
mid line).

Settings Office-31 Office-Home PACS

R → A R →W R → D Avg R → Ar R → Cl R → Pr R → Rw Avg R → P R → A R → C R → S Avg

DeepCluster 19.6 18.9 18.7 19.1 8.9 11.1 16.9 13.3 12.6 27.9 22.2 24.4 27.1 25.4
IIC 31.9 37.0 34.0 34.4 12.0 15.2 22.5 15.9 16.4 70.6 39.8 39.6 46.6 49.2

ACIDS 33.4 37.5 36.1 35.7 12.0 16.2 23.9 15.7 17.0 64.4 42.1 44.5 51.1 50.5

PO 14.1± 1.6 17.9± 2.0 18.3± 2.9 16.8 11.4± 1.6 9.0± 1.6 12.9± 2.8 10.8± 1.7 11.0 30.5± 3.1 24.1± 0.6 19.8± 3.7 20.8± 1.7 23.8
SO 34.5± 0.5 46.7± 2.9 43.0± 2.9 41.4 23.6± 1.6 15.6± 1.9 23.1± 3.7 21.8± 2.9 21.0 30.8± 8.2 35.7± 3.9 27.6± 8.3 26.0± 3.7 30.0
TO 38.0± 3.2 46.6± 1.6 45.3± 1.5 43.3 21.3± 2.6 12.2± 0.7 30.6± 4.1 24.2± 0.7 22.1 88.4± 3.9 56.5± 4.1 56.5± 11.1 49.1± 2.8 62.6
AO 42.8± 0.9 58.4± 3.7 55.8± 1.9 52.3 30.0± 1.7 22.7± 1.6 29.3± 4.1 24.4± 2.6 26.6 91.5± 5.9 47.7± 5.7 52.3± 1.2 49.1± 3.0 60.2

PCD 46.8± 1.7 60.0± 2.6 57.8± 5.9 54.9 33.3± 1.0 24.4± 1.5 31.4± 4.7 28.1± 2.5 29.3 92.6± 2.4 49.7± 5.0 56.7± 2.6 53.4± 5.9 63.4

Table 7: Clustering accuracy (%) on different datasets for ResNet-18-based methods (supervised
pre-training).

Settings PACS

R → P R → A R → C R → S Avg

ACIDS 80.9 48.2 50.5 56.7 59.1

PCD 92.6 49.7 56.7 53.4 63.4

Table 8: Clustering accuracy (%) on different initialization strategies for ResNet-50-based methods
(supervised pre-training).

Settings PACS

R → P R → A R → C R → S Avg

Self-supervised pre-training 82.1 53.4 50.8 43.6 57.5

Supervised pre-training 93.3 54.6 59.1 56.8 66.0

Table 9: Clustering accuracy (%) on different datasets for ResNet-50-based methods (self-supervised
pre-training).

Settings Office-31 Office-Home PACS

R → A R →W R → D Avg R → Ar R → Cl R → Pr R → Rw Avg R → P R → A R → C R → S Avg

PO 13.5± 0.9 16.7± 0.3 19.3± 2.4 16.5 10.5± 0.6 8.4± 0.2 10.5± 0.7 9.1± 0.9 9.6 28.3± 7.4 22.9± 2.6 24.0± 1.2 29.1± 2.3 26.1
SO 19.0± 5.0 26.3± 2.0 27.5± 3.0 24.3 18.3± 1.2 11.2± 0.3 16.4± 1.3 16.7± 1.7 15.7 40.7± 12.2 25.0± 1.4 29.7± 5.7 35.0± 5.0 32.6
TO 31.6± 1.8 34.3± 4.3 33.7± 2.8 33.2 17.9± 2.0 10.1± 0.1 20.7± 1.9 16.6± 1.8 16.3 80.4± 6.8 51.9± 2.4 44.8± 1.3 32.8± 1.3 52.5
AO 33.3± 0.6 37.6± 5.3 41.9± 2.7 37.6 21.7± 2.2 17.9± 0.8 20.8± 3.7 27.5± 3.4 22.0 80.0± 3.8 38.9± 3.6 55.6± 3.4 43.5± 3.7 54.5

PCD 37.8± 1.5 48.2± 5.4 51.0± 4.8 45.6 23.8± 0.9 18.4± 0.4 30.6± 1.5 27.6± 1.2 25.1 82.1± 4.0 53.4± 4.4 50.8± 4.5 43.6± 4.7 57.5

A.2 MODEL TRANSFER SETTING

Table 10: Clustering accuracy (%) on Office-31 for different model transfer methods.

Settings ViT-B/16 (ssl)→ ResNet-50 (ssl) ViT-B/16 (ssl)→ ResNet-50 (sup) ViT-B/16 (ssl)→ ResNet-18 (sup)

R → A R →W R → D Avg R → A R →W R → D Avg R → A R →W R → D Avg

PO 20.1± 0.2/13.5± 0.9 26.7± 0.8/16.7± 0.3 27.2± 0.3/19.3± 2.4 24.7/16.5 20.1± 0.2/15.7± 0.7 26.7± 0.8/24.2± 3.5 27.2± 0.3/18.8± 2.2 24.7/19.6 20.1± 0.2/14.1± 1.6 26.7± 0.8/17.9± 2.0 27.2± 0.3/18.3± 2.9 24.7/16.8
SO 43.2± 5.0 46.4± 4.5 37.2± 9.0 42.3 43.2± 5.0 46.4± 4.5 37.2± 9.0 42.3 43.2± 5.0 46.4± 4.5 37.2± 9.0 42.3±
TO 32.6± 1.8 34.3± 4.3 33.7± 2.8 33.5 43.7± 1.6 55.8± 2.1 52.0± 3.8 50.5 38.0± 3.2 45.3± 1.6 46.6± 1.5 43.3
AO 50.6± 3.7 49.7± 4.0 36.4± 5.0 45.6 52.5± 3.5 53.7± 1.9 44.2± 4.1 50.1 53.0± 3.8 47.2± 3.3 43.9± 4.9 48.0

PCD 51.7± 2.9 51.7± 2.0 41.8± 3.2 48.4 54.4± 2.4 60.8± 2.1 49.2± 3.3 54.8 54.6± 2.5 53.6± 5.4 46.7± 4.8 51.6

A.3 LIMITED-DATA AND CLUSTER-IMBALANCED AND SETTING

Due to space constraints, we provide additional results for the sub-sampled versions of all three
datasets in the appendix. PCD again outperforms other alternative methods consistently. AO, on
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Table 11: Clustering accuracy (%) on sub-sampled versions of different datasets for ResNet-50-based
methods (self-supervised pre-training).

Settings Office-31 Office-Home PACS

R → sub-A R → sub-W R → sub-D Avg R → sub-Ar R → sub-Cl R → sub-Pr R → sub-Rw Avg R → sub-P R → sub-A R → sub-C R → sub-S Avg

PO 14.6± 1.2 16.7± 1.4 21.5± 1.5 17.6 12.5± 0.8 9.3± 0.8 14.4± 1.1 12.2± 1.3 12.1 43.0± 8.9 32.3± 5.9 29.1± 1.1 39.8± 3.7 36.1
SO 21.1± 3.0 32.5± 2.6 36.0± 3.2 29.9 26.2± 1.3 19.5± 0.3 23.9± 1.0 26.9± 1.1 24.1 54.8± 4.4 37.8± 4.2 41.0± 5.5 47.2± 6.8 45.2
TO 31.4± 3.0 41.9± 3.6 45.1± 3.1 39.5 21.6± 1.8 11.9± 1.0 28.7± 1.3 22.8± 5.3 21.2 65.1± 2.8 46.4± 2.3 47.8± 5.4 40.9± 1.2 50.0
AO 34.7± 3.5 40.8± 3.9 43.9± 3.6 39.8 28.1± 0.6 21.8± 0.6 30.3± 2.6 29.4± 2.1 27.4 65.4± 5.4 43.2± 6.7 51.1± 1.8 43.4± 2.3 50.7

PCD 37.8± 3.6 46.4± 3.3 47.0± 3.7 43.7 28.7± 1.0 22.3± 0.4 32.7± 2.6 31.2± 3.2 28.7 66.1± 4.7 48.0± 1.5 51.8± 2.0 43.4± 1.9 52.4

average, performs better than TO, meaning that knowledge from the source can benefit target training.
Similarly, SO improves upon PO in all cases. PCD achieves higher clustering accuracy than AO
(1− 4%), illustrating that target model refinement is crucial for PCD’s success.

A.4 ABLATION STUDY

Table 12: Full ablation study on Office-31 dataset.

1lightgraylightgray
Settings R →W diff R → A diff R → D diff

Full 60.0 0.0 46.8 0.0 57.8 0.0
w/o prototype clustering 49.7 −10.3 43.2 −3.6 53.2 −4.6

w/o MI 52.7 −7.3 39.1 −7.7 54.79 −3.01
w/o CutMix 54.5 −5.5 46.1 −0.7 54.6 −3.2

w/o Temporal Ensemble 58.3 −1.7 46.6 −0.2 57.3 −0.5
w/o model privacy 63.1 3.1 49.2 2.4 61.4 3.6

pooled source 57.8 −2.2 45.6 −1.2 57.0 −0.8

Table 13: Clustering accuracy (%) on the taskR→W (Office-31) under different variants (ResNet-
18).

Full w/o prototype clustering w/o MI w/o CutMix w/o Temporal Ensemble w/o model privacy pooled source

60.0± 2.6 49.7± 2.8 52.7± 3.0 54.5± 5.2 58.3± 2.4 63.1± 2.1 57.8± 2.5

B SENSITIVITY PLOT

In Figure 4, we plot the sensitivity of the target clustering accuracy when we vary the coefficient in
front of the loss. We can see that our method is not sensitive to different values of the coefficients
except for when the λmix coefficient is set to 5. This result is expected since the λmix is used as a
regularization term and should not be set too high. We also observe that the performance can get even
better via oracle validation by setting the λmi to 2 or 5. However, we set the coefficient to 1 for all
three losses for all experiments.

C RUNNING TIME AND PARAMETER SIZE

Table 14: Number of parameters and average running time per step for different clustering approaches
for ResNet-18-based models.

Methods Parameter size (millions) Running time (s/step)

ACIDS 11.94 M head1 - 0.52 s/step / head2 - 0.44 s/step
PCD 11.32 M 0.16 s/step

D CONNECTION WITH DEEPCLUSTER AND SELA

Caron et al. (2018) propose DeepCluster to perform clustering and representation learning simulta-
neously. This method alternates between K-means for clustering and cross-entropy minimization
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Figure 4: Sensitivity plot for the coefficient of the losses. We fix the coefficient of the two losses to
1.0 while varying the third loss from 0.6 to 5.0 and plot the clustering accuracy on the target data.

Table 15: Average running time per step for different clustering approaches for ResNet-18-based
models.

ACIDS PCD

head1 - 0.52 s/step / head2 - 0.44 s/step 0.16 s/step

for representation learning. While compatible with deep learning frameworks, the approach does
have an obvious degenerate solution where all the samples get assigned to one cluster, yielding a
constant representation. To overcome this, Asano et al. (2019) invent SeLa, which is similar to
DeepCluster in the cross-entropy minimization step but differs from it in the pseudo-label assignment
step. The authors explain that solving the K-means problem with equal partitioning constraints
can avoid the degenerate solution. Asano et al. (2019) further recognize this as an instance of an
optimal transport problem. Our clustering method is similar to SeLa in that we also solve the optimal
transport problem during the pseudo-label assignment step. Unlike SeLa, we do not use the simplistic
assumption that each cluster contains an equal number of data points. Instead, we dynamically update
the cluster proportions using the predicted cluster probabilities. We also offer the interpretation of our
method from the distribution alignment perspective. Moreover, our method is designed specifically
for multi-domain data, and we also explore the use of our framework under the domain shift scenario.

E PSEUDO-CODE

F FULL IMPLEMENTATION DETAILS

We follow the standard protocols for source-free unsupervised domain adaptation (Liang et al., 2020).
Specifically, we use mini-batch SGD with a momentum of 0.9 and weight decay of 0.001. Both
source and target encoders are initialized with ImageNet pre-trained networks (Russakovsky et al.,
2015), but the prototypes are initialized with a random linear layer. The initial learning rates are set
to 0.001 for the pre-trained encoders and 0.01 for the randomly initialized layer. The learning rates,
η, follows the following schedule: η = η0(1 + 10p)−0.75 where η0 is the initial learning rate. We use
the batch size of 64 in both source and target learning. The initial value β0 to learn domain-specific
proportions is set to 0.9999 for source clustering and 0.99 for target clustering in all settings. We
set the entropic regularization parameter, ϵ, to 0.01. The concentration parameter, α, in the CutMix
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Algorithm 1: Pseudo code for our framework.
1. Source model training
Input: source data - X s = {X s

d }Dd=1, source model - Gs = Cµs(Fθs(.)) (a randomly initialized
Cµs and a pre-trained Fθs )
Output: updated θs, µs

for t = 1 to T do
• Sample a mini-batch of source data
• Update the proportions B with Eq. (2)
• Solve the optimal transport problem in Eq. (1) to obtain the transport map for each domain
• Update the encoder and prototypes using Eq. (4) with the transport map from the previous step

end for
2. Target model clustering
Input: target data - X t = {xt

j}
nt
j=1, cluster labels from the source model - Gs(xt), target model -

Gt = Cµt(Fθt(.)) (a randomly initialized Cµt and a pre-trained Fθt )
Output: updated θt, µt

for t = 1 to T do
• Sample a mini-batch of target data
• Refine the hard-label with label smoothing and temporal ensemble
• Update the the target model with the loss in Eq. (2.3.1)

end for
3. Target model refinement
Input: X t = {xt

j}
nt
j=1, target model - Gt (Cµt and Fθt from step 2’s output)

Output: updated θt, µt

for t = 1 to T do
• Sample a mini-batch of target data
• Update the proportions B with Eq. (2)
• Solve the optimal transport problem in Eq. (1) to obtain the transport map for the target
domain
• Update the encoder and prototype using Eq. (2.3.2) with the transport map from the previous
step

end for

loss is set to 0.3. The temporal ensemble coefficient, τ , is equal to 0.6. The source model and
hyper-parameters are selected using the validation set of the source domain. The target model is
trained using all the target data. We run our method with three different random seeds to calculate the
standard deviation. We implement our method in PyTorch.
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