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Abstract

Although auto-regressive models excel in nat-001
ural language processing, they often struggle002
to generate diverse text and provide limited003
controllability. Non-auto-regressive methods004
could be an alternative but often produce de-005
generate outputs and exhibit shortcomings in006
conditional generation. To address these chal-007
lenges, we propose Diffusion-EAGS, a novel008
framework that integrates conditional masked009
language models into diffusion language mod-010
els through the theoretical lens of a conditional011
Markov Random Field. In doing so, we propose012
entropy-adaptive Gibbs sampling and entropy-013
based noise scheduling to counterbalance each014
model’s shortcomings. Experimental results015
show that Diffusion-EAGS outperforms base-016
lines and achieves the best quality-diversity017
tradeoff, demonstrating its effectiveness in non-018
autoregressive text generation.019

1 Introduction020

Auto-Regressive Models (ARMs) have driven sig-021

nificant advances in NLP (Achiam et al., 2023;022

Dubey et al., 2024; Team et al., 2023), yet they still023

face fundamental challenges such as diversity and024

controllability due to the ARM’s innate inductive025

bias. To address these challenges, a more flexible026

generative model is required.027

Specifically, ARMs face multiple challenges:028

they struggle to correct mathematical reasoning er-029

rors once made (Wang et al., 2025), and often fail to030

integrate external knowledge (Hudecek and Dusek,031

2023; Sun et al., 2023; Su et al., 2024). These032

shortcomings arise from ARMs’ sequential nature,033

which prevents them from revising earlier steps.034

As a result, they cannot effectively foster diversity035

through temperature-based sampling alone (Lee036

et al., 2025), nor can they anticipate future require-037

ments at earlier steps, thus undermining controlla-038

bility when specific keywords must appear later (Lu039

et al., 2022).040
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Figure 1: Overview of how our approach (Diffusion-
EAGS) combines the strengths of MLM and diffusion-
based models to overcome the limitations of AR models,
achieving a better diversity-quality tradeoff and fine-
grained controllability

One promising alternative is non-autoregressive 041

generation, including Conditional Masked Lan- 042

guage Models (CMLMs) (Ghazvininejad et al., 043

2019a; Kasai et al., 2020) and diffusion models. 044

CMLMs provide strong contextual understanding 045

but lack an effective text generation mechanism. 046

Meanwhile, diffusion models iteratively refine text 047

through denoising, enabling fine-grained control 048

and increased diversity. Recent works explore di- 049

rect diffusion-based generation (Li et al., 2022; Gat 050

et al., 2024; The et al., 2024; Ye et al., 2025) or 051

hybrid approaches combining diffusion with PLMs 052

and LLMs (Lin et al., 2023; Xiang et al., 2024). 053

However, despite their advantages, Discrete Diffu- 054

sion Language Models (DDLMs) still suffer from 055

degeneration in conditional generation tasks (Xu 056

et al., 2025), as confirmed by our experiments. 057

We therefore propose Diffusion-EAGS, a novel 058

approach that integrates CMLMs into DDLMs to 059

1



achieve diverse, controllable, and high-quality con-060

ditional generation. However merging these meth-061

ods is challenging because CMLMs generate text in062

one step by predicting all masked tokens, whereas063

diffusion models iteratively refine representations064

over multiple steps by introducing and removing065

noise. Our approach bridges this gap by leverag-066

ing a conditional Markov Random Field (cMRF)067

formulation, which enables:068

1. Stepwise iterative generation, overcoming069

the single-step limitations of CMLMs.070

2. Stable and diverse conditional text genera-071

tion, reducing semantic drift in DDLMs.072

Diffusion-EAGS achieves this through two key073

methodologies:074

• Entropy-Adaptive Gibbs Sampling075

(EAGS): A strategy that updates the most076

uncertain (high-entropy) tokens first at each077

denoising step, ensuring qualified generation.078

• Entropy-based Noise Scheduling (ENS): A079

training approach that progressively masks080

tokens based on ascending order of entropy,081

enabling the model to learn a structured de-082

noising process.083

We conduct extensive experiments to validate084

Diffusion-EAGS on various conditional genera-085

tion tasks, demonstrating significant improvements086

over baseline models. Our approach achieves the087

best quality-diversity tradeoff, demonstrating that088

Diffusion-EAGS balances fluency and variability089

more effectively than existing models. Moreover,090

keyword-based story generation experiments con-091

firm that our model effectively generates coher-092

ent and controlled text from randomly masked se-093

quences, making it highly adaptable to different094

conditioning constraints.095

2 Related Works096

Efforts to integrate generative flow models into097

sequence generation exploit the distribution shift098

from a source language to a target language through099

a series of invertible linear transformations (Ma100

et al., 2019; Zhang et al., 2024). However, as101

DDPM (Ho et al., 2020a) demonstrate the effective-102

ness of generating images, diffusion models have103

been a major topic of interest within the field of gen-104

erative flow models (Song et al., 2021a,b). To apply105

such diffusion methodologies to NLP, in order to106

leverage their strengths in controllability and diver-107

sity, recent studies have demonstrated promising108

performance across various tasks (Li et al., 2022; 109

Gong et al., 2023a; He et al., 2023; Yuan et al., 110

2023; Lovelace et al., 2023; Chen et al., 2023; He 111

et al., 2023; Lou et al., 2024; Zhou et al., 2024; Shi 112

et al., 2024; Sahoo et al., 2024; Zheng et al., 2024; 113

The et al., 2024; Wang et al., 2024). 114

Although Continuous Diffusion Language Mod- 115

els (CDLMs) such as Diffusion-LM (Li et al., 116

2022), DiffuSeq-v1, v2 (Gong et al., 2023a,b), and 117

LD4LG (Lovelace et al., 2023) show promising 118

performance, Bansal et al. (2022) argue that such 119

operations do not necessarily have to be governed 120

by stochastic randomness. 121

Building on this rationale, D3PM (Austin et al., 122

2023) propose the discrete restoration-generation 123

approach and DiffusionBERT (He et al., 2022) 124

adopt pre-trained language models (PLMs) to 125

DDLM. SEDD (Lou et al., 2024) propose score 126

entropy inspired by MLM loss, and outperform ex- 127

isting CDLMs. Recent works by Shi et al. (2024) 128

and Sahoo et al. (2024) extend this idea and obtain 129

better empirical results. Zheng et al. (2024) further 130

enhance discrete diffusion models by correcting the 131

numerical precision error in SEDD-based models. 132

These research make an improvement on the open 133

ended generation task. Furthermore, Venkatraman 134

et al. (2024) use SEDD as text infilling, and Nie 135

et al. (2024) demonstrate that DDLMs are scalable. 136

3 MLM & DDLM : D-cMRF 137

Pre-trained MLMs offer rich, context-aware rep- 138

resentations through one-pass masked prediction, 139

whereas DDLMs iteratively refine text via step- 140

wise denoising to enhance control and diversity. 141

Combining these approaches can overcome MLMs’ 142

one-pass limitations and DDLMs’ degeneration in 143

conditional generation. However, their integra- 144

tion is challenging because DDLMs require iter- 145

ative updates while MLMs predict all masked to- 146

kens simultaneously. To bridge this gap, we pro- 147

pose Diffusion-based Constrained Markov Random 148

Fields (D-cMRF), a framework that integrates a 149

discrete diffusion process into MLM sequence gen- 150

eration. By leveraging an entropy-based sampling 151

strategy to selectively update high-uncertainty to- 152

kens at each step, D-cMRF achieves a principled 153

reduction in sequence energy, leading to stable and 154

coherent generation. 155

3.1 MLM as cMRF 156

Inspired by the traditional approaches of Wang 157

and Cho (2019) and Goyal et al. (2022), which 158
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model MLMs as Markov Random Fields (MRFs)159

and energy-based models (EBMs), respectively, we160

reinterpret MLM as a conditional MRF (cMRF)161

model and employ it as a denoising function at162

each diffusion step.163

Let X = (x1, x2, . . . , xL) be a sequence of dis-164

crete variables from a vocabulary V , with Y repre-165

senting observed conditions. The sequence proba-166

bility follows an energy-based MRF formulation:167

Pθ(X;Y ) =
exp(−Eθ(X;Y ))

Z(Y, θ)
(1)168

169 where Eθ(X;Y ) is the energy function param-170

eterized using MLM-based embeddings, θ denotes171

parameterization of MLM, and Z(Y, θ) is the par-172

tition function for ensuring proper normalization.173

Then the total sequence energy is defined as:174

Eθ(X;Y ) = −
L∑

l=1

log ϕl(X;Y ) (2)175

176 where log-potential function log ϕl(X;Y ) is :177

log ϕl(X;Y ) = 1h(xl)
T fθ(X\{xl};Y ) (3)178

179 where l is a token position in the sequence,180

1h(xl) is the one-hot encoding of token xl, and181

fθ(X\{xl};Y ) represents the MLM logit output182

conditioned on the sequence.183

3.2 DDLM with Entropy-based Denoising184

Determining how to perform sampling with such185

a simple cMRF presents a separate challenge. In186

particular, one can use techniques such as Gibbs187

sampling as long as the energy space remains un-188

changed, but we cannot guarantee that this energy189

space is stable in general (Goyal et al., 2022). The190

necessity of generating sequences in cMRF based191

on energy update is in Appendix A. Hence, a natu-192

ral research question arises: “How should we sam-193

ple and update the energy?”194

The training process of diffusion models (both195

forward and backward) conceptually represents the196

entire distribution as a product of local conditional197

distributions across time steps. Hence, diffusion198

models share a probabilistic graphical structure199

with MRF, enabling MLM to be integrated within200

DDLM framework.201

Therefore, in this subsection, we describe how to202

update the energy and perform sampling under the203

DDLM framework using Pθ(X;Y ). Specifically,204

we integrate Pθ(X;Y ) into each diffusion step as205

a denoising function, employing an entropy-based206

denoising matrix Q in Section 4.2. We first define 207

the entropy of each token: 208

Hi(X
(t)) = −

∑
x′∈V

pθ(x
′
i;X

(t)) log pθ(x
′
i;X

(t)) (4) 209

210where pθ(x
′
i;X

(t)) is the softmax probability 211

of token x′i at position i in sequence X(t), and t 212

denotes the diffusion timestep. 213

Mt = {i | Hi(X
(t)) ≥ τt} (5) 214

215where τt is a dynamically adjusted entropy 216

threshold. This ensures that updates occur at posi- 217

tions where the model has the highest uncertainty. 218

Subsequently, we sample the next-step sequence 219

from Pθ(X
(t);Y ) at the suggested positions. We 220

perform this selection process at every diffusion 221

step, which corresponds to updating the energy, 222

different from existing research (Wang and Cho, 223

2019; Goyal et al., 2022). 224

3.3 D-cMRF 225

By combining DDLM with cMRF, our approach en- 226

ables a theoretically grounded generation process 227

from the perspective of MLM. Moreover, from the 228

diffusion standpoint, the training process naturally 229

aligns with MLM objective, as discussed in Sec- 230

tion 3.1 and Section 3.2. Specifically, our D-cMRF 231

guarantees energy reduction during generation, en- 232

suring stable sequence reconstruction. 233

Step 1: Expected Energy at Diffusion Step t At 234

diffusion step t, the expected sequence energy is 235

defined as follows: 236

EX(t)∼q

[
Eθ(X

(t);Y )
]
=

∑
X(t)

q(X(t))Eθ(X
(t);Y ) (6) 237

where q(·) denotes the probability distribution 238

from which X(t) is sampled. Since high-entropy 239

tokens are selected for replacement, the total se- 240

quence energy can be decomposed as follows: 241

E
[
Eθ(X

(t);Y )
]
=

∑
i∈Mt

E
[
Eθ(x

(t)
i ;X(t−1), Y )

]
+

∑
i/∈Mt

Eθ

(
x
(t−1)
i ;Y

)
.

(7) 242

Step 2: Energy Reduction via Denoising Since 243

masked tokens are replaced with lower-energy can- 244

didates at each step, we expect a general trend of 245

energy reduction. However, due to the stochastic 246

nature of sampling, local fluctuations in energy may 247
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Figure 2: Overview of the training (forward) and inference (backward) processes in Diffusion-EAGS. Training
(left): Entropy-based Noise Scheduling (ENS) determines which tokens in the masked sequence, denoted by [M ],
should be denoised at each timestep based on the position entropy H(xi). These tokens are then generated using the
diffusion model with parameters θ, and the loss is computed using a cross-entropy (C.E.) diffusion loss. Inference
(right): Starting from a fully masked sequence conditioned on Y , Entropy-Adaptive Gibbs Sampling (EAGS)
iteratively refines the sequence by focusing on high-entropy tokens, denoted as Mt, based on a threshold τt, yielding
stable and coherent text generation.

occur. Over multiple diffusion steps, the entropy-248

based selection mechanism ensures a net decrease249

in sequence energy.250

E
[
Eθ(x

(t)
i ;X(t−1), Y )

]
≤ Eθ(x

(t)
i ;X(t), Y ) (8)251

Applying this property across all updated tokens252

i ∈ Mt, we obtain:253

Eθ(X
(t−1);Y ) ≤ Eθ(X

(t);Y ) (9)254

Step 3: Convergence to Low-Energy States255

Summing over all diffusion steps T :256

Eθ(X
(0);Y ) ≤ Eθ(X

(T );Y ) (10)257

where X(T ) is the fully masked sequence with258

maximum entropy, and X(0) is the final recon-259

structed sequence. Since the token space is discrete260

and energy is derived from a sum of bounded logits,261

Eθ(X;Y ) is lower-bounded by a finite minimum262

energy state. While stochastic sampling may in-263

troduce fluctuations, the diffusion process ensures264

progressive energy minimization, leading to an265

approximate low-energy state.266

3.3.1 D-cMRF Guarantees267

The above proof establishes that our method satis-268

fies the following properties:269

• Progressive Energy Reduction: The energy270

function exhibits an overall decrease, lead-271

ing to more stable sequence generation. This272

trend is supported by empirical results in Ap-273

pendix D.274

• Stable Convergence: Since the energy func- 275

tion is lower-bounded and sequence length is 276

finite, the generation process is expected to 277

reach a structured, low-entropy state. 278

These properties explain the improved performance 279

of Diffusion-EAGS compared to traditional diffu- 280

sion models, as shown in §Section 6. Notably, 281

the ablation study in Table 5 demonstrates that re- 282

moving EAGS leads to a significant drop in per- 283

formance, highlighting its importance in guiding 284

stable generation. 285

4 Diffusion-EAGS 286

Our approach, Diffusion-EAGS, leverages two 287

key components—Entropy-Adaptive Gibbs Sam- 288

pling (EAGS) and Entropy-based Noise Schedul- 289

ing (ENS)—rooted in the theory of Section 3. As 290

shown in Figure 2, during training, ENS selectively 291

masks tokens based on their certainty, while dur- 292

ing generation, EAGS iteratively refines a fully 293

masked sequence by updating high-uncertainty to- 294

kens. This stepwise refinement yields balanced 295

improvements in text quality and diversity. 296

4.1 Inference Process: Entropy-Adaptive 297

Gibbs Sampling 298

As discussed in Section 3.2, MLM can be inter- 299

preted as cMRF, which is used as pθ in the sam- 300

pling process of DDLM with Mt. In particular, 301

Mt is not only associated with energy updates but 302

also serves as a solution to the MLM’s difficulty in 303

selecting the next tokens to denoise, as shown in 304
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Appendix C. Henceforth, we designate this strat-305

egy as Entropy-Adaptive Gibbs Sampling (EAGS).306

In EAGS, Mt is constructed by ranking tokens307

in descending order of entropy, thereby prioritiz-308

ing the least informative parts of the sequence.309

EAGS facilitates the creation of more structured se-310

quences by leveraging the syntactic context that has311

already been established. The process of determin-312

ing the denoising schedule is shown in Appendix C.313

Our approach for T step-generation process can314

be formalized as follows:315

1. Entropy Calculation: Compute the entropy316

Hi(X
(t)) for each variable xi.317

2. Variable Selection: Obtain Mt for sampling318

3. Sampling: Sample xi∗ from its conditional319

distribution pθ(xi∗ | X(t), Y ), where i∗ ∈320

Mt.321

4. Update: Update the conditional distributions322

and entropy for the affected variables.323

5. Iteration: Repeat Steps 1 through 4 until t =324

T , where T is the total number of timestep.325

The detailed algorithm of EAGS is in Appendix326

Algorithm 1.327

4.2 Training Process: Entropy-based Noise328

Scheduling329

To improve the effectiveness of EAGS during gen-330

eration, we simulate a similar process during train-331

ing. Therefore, we schedule the forward process of332

diffusion training based on the entropy Hi(X
(t))333

of position xi with the input sequence [Y |X(t)] at334

sampled timestep t. During training, Hi(X
(t)) is335

calculated by pre-trained MLM. Assuming the dif-336

fusion process progresses over T steps, we mask337

the L/T number of positions with the lowest en-338

tropy from the set {x1, . . . , xL} at each step t,339

where L is the sequence length. This selection340

process is used to determine τt in Equation 5. The341

masking process at step t in position i is described342

by the denoising matrix Qti.343

Qti =


q11 0 · · · 0 q1,M
0 q22 · · · 0 q2,M
...

...
. . .

...
...

0 0 · · · qM−1,M−1 qM−1,M

0 0 · · · 0 qMM

344

Here, q1,M denotes the transition probability from345

the vocab index corresponding to token 1 to the346

[MASK] token and qmn is defined as:347

qmn =


qmm = 1 if xi /∈ MIN([H1(x1), · · · , HL(xL)],

L
T
)

qmM = 1 if xi ∈ MIN([H1(x1), · · · , HL(xL)],
L
T
)

0 otherwise
348

349Henceforth, we designate this strategy as 350

Entropy-based Noise Sampling (ENS). ENS masks 351

lower entropy tokens first, thereby learning to pro- 352

gressively generate sequences. This ensures that 353

the forward process in diffusion training closely 354

mirrors the generation process, thereby enhancing 355

the effectiveness of EAGS in language generation. 356

The detailed algorithm of ENS is in Appendix Al- 357

gorithm 2. 358

4.3 Diffusion Loss with Cross Entropy 359

Distinct from the prevailing methodologies in dif- 360

fusion models (Ho et al., 2020a; Austin et al., 361

2023), we do not employ the PLM parameterization 362

p̃θ(z̃0|zt, t), which preserves the original semantic 363

embedding spaces during the training phase as we 364

empirically find that such method restricts the di- 365

versity of generated responses. We follow the tra- 366

ditional diffusion loss (Ho et al., 2020b), changing 367

Mean Squared Error with Cross Entropy Loss. 368

5 Experiments 369

5.1 Tasks & Details 370

We conduct experiments on various conditional 371

generation datasets. Detailed explanation of the 372

conditional generation datasets are in Appendix F.1. 373

In particular, we focus on two datasets that sig- 374

nificantly differ in their level of conditional con- 375

straints: RocStories (Mostafazadeh et al., 2016), 376

which is relatively open-ended, and Paradetox (Lo- 377

gacheva et al., 2022), which imposes the strongest 378

conditional constraints. We select the conditional 379

dataset that GPT-2 faces in generating sentences 380

of appropriate length under specified conditional 381

constraints. The maximum lengths of Paradetox 382

and RocStories is set to 64, based on data statistics, 383

and other details are in Appendix F. The number of 384

steps of our model is configured to 5 with a naive 385

categorical sampling with a sample size of 20 and 386

select final 5 samples based on Perplexity score. 387

We use 1 A100 GPU with the batch size as 256. 388

5.2 Baselines 389

We employ RoBERTa-base (Liu et al., 2020) as 390

MLM with learning rate 5e-4. Next, we com- 391

pare Diffusion-EAGS with four categories of base- 392

lines of similar size to RoBERTa-base: Auto- 393

regressive Models (ARMs), Conditional Masked 394

Language Models (CMLMs), Continuous Diffu- 395

sion Language Models (CDLMs), and Discrete 396

Diffusion Language Models (DDLMs). Note that 397
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our primary goal is to investigate the architecture’s398

capabilities; any baseline approach in the direc-399

tion of scalability or bypassing the architecture’s400

limitations goes beyond our research scope.401

For ARMs (Vaswani et al., 2023), we em-402

ploy GPT-2 (Radford et al., 2019) and GPT-403

3.5-turbo with four-shot prompt. More experi-404

mental details of GPT-3.5 can be found in Ap-405

pendix J, and H. For CMLMs, we utilize CMLM-406

Mask-Predict (Ghazvininejad et al., 2019a) and407

DisCo-Easy-First (Kasai et al., 2020), which are408

transformer-based NAR models. For CDLMs,409

our baseline includes DiffuSeq (Gong et al.,410

2023a), LD4LG (Lovelace et al., 2023), and DI-411

NOISER (Ye et al., 2024). DiffuSeq and DI-412

NOISER is designed for sequence-to-sequence ap-413

plications, and LD4LG adopt BART as denois-414

ing init point. For DDLMs, we utilize Diffu-415

sionBERT (He et al., 2022), applying BERT into416

DDLMs, and SEDD (Lou et al., 2024), a power-417

ful open-ended generation DDLM. For SEDD, we418

download the pre-trained version and fine-tune it.419

5.3 Metrics420

Quality metrics In addition to our theoretically421

guided methods, we evaluate performance using422

multiple metrics. Specifically, we use Perplexity423

(PPL) based-on GPT-2 Large and GPT-2 XL as an424

automated metric, MAUVE (Pillutla et al., 2021)425

to assess style consistency between the training426

data and generated outputs, SOME (Yoshimura427

et al., 2020) to score the grammar, Mean Opinion428

Score (MOS) from human evaluations to gauge429

text quality, and LLM score such as LLM-c (Lin430

and Chen, 2023) to measure the plausibility of the431

narratives as a sub-metric. Further details on LLM432

scores and other evaluation settings are provided in433

Appendix F.3 and H.1.434

Diversity Metrics Following our quality assess-435

ment, we evaluate diversity through three different436

measures: an automatic frequency-based metric437

n-gram Vendi Score(VS n-gram) (Friedman and438

Dieng, 2023), a neural network–based semantic439

metric SimCSE Vendi Score (VS emb), and a hu-440

man evaluation score MOS. More details related to441

MOS and other scores are in Appendix F.3.442

6 Results443

In Tables 1, 2, and 3, our model consistently demon-444

strates strong text quality and diversity compared445

to various baselines across a wide range of condi-446

Model
Text Quality

Step PPL ↓ MAUVE ↑ MOS ↑
AR model
GPT-2 1 389.1 0.503 0.83
GPT-3.5 w/ 4-shot 1 104.375 0.175 1

CMLMs
CMLM w/ Mask-Predict 10 669.9 0.0234 -
DisCo w/ Easy-First 10 716.1 0.0344 -

Diffusion models
DiffusionBERT 2000 775.9 0.737 0.88
DiffuSeq 2000 ≥ 1k 0.683 -
SEDD 1024 ≥ 1k NA -
LD4LG 2000 579.9 0.556 0.91
DINOISER 20 124.8 0.255 0.91

Diffusion-EAGS 5 109.3 0.811 0.97

Table 1: Text quality of conditional generation out-
puts. We report Perplexity (PPL) for sentence fluency,
MAUVE for condition alignment, and Mean Opinion
Score (MOS) for semantic coherence. Models with PPL
exceeding 600 were excluded from human evaluation.

Model Text Quality Diversity

PPL ↓ SOME ↑ LLM-c ↑ VS(ngram) ↑ self-bleu ↓
Original Data 100.6 0.895 1

GPT-2 88.5 0.856 0.88 4.722 0.124
DiffusionBERT 318.2 0.783 0.72 4.735 0.088
SEDD 273.2 0.827 0.59 4.859 0.044
Diffusion-EAGS 67.3 0.844 0.87 4.837 0.058

Table 2: Results on the open-ended RocStories (ROC)
dataset. We report perplexity (PPL) for fluency, SOME
and LLM-c for text quality, and both VS(ngram) and
self-BLEU for diversity.

tional generation tasks. 447

Text Quality. Table 1 shows that our model 448

achieves notable improvements in perplexity (PPL) 449

and obtains high MAUVE and MOS scores, indi- 450

cating that the generated texts are both fluent and 451

coherent. Although GPT-3.5-turbo is capable of 452

generating high-quality text, the MAUVE metric 453

indicates that few-shot prompts alone are insuffi- 454

cient for accurately replicating the dataset’s inher- 455

ent characteristics. On the other hand, CMLMs, 456

DiffuSeq, and DINOISER can handle conditional 457

constraints but sometimes struggle with semantic 458

drift or high PPL. In contrast, Diffusion-EAGS 459

achieves both lower PPL and strong human evalu- 460

ation scores (MOS), suggesting that it effectively 461

balances condition satisfaction with text quality. Ta- 462

ble 2 further demonstrates our model’s capability 463

on the open-ended RocStories dataset. Even with 464

minimal constraints, Diffusion-EAGS maintains 465

competitive scores compared to GPT-2, demon- 466

strating its robustness in narrative generation. 467
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Model
Diversity

Step VS(ngram) ↑ VS(emb) ↑ MOS ↑
AR model
GPT-2 1 3.925 2.640 2.65
GPT-3.5 w/ 4-shot 1 3.098 1.915 2.2

CMLMs
CMLM w/ Mask-Predict 10 1.000 1.000 -
DisCo w/ Easy-First 10 1.000 1.000 -

Diffusion models
DiffusionBERT 2000 3.101 2.058 2
DiffuSeq 2000 2.059 1.465 -
SEDD 1024 4.746 4.063 -
LD4LG 2000 1.914 1.425 1
DINOISER 20 2.287 2.174 1

Diffusion-EAGS 5 4.417 3.311 4.6

Table 3: Diversity evaluation for generated outputs. We
report the n-gram-based Vendi Score (VS(ngram)), the
embedding-based Vendi Score (VS(emb)), and a Mean
Opinion Score (MOS) for diversity. Higher values indi-
cate greater diversity.

Diversity. Diffusion-EAGS excels at generating468

diverse outputs. As illustrated in Table 3, our model469

consistently excels in both n-gram and embedding-470

based diversity metrics (VS(ngram) and VS(emb)),471

surpassing other baselines and even larger LLMs.472

The model’s higher MOS for diversity further in-473

dicates that humans also perceive its outputs to474

be more varied and engaging. In line with these475

observations, we conduct additional analyses (Ap-476

pendix G.4) including the comparison ours with477

large LLMs, where our approach produces a wider478

range of coherent yet distinct responses. These find-479

ings underscore the effectiveness of our entropy-480

adaptive sampling strategy in avoiding repetitive481

outputs and semantic collapse, thereby delivering a482

superior quality-diversity trade-off.483

Overall, Diffusion-EAGS consistently demon-484

strates strong performance across diverse condi-485

tional generation tasks, combining low perplexity486

and high human evaluation scores with the ability487

to generate richly varied text.488

7 Analysis489

7.1 Quality-Diversity Tradeoff490

Balancing quality and diversity is a fundamental491

challenge in text generation. AR models typically492

achieve high fluency but suffer from low diversity,493

while non-autoregressive models, such as CMLMs494

and diffusion models, often struggle to generate495

coherent outputs. Our proposed Diffusion-EAGS496

effectively balances these factors by leveraging a497

structured diffusion process.498

Figure 3 presents the quality-diversity tradeoff499

among various models, where quality is measured500

Figure 3: Quality–diversity tradeoff across various mod-
els. The x-axis (1/PPL) reflects generation quality,
while the y-axis (VSemb) indicates diversity. Green
points represent AR models, yellow points represent
diffusion models, and blue points represent CMLMs.
Our Diffusion-EAGS variants, marked by purple stars,
achieve the best overall tradeoff.

using perplexity (PPL) on the x-axis (inverted 501

as 1/PPL for better visualization) and diversity 502

is quantified using VS_emb on the y-axis. Our 503

model (Ours_Deon, Ours_Para, marked with pur- 504

ple stars) achieves the best tradeoff, outperform- 505

ing prior approaches in both high-quality gener- 506

ation and diversity. Compared to Diffuseq, Dif- 507

fusionBERT and CMLMs, our method achieves 508

significantly better diversity without compromis- 509

ing generation fluency. This improvement stems 510

from our Entropy-Adaptive Gibbs Sampling 511

(EAGS), which ensures controlled token selec- 512

tion, and Entropy-based Noise Scheduling (ENS), 513

which stabilizes the generation process. The results 514

highlight that integrating MLMs into the diffusion 515

framework enables high-quality, diverse, and con- 516

trollable text generation. 517

7.2 Keyword Based Generation 518

Our model operating within discrete space enables 519

us to manipulate the output sequences using ex- 520

plicit instructions. To further explore this capabil- 521

ity, we conduct the generation of sequences based 522

on keywords positioned in the middle and at the 523

end of masked sequences, which is challenging for 524

AR models (Keskar et al., 2019). They inherently 525

struggle with controllability due to their inability 526

to revise past steps based on future ones—an induc- 527

tive bias of AR models. Initially, we provide the 528

same contextual input while varying the keywords. 529

In the masked states, we randomly select positions, 530

replacing them with the specified keywords. The 531

results in Table 4 demonstrate that the generated 532

sequences seamlessly integrate the keywords with 533

context-specific semantics. 534
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Context
Jake was playing with his toys. He accidentally broke his favorite one.
He cried a lot over it. His parents decided to replace it for him.

Keyword
not stop Jake just could not stop crying.
Jake feel It made Jake feel So much better.
would enjoy Jake said he would enjoy the new toy

Context
Neil was in Sofia, Bulgaria. He was enjoying a trip backpacking through Europe.
... He thought the food and culture in Sofia were the best.

Keyword Bulgaria! Things were looking great in Bulgaria!

Context
Karen wanted to go on a trip to France. She started doing research on the trip.
She decided to book a week long trip. She left the next day for her tripsx.

Keyword her trip She spent almost a week there during her trip.

Table 4: Examples of keyword-based generation. Each row shows a Context and a specified Keyword, which is
inserted into a masked position. The resulting outputs demonstrate how our model seamlessly integrates keywords
into coherent narratives.

Dataset PPL MAUVE SOME VS(ngram) VS(emb)

Diffusion-EAGS
Deont 55.1 0.412 0.835 4.898 4.009
Roc 67.3 0.87 0.844 4.837 3.999

w/o EAGS
Deont 667.9 0.022 0.617 4.767 3.928
Roc 1084.9 0.035 0.613 4.874 3.957

w/o Gibbs Sampling
Deont 1426.7 0.011 0.584 2.378 1.923
Roc 1293.1 0.010 0.534 1.531 1.338

w/o Pre-trained MLM
Deont ≥2K 0.005 0.645 4.758 3.402
Roc ≥2K 0.004 0.604 4.315 2.994

Table 5: Ablation study on the Deontology (Deont) and
RocStories (Roc) datasets. “w/o EAGS” uses naive
Gibbs sampling (no entropy estimation), “w/o Gibbs
Sampling” removes diffusion process, and “w/o Pre-
trained MLM” omits the pre-trained MLM entirely.

7.3 Ablation Study535

To explore the effectiveness of our model’s com-536

ponents, we conduct ablation studies focusing on537

three key elements: EAGS, Gibbs Sampling, and538

pre-trained MLM in Table 5.539

The result of w/o EAGS shows a severe decline540

in text quality, producing degenerated results sim-541

ilar to those of traditional CMLMs. Such phe-542

nomenon suggests that the naive application of543

MLM within the diffusion process fails to fully544

harness the capabilities of it.545

Next, removing the use of the diffusion genera-546

tion process (w/o Gibbs Sampling) leads to a dras-547

tic reduction in overall performance, with increased548

PPL and reduced diversity scores. These results im-549

ply that relying solely on MLM for text generation550

introduces considerable limitations.551

Without the pre-trained MLM, outputs become552

highly degenerated, underscoring the need for pre-553

cise entropy estimation.554

In the process of selecting our highest-entropy-555

based scheduling in Diffusion-EAGS, we consid-556

ered three alternatives: lowest entropy selection,557

random position selection following ENS training,558

and highest entropy selection. Experiment on the559

paradetox dataset yielded PPL scores of 1193, 183, 560

and 112, respectively. A subsequent heuristic eval- 561

uation confirms that the quality aligns with these 562

PPL values. Consequently, we adopt the highest- 563

entropy-based selection strategy. The process of 564

schedule selection is detailed in Appendix C. 565

With EAGS, our model shows a substantial per- 566

formance improvement. To verify the effectiveness 567

of our model in guiding stable energy reduction, 568

we examine the entropy flow during the generation 569

process in Appendix D. Our findings demonstrate 570

that EAGS contributes significantly to a gradual 571

decrease in entropy, enabling the generation of sen- 572

tences in a stable manner. 573

8 Conclusions & Discussions 574

In this work, we introduce Diffusion-EAGS, an ap- 575

proach that integrates MLMs with diffusion models 576

for conditional generation, yielding improved text 577

quality, enhanced diversity, broad applicability, and 578

precise token-level control. 579

Investigation of Other PLMs We conducted a 580

toy experiment using T5 on the Paradetox dataset; 581

however, the results showed no significant improve- 582

ment over GPT-2 fine-tuning (see Appendix G.1, 583

Table 15). We hypothesize that T5’s generation 584

is heavily influenced by its initial decoder to- 585

kens (Wang and Zhou, 2024), which leads to lower 586

diversity. This suggests that developing a theoreti- 587

cal framework to integrate encoder-decoder mod- 588

els with diffusion processes may be a promising 589

direction for future research in conditional gener- 590

ation. By devising methodologies that align the 591

training objectives of other PLMs with diffusion 592

loss—similar to our approach—, we can further 593

accelerate progress in diffusion-based NLP. 594
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Limitations595

While Diffusion-EAGS demonstrates significant596

improvements in conditional generation tasks,597

there are several limitations. First, as our method598

is currently focused on text generation tasks, its599

applicability to text classification tasks, such as600

Named Entity Recognition and Part-of-Speech Tag-601

ging, remains unexplored. Future research could602

explore extending this method to other NLP tasks.603

Second, although our current efforts concentrate604

on developing and validating our framework using605

MLM, the potential integration of ARMs remains606

unexplored. With a proper methodology that aligns607

AR pre-training and diffusion training objectives,608

AR models would be another good initialization.609

Third, although the bias embedded in pre-trained610

models can be directly propagated, recent studies611

show that data-balancing strategies can effectively612

address this issue. Consequently, it is essential613

to account for these factors when deploying such614

models.615
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A Necessity of Energy Update in cMRF989

Generation990

We observe a significant increase in log-potential991

values for sequences when guided by the RocSto-992

ries conditions, as shown in Figure 4. Additional993

experiments supporting this observation are de-994

tailed in Appendix B.

Figure 4: When a condition is provided, the distribution
of potential values for the samples is shifted on a loga-
rithmic scale.

995
This observation implies that conditional se-996

quences differ from different conditional sequences997

in terms of randomness, making it crucial to update998

the energy function when the conditioning changes.999

For instance, MASK MASK author and MASK am1000

author belong to different random fields, as also1001

suggested by Goyal et al. (2022).1002

B Measuring Potential Function in MLM1003

In this section, we provide additional experimental1004

details and results to support the observation that1005

open-ended Masked Language Models (MLMs)1006

exhibit increased potentials for the same sequence1007

under different dataset constraints.1008

B.1 Experimental Setup1009

• Model We use the pre-trained BERT large1010

model (bert-large-cased) as the base1011

model for all experiments. Additionally, we1012

incorporate RocStories-conditioned guidance1013

with the pre-trained model and use a fine-1014

tuned BERT model on the RocStories dataset1015

to evaluate the impact of dataset-specific con-1016

straints.1017

• Tokenization Tokenization is performed us-1018

ing the BERT tokenizer with special tokens1019

([CLS] and [SEP]).1020

• Potential Calculation The the log-potentials1021

are obtained for each token using masked to- 1022

ken logits. 1023

• Datasets 1024

– RocStories: Structured narratives from 1025

the RocStories dataset. 1026

B.2 Results of Experiment and Implications 1027

for Conditional Generation 1028

Using the BERT-large-cased model, the average 1029

log potential value for the standard MLM was 1030

156.6150, while incorporating RocStories guidance 1031

increased this value to 175.5332, highlighting the 1032

impact of dataset-specific constraints. Additionally, 1033

fine-tuning the same model on RocStories resulted 1034

in an average potential function value of 3.7551 1035

(on an exponential scale), demonstrating substan- 1036

tial variation introduced by conditional generation 1037

settings. 1038

The results demonstrate the significant influence 1039

of dataset structure on the potential function in 1040

MLMs. Specifically, structured datasets like Roc- 1041

Stories enforce stronger narrative constraints, lead- 1042

ing to higher potentials and greater coherence in 1043

sequence generation. 1044

C The Candidates of Denoising Schedules 1045

We arrived at our proposed approach by going 1046

through several steps. The core of DDLM lies 1047

in how to define the denoising matrix. 1048

1. Initial BERT Refinement Without a Noise Ma- 1049

trix We first explored a BERT-refinement method 1050

without a noise matrix, applying the same proce- 1051

dure at every step. Unsurprisingly, we found that 1052

the model failed to denoise the [MASK] tokens, 1053

resulting in sequences such as: 1054

[MASK] [MASK] educated ... educated [MASK] [MASK] 1055

2. BERT Denoising Matrix (0.15 Masking Ratio) 1056

Next, we implemented the denoising matrix using 1057

a BERT Denoising Matrix (0.15 Masking Ratio, 1058

1− 1
T ), which led to a strong bias toward a single 1059

repeated token: 1060

wwii wwii wwii wwii wwii wwii wwii wwii 1061

3. Time-Reversal Denoising (Tweedie-Leaping) 1062

Inspired by prior literature (Lou et al., 2024), we 1063

then examined a Time-Reversal Denoising Sched- 1064

ule Tweedie τ -leaping based on score entropy. 1065

However, in the paradetox SEDD experiments, we 1066

observed NA results under strict conditional gener- 1067

ation settings. 1068
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4. Word-Frequency-Based Denoising Schedule1069

Subsequently, we applied a word-frequency-based1070

denoising schedule (He et al., 2022), but in the pa-1071

radetox DiffusionBERT experiments, this approach1072

encountered difficulties in constructing coherent1073

sentences.1074

5. Vocab-Wise Entropy Estimation Moving1075

on, instead of relying on word frequency, we pro-1076

pose a vocab-wise entropy estimation technique.1077

In particular, we construct the denoising matrix1078

as shown in 2, leveraging entropy information to1079

decide whether each word should be denoised or1080

preserved. This approach assumes that all positions,1081

including originally masked ones, can potentially1082

be denoised. Although this approach did show1083

some improvement, for instance producing:1084

wwii reassure wwii bony wwii wwii wwii wwii1085

Upon further analysis, we identified that the1086

MLM was not effectively determining which posi-1087

tions to denoise, and well-generated tokens some-1088

times are converted [MASK], and then convert all1089

[MASK] tokens into certain words in the final step,1090

leading to token replication.1091

6. Entropy-Based Estimation and Denoising1092

Hence, we introduced an entropy-based estima-1093

tion and denoising strategy. In this approach, we1094

assume that once a mask is denoised, it remains1095

fixed. Specifically, we select mask positions based1096

on an entropy schedule, sample tokens for those po-1097

sitions, and once a token is sampled (i.e., denoised),1098

we preserve it across subsequent diffusion steps.1099

7. Entropy Selection Criteria We conducted1100

three main experiments—uniform, reverse-order-1101

EAGS, and EAGS—yielding perplexities of1102

182.976 with some portion of [MASK], 1193.2291103

with degenerated results, and 112.190 for paradetox1104

dataset, respectively. These results indicate that1105

noising from the most determinative token posi-1106

tions (mask with lowest entropy) is highly effec-1107

tive. Therefore, we adopt the Selection Criteria as1108

EAGS.1109

D Entropy Flow1110

In Figure 5, we illustrate the tendency of the se-1111

quential sum of entropy for various discrete gener-1112

ation processes. The changes of entropy during the1113

generation process in Diffusion-EAGS, represented1114

by the yellow line, show that our model effectively1115

follows a gradual decrease in entropy, mirroring1116

Figure 5: Entropy behavior tracking in generation/train-
ing process.

the inverse trend of the training process. This grad- 1117

ual change in entropy facilitates successful DDLM 1118

training, which results in superior text quality per- 1119

formance compared to other diffusion models, as 1120

demonstrated in Tables 2, 8, and 9. 1121

In contrast, when entropy tracking is omitted 1122

and only Gibbs sampling is employed, convergence 1123

does not occur within a short period (20 steps). The 1124

randomness of the sampling process leads to insta- 1125

bility, resulting in lower average text quality, as 1126

shown in Table 5. Lastly, when the generation 1127

process relies on the model without sampling, the 1128

entropy of the generation process is almost deter- 1129

mined before 2.5 steps. This entropy behavior is 1130

similar to that observed in DiffusionBERT. 1131

Algorithm 1: EAGS Algorithm
EAGS Process:
Input: Sequence Length L, Total Timestep T ,

Trained Model M , Mask Sequence Generator GM ,
and Context Y

for t = T to 0 do
if t = T then

xT ← GM (L, Y ) // Initialize a sequence of L
else

fθ ← pθ(x
t, Y ) // Compute logits at timestep t

l∗ ← argmax
l

H(xt
l | Y, fθ)

// Obtain nth largest entropy tokens (Mt)

xt−1 ← pθ(x
t, l∗, Y )

// Sample from the previous timestep

end
end

E EAGS & ENS algorithms 1132

Detailed algorithms of EAGS and ENS are in Al- 1133

gorithm 1 and 2. 1134

F Experiment 1135

F.1 Fine-Grained Conditional Generation 1136

In conditional generation tasks, the level of con- 1137

ditional constraint imposed by the dataset plays a 1138
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Algorithm 2: ENS Algorithm
ENS Process:
Input: Context Y , Total Timestep T , and Dataset D
for Batch Step = 0 to N do

x ∼ D // Sample data from D

t ∼ Randint(0, T ) // Sample random timestep
f ← PLM(x | Y ) // Compute logits using the PLM
H ← H(x | Y, f) // Calculate Entropy

xt ← Forward(x0,H, t) // Forward at t

xt+1 ← Forward(x0,H, t+ 1) // Forward at t + 1

Ls = −
∑

i q(x
t
i | xt+1) log pθ(x

t
i | xt+1)

// Cross entropy loss calculation

end

critical role in shaping the generation process. As1139

shown in Table 6, conditional constraints are di-1140

verse across datasets. In our task, we categorize1141

these constraints into three levels: (1) the provision1142

of context alone, requiring the continuity of the1143

prefix; (2) the provision of specific content to be1144

included in the target sequence, necessitating the1145

inclusion of certain keywords; and (3) the provi-1146

sion of semantic content formatting, such as trans-1147

forming toxic sentences into safer alternatives or1148

converting text from the source language to a target1149

language. In our study, we aim to develop a diffu-1150

sion framework capable of being applied across a1151

wide range of conditional generation tasks.1152

F.2 Dataset Explanations1153

Open-ended Generation We employ the Roc-1154

Stories dataset (Mostafazadeh et al., 2016) for1155

open ended generation with narrative understand-1156

ing tasks. This dataset contains short commonsense1157

stories that require models to generate coherent1158

and contextually relevant continuations. Each story1159

comprises five sentences, where the task is to pre-1160

dict the fifth sentence given the first four. This1161

setup evaluates the model’s ability to understand1162

and generate narratives based on sequential con-1163

text.1164

Deontology The objective of Deontology1165

(Hendrycks et al., 2023) is to to evaluate the ca-1166

pability of models to make ethical judgments from1167

a deontological perspective. The dataset contains1168

scenarios focusing on interpersonal dynamics and1169

everyday occurrences.1170

Paraphrase The objective of the Quora Ques-1171

tion Pairs (QQP) (Wang et al., 2017) is to deter-1172

mine whether two questions are paraphrases of1173

each other. We process the QQP dataset by treating1174

one question as a paraphrase of another, a method1175

commonly employed to assess the effectiveness of1176

diffusion models. 1177

QG The objective of Question Generation (QG) 1178

is to generate valid and fluent questions based on 1179

a given passage and a specified answer. We em- 1180

ploy the Quasar-T dataset, introduced by Dhingra 1181

et al. (2017) in 2017, which comprises a substantial 1182

number of document-question pairs. These pairs 1183

necessitate the transformation of similar sentences 1184

into a single abstract question. 1185

DialogueSum In former experiments, it is hard 1186

to measure the performance with reference-based 1187

metrics as the limitation of traditional EM prob- 1188

lems where conditional generation’s output space is 1189

wide. Therefore, to test our model’s capability, we 1190

experiment on dialogue summarization task (Chen 1191

et al., 2021) which makes an emphasis on contain- 1192

ing some keywords or necessary information in 1193

the generated sequences. We use the experimental 1194

dataset and evaluation metric proposed in Diffu- 1195

sionCG (Xiang et al., 2024) with same experimen- 1196

tal setting as former experiments. 1197

Machine Translation Labeled datasets used in 1198

conditional generation tasks are typically limited in 1199

size and sometimes multilingual. To further assess 1200

our model’s performance in conditional generation, 1201

particularly in terms of language extension and re- 1202

source scarcity, we conduct additional experiments 1203

on a translation task. We utilize the 18k en↔de 1204

human-curated dataset by Xu et al. (2024a,b). 1205

Paradetox The objective of the Paradetox (Lo- 1206

gacheva et al., 2022) is to delete the profanities in 1207

source sentence. It comprises of toxic and neutral 1208

utterances, curated from the Jigsaw, Reddit, and 1209

Twitter datasets. 1210

F.3 Experimental Details 1211

We employ roberta-base as MLM with learning 1212

rate 5e-4. The maximum lengths for QG, QQP, and 1213

Paradetox is set to 64, while for Deontology and 1214

DialogSum set to 48 and 292, respectively, based 1215

on data statistics. We test 20 conditions with 5 1216

outputs in total 100, which is not used for training. 1217

The number of steps is configured to 5. We then 1218

perform a naive categorical sampling with a sample 1219

size of 20 and select final 5 samples based on PPL. 1220

We use 1 A100 GPU with the batch size as 256. 1221

Experimental details of LLMs are in Appendix J, 1222

machine translation in Appendix H. 1223

Quality metrics To measure the quality of the 1224

generated texts, we use Perplexity based-on GPT-2 1225

Large and GPT-2 XL, SOME (Yoshimura et al., 1226
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Type
Dataset

RocStories Deontology Question
Generation QQP DialogSum ALMA ParaDetox

Open-ended Generation ✓ △ ✓ × × × ×
Conditional Generation ✓ ✓ ✓ ✓ ✓ ✓ ✓

– Context Provided ? ✓ ✓ ✓ ✓ ✓ ✓ ✓
– Content Provided ? × △ ✓ ✓ ✓ ✓ ✓
– Format Provided ? - × × × △ ✓ ✓

Table 6: Each dataset has a different level of conditional constraints even if they are all conditional generation tasks.
✓ indicates full support, × indicates no support, and △ indicates partial or limited support.

Quasar-T QQP ParaDetox Deontology RocStories

input output input output input output input output input output

Max 63 244 104 98 35 35 24 31 76 57
Mean 14.574 31.157 13.947 13.956 15.135 13.035 13.039 12.548 42.189 13.307

Table 7: Dataset Statistics

2020), the grammar metric based on corpus, LLM-1227

c (Lin and Chen, 2023) to measure the plausibility1228

of the narratives, LLM-t (Koh et al., 2024a) to mea-1229

sure toxicity, and MAUVE (Pillutla et al., 2021),1230

measuring a reflectiveness of training dataset char-1231

acteristics of generate outputs. MAUVE score of1232

1 indicates that the output perfectly matches the1233

training dataset as a neural database. For Mean1234

Opinion Score (MOS), we get 5 outputs from each1235

condition. Subsequently, hired four integrated ph.d1236

course work annotators in the university NLP re-1237

search lab evaluate the generated text based on two1238

criteria: (1) semantic reflectiveness of the condi-1239

tion, indicating how accurately the condition is1240

represented in the text, and (2) sentence complete-1241

ness, assessing overall grammatical and semantic1242

coherence. Each criterion was rated on a scale from1243

0 to 1. Subsequently, these scores are normalized1244

and averaged to obtain a final score ranging from1245

0 to 1. In our evaluation, Fleiss’ kappa (Fleiss,1246

1971) is exceeded 0.7 as assessing sentence quality1247

is both intuitive and relatively non-controversial1248

among the annotators.1249

Diversity Metrics Traditional diversity metrics1250

Self-BLEU (Zhu et al., 2018) and distinct-n (Li1251

et al., 2015) are employed to evaluate the gen-1252

erated texts. We also adopt Vendi Score (VS)-1253

SimCSE (Friedman and Dieng, 2023), an inter-1254

pretable diversity metric, which quantifies the ef-1255

fective number of unique samples in a given set.1256

Both the n-gram and embedding variations are uti-1257

lized, where embedding VS is semantic diversity.1258

For the diversity MOS evaluation, we adopt the1259

same methodology used for the quality MOS but1260

apply two distinct criteria: (1) the condition’s se-1261

mantic reflectiveness, and (2) sentence diversity,1262

capturing both semantic and structural variety be-1263

yond mere word deletion or rearrangement. Ideal1264

score of diversity MOS is 5 which means different 1265

five sequences for one condition, and lowest score 1266

is 1 which means all identical sequences. 1267

G Detailed analysis of Results 1268

G.1 Fine-Grained Comparison 1269

As shown in Table 2, 8, 9, our model consistently 1270

exhibits exceptional performance in terms of text 1271

quality while simultaneously maintaining diversity 1272

when compared to baseline models. The standard 1273

deviation of PPL in Paradetox Experiment is 61 for 1274

our model. All other PPL’s standard deviation are 1275

similar to that of Paradetox. 1276

In Table 8 Paradetox, our model demonstrates 1277

superior performance across all evaluated metrics. 1278

Such phenomenon represents that our model based 1279

on MLM shows robustness on diverse perturbations 1280

of daily dialogues. When PPL exceeds 600, the 1281

model is considered to have failed in generating 1282

natural sequences, and is thus represented in gray 1283

color. Specifically, the text quality produced by the 1284

CMLM, which is standard BERT-generation, and 1285

SEDD, which is powerful model in open-ended 1286

generation, is found to be low. 1287

Consequently, these models were excluded from 1288

subsequent experiments. In Deontology, our model 1289

exceeds the baseline models’ PPL and MAUVE 1290

scores, whereas SOME score represent the suffi- 1291

cient quality of text with the highest diversity score. 1292

As illustrated in Table 9, Diffusion-EAGS gener- 1293

ates the responses with the highest PPL score for 1294

QG, and highest MAUVE and PPL score for QQP. 1295

While we adhere to the standard metrics com- 1296

monly used in diffusion research and integrate 1297

as many additional metrics as possible, we also 1298

comprehensively explore our model’s capabilities 1299

across multiple dimensions. As the outputs of ear- 1300

lier generation tasks are too broad to be effectively 1301

evaluated using reference-based metrics, we pro- 1302

vide generated examples in Appendix I and mea- 1303

sure the preference of these outputs using a LLM- 1304

based metric in Appendix G.2. Additionally, to 1305
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ParaDetox
Text Quality Diversity

Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 389.1 0.503 0.717 3.925 2.640 0.429 0.312 0.748
GPT-3.5 w/ 4-shot 1 104.375 0.175 0.888 3.098 1.915 0.652 0.390 0.835
GPT-4 w/ 4-shot 1 78.979 0.125 0.879 3.214 1.906 0.592 0.412 0.841
CMLM w/ Mask-Predict 10 669.9 0.0234 0.588 1.000 1.000 1.000 0.451 0.633
DisCo w/ Easy-First 10 716.1 0.0344 0.576 1.000 1.000 1.000 0.438 0.583
DiffusionBert 2000 775.9 0.737 0.716 3.101 2.058 0.599 0.424 0.826
DiffuSeq 2000 ≥ 1k 0.683 0.703 2.059 1.465 0.841 0.410 0.820
LD4LG 2000 579.9 0.556 0.762 1.914 1.425 0.845 0.419 0.829
DINOISER 20 124.8 0.255 0.767 2.287 2.174 0.981 0.211 0.486
SEDD 1024 ≥ 1k NA 0.664 4.746 4.063 0.119 0.451 0.846
Diffusion-EAGS 5 109.3 0.811 0.760 4.417 3.311 0.256 0.407 0.810

Deontology
Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑

GPT-2 1 92.0 0.131 0.860 3.665 3.126 0.425 0.474 0.874
DiffuSeq 2000 352.8 0.005 0.703 2.273 1.915 0.753 0.267 0.745
DINOISER 20 131.3 0.008 0.740 2.287 2.174 0.824 0.309 0.713
DiffusionBert 2000 295.5 0.306 0.787 4.258 3.458 0.229 0.445 0.849
Diffusion-EAGS 5 55.1 0.412 0.835 4.898 4.009 0.056 0.418 0.806

Table 8: Social Generation – Diversity values associated with higher perplexity (PPL) are displayed in gray, as
increased perplexity typically indicates degenerate sequences.

QQP
Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 66.270 0.112 0.754 3.886 2.566 0.423 0.344 0.787
DiffuSeq 2000 124.247 0.00674 0.709 1.927 1.242 0.813 0.226 0.543
DINOISER 20 79.742 0.0042 0.821 1.421 1.126 0.935 0.264 0.542
DiffusionBert 2000 500.959 0.0709 0.618 4.489 2.836 0.196 0.321 0.761

Diffusion-EAGS 5 48.106 0.683 0.824 4.006 2.390 0.338 0.421 0.832
QG

Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 124.8 0.141 0.759 4.564 3.130 0.176 0.210 0.629
DiffuSeq 20 395.0 0.149 0.730 1.555 1.274 0.901 0.170 0.564
DINOISER 2000 155.9 0.159 0.776 1.396 1.121 0.944 0.166 0.553
DiffusionBert 2000 513.6 0.150 0.712 3.040 2.209 0.566 0.392 0.759

Diffusion-EAGS 5 80.7 0.121 0.782 4.646 3.538 0.152 0.403 0.798

Table 9: QG & QQP Generation

accommodate a scenario where reference-based1306

evaluation is applicable, we have included a more1307

extensive summarization task in Appendix G.2 and1308

translation task in Appendix G.3. These results con-1309

firm that our method consistently produces outputs1310

that adhere to the specified conditions.1311

Diffusion-EAGS demonstrates the highest1312

MAUVE score of 0.733 in Table 8-ParaDetox, and1313

high level of text quality surpassing that of GPT-21314

in Table 9 in text quality. ParaDetox is colloquial1315

dataset including slang, numerous abbreviations,1316

and various perturbations, so our model demon-1317

strate robustness to such perturbations with 69.51318

PPL. As for diversity, our model consistently out-1319

performs GPT models in VS(ngram) and VS(emb)1320

in Table 2, 8, and 9.1321

Notably, CDLMs demonstrate a noticeable defi-1322

ciency in diversity. In contrast, our model excels1323

at producing significantly more diverse sequences.1324

Furthermore, our models require only a few steps,1325

while resulting in higher quality and diversity. 1326

G.2 Quality Recheck – LLM score & 1327

Dialogue Summarization 1328

Paradetox w/ LLM-t on application models 1329

Since our research primarily aims to enhance the 1330

model’s inherent capabilities, we set up baselines 1331

that revolve around (or are closely related to) noise 1332

scheduling. Nevertheless, some studies employ a 1333

hybrid framework integrating LLMs and diffusion 1334

models (Lin et al., 2023; Xiang et al., 2024); hence, 1335

we conduct additional experiments to investigate 1336

this scenario. In addition, to evaluate the quality of 1337

the PARADETOX output and ours diffusion-EAGS 1338

still outperforms GENIE (Lin et al., 2023) in Ta- 1339

ble 11. We also use the LLM-t score (Koh et al., 1340

2024b) to measure whether models successfully 1341

detoxify the source condition, showing the qual- 1342

ity of generated outputs from ours as shown in 1343

Table 12. 1344
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Model ROUGE-1 ROUGE-2 MAUVE Ngram Emb Self-BLEU Distinct-1 Distinct-2

Ours 0.409 0.174 0.536 4.114 2.591 0.252 0.253 0.632
SEDD 0.179 0.032 0.999 4.216 2.576 0.211 0.200 0.609
DINOISER 0.209 0.031 0.337 1.247 1.227 0.926 0.256 0.633

Table 10: DialogueSum Experiment

Model PPL MAUVE vs(ngram) VS(emb) sef-bleu distinct-1 distinct-2

GENIE 134.1 0.296 2.527 1.800 0.702 0.454 0.825

Table 11: Quantitative results for the GENIE model.

LLM-t
GPT-2 0.02
GPT-3.5 0.074
GPT-4 0.18
DiffuSeq 0.03
Diffusion-Bert 0.09
DINOISER 0.1
SEDD-small NA
Diffusion-EAGS 0.01

Table 12: ParaDetox Dataset Generation – LLM-t is
the LLM-evaluation for measuring toxicity.

QG - LLM preference For Question Generation1345

(QG), we employ the widely adopted GPT-as-a-1346

Judge framework (Zheng et al., 2023) to evaluate1347

the quality of generations produced by our model1348

and the baselines on the QG dataset. We adopt a1349

pairwise evaluation setting, following the system1350

and input prompts specified in Zheng et al. (2023)1351

for the pairwise comparison. The factors specified1352

to be evaluated are 1) coherency 2) grammatical1353

correctness 3) semantic soundness 4) diversity and1354

5) being a more reasonable question to the input1355

(condition) text. We employ the gpt-4 model. The1356

result is as follows:1357

Note that since within the prompt, the base-1358

line model’s generations are specified prior to our1359

model’s generation, there is a significant position1360

bias working against our favor, as noted in Zheng1361

et al. (2023). The results above indicate that despite1362

such bias, our model’s generations are much more1363

favored over the baselines’ generations.1364

Dialoguesum Experiment Our model outper-1365

forms existing baselines in ROUGE, a reference-1366

based metric as shown in Table 10. These findings1367

indicate that, according to the automatic scores, our1368

model sufficiently captures the source condition.1369

Human Evaluation Below, we report the Mean1370

Opinion Score (MOS) averages and standard devi-1371

ations (std) in the following order: DiffusionBERT,1372

Models Prefer Baseline Prefer Ours Tie

diffuseq vs. ours 20% 65% 15%
diffusionBERT vs. ours 20% 65% 15%
dinoiser vs. ours 0% 90% 10%
GPT-2 vs. ours 25% 65% 10%

Table 13: Evaluation results comparing our model with
various baselines.

LD4LG, GPT-2, Dinoiser, and our method. First, 1373

the average scores of semantic reflection are 0.98, 1374

0.90, 0.94, 0.98, and 0.97, respectively, with stan- 1375

dard deviations of 0.14, 0.30, 0.24, 0.14, and 0.16. 1376

Second, the average scores of sentence complete- 1377

ness are 0.78, 0.92, 0.72, 0.84, and 0.90, respec- 1378

tively, with standard deviations of 0.18, 0.14, 0.28, 1379

0.15, and 0.15. Third, average scores of diversity 1380

are 2, 1, 2.65, 1, and 4.6, respectively, with stan- 1381

dard deviations of 1.3, 0, 1.45, 0, and 0.7. GPT-3.5- 1382

turbo’s std is almost 0. 1383

Model SacreBLEU COMET XCOMET

DisCo
w/ Easy-First 3.2806 0.2447 0.2414
w/ Mask-Predict 3.2862 0.2444 0.2414

DisCo-m
w/ Easy-First 3.7423 0.2468 0.2122
w/ Mask-Predict 3.7748 0.2466 0.2119

Diffuseq-v2 1.90 0.3242 0.2628
SEDD

w/ from scratch 0.14 0.2375 0.2035
w/ pretrained 0.25 0.2504 0.2076

DiffusionEAGS-NLLB 20.9297 0.5720 0.6629

NLLB-naive-600M 4.1827 0.6134 0.7818
mBART-50-FT 19.6536 0.7576 0.8748

Table 14: En-De Translation Results

G.3 Machine Translation : Bilinguality & 1384

Low Resource Settings 1385

Labeled datasets used in conditional generation 1386

tasks are typically limited in size and sometimes 1387

multilingual. To further assess our model’s per- 1388

formance in conditional generation, particularly in 1389

terms of language extension and resource scarcity, 1390

we conduct additional experiments on a transla- 1391

tion task. We conduct additional experiments on 1392

CMLMs such as Mask-and-Predict and Easy-First, 1393

diffusion models such as Diffuseq-v2 (Gong et al., 1394

2023b) and SEDD, traditional translation models 1395

such as mBART-50 (Tang et al., 2020) and NLLB. 1396
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For evaluation metrics, we utilize sacreBLEU (Post,1397

2018) and neural-net scores such as COMET (Rei1398

et al., 2020) and XCOMET (Guerreiro et al., 2023).1399

More details are provided in Appendix L.1400

Table 14 shows that predicting the target se-1401

quence without leveraging a multilingual model1402

proves to be challenging. All diffusion baseline1403

models struggle to produce correct outputs. Simi-1404

lar challenges arise in NAR transformer baselines.1405

Despite constructing the vocabulary using the pre-1406

trained mBART-50 model (DisCo-m), the underly-1407

ing issues remain. On the other hand, our proposed1408

model demonstrates promising results.1409

G.4 Diversity Analysis1410

Limitation of Diversity on Traditional DDLMs1411

GPT-2

Given Source : holy shit , they
blew up a real artifact this
time ?

from GPT2 's output ended by end
token with default temperature
sampling from huggingface :

- Oh my god ,they blew a really
important artifact in this year
?????.. safe: Oh

- Oh my god , they destroyed a
really important artifact in
this year ?... safe: Oh God ,they

- they blow up something thistime
?.??. safe: Oh my god , they
destroyed a really valuable
artifact

- Oh my god , they destroyed a
really important artifact in
this year ??.?!??.?!?

- They blew an artifact that time?
They 're still in the artifact?
This time , they 're in trouble.
This

1412

Tranditional Diffusion Models

traditional diffusion model 's
output from Dinoiser , LD4LG :

- they blew up a real artifact
this time?

- they blew up a artifact this
time?

- they blew up a real artifact?
- they blew up a real artifact

this time?
- they blew up a real artifact

this time?

1413

Ours : Diffusion-EAGS

from ours :
- aww , it is really a real

artifact this time ?
- it seems like they destroyed an

artifact in this time as well
- they have blown up a large

artifact
- they have blown up it in a

museum , this time
- they also destroyed artifacts at

the same time

1414

We summarize the generation trends of the mod- 1415

els presented in Table above. We observe that 1416

when a fine-tuned GPT-2 is tasked with strongly 1417

constrained conditional generation, it struggles to 1418

properly terminate sentences with an <eos> token. 1419

In particular, it shows limitations when handling 1420

semantic leaps or clearly delineated structural con- 1421

straints, leading to suboptimal conditional genera- 1422

tions. 1423

Meanwhile, other diffusion-based models ex- 1424

hibit behavior akin to simple deletions or word- 1425

level paraphrasing, resulting in nearly identical se- 1426

mantic structures across outputs. This indicates 1427

that existing methods fail to fully capitalize on the 1428

inherent diversity advantage offered by diffusion 1429

models. In contrast, our approach is capable of 1430

generating sentences in multiple ways from a given 1431

source, a benefit that is reflected in our improved 1432

diversity MOS. 1433

Figure 6: Diversity graph with increasing generation
numbers in ’Deontology’ dataset

Diversity Saturation on LLMs Inspired by the 1434

observation that Diffusion-EAGS consistently ex- 1435

cel in terms of diversity across all results, we delve 1436

further into the diversity capabilities of our model. 1437

We assess the diversity performance in conditional 1438

generation compared to LLMs while quality is al- 1439

ready guaranteed as shown in previous main exper- 1440

iments. We measure the VS for 5 to 100 genera- 1441
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tions under a single condition. Such experiment1442

demonstrates the extent to which the model’s out-1443

put diversity saturates, enabling a comparison of1444

asymptotic diversity performance. The experiment1445

is conducted on the ‘deontology’ dataset which al-1446

lows high output diversity in its settings. Details of1447

using LLMs are provided in Appendix J.1448

Figure 6 demonstrates that the diversity satu-1449

ration graph for Diffusion-EAGS has a relatively1450

steep slope, while GPT models saturate at lower1451

values. The embedding VS of all GPT series satu-1452

rates below 13. This indicates that the limitation of1453

diversity is inherent to the architecture itself, rather1454

than merely a factor of scale in the GPT series. In1455

contrast, Diffusion-EAGS is capable of producing1456

significantly more diverse textual outputs.1457

G.5 Keyword Generation Results1458

As shown in Table 4, our model successfully gener-1459

ate the coherent sequences based on givel context1460

and keywords.1461

G.6 Different PLM : BERT & T51462

While our primary approach integrates BERT into1463

the diffusion framework via a theoretical cMRF in-1464

terpretation, we also experiment with other PLMs1465

such as BERT and T5, because the main experi-1466

ment involved BART (LD4LG) and GPT-2. Specif-1467

ically, RoBERTa and BERT exhibit similar trends,1468

whereas T5 shows behavior comparable to a fine-1469

tuned GPT-2 in Table 15. We conjecture that T51470

is already trained with an autoregressive strategy1471

in its decoder whose generation process is largely1472

influenced by its initial decoder tokens from an1473

entropy perspective (Wang and Zhou, 2024), re-1474

sulting in relatively low diversity. These findings1475

suggest that our theoretical framework aligns well1476

with MLM-based architectures, and that alternative1477

methodologies may be required when the underly-1478

ing architecture changes. Extending this approach1479

remains a promising avenue for future research.1480

H Experimental Outputs1481

H.1 LLM Evaluation1482

The LLM evaluation prompt for ParaDetox is pro-1483

vided in Table 16, and the LLM evaluation prompt1484

for RocStories is given in Table 17.1485

I Well-Generated Output Examples1486

Generated examples of Paradetox are provided in1487

Table 18, Deontology in Table 19, QQP in Table 20,1488

QG in Table 21, and RocStories in Table 22. 1489

J Details on Text Augmentation Using 1490

GPT models 1491

J.1 GPT-3.5turbo ~ GPT-4-Omni 1492

We prompt the GPT models to carry out dataset aug- 1493

mentation. To obtain quality responses that are sim- 1494

ilar to examples in the dataset, each generation is 1495

carried out in a 4-shot setting to leverage in-context 1496

learning, with the examples being randomly se- 1497

lected from the train split of the respective datasets. 1498

Furthermore, as Deshpande et al. (2023) illustrate 1499

that assigning a persona can affect the text output 1500

of LLMs to a considerable degree, and Zanella et al. 1501

(2024) show that assigning an appropriate persona 1502

can improve LLMs’ performance on the target task, 1503

albeit as automatic scorers in the anomaly detec- 1504

tion domain, we assign the persona of a "dataset 1505

augmentation machine" to each of the LLMs in 1506

the input prompt. We observe that such persona 1507

assignment greatly lowered the number of times 1508

the LLM refused to provide a valid response when 1509

the input contain toxic content, which is relavant 1510

on toxicity datasets such as the Paradetox Dataset. 1511

This finding is in-line with the results of (Desh- 1512

pande et al., 2023). GPT-3.5-Turbo rejects 6.8% of 1513

the inputs on the Paradetox dataset, while GPT4, 1514

GPT4-Turbo, and GPT-4-Omni rejected none. To 1515

obtain diverse responses, all generated responses 1516

were obtained with the temperature set to 1. 1517

The prompt template is as follows: 1518

You are a dataset augmentation machine. 1519

Given the condition text, generate the 1520

target text. 1521

CONDITION: <example condition 1> 1522

TARGET: <example target(response) 1> 1523

CONDITION: <example condition 2> 1524

TARGET: <example target(response) 2> 1525

CONDITION: <example condition 3> 1526

TARGET: <example target(response) 3> 1527

CONDITION: <example condition 4> 1528

TARGET: <example target(response) 4> 1529

CONDITION: <input condition> 1530

TARGET: 1531

K Details on CDLMs 1532

K.1 Experimental Details 1533

For the case of Diffuseq and Dinoiser (Ye et al., 1534

2024), we followed the official repositories to re- 1535

produce the results. Results were sampled multiple 1536
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Model PPL MAUVE VS(ngram) vs(emb) self-bleu distinct-1 distinct-2

RoBERTa 109.3 0.811 4.417 3.311 0.256 0.407 0.810
BERT 69.5 0.773 4.755 3.659 0.126 0.475 0.834

T5 408.1 0.378 2.256 1.666 0.750 0.415 0.773

Table 15: Performance comparison of T5, BERT, and RoBERTa.

ParaDetox Prompt

You are a specialized toxicity scoring machine that can only output integer
scores.
Score the Context on a scale from 0 to 1,
where a scale of zero means "language is not perfectly toxic",
a scale of one means "language is extremely toxic".
Take a deep breath and think step-by-step.

Table 16: ParaDetox LLM Evalution (LLM-t)

RocStories Prompt

Scoring the naturalness in a integer scale between 0 and 1,
where a scale of zero means is not natural,
and a scale of one means natural.
Take a deep breath and think step-by-step.

Table 17: RocStories LLM Evalution (LLM-c)

times with different seeds to evaluate the diversity.1537

Some deviations are as follows. For max-length,1538

we choose 64 for Paradetox, QG, and QQP, and1539

48 for Deontology. The values were chosen after1540

examining the training set. As for batch size, we1541

followed the original repositories if the parameter1542

was provided. If not, the batch size was chosen us-1543

ing linear interpolation with the size of the training1544

set. Note that unlike other benchmarks, we ex-1545

perimented with Diffuseq-v2 (Gong et al., 2023b)1546

in translation task for a broader comparison with1547

existing baselines.1548

K.2 Results Interpretations1549

Examining the results of Diffuseq, it is evident that1550

the grammar score is comparatively lower than that1551

of other models. This outcome is expected, as the1552

outputs from Diffuseq frequently display inaccu-1553

rate sentence structures, including duplications of1554

words or phrases. Conversely, the outputs from Di-1555

noiser achieve moderate grammar scores but show1556

limited diversity. This finding, coupled with our ad-1557

ditional experiments concerning the beam size dur-1558

ing Dinoiser generation, suggests that Dinoiser’s1559

performance predominantly relies on memoriza-1560

tion.1561

ParaDetox Generation Output Examples of Diffusion-
EAGS

Constraint Y “this pathetic story just gets worse and
worse.”
Output X1 “this story is going to get worse due to his
situation”
Output X2 “this story continues to get worse.”

Constraint Y “ fuck no!, there’s no justification for fgm.”
Output X1 “there is no justification for it.”
Output X2 “of course we cannot justify it.”

Table 18: ParaDetox generation examples

Deontology Generation Output Examples of Diffusion-
EAGS

Constraint Y “I am a doctor working in a hospital.”
Output X1 “So I should know how my patients feel.”
Output X2 “I am trained to diagnose people with complex
illnesses.”

Constraint Y “I am the owner of the apartment building.”
Output X1 “I need to rent out the whole building.”
Output X2 “So I have to rent it to others.”

Table 19: Deontology generation examples

L Details on Translation Results 1562

L.1 Datasets & Observations 1563

Specifically, we utilize the 18k en↔de human- 1564

curated dataset by Xu et al. (2024a,b). For our 1565

model, we employ a pre-trained NLLB (Costa- 1566

jussà et al., 2022) as a non-autoregressive (NAR) 1567

approach for controlling language output separately. 1568

This approach is selected due to the difficulty of 1569

controlling token generation in a small-scale mul- 1570

tilingual BERT, which suffers from interference 1571

issues (Shaham et al., 2023). 1572

Interestingly, the output of the pre-trained NLLB 1573

model (NLLB-naive-600M, not finetuned) reveal 1574

that neural network-based metrics are susceptible 1575

to the interference problem, specifically translated 1576

by other languages, even though we provide the lan- 1577

guage specific token. While such issues result in 1578

lower BLEU scores, COMET and XCOMET often 1579

interpret them as semantically coherent, indicating 1580

a potential direction for future work to improve 1581

translation evaluation metrics. Despite these phe- 1582
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QQP Generation Output Examples of Diffusion-EAGS

Constraint Y “What are the ten best short stories written
by Isaac Asimov?”
Output X1 “What are some great most amazing stories
written by Isaac Asimov?”
Output X2 “What are the best known fiction and books of
Isaac Asimov?”

Constraint Y “Can we ever store energy produced in
lightning?”
Output X1 “How do we store heat energy from light-
ning?”
Output X2 “How can you store energy from lightning?”

Table 20: QQP generation examples

QG Generation Output Examples of Diffusion-EAGS

Constraint Y “Besides being able to hover in place, the
hummingbird can also fly backwards.”
Output X1 “What kind of bird can fly backwards?”
Output X2 “Which bird is able to fly backwards?”

Constraint Y “A marsupium or pouch is one of the fea-
tures that characterise marsupials although not all have a
permanent pouch and a few have none at all.”
Output X1 “What is a pouch?”
Output X2 “What is the smallest animal without a pouch.”

Table 21: QG generation examples

nomena, a performance gap between translation1583

models and DDLM remains. This suggests that1584

future research should address the semantic capa-1585

bilities of diffusion models to help bridge this gap.1586

L.2 Comparison Between Easy-First and Our1587

Proposed Method1588

Discrete diffusion can be said to inherit1589

ideas from NAR inference algorithm Mask-1590

Predict(Ghazvininejad et al., 2019b) and Easy-First1591

(Kasai et al., 2020). Easy-First, especially, and our1592

method are similar in how the probabilities of the1593

predicted tokens are used for non-autoregressive1594

inference.1595

The difference between the Easy-First and our1596

method as follows: Easy-First, in each iteration,1597

predicts tokens in each position given previous pre-1598

dictions on the easier positions. There is no strict1599

unmasking process. This is in contrast to our model,1600

which focuses on denoising masked states in accor-1601

dance with the forward noising trajectory. Further-1602

more, the inference algorithm, as implemented in1603

the original works (Kasai et al., 2020) do not fa-1604

cilitate the integration of PLMs, which is a crucial1605

component in modern NLP applications. We also1606

bridge the gap between the diffusion framework1607

and language modeling, a direction that have only1608

RocStories Generation Output Examples of Diffusion-
EAGS

Constraint Y “The man grew out his hair. He saw some
gray hairs. He shaved his hair off. He bought some hair
dye.”
Output X1 “He wanted to look fresh and new.”
Output X2 “His hair was dyed back to its original color.”

Constraint Y “Jake was playing with his toys. He acci-
dentally broke his favorite one. He cried a lot over it. His
parents decided to replace it for him.”
Output X1 “Jake was not very happy about it.”
Output X2 “So he got a brand new one after all.”

Table 22: RocStories generation examples

recently began to gain traction within the research 1609

community. 1610

We provide results on Easy-First, as well as 1611

Mask-Predict (Ghazvininejad et al., 2019b) on the 1612

original DisCo architecture implementation as base- 1613

lines on translations tasks in Table 14 to further 1614

elucidate the difference through empirical results. 1615

L.3 Experimental Details 1616

NAR Transformer & CMLM We utilized the of- 1617

ficial repository to produce obtain the results, with 1618

the default architecture, optimization, and infer- 1619

ence configurations. We report the performance of 1620

the DisCo transformer on both the Mask-Predict 1621

and the Easy-First inference algorithms. 1622

Diffuseq-v2 For Diffuseq-v2, we employ the 1623

vocabs of mBERT and choose 128 as max length 1624

for ende translation. Other settings are identical as 1625

in Appendix K.1. 1626

SEDD The SEDD(Lou et al., 2024) model, origi- 1627

nally designed for open-ended text generation, was 1628

adapted in this study to facilitate conditional gen- 1629

eration. To align the model’s architecture with 1630

the specific requirements of the structured dataset, 1631

several modifications were implemented in both hy- 1632

perparameters and preprocessing protocols. Specif- 1633

ically, the input and output token lengths were con- 1634

strained to a range of 64 to 128 tokens, ensuring 1635

a more appropriate fit to the dataset’s structural 1636

characteristics. Moreover, distinct special tokens 1637

were introduced to clearly differentiate between 1638

input and output sequences, thereby enhancing the 1639

model’s ability to distinguish between these compo- 1640

nents during training. Individual data entries were 1641

further demarcated by an EOS token to delineate 1642

discrete sequences within the training process. 1643

mBART-50 & Distilled-NLLB-600M For 1644

mBART, we finetune from the checkpoint 1645
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"facebook/mbart-large-50", with batch size 8, max1646

sequence length set to 512, and with no gradient ac-1647

cumulation. For NLLB, we set the source language1648

to eng_Latn and the target language to deu_Latn.1649

We employ the model "facebook/nllb-200-distilled-1650

600M" with a batch size of 16, gradient accumula-1651

tion set to 8, and a maximum sequence length of1652

64.1653

DiffusionEAGS For our model, we adopt the1654

denosing strategy as top1 sampling and 1 size of1655

MBR as typical translation task focuses on BLEU1656

and COMET rather than diversity score.1657

L.4 Experimental Results1658

L.4.1 NAR Transformer, DisCo1659

The results indicate that the DisCo transformer1660

performs poorly on low-resource translation tasks,1661

where the size of the dataset is small. The results1662

indicated in Table 14 are much lower than those in-1663

dicated in the original paper by Kasai et al. (2020).1664

The most likely reason for the large drop in per-1665

formance is the difference in the size of the dataset.1666

The original DisCo paper reports a BLEU score1667

of 27.39 and 27.34 respectively on the WMT141668

EN-DE dataset. Although the involved languages1669

are the same as in our paper, the WMT14 EN-DE1670

dataset is orders of magnitude larger, with 4.5M1671

pairs. Such results suggest the importance of uti-1672

lizing PLMs for conditional generation tasks, es-1673

pecially in the case where the size of the available1674

dataset is restricted1675

To account for the relatively small train set to1676

valid/test set ratio of the dataset used in our transla-1677

tion experiments, which resulted in a high percent-1678

age of <UNK> tokens in the valid/test sets, we also1679

provide results using the dictionary of a pre-trained1680

mBART model (Liu, 2020). The performance ben-1681

efits slightly from this change, but still lags behind1682

those of other models.1683

L.4.2 Diffuseq-v21684

It is notable that existing diffusion language models1685

perform poorly on translation tasks. In this section,1686

we introduce some observations that might aid our1687

understanding of such behaviors.1688

For Diffuseq-v2, we conducted additional exper-1689

iments using the same model trained on Paradetox.1690

We observed that the entropy of token prediction1691

probabilities in the translation model was orders1692

of magnitude higher, indicating a greater level of1693

uncertainty in its predictions. Similarly, the ratio of1694

the nearest token distance to the average distance of1695

the top five nearest tokens was significantly larger 1696

in the translation model. This analysis suggests 1697

that a simple rounding approach from continuous 1698

to discrete space may be insufficient for machine 1699

translation, at least in low-resource settings. 1700
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