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ABSTRACT

The rapid advancement of text-to-image (T2I) diffusion models has enabled them
to generate unprecedented results from given texts. However, as text inputs be-
come longer, existing encoding methods like CLIP face limitations, and aligning
the generated images with long texts becomes challenging. To tackle these is-
sues, we propose a segment-level encoding method for processing long texts and
a decomposed preference optimization method for effective alignment training.
For segment-level encoding, long texts are divided into multiple segments and
processed separately. This method overcomes the maximum input length limits
of pretrained encoding models. For preference optimization, we provide decom-
posed CLIP-based preference models to fine-tune diffusion models. Specifically,
to utilize CLIP-based preference models for T2I alignment, we delve into their
scoring mechanisms and find that the preference scores can be decomposed into
two components: a text-relevant part that measures T2I alignment and a text-
irrelevant part that assesses other visual aspects of human preference. Addition-
ally, we find that the text-irrelevant part contributes to a common overfitting prob-
lem during fine-tuning. To address this, we propose a reweighting strategy that
assigns different weights to these two components, thereby reducing overfitting
and enhancing alignment. After fine-tuning 512 × 512 Stable Diffusion (SD)
v1.5 for about 20 hours using our method, the fine-tuned SD outperforms stronger
foundation models in T2I alignment, such as PixArt-α and Kandinsky v2.2.

1 INTRODUCTION

Recent advancements in diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a;b) have significantly enhanced text-to-image (T2I) generation (Schuhmann et al., 2022; Rom-
bach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022). While text-based conditioning provides
flexibility and user-friendliness, current models struggle with long and complex text descriptions
that often span multiple sentences and hundreds of tokens (Chen et al., 2023a; Zheng et al., 2024).
Effectively encoding such lengthy text conditions and ensuring precise alignment between text and
generated images remains a critical challenge for generative models.

To encode text descriptions, contrastive pre-training encoders such as CLIP (Radford et al., 2021)
are widely used in T2I diffusion models. However, as text length increases, the maximum token limit
of CLIP becomes a significant constraint, making it infeasible to encode long descriptions. Recent
works have explored large language model (LLM)-based encoders like T5 (Raffel et al., 2020),
leveraging their ability to handle longer sequences (Saharia et al., 2022; Chen et al., 2023a; Hu et al.,
2024). Nevertheless, contrastive pre-training encoders retain a key advantage: their text encoders
are specifically trained to align with images, potentially offering superior alignment between text
representations and generated images (Saharia et al., 2022; Li et al., 2024b).

Beyond encoding, current T2I diffusion models struggle to accurately follow long-text descriptions,
often generating images that only partially reflect the intended details, as demonstrated in Figure 1.
Inspired by advances in aligning LLMs (Ouyang et al., 2022; Rafailov et al., 2024), one potential
solution is preference optimization, which generates and utilizes preference feedback when only
parts of a target are satisfied. Recent works have explored collecting human preferences from T2I
users and leveraging them to train preference models (Kirstain et al., 2023; Wu et al., 2023c;b),
enabling preference optimization in T2I diffusion models. However, since these models are typi-
cally fine-tuned from CLIP, they face the same token limit constraints. Moreover, existing human
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Prompt: The image showcases a box of Advocate flea and
heartworm treatment for dogs. The box is (1) predominantly 
orange in color, standing upright against a white background.
The front of the box is (2) adorned with a photograph of a
black and white dog, who appears to be (3) standing on a
grassy field. The dog's gaze is directed towards the camera,
adding a sense of engagement to the image. Overall, the box is
designed to provide essential information about the product in
a clear and concise manner, while also emphasizing the
importance of safety.
Evaluation: S: √ × × ; P: √ × × ; K: √ √ × ; L: √ √ √ 

Prompt: In the image, a Great Spotted Woodpecker, a bird
known for its distinctive black and white plumage, is captured
in a moment of feeding. The bird is (1) perched on a wire bird
feeder, which is (2) filled with a mix of brown and white
birdseed. The feeder is suspended from a tree branch,
providing a perfect spot for the woodpecker to access its meal.
The background is (3) a blur of green foliage, suggesting that
this scene is taking place in a natural, outdoor setting. The
woodpecker is in the process of eating from the feeder. 
Evaluation: S: × √ × ; P: × √ × ; K: × × √ ; L: √ √ √

Prompt: The image is a digital artwork depicting a fantastical
winter scene. At the center of the composition is (1) a large,
circular archway made of white, snow-covered branches.
The archway is (2) adorned with red berries and green
leaves, adding a touch of color to the otherwise monochromatic
scene. Beyond the archway, a snowy landscape unfolds. The
ground is (3) blanketed in a thick layer of snow, and the
trees are dusted with snow, their branches heavy with
the snow. The overall effect is a serene, winter wonderland.
Evaluation: S: √ × √ ; P: √ × √ ; K: √ × × ; L: √ √ √

Prompt: The image presents a vibrant Christmas sale
advertisement. Dominating the center of the image is (1) a
heart shape, filled with a variety of shopping items. The
items, (2) depicted in shades of red, green, and white,
include dresses, purses, and shoes, suggesting a wide range
of clothing and accessories available for purchase. The heart is
set (3) against a backdrop of red and white stripes, adding a
festive touch to the advertisement. The overall layout of the
image suggests a well-organized and enticing shopping event.
Evaluation: S: × × √ ; P: × × × ; K: √ × × ; L: √ √ √

SD-1.5 longSD (Ours)PixArt-α Kandinsky-2.2

Figure 1: Generation results of our long Stable Diffusion and baselines. We highlight three key
facts for each prompt and provide the evaluation results at the end. In each evaluation line, the four
group results are arranged in order of model presentation, with S representing SD-1.5, and so on.
Additionally, three ✓ or × maintain the order of the key facts corresponding to each prompt.

preferences blend text alignment with visual factors such as photorealism or aesthetics, which only
partially support the goal of accurately aligning long and detailed text descriptions.

In this paper, to support long-text inputs for the two scenarios mentioned, we explore segment-level
encoding, which involves dividing lengthy texts into shorter segments (e.g., sentences), encoding
each one separately, and then merging the results for subsequent tasks. The main challenge is ef-
fectively combining these segment outputs to merge their diverse information without causing con-
fusion. To address this, for text encoding in diffusion models, we opt for concatenating segment
embeddings and explore optimal adjustments to the unintended repetition of special token embed-
dings from different segments. For preference models, we implement a segment-level preference
training loss alongside segment-level encoding, allowing preference models to handle long inputs
while generating both segment-level scores and an overall average score.

To enable preference optimization for long-text alignment, we analyze the scoring mechanisms of
preference models and use these models (with segment-level encoding) to fine-tune T2I diffusion
models. We find that the desired T2I alignment scores can be separated from general human prefer-
ence scores. Specifically, preference scores can be divided into two components: a text-relevant part
that assesses T2I alignment and a text-irrelevant part that evaluates other factors (e.g., aesthetics). In
addition, we discover that the remaining text-irrelevant part leads to a common overfitting issue (Wu
et al., 2024) during fine-tuning. To mitigate this, we propose a reweighting strategy that assigns
different weights to these two components, which reduces overfitting and enhances alignment.

Our experiments show that segment-level encoding and training enable preference models to ef-
fectively handle long-text inputs and generate segment-level scores. Additionally, our preference
decomposition method allows these models to produce T2I alignment scores alongside general pref-
erence scores. After fine-tuning the 512×512 Stable Diffusion v1.5 (Rombach et al., 2022) for about
20 hours on 6 A100 GPUs, our long Stable Diffusion (longSD) significantly improves alignment (see
Figure 1), outperforming stronger foundation models in long-text alignment, such as PixArt-α (Chen
et al., 2023a) and Kandinsky v2.2 (Razzhigaev et al., 2023). Our contributions are as follows:
• We propose a segment-level encoding method that enables encoding models with limited input

lengths to effectively process long-text inputs.
• We propose preference decomposition that enables preference models to produce T2I alignment

scores alongside general preference, enhancing text alignment fine-tuning in generative models.
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• After about 20 hours of fine-tuning, our longSD surpasses stronger foundation models in long-text
alignment, demonstrating significant improvement potential beyond the model architecture.

2 BACKGROUND

We provide an overview of diffusion models and T2I models. Next, we discuss preference models
for fine-tuning T2I diffusion models, followed by an introduction to the reward fine-tuning process.

2.1 DIFFUSION MODEL

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b) construct a
transformation from a Gaussian distribution to a target data distribution through a multi-step diffu-
sion denoising process. Given a data distribution x0 ∼ q(x0), the diffusion process satisfies:

xt = αtx0 + βtϵ, (1)

where ϵ ∼ N (0, 1), t ∈ {0, 1, . . . , T}, T is the maximum timestep, α2
t + β2

t = 1, and βt controls
the speed of adding noise. The loss function is typically defined as follows:

Lt = Ex0,ϵ||ϵ− ϵθ(αtx0 + βtϵ, t)||2, (2)

where the model ϵθ aims to predict the noise ϵ added to the clean data x0. Once ϵθ is learned,
according to DDIM (Song et al., 2021a), the denoising process from t = T to t = 0 satisfies:

x∗
t = (xt − βtϵθ(xt, t))/αt, xt−1 = αt−1x

∗
t +

√
β2
t−1 − σ2

t ϵθ(xt, t) + σtϵ, (3)

where xT ∼ N (0, 1) and x∗
t is the predicted clean image at timestep t. When σt ≡ 0, this is

the DDIM denoising process. When σt = (βt−1/βt)
√

(1− α2
t/α

2
t−1), this is the DDPM denoising

process. In this paper, we choose σt ≡ 0. The corresponding DDIM process can be accelerated
using numerical solvers such as PNDM (Liu et al., 2022) and DPM-Solver (Lu et al., 2022).

Stable Diffusion. Among different T2I diffusion models, Stable Diffusion (Rombach et al., 2022)
plays a crucial role, which integrates a VAE (Kingma & Welling, 2013), CLIP, and a diffusion
model ϵθ. During training, the pretrained VAE compresses the image x into a latent z, while the
pretrained CLIP model encodes the text prompt p. The diffusion model ϵθ then attempts to fit
this new distribution of latent variables z, conditioned on the text p. In the sampling process, the
diffusion model ϵθ first generates the latent z based on the text prompts p and then uses the VAE to
decode the latent z to obtain the final image x. For simplicity, we ignore the VAE in the following.

2.2 PREFERENCE MODEL

Preference optimization (Ouyang et al., 2022; Rafailov et al., 2024) has shown its effectiveness in
aligning LLMs with humans using preference feedback. To facilitate this for T2I diffusion models,
prior work (Kirstain et al., 2023; Wu et al., 2023b) fine-tunes these models with T2I preference mod-
els that evaluate human preferences for an image x given a text prompt p, represented as R(x, p).
We focus on preference models fine-tuned from pretrained CLIP models. To prepare the preference
dataset for fine-tuning, prompts are paired with two generated images, and the preferred image is
annotated. For xi preferred over xj (denoted as i ≻ j), the preference training loss is:

Li≻j =
exp(R(xi, p))

exp(R(xi, p)) + exp(R(xj , p))
, (4)

where R(x, p) = CX(x) · CP (p) is the dot product of the image embeddings CX(x) and the text
embeddings CP (p). After training, the preference model can be used to evaluate preferences or fine-
tune generative models. Similar to CLIP, these preference models don’t support long-text inputs.

2.3 REWARD FINE-TUNING

When fine-tuning T2I diffusion models with the preference models mentioned above, previous
works (Black et al., 2023; Fan et al., 2024) typically treat preference models as reward signals
defined by Lr = 1− ExT ,pR(x∗

0, p). However, fine-tuning the generator ϵθ of diffusion models us-
ing these signals poses two challenges. First, backpropagating gradients through the entire iteration
process is problematic. Second, overfitting is a concern. Previous works (Prabhudesai et al., 2023;
Clark et al., 2023) have employed gradient checkpointing and LoRA (Hu et al., 2021) to facilitate
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gradient backpropagation, but these methods skip consecutive time steps at the beginning or end of
the diffusion iteration to accelerate computation, which inevitably introduces optimization bias.

Recently, DRTune (Wu et al., 2024) shows a new method that allows for training on a uniform subset
of all sampling steps. Specifically, when we apply the preference model R(x∗

0, p) to calculate the
reward signal Lr = 1− ExT ,pR(x∗

0, p), the corresponding gradient is as follows:

∂θ(1− ExT ,pR(x∗
0, p)) ≈ −ExT ,p(∂x∗

0
R)(x∗

0, p)

(
T−1∑
i=1

(βi−1/αi−1 − βi/αi)(∂θϵθ)(sg(xi), i, p)

)
. (5)

DRTune truncates the gradient of all {sg(xi)}, allowing it to optimize a uniform portion of the
remaining gradient {(∂θϵθ)(sg(xi), i, p)}. In this paper, we also utilize this as our gradient back-
propagation method. However, overfitting remains a concern that cannot be fully addressed by early
stopping alone, necessitating further analysis and additional solutions.

3 SEGMENT-LEVEL TEXT ENCODING

In this section, we introduce our segment-level encoding method, designed for the long-text encod-
ing of both diffusion models and preference models. This approach divides the text into segments,
encodes each one individually, and then merges the results. For diffusion models, we explore an em-
bedding concatenation strategy during merging. For preference models, we present a segment-level
loss alongside the new encoding to handle long inputs and generate detailed preference scores.

3.1 TEXT ENCODING OF DIFFUSION MODEL

For text encoding in diffusion models, contrastive pre-training encoders like CLIP (Rombach et al.,
2022) are commonly used. However, as the input text length increases, CLIP’s maximum token
limitation becomes a significant issue. As a result, recent works (Saharia et al., 2022; Chen et al.,
2023a; Hu et al., 2024) have shifted to using LLMs like T5 instead of CLIP, overlooking CLIP’s
distinct advantage (Radford et al., 2021) in image-text alignment pretraining. To leverage CLIP’s
capabilities for long text, we introduce segment-level encoding. Our method divides the text into
segments (e.g., sentences), encodes each one into embeddings like the original T2I diffusion models,
and then merges these embeddings. Figure 9 illustrates this segment-level text encoding.

In the merging process, we initially use direct embedding concatenation, which results in poor gen-
erated images (see Figure 10). This occurs because each segment includes special tokens such as
<sot>, <eot>, and <pad> during individual encoding, leading to the unintended repeated presence of
their embeddings in the concatenated embedding. To address this, we conduct ablation experiments
on whether to keep, remove, or replace special token embeddings. The final embedding excludes
the <pad> embeddings and introduces a new unique <pad*> embedding to meet the target length. It
retains all <sot> embeddings while removing all <eot> embeddings, resulting in the format “<sot>
Text1. <sot> Text2. ... <pad*>”. More details about this experiment can be found in Appendix A.

We can now use both CLIP and T5 for long-text encoding in T2I diffusion models. The next chal-
lenge is accurately representing all text segments in the generated images. To tackle this issue, we
further fine-tune diffusion models with large-scale long texts paired with their corresponding images.
We start with supervised training employing ℓ2 loss. However, we observe a clear optimization limit
during training, with even the best version falling short of perfection (see the longSD(S) column in
Table 2). This problem prompts us to explore additional preference optimization for long-text align-
ment alongside general supervised training, inspired by its success in LLMs (Ouyang et al., 2022).

3.2 SEGMENT PREFERENCE MODEL

In the context of preference optimization in T2I diffusion models, previous studies (Kirstain et al.,
2023; Wu et al., 2023b) have employed CLIP-based human preference models to better align T2I
diffusion models with human preferences. Since our objective—text alignment—is a key component
of human preference, and CLIP-based structures are effective for large-scale training, we aim to
adapt such preference models for our long-text alignment task.

The first step towards achieving the above goal is to enable CLIP-based preference models to accept
long-text inputs. As shown in Section 2.2, these models introduce a new human preference training
objective into the CLIP framework. However, they still have the same limited maximum input length
and may struggle to reflect the varying impacts of different segments (e.g., sentences) with a single
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Figure 2: (a) Schematic results for text embeddings. (b) Statistics of the projection scalar η for three
models. (c) The relationship between the original score and the two scores after decomposition using
our Denscore. In the three score tables, the diagonal represents the scores for paired data, while the
off-diagonal positions indicate the scores for unpaired data.

final score. To solve these problems, we split the long-text condition p into K segments, denoted as
{p̂k}Kk=1. Then, the new segment-level preference training loss is:

Lseg
i≻j =

exp(
∑K

k=iR(xi, p̂k)/K)

exp(
∑K

k=iR(xi, p̂k)/K) + exp(
∑K

k=iR(xj , p̂k)/K)
. (6)

The above loss enables weakly supervised learning (Zhou, 2018) during training, eliminating the
need for additional segment-level annotations. In comparison to its single-value counterpart, the
new preference model supports long-text inputs and generates more detailed segment-level scores
{R(x, p̂k)}k, along with an average final score

∑K
k=iR(xi, p̂k)/K = CX(x) ·

∑K
k=i CP (p̂k)/K.

Thus, computing this average score is equivalent to first segment-level encoding the text input and
using the average embedding, denoted as Cseg

P (p) =
∑K

k=i CP (p̂k)/K, to compute the score. We
refer to this score as Denscore, which will also function as a reward signal in the following section.
If there is no confusion, we may omit the segment label in Cseg

P (p).

4 PREFERENCE DECOMPOSITION

In this section, we explore preference optimization using the preference models mentioned above.
We find that their preference scores comprise a text-relevant component and a text-irrelevant com-
ponent, with the latter often causing overfitting in fine-tuning diffusion models. To address this, we
propose a reweighting strategy for both components that reduces overfitting and enhances alignment.

4.1 ORTHOGONAL DECOMPOSITION

As shown in Section 2.2, the CLIP-based preference model R(x, p) = CX(x) · CP (p) evaluates an
image x against a text p with respect to human preferences. Some preferences concern whether the
text condition p is accurately represented in the image x, while others focus on visual factors such
as photorealism and aesthetics, making them irrelevant to the text. We find a direct structural cor-
respondence between these two types of preferences within the text embedding CP (p). Specifically,
different CP (p) display a common direction, as illustrated in Figure 2 (a). This common direction
corresponds to text-irrelevant preferences, while the remainder reflects text-relevant preferences.

To support this statement, we use text embeddings from a large prompt dataset P to compute the
common text-irrelevant direction: V := Ep∼PCP (p)/||Ep∼PCP (p)||. We then decompose the text
embedding CP (p) into two orthogonal parts: C⊥P (p) + ηV, where η = CP (p) ·V is the projection
scalar of CP onto V. For the value of η, we test CLIP, Pickscore and our Denscore, presenting
the results in Figure 2 (b). We observe that CP exhibits a strong positive scalar projection onto V
(η > 0.4 for CLIP and η > 0.6 for the others), forming a core in representation space. The presence
of V is referred to as the cone effect (Gao et al., 2019; Liang et al., 2022), which results from both
model initialization and contrastive training.

To better understand the differing roles of these two components in the preference score R(x, t),
we experiment with a 5k image-text dataset. Figure 2 (c) presents a score table illustrating the
relationship between CX(x) · CP (p), CX(x) · C⊥P (p) and CX(x) · ηV. A more detailed version of
this figure and real data statistics for the three scores can be found in Appendix B.2. For the second
score CX(x) · C⊥P (p), our experiments in Section 5.2 and Appendix B.3 show that it eliminates the
influence of text-irrelevant components and focuses on measuring T2I alignment, which aligns with
our objective. We refer to this aspect of Denscore as Denscore-O.
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Figure 3: Retrieval results with low or high text-irrelevant scores, using three CLIP-based models.

For the third score CX(x) ·ηV = η(CX(x) ·V), the scalar η is analyzed in the above two paragraphs.
The remaining text-irrelevant term CX(x)·V still needs further clarification. We provide images with
low or high text-irrelevant scores in Figure 3 to visualize the score standard. Notably, the three mod-
els assign low scores to images that share similar characteristics, marked by dull visuals and large
blank spaces. Conversely, while the high-scoring images selected by CLIP lack distinct features,
the two preference models show strong alignment. Their high-scoring images feature rich details,
well-organized layouts, and overall higher quality. This highlights the role of training on Equation 4,
which provides a clear training objective—general human preference—for text-irrelevant scores. In
contrast, CLIP’s original contrastive training does not incorporate this aspect.

4.2 GRADIENT-REWEIGHT REWARD FINE-TUNING

To use the preference model R(x, p) as a reward signal for fine-tuning T2I diffusion models, there
are two main challenges. One challenge is backpropagating the gradient through the entire multi-
step iteration process. This can be addressed by the method mentioned in Section 2.3. However,
previous works still struggle with overfitting, where fine-tuned images exhibit similar patterns (see
Figure 6). While these patterns may enhance reward scores, they often lead to unsatisfactory images.
We find that this is primarily because the text-irrelevant parts V constitute a significant portion
of the optimization direction. Specifically, we fine-tune the generator ϵθ using the reward signal
Lr = 1− ExT ,pR(x∗

0, p), with the gradient calculated as follows:

∂θ(1− ExT ,pR(x∗
0, p)) =− ∂θExT ,p(CP (p) · CX(x∗

0)) = −Ep(CP (p)TExT
∂θ(CX(x∗

0)))

=− Ep((ηV + C⊥P (p))TExT
∂θ(CX(x∗

0))),
(7)

where the item ηV+C⊥P (p) controls the gradient direction of ϵθ. According to Section 4.1, the text-
irrelevant component V comprises a large portion of the entire item, overwhelming the gradient and
producing similar output patterns regardless of the text input p. To mitigate this overfitting problem,
we fine-tune the generator ϵθ using a reweighted gradient:

∂θ(1− ExT ,pR(x∗
0, p)) ≈ −Ep((ω(ηV) + C⊥P (p))TExT

∂θ(CX(x∗
0))), (8)

where ω is the reweighting factor for the common direction V. This addresses the overfitting prob-
lem mentioned above. Additionally, this analysis clarifies why the original CLIP is ineffective for
reward fine-tuning (see Figure 6). The issue arises because its text-irrelevant component V is not
well-trained (see Section 4.1), resulting in an undefined optimization direction.

5 EXPERIMENT

In this section, we first provide our experimental setup, including models, training strategies, and
evaluation metrics. We then present the results of our segment preference models. Next, we detail
our long-text encoding results for diffusion models using various encoding methods. The advantages
of gradient reweighting fine-tuning across different reward signals are then discussed. Finally, we
present the generation results of our entire method alongside those of the baselines for comparison.

5.1 EXPERIMENTAL SETUP

Model. Our experiments cover three types of models: text encoders, Unets, and preference models.
Specifically, we utilize the pretrained CLIP and T5 models as our text encoders. To align the embed-
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Table 1: R@1 results for 5k text-to-image retrieval using different CLIP-based models.

CLIP-H HPSv2 Pickscore Denscore
Single Average Single Average Single Average Single Average

CP (p) 86.10 80.40 42.34 16.72 54.00 31.84 83.96 75.90
C⊥
P (p) 85.80 85.14 67.94 64.28 67.60 64.00 87.24 91.86
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Figure 4: FID and Denscore results for diffusion models with different text encodings.

ding dimensions, we append a two-layer MLP to T5’s output, following LaVi-Bridge (Zhao et al.,
2024a). The Unet is derived from the pretrained Stable Diffusion v1.51. Instead of full fine-tuning,
we fine-tune the Unets using LoRA with a rank of 32 and update both the ResNet blocks and atten-
tion blocks within the Unets. For the preference model, we select two pretrained models: Pickscore
and HPSv2. Additionally, we introduce our new segment-level preference model, Denscore. All
three models are fine-tuned from pretrained CLIP models.

Training. (1) For training the Unet, we utilize a dataset of approximately 2 million images, including
500k from SAM (Kirillov et al., 2023), 100k from COCO2017 (Lin et al., 2014), 500k from LLaVA
(a subset of the LAION/CC/SBU dataset), and 1 million from JourneyDB (Sun et al., 2024). We
randomly reserve 5k images for evaluation. All images are recaptioned using LLaVA-Next (Liu
et al., 2023) or ShareCaptioner (Chen et al., 2023b) and resized to 512 × 512 pixels. We optimize
the model using the AdamW optimizer with a learning rate of 3×10−5, a 2k-step warmup, and a total
batch size of 192. Training is conducted on 6 A100-40G GPUs for 30k steps over 12 hours. (2) For
the reward fine-tuning (RFT) stage of the Unet, we use the same settings as before but with a batch
size of 96 and 4k total training steps over 8 hours. (3) For training the segment preference model,
we use the same settings as for Pickscore (Kirstain et al., 2023), employing CLIP-H on Pickscore’s
training data, along with LLaVA-Next captions and our new segment-level loss function. More
details about training the preference model can be found in Appendix B.1.

Evaluation. We evaluate our methods using the FID, Denscore, Denscore-O and VQAscore (Lin
et al., 2024) metrics on the 5k-image evaluation dataset. FID evaluates the distribution distance
between the dataset and generated images. Denscore assesses human preference for generated im-
ages, while Denscore-O and VQAscore focuses on the text alignment of those images. Additionally,
we employ GPT-4o (OpenAI, 2024) to evaluate 1k images against baselines, mitigating the risk
of overfitting to Denscore. The GPT-4o evaluation template can be found in Appendix D. All our
experiments employ UniPC (Zhao et al., 2024b) with 25-step sampling, maintaining a consistent
classifier-free guidance factor as per the original papers. In Appendix C.3, we also evaluate our
models on two additional benchmarks, including DPG-Bench (Hu et al., 2024), to assess our T2I
generation performance on prompts of varying structures and lengths.

5.2 SEGMENT PREFERENCE MODEL

To demonstrate that our analysis of the preference model is generally applicable, we compare four
CLIP-based models: the pretrained CLIP, the single-value preference models Pickscore and HPSv2,
as well as our new segment-level preference model, Denscore. According to Section 4.1, the text-
irrelevant embedding V reflects the text-irrelevant preference, while the text-relevant embedding
C⊥P (p) reflects the T2I alignment, which is our objective.

To assess the ability of the text-relevant part C⊥P (p), we provide the R@1 retrieval accuracy for the
four models on the 5k evaluation dataset in Table 1. Here, we either utilize the embedding encoding
from the first 77 tokens in a single-pass approach (Single) or take the average of segment-level

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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Table 2: FID and Denscore results for 512×512 image generation using different models. PlayG-2,
KanD-2.2 and ELLA are from Li et al. (2024a), Razzhigaev et al. (2023) and Hu et al. (2024).

Model SD-1.5 SD-2.1 PlayG-2 PixArt-α KanD-2.2 ELLA longSD (S) longSD (S+R)

FID-5k 24.96 25.80 23.92 22.36 20.04 24.38 20.09 19.63/24.28
Denscore-O 29.20 30.15 28.80 33.48 33.30 32.92 31.29 32.83/35.26
Denscore 20.29 20.91 21.22 22.78 22.70 22.11 21.72 22.74/23.79
VQAscore 84.57 85.61 85.26 86.96 86.31 86.85 86.18 87.11/87.24
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Figure 5: FID and Denscore results for diffusion models using different gradient reweighting factors.

embeddings Cseg
P (p) (Average). The final score is computed using the image embedding CX(x) with

either the full text embedding CP or solely the text-relevant part C⊥P (p). We find that: (1) Across all
preference models, the text-relevant embedding outperforms the original embedding, as it eliminates
the impact of text-irrelevant factors. (2) Only Denscore with segment-level training yields better
segment-level retrieval accuracy, while the other models don’t benefit from, and are confused by, the
extra information provided by averaging multiple embeddings. (3) Although T2I alignment is only
a partial optimization objective in Denscore, the Denscore model outperforms CLIP. This highlights
the importance of segment-level encoding strategies and preference decomposition.

In Appendix B.3, to better evaluate Denscore’s performance under varying text lengths, we employ
different maximum sentence prompts to obtain R@1 retrieval accuracy. Additionally, we conduct an
experiment in the same appendix to identify specific misaligned segments in long inputs, showing
that segment-level scoring provides more detailed information.

5.3 LONG-TEXT ENCODING

Here, we provide FID and Denscore results for supervised fine-tuning (SFT), comparing various
text encoding methods: CLIP with concatenation (CLIP-cat), T5 with an additional two-layer MLP
(T5-mlp)2, and a combination of CLIP and T5 (CLIP+T5). The results in Figure 4 show that CLIP-
cat and T5-mlp perform similarly, while the CLIP+T5 model significantly outperforms them. This
suggests that the CLIP+T5 model is preferable, as it leverages the strengths of both CLIP’s image-
text paired pretraining and T5’s pure long-text encoding capabilities. This finding is consistent with
the results of previous works (Saharia et al., 2022; Li et al., 2024b), while these earlier models still
face input length limitations due to CLIP’s maximum token count.

5.4 REWARD FINE-TUNING

To simplify and accelerate ablation studies of reward fine-tuning (RFT), we leverage both LCM-
LoRA (Song et al., 2023; Luo et al., 2023) and DRTune (Wu et al., 2024) to speed up fine-tuning
using only CLIP-cat encoding for optimal strategy identification in this subsection.

2We utilize LaVi-bridge’s (Zhao et al., 2024a) pretrained MLP, which means we only include the short-to-
long fine-tuning.
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Origin Reweight (ours)
CLIP HPSv2 Pickscore Denscore CLIP HPSv2 Pickscore Denscore

Figure 6: Generation results using different reward signals, with and without gradient reweighting.
The corresponding text conditions can be found in Appendix F.

Weighting Factor. In Figure 5, we provide the FID and Denscore results for different gradient
reweight factors ω and training steps. According to the first three experiments with different reweight
factors, the FID results exhibit a parabolic shape, with ω = 0.3 achieving the best FID results. In
the last three experiments with different training steps, only ω = 0.3 maintains relatively stable
FID results while simultaneously improving both Denscore and Denscore-O results. In contrast,
the other two options improve only one of the Denscore or Denscore-O metrics, accompanied by
a significant increase in FID, indicating an apparent overfitting problem. Additionally, please note
that the optimal value of ω can vary depending on the model and training strategy used.

Reward Signal. In Figure 6, we provide visual results showing the benefits of gradient reweight-
ing on reward signals from various preference models, including CLIP, HPSv2, Pickscore, and our
Denscore. Notably, this method also partially addresses the limitation of using reward signals from
pretrained CLIP. However, CLIP cannot yet outperform preference models because its text-irrelevant
component V is not well-trained, which aligns with our analysis in Section 4.2.

5.5 GENERATION RESULT

SD-1.5 SD-2.1 PlayG-2 PixArt-a KanD-2.2
0
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Figure 7: GPT-4o evaluation results of
T2I alignment across different models.

Foundation Model. In this subsection, we apply our
comprehensive approach to train our long Stable Diffu-
sion (longSD) and compare it against other baselines.
Here, we present the results of SFT (S) at 28k steps and
SFT+RFT (S+R) with ω = 0.3, at 1.25k and 3.75k steps.
As shown in Table 2, SFT+RFT clearly outperforms both
the original SD-1.5 and the basic SFT version. Compared
to other advanced foundation models, our longSD model
surpasses them in terms of FID and Denscore metrics.
Furthermore, we use GPT-4o (OpenAI, 2024) to evalu-
ate 1k longSD(S+R) results, comparing them to baselines
and mitigating the risk of overfitting. The new results (see
Figure 7) are consistent with our previous scores. We also provide visualizations in Figure 8. All
these findings highlight the effectiveness of our method for generating high-quality images from
long texts, demonstrating significant potential beyond altering the model structure.

Table 3: Evaluation for comparison in the
P2I diffusion framework.

Method 768 1024
P2I +ours P2I +ours

FID-5k 20.36 21.60 19.78 20.84
Denscore-O 34.45 38.71 34.78 38.51
Denscore 23.43 25.39 23.47 25.41
GPT-4o 240 583 289 536

Alignment Strategy. In addition to varying model
structures, there are other methods that improve T2I
alignment. Some of these approaches incorporate
the assistance of LLMs, such as Ranni (Feng et al.,
2024) and RPG-Diffusers (Yang et al., 2024), while
others employ improved training strategies, such
as Paragraph-to-Image (P2I) diffusion (Wu et al.,
2023a). LLM-based methods that involve additional
LLM assistance increase computational require-
ments and encounter significant out-of-distribution
(OOD) issues with long-text inputs. More details on OOD issues can be found in Appendix E. Re-
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SD-1.5

longSD
(Ours)

Figure 8: The generation results show a comparison of performance before and after our fine-tuning
on SD-1.5. The corresponding text conditions are provided in Appendix F.

garding improved training strategies, our approach is orthogonal to P2I diffusion, so we compare
the original P2I diffusion with its fine-tuned version using our method. The results in Table 3 also
show clear improvements in terms of FID, Denscore, and GPT-4o evaluations.

6 RELATED WORK

Diffusion-based Generation. The popularity of diffusion models has surged, driven by break-
throughs in fast sampling methods (Song et al., 2021a; Lu et al., 2022; Zhang & Chen, 2022) and
text-conditioned generation (Saharia et al., 2022; Chen et al., 2023a). Moreover, cascaded and latent
space models (Ho et al., 2022; Rombach et al., 2022) have enabled the creation of high-resolution
images. These advancements have also unlocked various applications beyond T2I generation, in-
cluding the ability to create content with a consistent style (Hertz et al., 2023) and image editing
tools (Hertz et al., 2022; Brooks et al., 2023). Furthermore, advancements in foundation models like
U-ViT (Bao et al., 2023) and DiT (Peebles & Xie, 2023) suggest even greater potential.

Text-to-Image Evaluation. Traditional metrics, such as Inception Score (IS) (Salimans et al., 2016)
and Fréchet Inception Distance (FID) (Heusel et al., 2017), have limitations in evaluating the quality
of T2I generation. To address these limitations, three approaches have emerged. One approach
employs Perceptual Similarity Metrics like LPIPS (Zhang et al., 2018), which utilize pretrained
models to assess image similarity from a human perspective. Another approach involves using
detection models (Huang et al., 2023) to extract and analyze key object alignments. A third approach
fine-tunes human preference models (Xu et al., 2024; Kirstain et al., 2023; Wu et al., 2023b) on
datasets of human preferences for images generated from specific prompts, effectively turning them
into proxies for human evaluation.

Reward Fine-tuning. Training text-to-image models with a reward signal can be effective in target-
ing specific outcomes. Two primary approaches have emerged. One leverages reinforcement learn-
ing to optimize rewards that are difficult to calculate using traditional methods, such as DPOK (Fan
et al., 2024) and DDPO (Black et al., 2023). Another approach, exemplified by DiffusionCLIP (Kim
et al., 2022), DRaFT (Clark et al., 2023) and AlignProp (Prabhudesai et al., 2023), involves back-
propagation through sampling. This method leverages human preferences and other differentiable
reward signals to optimize diffusion models for specific targets. Recently, DRTune (Wu et al., 2024)
further improves training speed by stopping the gradient of the diffusion model’s input.

7 DISCUSSION

In this paper, we examine segment-level text encoding strategies for processing long-text inputs in
both T2I diffusion models and preference models. In addition, we enhance the role of preference
models by analyzing their structure and decomposing them into text-relevant and text-irrelevant
components. During reward fine-tuning, we propose a gradient reweighting strategy to reduce over-
fitting and enhance alignment. In our experiments, we utilize the classical SD-1.5 and effectively
fine-tune it to outperform stronger foundation models, demonstrating significant potential beyond
designing new model structures.

The limitation of this paper is that, while we have made improvements, we still do not fully address
the generation of long prompts with complex contextual dependencies or those requiring strong se-
mantic understanding, partly due to CLIP’s constraints. In the future, we will explore more powerful
training strategies beyond using CLIP-based preference models.
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REPRODUCIBILITY STATEMENT

In this study, we conduct fine-tuning on two pretrained models: Stable Diffusion and CLIP, both
of which are publicly accessible. We will release the checkpoints of our fine-tuned versions after
the paper submission. Furthermore, the details regarding the training of the CLIP-based preference
models can be found in Appendix B.1, while the specifics of decomposed preference optimization
for T2I diffusion models are presented in Appendix C. The code is available in the Supplementary
Material for review.

All image datasets utilized in this study are publicly available. Additionally, the extended long cap-
tions were annotated using the LLaVA-Next model, which is also publicly accessible. We encourage
other researchers to replicate and build upon our work to further advance this field.

ETHICS STATEMENT

This research acknowledges the ethical implications of advancements in text-to-image (T2I) diffu-
sion models. We commit to responsible practices by ensuring transparency in our methodologies
and findings. Our segment-level encoding and preference optimization techniques are designed to
enhance alignment while minimizing bias and overfitting.

We prioritize inclusivity and societal values by actively engaging with diverse stakeholders to under-
stand the cultural impacts of our work. Our ongoing commitment to ethical research practices aims
to ensure that our technologies contribute positively to society while mitigating potential harms.
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A CONCATENATION STRATEGY

For the CLIP encoder in T2I diffusion models, we first show the pipeline of our new segment-
level encoding in Figure 9. In this pipeline, segment-level encoding and concatenation may seem
straightforward, but the optimal concatenation strategy remains unclear, as shown in Figure 10. This
is because each segment contains special tokens, such as <sot>, <eot>, and <pad>, leading to their
corresponding embeddings’ unintended repeated presence in the final concatenated embedding. This
raises the question of whether to retain, remove, or replace them in the final embeddings.

For <pad> tokens in each segment, we omit them in the final embeddings since they lack alignment
information. However, we sometimes need to introduce a new <pad> embedding to ensure aligned
token sequence lengths. To address this, we assign a unique embedding to each required <pad>
token’s position. Specifically, our unique <pad> embedding is the average value of all <pad> tokens
of an empty sentence, which we denote as <pad*>. For <sot> and <eot> tokens, we then experiment
with pretrained diffusion models to find the optimal strategy. As shown in Figure 10, our results
indicate that the optimal approach is to keep all <sot> token embeddings and remove all <eot>
token embeddings. Therefore, our final embeddings used in this paper take the form “<sot> Text1.
<sot> Text2. ... <pad*>”.

CLIP CLIP CLIP

<sot> text1 ... <sot> text2 ... <sot> text3 ...

<sot> text3 ... <eot> <pad><sot> text2 ... <eot> <pad><sot> text1 ... <eot> <pad>

<sot> text3 ... <eot> <pad><sot> text2 ... <eot> <pad><sot> text1 ... <eot> <pad>

Concatenation with Token adjustment

Segment
Input

Tokens

Segment
Output

Embeddings

CLIP's maximum length

Target length

<pad*> <pad*>+Final
Embeddings

Figure 9: The visualization of our new segment-level text encoding for diffusion models is presented.

origin <sot> Text <eot>  <sot> Text  Text <eot>

one segment

multi segments

Figure 10: Generation results under different embedding concatenation strategies.

The last column of the experiment above shows that removing all <sot> tokens destroys the gen-
erated results. In Figure 11, we also compare the effects of keeping only the first <sot> token
(1-sot) versus retaining all <sot> tokens (ours). Additionally, we investigate different segmentation
strategies by testing the difference between treating each sentence as a segment (ours) and grouping
several consecutive sentences into a segment (multi), provided their total token count remains under
77. We find that these two new ablation studies do not show significant differences in the results.
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Ours

1-sot

multi

Figure 11: Generation results of SD-1.5 using various segment encoding strategies.

Furthermore, in Figure 12, we analyze the cross-attention map for both original and segment-level
encodings. The results show similar interaction behaviors between them. When the input prompt
labels objects (e.g., dog and duck, clock and pen) and references them across different segments, the
model accurately aligns these objects across those segments. This demonstrates that T2I diffusion
models with segment encoding can handle cross-sentence information.

The scene captures a joyful moment between a spirited dog 1 and its beloved plastic duck 1. 
The dog 2 lies on the grass, tail wagging furiously, as it playfully nudges the bright yellow duck 2 with its nose. 
The duck 3, slightly weathered but still vibrant, rests nearby, a source of endless entertainment. 
This juxtaposition highlights their playful bond.

dog 1                      dog 2                       duck 1                     duck 2                    duck 3

SD 1.5

Ours

  clock 1                    clock 2                      pen 1                       pen 2          

SD 1.5

Ours

The scene depicts a serene moment between a vintage alarm clock 1 and a sleek fountain pen 1. 
The clock 2, with its polished brass finish and softly ticking hands, sits elegantly on a wooden desk, casting a
warm glow in the afternoon light. 
Beside it, the fountain pen 2, with its deep blue color and intricate design, rests poised as if ready to capture
thoughts and dreams. 

Figure 12: The visualization of the generation results and cross-attention maps for both original and
segment-level encodings using SD-1.5 and our fine-tuned version. The 1,2,3 behind the nouns are
for readability and do not be included in the input prompt.
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B SEGMENT PREFERENCE MODEL

Here, we provide a detailed analysis of our segment preference models with respect to training,
visualization, and evaluation.

B.1 TRAINING

We train a segment preference model by incorporating long and detailed text conditions generated
by LLaVA-Next alongside our segment-level preference loss function. Based on the analysis in
Section 4.1, we choose to combine the segment-level loss for refining text-relevant aspects with the
original loss for improving aspects unrelated to text, such as aesthetics. The loss function Lseg-a

i≻j
(where “a” denotes addition) is:

Lseg-a
i≻j =Ex,{p̂k}σ

(
K∑

k=1

(CX(xi) · CP (p̂k)/K)−
K∑

k=1

(CX(xj) · CP (p̂k)/K)

)
+

Ex,pσ(CX(xi) · CP (p)− CX(xj) · CP (p)),

(9)

where σ(x) = 1
1+e−x is the sigmoid function and em

em+en = σ(m − n). In addition, we substitute
CP (p̂k) with C⊥P (p̂k) to help the new segment-level loss focus on the T2I alignment part and avoid
influencing the text-irrelevant part. The new loss function Lseg-o

i≻j (where “o” means orthogonal) is:

Lseg-o
i≻j =Ex,{p̂k}σ

(
K∑

k=1

(CX(xi) · C⊥P (p̂k)/K)−
K∑

k=1

(CX(xj) · C⊥P (p̂k)/K)

)
+

Ex,pσ(CX(xi) · CP (p)− CX(xj) · CP (p)),

(10)

where {p̂k} represents the segments split from the long text generated by LLava-Next, and p is the
original short text.

If we prioritize alignment, Lseg-a
i≻j is the better choice; if we want to balance both alignment and

aesthetics, Lseg-o
i≻j is the preferable option. This is because Equation 10 eliminates the influence of

the first loss item on the text-irrelevant part V, allowing it to better focus on factors unrelated to
the text, such as aesthetics. To support this, we present retrieval results with the highest scores used
text-irrelevant components V trained with two different loss functions. The results from Equation 10
align more closely with human preferences. Therefore, in this paper, we chooseLseg-o

i≻j in Equation 10
to train our new segment preference model.

Eq 10

Eq 9

Figure 13: The retrieval results with the highest scores used text-irrelevant components V trained
with two different loss functions.

B.2 VISUALIZATION OF SCORE

After training the new segment preference models, we want to analyze the behavior of three scores
CX(x) · CP (p), CX(x) · C⊥P (p) and CX(x) · ηV. We are interested in the relationships among them,
and additionally, in the differences in these scores between different CLIP-based models. Here, we
choose CLIP, Pickscore and our Denscore as our experimental targets, as they all use the same model
structure, while the last two are fine-tuned on Pickscore’s human preference dataset. We present the
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results in Figures 14 and 15. The first figure uses 20 data pairs to visualize the relationships and
differences, while the second figure displays the actual statistics based on 5,000 data pairs.

For the original score CX(x) · CP (p), only the original CLIP behaves in such a way that its score
can be close to zero when the image and text inputs are unpaired, while the other two models still
assign relatively high scores to such unpaired inputs. This is because the preference models assess
the image not only based on text alignment but also on other purely visual factors, such as aesthetics.

For the text-relative score CX(x) · C⊥P (p), after removing the influence of the text-irrelevant part, all
three models provide nearly zero scores for unpaired input data, which supports our analysis that this
score focuses on the T2I alignment and explains why this score achieves the best retrieval results for
preference models, as shown in Table 1.

For the third score CX(x) ·ηV, we have analyzed the scalar η in the main paper, which is determined
entirely by the text input and is image-irrelevant. Here, we focus on the text-irrelevant score CX(x) ·
V. We find that this score is strongly positive for the two preference models. This corresponds to
pure visual factors in preference, as shown in Figure 3. On the other hand, for the original CLIP,
this score is nearly zero. This indicates that the common direction of text embedding is almost
orthogonal to the image embeddings, which do not contribute to the final score of CLIP.

Text  Cp

Image Cx

Image Cx

C⊥

ηV

Text  Cp

Image Cx

Image Cx

C⊥

ηV

Text  Cp

Image Cx

Image Cx

C⊥

ηV

CLIP DenscorePickscore

Figure 14: Logit results for different models, both before and after orthogonal decomposition.

0

200

400

600

Fr
eq

ue
nc

y

Original Text Embeddings

Paired
Unpaired

0

200

400

600

800

Fr
eq

ue
nc

y

Text-irrelevant Embeddings

Paired
Unpaired

20 10 0 10 20 30 40
Score

0

200

400

600

Fr
eq

ue
nc

y

Common Embedding

0

200

400

600

Fr
eq

ue
nc

y

Original Text Embeddings

Paired
Unpaired

0

200

400

600

800

Fr
eq

ue
nc

y

Text-irrelevant Embeddings

Paired
Unpaired

5 0 5 10 15 20 25
Score

0

200

400

600

Fr
eq

ue
nc

y

Common Embedding

0

200

400

600

Fr
eq

ue
nc

y

Original Text Embeddings

Paired
Unpaired

0

200

400

600

Fr
eq

ue
nc

y

Text-irrelevant Embeddings

Paired
Unpaired

10 0 10 20 30
Score

0

200

400

600

Fr
eq

ue
nc

y

Common Embedding

Figure 15: The real data statistics for the diagonal paired data and the off-diagonal unpaired data.
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B.3 EVALUATION

To better support the above analysis, we design two additional experiments to test the effectiveness
of our score alongside the experiment in Section 5.2.

Firstly, to evaluate Denscore’s performance under varying text lengths, we employ different maxi-
mum sentence prompts to obtain R@1 retrieval accuracy, as shown in Table 4. We find that our Den-
score, using segment-level training, consistently outperforms the others, except in the one-sentence
setting. In this one-sentence setting, our segment-level training becomes less meaningful, but our
results still outperform other existing preference models.

Additionally, to identify specific misaligned segments in long inputs, we conduct an experiment,
illustrated in Figure 16, to show that segment-level scoring provides more detailed information. In
some cases, certain segments align better with the first image, while other segments align better with
the second image. This makes the overall score relatively meaningless, while segment-level scores
continue to perform well.

Table 4: R@1 results for 5k text-to-image retrieval with varying maximum numbers of sentences.

max number 1 2 3 4 6 8

CLIP 53.06 70.90 76.70 79.62 83.00 84.12
HPSv2 41.86 53.66 56.48 59.14 62.58 63.96
Pickscore 42.34 53.86 57.56 60.22 63.60 63.54
Denscore 52.72 72.70 78.78 83.10 88.16 89.94

C DECOMPOSED PREFERENCE OPTIMIZATION

C.1 PSEUDOCODE

Here, we provide the pseudocode in Algorithm 1 for the entire decomposed preference optimization
pipeline discussed in this paper.

Algorithm 1 Decomposed Preference Optimization for T2I Diffusion Models
1: Input: Long-text input T , Initial T2I diffusion model M , Preference model R
2: Output: Fine-tuned T2I diffusion model M̂
3: S ← Segment(T ) {Step 1: Divide T into segments (e.g., sentences) as S = {s1, s2, . . . , sn}}
4: for each segment si ∈ S do
5: Ei ← Encode(si) {Step 2: Encode segment si (as shown in Section 3.1 and Figure 9)}
6: end for
7: E ← Concatenate(E1, E2, . . . , En) {Step 3: Concatenate segment embeddings (as shown in

Section 3.1 and Figure 9)}
8: I ←M(E) {Step 4: Generate image I from embeddings E using the T2I diffusion model}
9: Eimage, Esegment ← R(I, S) {Step 5: Compute the Preference Embeddings of segments S and

image I (as shown in Section 3.2)}
10: Eoverall ← 1

n

∑n
i=1 Esegment {Compute overall average Embedding}

11: (Etext-relevant, Etext-irrelevant, ηscaler)← Decompose(Eoverall) {Step 6: Decompose overall score into
relevant and irrelevant components (as shown in Section 4.1)}

12: Lloss ← Eimage ·Etext-relevant +ωirrelevantEimage · ηscalerEtext-irrelevant {Step 7: Calculate adjusted loss
(as shown in Section 4.2)}

13: M̂ ← FineTune(M,Lloss) {Step 8: Fine-tune T2I model using computed loss (as shown in
Section 2.3)}

14: Return M̂
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The image depicts a large, ornate building at night, illuminated by a 

combination of natural and artificial light. 

[29.296875, 25.976562]

The building has a classical architectural style, with columns and arches, 

and is bathed in a warm, orange glow that highlights its facade.

[20.214844, 26.757812]

In front of the building, there is a well-maintained lawn with a path 

leading up to the entrance.

[10.498047, 15.820312] The overall atmosphere of the image is one of 

grandeur and mystery, enhanced by the dramatic lighting and the 

fantastical elements in the sky.

[22.949219, 17.578125]

The image depicts a dramatic and apocalyptic scene.

[26.367188, 20.800781] 

At the center of the image, there is a massive volcanic eruption with a 

bright orange and yellow lava flow cascading down the sides of a 

mountain.

[20.507812, 29.101562]

The sky is filled with dark clouds and smoke, suggesting a catastrophic 

event. 

[22.65625, 20.800781]

In the foreground, there is a group of people standing on a rocky 

outcropping. 

[20.117188, 8.398438] 

The image is a digital artwork that features a stylized female figure with 

a fantastical and ethereal appearance. 

[28.101562, 26.5625]

The figure has long, flowing hair that cascades down her back, 

intertwined with what appears to be delicate, pink flowers.

[33.789062, 31.835938]

The figure's face is characterized by a pale complexion, large, 

expressive eyes, and a subtle, serene expression. 

[20.703125, 20.507812] 

Her lips are parted slightly, and her gaze is directed off to the side, 

giving the impression of contemplation or daydreaming. 

[21.679688, 18.945312] 

The image is dominated by a television screen mounted on the wall.

[25.78125, 23.339844]

The screen is alive with the image of an elderly woman, who is 

elegantly dressed in a white blouse and a pearl necklace. 

[23.632812, 24.316406]

The room itself is dimly lit, creating an atmosphere of tranquility.

[20.800781, 14.257812]

The television, being the central object, draws the viewer's attention, 

while the plant in the background adds depth to the scene. 

[24.21875, 28.125] 

The image features a 3D rendering of a robot character. 

[29.101562, 28.710938]

The robot has a predominantly white body with gold accents, including 

a gold chest plate and gold accents on its arms and legs. 

[33.007812, 33.203125]

The robot's eyes are large and round, with a blue light inside them. 

[20.800781, 22.558594]

The background of the image is a plain, light gray color, providing a 

neutral backdrop that contrasts with the robot's colorful design. 

[25.78125, 20.214844]

The image presents a scene dominated by a black leather sofa, which is 

the central object in the frame. 

[27.148438, 26.953125]

The sofa, with its three cushions, is positioned against a stark white 

background, creating a striking contrast. 

[29.882812, 28.320312]

The cushions, like the sofa, are black and appear to be made of leather, 

suggesting a uniform color scheme throughout the piece. 

[26.5625, 27.929688]

The sofa is designed with a wooden frame, adding a touch of warmth 

to the otherwise monochrome setting. 

[24.511719, 20.117188]

Figure 16: Identifying the best-aligned image and segment pairs using segment-level preference
scores.
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C.2 OPTIMIZATION VISUALIZATION

In Figure 17, we present additional visualizations of the generation results with and without our
reweighting strategies at various ratios to demonstrate the effectiveness of our method. A ratio
of 1 indicates the original loss, resulting in significant overfitting, where all images exhibit similar
patterns regardless of the inputs. A ratio of 0 means that the loss only considers the text-relevant part,
leading to low image quality that does not align with human preferences. We observe that a ratio of
0.3 yields the best image quality. These experiments and the results in Section 5.4 demonstrate that
our reweighting strategy effectively reduces overfitting and improves alignment.

0.0 0.1 0.2 0.3 0.6 1.0

Figure 17: The generation results with and without our reweighting strategies at various reweighting
ratios. When ratio is 1, it means the original loss.

C.3 MORE EVALUATION

Here, we conduct additional evaluations across various structures and prompt lengths.

For structural variation, we use DPG-Bench (Hu et al., 2024), which includes test prompts for cat-
egories such as entity, attribute, relation, and count. The results in Table 5 show that our longSD
model outperforms others.

For prompt length, we evaluate generation results for prompt lengths of about N tokens, where
N ∈ [15, 60, 120, 240, 500]. Specifically, for shorter prompts (N ≤ 240), we use our test dataset
and restrict the length to a maximum of N tokens. If a sentence is truncated, it is discarded entirely.
For a prompt is formatted as “xxx.xxx.xxx(N)xxx” and the N token appears in the middle of a
sentence, we only retain “xxx.xxx.”. For longer prompts around N = 500 tokens, we utilize GPT-
4o for generation. During the T2I generation, the baseline models may truncate the prompt if the
input exceeds their maximum limit, whereas the two evaluation methods still assess the generated
images based on the entire given prompt. The evaluation results in Table 6 demonstrate that our
method consistently surpasses current baselines.

Both additional evaluations highlight the effectiveness of our segment-level encoding and preference
optimization strategies.
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Table 5: Evaluation results on DPG-Bench of different models.

Model Average Global Entity Attribute Relation Other
SD-2 68.09 77.67 78.13 74.91 80.72 80.66
PlayG-2 74.54 83.61 79.91 82.67 80.62 81.22
PixArt-α 71.11 74.97 79.32 78.60 82.57 76.96
KanD-2.2 70.12 77.07 80.01 77.55 80.94 78.64
SD-1.5 63.18 74.63 74.23 75.39 73.49 67.81
ELLA1.5 74.91 84.03 84.61 83.48 84.03 80.79
longSD 77.58 76.27 83.00 86.40 86.52 86.21

Table 6: Denscore-O and VQAscore results for 512× 512 image generation using different models
and different maximum prompt lengths.

Token Metric SD-1.5 SD-2.1 PlayG-2 PixArt-α KanD-2.2 ELLA longSD(S) longSD(S+R)

15 Denscore-O 25.31 26.51 23.90 27.84 29.04 27.13 26.36 29.07/30.12
VQAscore 88.32 90.27 88.32 91.12 91.88 90.28 90.71 92.25/92.52

60 Denscore-O 30.42 31.93 30.23 34.01 35.13 33.68 33.08 36.48/37.14
VQAscore 84.54 87.04 86.13 88.73 87.93 87.98 87.90 89.03/89.29

120 Denscore-O 29.49 30.59 29.26 33.72 33.75 33.65 31.71 34.52/35.57
VQAscore 83.63 85.33 84.78 86.81 86.02 86.93 85.88 87.25/87.49

240 Denscore-O 29.26 30.10 28.8 33.48 33.18 32.94 31.20 34.29/35.18
VQAscore 84.69 85.81 85.38 87.19 86.58 86.90 86.27 87.26/87.45

500 Denscore-O 15.11 15.12 13.22 16.27 16.78 16.83 15.90 19.01/19.36
VQAscore 81.14 82.69 80.42 84.79 84.94 85.84 84.34 86.65/87.24

C.4 HIGH-RESOLUTION GENERATION

To evaluate our method for high-resolution generation with the latest models, we conducted exper-
iments using SDXL (Podell et al., 2023) at a resolution of 1024× 1024. We assess the results with
FID, Denscore, VQAscore, and GPT4o, comparing them to those from the previously presented
SD1.5 version. The results are shown in Table 7.

According to the results, we can see that (1) our methods significantly improve both SD1.5 and
SDXL, demonstrating their robustness. (2) Among the two final fine-tuned versions, longSDXL
clearly outperforms longSD1.5 in terms of long text alignment, indicating that a stronger foundation
model achieves better performance limits. (3) The improvement is more pronounced in SD1.5, this
is because the pretrained version of SDXL is already better than that of SD1.5.

Table 7: Evaluation results of our methods on two foundation models: SD1.5 and SDXL.

Model FID Denscore-O Denscore VQAscore GPT-4o

SD1.5 24.96 29.29 20.29 84.57 195
longSD1.5 24.28 35.26 23.79 87.24 668

SDXL 21.18 33.52 22.79 86.89 268
longSDXL 23.88 37.33 25.33 87.30 416
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D GPT-4O EVALUATION

The input for evaluation consists of a prompt and two images generated for this prompt using differ-
ent models. We utilize the multimodal evaluation capabilities of GPT-4o and employ the following
Python code for evaluation:

def eval_fn(prompt, image1, image2):
template = f""" {prompt}
Which image is more consistent with the above prompt? Please respond

with "first", "second" or "tie", no explanation needed. """
completion = client.chat.completions.create(

model="gpt-4o-2024-05-13",
messages=[{

"role": "system", "content": "You are an image generation
evaluation expert.",

"role": "user", "content": [
{"type": "text", "text": template},
{"type": "image_url", "image_url": {"url": f"data:

image/jpeg;base64,{image1}"}},
{"type": "image_url", "image_url": {"url": f"data:

image/jpeg;base64,{image2}"}},
]}])

E OUT-OF-DISTRIBUTION PROBLEM

Some of these approaches incorporate the assistance of LLMs, such as Ranni and RPG-Diffusers.
LLM-based methods that involve additional LLM assistance increase computational requirements
and encounter significant out-of-distribution (OOD) issues with long-text inputs.

There are several reasons why existing LLM-based methods struggle with long-text inputs. Long
texts contain more facts than shorter ones, and LLMs rely on injecting different subprompts into
specific subareas. Some facts may be disjoint, while others overlap (e.g., detailed descriptions of a
single object), complicating the separation of information in pixel space. Additionally, some LLM-
based methods fine-tune the LLM model that may not include datasets with long and detailed inputs.
As a result, these models often cannot manage such situations for generating effective layout plans
to assign different subprompts across different areas.

While current LLM-based methods are not fully effective, we believe this OOD problem can be
resolved in the future. Additionally, LLM-based methods complement our approach: while we
concentrate on training more powerful foundation models, these techniques can further enhance
results during the sampling stage.

Here are some examples of OOD problems:

Ranni. In our experiment with Ranni, approximately half of the prompts resulted in errors before
generating the final output. We selected examples from the remaining successful prompts. The
example prompt is generated from the first image in Figure 18. Although Ranni generates the layout
initially, it creates too many subareas that do not contribute clearly to the final result, as shown in
the second image in Figure 18.

Figure 18: The reference image and the corresponding generated image using Ranni.
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The complete input prompt is “The image is a digital artwork featuring a female character standing
in a rocky environment. The character is dressed in a fantasy-style armor with a predominantly dark
color scheme, highlighted by accents of blue and purple. The armor includes a corset-like bodice, a
skirt, and arm guards, all adorned with intricate designs and patterns. The character’s hair is styled
in a high ponytail, and she has a serious expression on her face. The armor is illuminated by a
purple glow, which appears to emanate from the character’s body, creating a contrast against the
darker elements of the armor and the surrounding environment. The glow also casts a soft light
on the character’s face and the armor, enhancing its details and textures. The background consists
of a rocky landscape with a purple hue, suggesting a magical or otherworldly setting. The rocks
are jagged and uneven, with some areas appearing to be on fire, adding to the dramatic and intense
atmosphere of the image. There are no visible texts or logos in the image, and the style of the
artwork is realistic with a focus on fantasy elements. The image is likely intended for a gaming or
fantasy-themed context, given the character’s attire and the overall aesthetic.”

RPG-Diffusers. For RPG-Diffusers, the example prompt is generated from the first image in Fig-
ure 19. However, they assign two subareas: the left side and the right side of the image. Using these
subprompts—“The black leather sofa is stylishly centered in the frame, showcasing its plush texture
and elegant design, the distinct cushions maintain the streamlined look of the piece, offering com-
fort against the stark contrast of the white background.” and “The three luxurious black cushions
are artfully arranged, emphasizing the sofa’s inviting nature while seamlessly blending into the co-
hesive monochrome theme of the setting.”—results in a repetition of “soft” in the generated image,
as shown in the second image in Figure 19.

Figure 19: The reference image and the corresponding generated image using RPG-Diffusers.

The complete input prompt is “The image presents a scene dominated by a black leather sofa, which
is the central object in the frame. The sofa, with its three cushions, is positioned against a stark
white background, creating a striking contrast. The cushions, like the sofa, are black and appear to
be made of leather, suggesting a uniform color scheme throughout the piece. The sofa is designed
with a wooden frame, adding a touch of warmth to the otherwise monochrome setting. The frame
is visible on both the front and back of the sofa, providing stability and support. The arms of the
sofa, like the frame, are made of wood, maintaining the overall aesthetic of the piece. The sofa is
set against a white background, which accentuates its black color and wooden frame, making it the
focal point of the image. There are no other objects in the image, and no text is present. The relative
position of the sofa is central, with ample space around it, further emphasizing its importance in
the image. The image does not depict any actions, but the stillness of the sofa suggests a sense of
tranquility.”

F TEXT CONDITION FOR VISUAL RESULT

In this section, we provide the text conditions for the visual results in Figure 1 and Figure 6. The
text conditions are as follows:

The text conditions for Figure 1 are as follows:

1. The image presents a 3D rendering of a horse, captured in a profile view. The horse is depicted
in a state of motion, with its mane and tail flowing behind it. The horse’s body is composed
of a network of lines and curves, suggesting a complex mechanical structure. This intricate
design is further emphasized by the presence of gears and other mechanical components, which
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are integrated into the horse’s body. The background of the image is a dark blue, providing a
stark contrast to the horse and its mechanical components. The overall composition of the image
suggests a blend of organic and mechanical elements, creating a unique and intriguing visual.

2. The image presents a close-up view of a human eye, which is the central focus. The eye is
surrounded by a vibrant array of flowers, predominantly in shades of blue and purple. These
flowers are arranged in a semi-circle around the eye, creating a sense of depth and perspective.
The background of the image is a dark blue sky, which contrasts with the bright colors of the
flowers and the eye itself. The overall composition of the image suggests a theme of nature and
beauty. Folder 1 Image 836

3. The image presents a detailed illustration of a submarine, which is the central focus of the art-
work. The submarine is depicted in a three-quarter view, with its bow facing towards the right
side of the image. The submarine is constructed from wood, giving it a rustic and aged appear-
ance. It features a dome-shaped conning tower, which is a common feature on submarines, and a
large propeller at the front. The submarine is not alone in the image. It is surrounded by a variety
of sea creatures, including fish and sharks, which are swimming around it. These creatures add
a sense of life and movement to the otherwise static image of the submarine. The background of
the image is a light beige color, which provides a neutral backdrop that allows the submarine and
the sea creatures to stand out. However, the background is not devoid of detail. It is adorned with
various lines and text, which appear to be a map or a chart of some sort. This adds an element
of intrigue to the image, suggesting that the submarine might be on a mission or an expedition.
Overall, the image is a detailed and intricate piece of art that captures the essence of a submarine
voyage, complete with the submarine, the sea creatures, and the map in the background. It’s a
snapshot of a moment in time, frozen in the image, inviting the viewer to imagine the stories and
adventures that might be taking place beneath the surface of the water.

4. In the image, there’s a charming scene featuring a green frog figurine. The frog, with its body
painted in a vibrant shade of green, is the main subject of the image. It’s wearing a straw hat,
adding a touch of whimsy to its appearance. The frog is positioned in front of a white window,
which is adorned with a green plant, creating a harmonious color palette with the frog’s body. The
frog appears to be looking directly at the camera, giving the impression of a friendly encounter.
The overall image exudes a sense of tranquility and simplicity.

5. The image portrays a female character with a fantasy-inspired design. She has long, dark hair
that cascades down her shoulders. Her skin is pale, and her eyes are a striking shade of blue.
The character’s face is adorned with intricate gold and pink makeup, which includes elaborate
patterns and designs around her eyes and on her cheeks. Atop her head, she wears a crown made
of gold and pink roses, with the roses arranged in a circular pattern. The crown is detailed, with
each rose appearing to have a glossy finish. The character’s attire consists of a gold and pink dress
that is embellished with what appears to be feathers or leaves, adding to the fantasy aesthetic. The
background of the image is dark, which contrasts with the character’s pale skin and the bright
colors of her makeup and attire. The lighting in the image highlights the character’s features
and the details of her makeup and attire, creating a dramatic and captivating effect. There are no
visible texts or brands in the image. The style of the image is highly stylized and artistic, with
a focus on the character’s beauty and the intricate details of her makeup and attire. The image
is likely a digital artwork or a concept illustration, given the level of detail and the fantastical
elements present.

6. The image captures a scene of a large, modern building perched on a cliff. The building, painted
in shades of blue and gray, stands out against the backdrop of a cloudy sky. The cliff itself is
a mix of dirt and grass, adding a touch of nature to the otherwise man-made structure. In the
foreground, a group of people can be seen walking along a path that leads up to the building.
Their presence adds a sense of scale to the image, highlighting the grandeur of the building. The
sky above is filled with clouds, casting a soft, diffused light over the scene. This light enhances
the colors of the building and the surrounding landscape, creating a visually striking image.
Overall, the image presents a harmonious blend of architecture and nature, with the modern
building seamlessly integrated into the natural landscape.

The text conditions for Figure 6 are as follows:

1. The image is a digital artwork featuring a female character standing in a rocky environment. The
character is dressed in a fantasy-style armor with a predominantly dark color scheme, highlighted
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by accents of blue and purple. The armor includes a corset-like bodice, a skirt, and arm guards,
all adorned with intricate designs and patterns. The character’s hair is styled in a high ponytail,
and she has a serious expression on her face. The armor is illuminated by a purple glow, which
appears to emanate from the character’s body, creating a contrast against the darker elements of
the armor and the surrounding environment. The glow also casts a soft light on the character’s
face and the armor, enhancing its details and textures. The background consists of a rocky land-
scape with a purple hue, suggesting a magical or otherworldly setting. The rocks are jagged and
uneven, with some areas appearing to be on fire, adding to the dramatic and intense atmosphere of
the image. There are no visible texts or logos in the image, and the style of the artwork is realistic
with a focus on fantasy elements. The image is likely intended for a gaming or fantasy-themed
context, given the character’s attire and the overall aesthetic.

2. The image presents a scene of elegance and luxury. Dominating the center of the image is a
brown Louis Vuitton suitcase, standing upright. The suitcase is adorned with a gold handle and a
gold lock, adding a touch of opulence to its appearance. Emerging from the top of the suitcase is
a bouquet of pink and white roses, interspersed with green leaves. The roses, in full bloom, seem
to be spilling out of the suitcase, creating a sense of abundance and luxury. The entire scene is
set against a white background, which accentuates the colors of the suitcase and the roses. The
image does not contain any text or other discernible objects. The relative position of the objects
is such that the suitcase is in the center, with the bouquet of roses emerging from its top.

3. The image captures the grandeur of the Toledo Town Hall, a renowned landmark in Toledo,
Spain. The building, constructed from stone, stands tall with two prominent towers on either
side. Each tower is adorned with a spire, adding to the overall majesty of the structure. The
facade of the building is punctuated by numerous windows and arches, hinting at the intricate
architectural details within. In the foreground, a pink fountain adds a splash of color to the scene.
A few people can be seen walking around the fountain, their figures small in comparison to the
imposing structure of the town hall. The sky above is a clear blue, providing a beautiful backdrop
to the scene. The image is taken from a low angle, which emphasizes the height of the town hall
and gives the viewer a sense of being in the scene. The perspective also allows for a detailed
view of the building and its surroundings. The image does not contain any discernible text. The
relative positions of the objects confirm that the town hall is the central focus of the image, with
the fountain and the people providing context to its location.
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