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ABSTRACT
Video Visual Relation Detection (VidVRD) focuses on understand-
ing how entities interact over time and space in videos, a key step
for getting a deeper insight into video scenes beyond basic visual
tasks. Traditional methods for VidVRD, challenged by its complex-
ity, usually split the task into two parts: one for identifying what
categories are present and another for figuring out their temporal
boundaries. This split overlooks the natural connection between
these elements. Addressing the need for recognizing entity inde-
pendence and their interactions across a range of durations, we
propose VrdONE, a streamlined yet efficacious one-stage model.
VrdONE combines the features of subjects and objects, turning pred-
icate detection into 1D instance segmentation on their combined
representations. This setup allows for both category identification
and binary mask generation in one go, eliminating the need for
extra steps like proposal generation or post-processing. VrdONE
facilitates the interaction of features across various frames, adeptly
capturing both short-lived and enduring relations. Additionally, we
introduce the Subject-Object Synergy (SOS) Module, enhancing
how subjects and objects perceive each other before combining.
VrdONE achieves state-of-the-art performances on both the Vi-
dOR benchmark and ImageNet-VidVRD, showcasing its superior
capability in discerning relations across different temporal scales.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
video relation detection, spatiotemporally synergism, set prediction,
entity v.s. pair

1 INTRODUCTION
Deep learning has propelled significant enhancements in visual
video analysis for a variety of tasks such as object tracking [8, 22],
action classification [10, 37], and action localization [10, 34, 36].
Despite the advancements, the increasing complexity of video data
requires precise interpretation of spatial and temporal relationships
among entities in videos. To address this challenge, Video Visual
Relation Detection (VidVRD) has been introduced. VidVRD aims
to detect all relational instances in a video, each represented by
a triplet ⟨subject, predicate, object⟩. By harnessing rich semantic
insights and interpretability, VidVRD is poised to enhance various
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Figure 1: Classical pipelines in existing VidVRD methods
include: (a) clip-level classification-based, (b) frame-level
classification-based, and (c) localization-based approaches.
These methods often overlook the spatiotemporal interac-
tions between entities, thus failing to fully capture both tran-
sient and persistent relations. In contrast, our approach (d)
utilizes a 1D temporal instance segmentation formulation
that concurrently facilitates relation classification and frame-
level relation mask generation for all relations in a single
step, eliminating the need for additional post-processing.

downstream applications, including video captioning [42], video
question answering [42], and video visual grounding [15].

The VidVRD framework is divided into three sub-tasks: entity
tracking, relation classification, and temporal boundary localiza-
tion. As illustrated in Fig. 1, the process begins with the identifica-
tion of each entity’s category and spatial location using pretrained
video tracking models [6]. Traditional approaches to VidVRD typ-
ically treat the tasks of classification and temporal localization

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Limitations of existing two-stage methods. In
classification-based methods, heuristic aggregation can lead
to incorrect temporal localizations, causing (a) consecutive
relations to be mistakenly identified as a single relation, and
(b) long-lasting relations to be improperly split into shorter
segments. Localization-based methods also have drawbacks,
where (c) relations might go undetected during inference due
to mismatches with the fixed-length proposals.

as distinct, processing them sequentially in either a classification-
based or localization-based manner. In classification-based strate-
gies [30, 43], relations are first identified on a clip-level (Fig. 1(a))
or frame-level(Fig. 1(b)), and relation periods are determined us-
ing heuristic temporal aggregation algorithms [5, 30]. Conversely,
localization-based approaches (Fig. 1(c)) start with generating tem-
poral proposals, which are then refined through a redundancy
filtering mechanism before classification.

However, existing methods do not coherently account for the
spatiotemporal interactions between entities, resulting in subopti-
mal performance in both relation classification and localization. On
one hand, the integration of clip-level and frame-level short-term
relations primarily depends on locally extracted features. This can
lead to ambiguous detections at the temporal boundaries of rela-
tions, such as mistakenly splitting a continuous relation into two
disjoint ones (Fig. 2(a)) or improperly merging temporally adjacent
relations of the same category (Fig. 2(b)). On the other hand, the
use of generated proposals creates fixed-length temporal templates
for video relations. As depicted in Fig. 2(c), these templates often
overlook potential relations that do not perfectly align with them
during the inference stage, thereby constraining their effectiveness.

In real-world scenarios, object interactions exhibit varied pat-
terns across spatial and temporal dimensions. As shown in Fig. 3,
each type of video relation in the VidOR dataset [29] displays dis-
tinct spatiotemporal characteristics, including differences in dura-
tion and frequency. Furthermore, entities within these relations

Figure 3: Distributions of all relations in the VidOR dataset.

vary in aspects such as movement speed and range. For instance,
the relation “in front of” and “shake hands” might occur simulta-
neously between two individuals during the same video segment.
While “in front of” might persist throughout the segment, “shake
hands” typically lasts only a few seconds and involves rapid move-
ment. This diversity in spatiotemporal dynamics underscores the
importance of accounting for these variations to accurately cate-
gorize relation types. Motivated by these observations, we aim to
improve our model’s performance in video relation detection by
integrating richer spatiotemporal information.

Building on this concept, we aim to integrate video relation clas-
sification and temporal boundary localization into a single holistic
problem, reformulating it as a 1D temporal instance segmentation
task (see Fig. 1(c)). This unified approach allows for more precise
relation classification and detailed relation boundary localization
within a single inferencing step, benefitting from the improved
supervision provided by temporal location binary masks.

In this context, we introduce VrdONE, a spatiotemporal syner-
gistic transformer designed for one-stage video visual relation de-
tection. This model efficiently detects all relation instances between
subject-object pairs in an untrimmed video. Initially, we capture the
temporal and spatial features of all entities in the video sequence.
For each subject-object pair, we align their features along the tem-
poral dimension to enhance spatiotemporal interactions across var-
ious frames. We have developed the Subject-Object Synergy (SOS)
module to improve mutual perception between the subjects and
objects. Additionally, a Bilateral Spatiotemporal Aggregation (BSA)
mechanism has been designed to effectively learn features that
encapsulate both transient and persistent relations. These features
are then processed by a relation encoder and directed towards the
classification and temporal boundary localization branches. Both
branches are concurrently trained in a single stage, supported by a
relation identification loss and a mask prediction loss.

In summary, our contributions are threefold:

• We offer a novel perspective on the Video Visual Relation
Detection (VidVRD) challenge by reformulating it as a 1D
instance segmentation task. This innovative approach allows
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for simultaneous category identification and binary mask
generation for video relations in a single processing step.

• We propose VrdONE, a unique one-stage framework for
VidVRD. Through the use of Bilateral Spatiotemporal Aggre-
gation, VrdONE enhances the interaction between subjects
and objects across time and space, effectively capturing both
transient and long-lasting relations.

• Our experimental results on various benchmarks confirm
that VrdONE sets a new standard for VidVRD. It significantly
improves upon the state-of-the-art in both relation classifi-
cation and temporal boundary localization.

2 RELATEDWORK
Video Visual Relation Detection. Recent advancements in Video
Visual Relation Detection (VidVRD) primarily fall into two cate-
gories: classification-based and localization-based methods. Utiliz-
ing features from pretrained tracking models [6], Shang et al. [31]
developed the first classification-based pipeline. This approach seg-
ments videos into clips for short-term relation classification and
employs an association algorithm for temporal localization. Sub-
sequent studies [14, 30, 31, 38, 41] have refined this method by
enhancing classification accuracy using graph convolution net-
works [24, 38] or integrating multi-modal features [32, 38]. Innova-
tions in association algorithms by Wei et al. and Su et al. [32, 38]
have led to more precise temporal localization. However, clip-based
approaches struggle with prolonged relations and are prone to
errors from cumulative association steps. To better capture long-
range relations, Chen et al. [5] introduced a multi-modal prototype
learning approach that uses a 1D watershed algorithm [27] for
frame-level classification and temporal localization. Concurrently,
Gao et al. [11] and Zheng et al. [43] have explored parallel learn-
ing strategies for spatial and temporal relation metrics. Contrarily,
Liu et al. [18] have attempted a new direction by generating nu-
merous temporal proposals through sliding windows, filtered by
template matching to pinpoint relation durations.

Differing from these approaches, we reconceptualize the chal-
lenges of classification and temporal localization into a unified 1D
instance segmentation task within a one-stage framework. Our
method leverages interactions between subject and object features
across frames to effectively capture both transient and persistent
relations, significantly improving the precision of relation classifi-
cation and localization.
Spatiotemporal Synergistic Learning in Videos. Understand-
ing vision tasks in videos requires a spatiotemporal synergistic
approach. Initially, 3D convolutional neural networks were used to
extract features across both spatial and temporal dimensions [4, 10].
More recently, transformer architectures have brought significant
advancements in computer vision [9, 19, 35]. For instance, ViViT [1]
integrates these architectures into video processing and sets new
performance benchmarks, surpassing older 3D convolution-based
methods. The Video Swin Transformer [20] adapts the Swin Trans-
former concept to video by expanding it into three dimensions,
which enhances information capture from local to global contexts,
improving efficiency in learning. Similarly, VideoMAE [34] and its
successor, VideoMAE V2 [36], leverage a Masked AutoEncoder ap-
proach in a self-supervised learning framework, applying consistent

spatial masks across video clips to increase model robustness and ef-
fectiveness, thereby achieving notable performance improvements
in various video processing tasks. Overall, integrating spatiotem-
poral elements is crucial for optimizing video processing across
diverse applications.

3 METHOD
3.1 Preliminaries
Problem Setting. Given an untrimmed video𝑉 of length 𝐿, which
contains 𝑁 entities and𝑀 possible relations, the goal of VidVRD is
to learn a video relation detector G to generate all possible relations
between the entities in 𝑉 and their corresponding durations, such
that

G(𝐹 ) = {(⟨𝑆𝑖 , 𝑅𝑘 ,𝑂 𝑗 ⟩,𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇𝑒𝑛𝑑 )}, 𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑘 ∈ [1, 𝐾], (1)

where 𝑆𝑖 and 𝑂 𝑗 denotes the subject and object when relation 𝑅𝑘
happens, 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑 denotes the begin and the end of 𝑅𝑘 . In
this case, 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑁 } represents the extracted features of
the tracklets for all the objects. The feature for object 𝑖 is repre-
sented by 𝑓𝑖 ∈ R𝑙𝑖×𝐶 , which is a set of feature vectors extracted for
uniformly-sampled consecutive video frames, where 𝑙𝑖 ≤ 𝐿 is the
period that object exists in 𝑉 . Typically, the pipeline of VidVRD is
divided into three sub-tasks: entity tracking, relation classification,
and temporal boundary localization. After extracting 𝐹 from the
results of entity tracking, previous works often treat the relation
classification and temporal boundary localization of predicates sep-
arately. This procedure can be explained by Bayes’s Formula, such
that the distribution of the relation type 𝑅𝑐 and its duration 𝑅𝑑 are
formulated either as:

𝑃 (𝑅𝑐 , 𝑅𝑑 |𝐹 ) = 𝑃 (𝑅𝑑 |𝑅𝑐 , 𝐹 )𝑃 (𝑅𝑐 |𝐹 ), (2)

or

𝑃 (𝑅𝑐 , 𝑅𝑑 |𝐹 ) = 𝑃 (𝑅𝑐 |𝑅𝑑 , 𝐹 )𝑃 (𝑅𝑑 |𝐹 ). (3)

However, the ignorance of the inherent connection between the
two tasks and consequently deteriorates both the classification and
localization performance. To fully mitigate the spatial and temporal
features during the interaction of subjects and objects, we propose
to reformulate the problem in a one-stage manner, i.e., directly
estimating 𝑃 (𝑅𝑐 , 𝑅𝑑 |𝐹 ).
Attention Mechanism in Transformers [35] has demonstrated
its great ability to capture global information along an input se-
quence. Given the input query, key, and value, denoted by 𝑞 ∈
R𝑙𝑞×𝐷𝑞 , 𝑘 ∈ R𝑙𝑘×𝐷𝑘 , 𝑣 ∈ R𝑙𝑣×𝐷𝑣 , the attention operation is calcu-
lated as:

Attn(𝑞, 𝑘, 𝑣) = Softmax(𝑞 · 𝑘
𝑇√︁

𝐷𝑞

) · 𝑣, (4)

where typically 𝐷𝑞 = 𝐷𝑘 , 𝑙𝑘 = 𝑙𝑣 . Among the vanilla attention
architecture, the self-attention proposes to generate the 𝑞, 𝑘, 𝑣 from
the same input sequence 𝑒 ∈ R𝑙𝑒×𝐷 with three projection function:

𝜎𝑞 (𝑒) = 𝑒 ·𝑊𝑞, 𝜎𝑘 (𝑒) = 𝑒 ·𝑊𝑘 , 𝜎𝑣 (𝑒) = 𝑒 ·𝑊𝑣 . (5)

where 𝑊𝑞 ∈ R𝐷×𝐷𝑞 , 𝑊𝑘 ∈ R𝐷×𝐷𝑘 , and 𝑊𝑣 ∈ R𝐷×𝐷𝑣 are the
coefficients of the three projection functions.
Local Attention. To capture local information within the neigh-
boring region of the input sequence, local attention is proposed for
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Figure 4: The pipeline of our VrdONE. Given an untrimmed video, we obtain the temporal and spatial feature (𝑓 and 𝜃 ) for all
of entities’ traklets using a frozen pretrained video tracker. For each subject-object pair, we apply the Bilateral Spatiotemporal
Aggregation (BSA) to encapsulate both information from transient and persistent relations into the feature embeddings,
proceeding them through 𝐿 Subject-Object Synergy (SOS) modules. After equipping the enriched embeddings with the relative
spatial movement 𝜃𝑠𝑜 , the resulted unified embeddings 𝑒𝑠𝑜 is further processed by the relation encoder 𝐸𝑚𝑢𝑙 and directed to two
synergistic decoder 𝐷𝑚𝑠𝑘 and 𝐷𝑟𝑒𝑙 . With the help of the generated temporal-aware feature 𝑒𝑚𝑠𝑘 and category-aware feature 𝑒𝑐𝑙𝑠 ,
VrdONE finally achieves one-stage precessing for both video relation classification and temporal localization.

restricting the perceptive fields on the sequence. Before applying
the projection function, the input query, key, and value 𝑒𝑞, 𝑒𝑘 , 𝑒𝑣
will be separately divided into 𝐼 small segments 𝑒𝑡 , 𝑡 ∈ [1, 𝐼 ], each
segment is processed by an independent 1D convolutional layer
𝑒𝑡 = Conv1D(𝑒𝑡 ). The attention calculation is also performed
segment-wise as:

LocalAttn(𝑒𝑡𝑞, 𝑒𝑡𝑘 , 𝑒
𝑡
𝑣) = Softmax(

𝜎𝑞 (𝑒𝑡𝑞) · 𝜎𝑘 (𝑒𝑡𝑘 )
𝑇√︁

𝐷𝑞

) · 𝜎𝑣 (𝑒𝑡𝑣). (6)

The results of 𝐼 segments will be further concatenated into one
for the next attention layer. Based on this definition, we define the
utilized local self-attention layer and local cross-attention layer
used in our VrdONE as

LocalSA(𝑒𝑡 ) = Softmax(
𝜎𝑞 (𝑒𝑡 ) · 𝜎𝑘 (𝑒𝑡 )𝑇√︁

𝐷𝑞

) · 𝜎𝑣 (𝑒𝑡 ), (7)

and

LocalCA(𝑒𝑡𝑠 , 𝑒𝑡𝑜 ) = Softmax(
𝜎𝑞 (𝑒𝑡𝑠 ) · 𝜎𝑘 (𝑒𝑡𝑜 )𝑇√︁

𝐷𝑞

) · 𝜎𝑣 (𝑒𝑡𝑜 ), (8)

respectively.

3.2 Overview
The goal of VrdONE is to build an efficacious one-stage video re-
lation detector for simultaneously handling the relation classifica-
tion and temporal localization. The overall pipeline of VrdONE is
shown in Fig. 4. Firstly, we apply a pretrained object detector [6, 26]
to extract objects’ features 𝐹 together with their spatial position
Θ = {𝜃1, 𝜃2, ..., 𝜃𝑁 }. For each subject-object pair, we process their
features (𝑓𝑠 , 𝜃𝑠 , 𝑓𝑜 , 𝜃𝑜 ) using the Bilateral Spatiotemporal Aggrega-
tion (Section 3.3) for fully perceiving spatiotemporal interactions in
the video. Specifically, we propose a subject-object synergy module
for improving the mutual perception between the two entities. The

resulting unified embedding 𝜃𝑠𝑜 is further proceeded to the one-
stage relation detector (Section 3.4) for both relation classification
and temporal boundary localization. The one-stage relation detec-
tor consists of a relation encoder 𝐸𝑚𝑢𝑙 , a relation decoder, and a
temporal mask decoder 𝐷𝑚𝑠𝑘 , and concurrently trained in a single
stage by a relation identification loss and a mask prediction loss.

3.3 Bilateral Spatiotemporal Aggregation
In Bilateral Spatiotemporal Aggregation (BSA), we promote the
mutual awareness of the subject and object features through mutual
perception and ultimately encode them into a unified relational
representation for later time dimensional segmentation.

Given a pair of consecutive and untrimmed subject and object
features, we generate subject-object pairs by enumerating all two-
by-two combinations of triplet proposals, forming the set P =

{(𝑓𝑠 , 𝑓𝑜 )𝑛 |1 ≤ 𝑛 ≤ 𝑁 ∗ (𝑁 − 1)}, where 𝑓𝑠 , 𝑓𝑜 , and 𝑁 denotes
the subject feature, the object feature, and the number of detected
entities. Subsequently, we crop the subject-object pairs with the
overlapping time range to get the synchronized feature vectors
𝑓𝑠 ∈ R𝑙𝑠𝑜×𝐶 and 𝑓𝑜 ∈ R𝑙𝑠𝑜×𝐶 , with 𝑙𝑠𝑜 denoting the length.

To embed the detected spatial information into the features, we
adopt an approach from [11] and employ absolute positional repre-
sentations 𝜃𝑎 ∈ R𝑙𝑖×8 for each entity. To be specific, the positional
representations are comprised of the normalized bounding bbox
coordinates and the offsets between two consecutive frames. There-
after, the visual features 𝑓 and spatial features 𝜃𝑎 are integrated into
a general entity embedding with a multilayer perceptron (MLP),
formulated as:

𝑒 = MLP(Concat(𝑓 , 𝜃𝑎)), (9)
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where Concat(·, ·) represents the concatenation along feature di-
mensions. Following the above process, the visual and spatial fea-
tures of both subject and object are integrated into entity embed-
dings 𝑒𝑠 and 𝑒𝑜 , which are further fed into the Subject-Object Syn-
ergy Module to comprehend interactions.
Subject-Object Synergy Module. The Subject-Object Synergy
(SOS) module facilitates interaction between subject and object
features to enhance mutual understanding. The SOS module is
composed of an embedding layer and two Interactive Attention
Blocks (IAB).

The embedding layer shares the same structure as the encoder
layer of a vanilla Transformer, consisting of a local multihead self-
attention and an MLP. Specifically, the embedding layer of the 𝑙𝑡ℎ
SOS block is defined as:

𝑒𝑙 = LocalSA(𝑒𝑙−1) + 𝑒𝑙−1,

𝑒𝑙 = MLP(𝑒𝑙 ) + 𝑒𝑙 .
(10)

Accordingly, the subject and object features are embedded and are
denoted as 𝑒𝑙 and 𝑒𝑙 .

Within the SOS module, the Interactive Attention Block (IAB) en-
ables information exchange between subject and object features to
enrich their representations. Concretely, the Interactive Attention
Block is composed of a self-attention layer and a cross-attention
layer. For instance, to integrate object features into subject features,
the aggregated subject representation is expressed as:

𝑒𝑙𝑠 = LocalSA(𝑒𝑙𝑠 ),

𝑒𝑙𝑠 = LocalCA((𝑒𝑙𝑠 , 𝑒𝑙𝑜 )) + 𝑒𝑙𝑠 . (11)

Likewise, we augment the object features with the mutual infor-
mation from the subject and finally obtain an aggregated object
feature 𝑒𝑙𝑜 .

After applying 𝐿 SOS layers, the enhanced subject and object
features (𝑒𝐿𝑠 and 𝑒𝐿𝑜 ) capture comprehensive representations with
innovative features from the interactions. We then fuse the subject
and object features to form a unified representation for the subject-
object relation. To further facilitate positional awareness, we inject
the relative position 𝜃𝑟𝑠𝑜 as follows:

𝜃𝑟𝑠𝑜 = [𝑠𝑥 , 𝑠𝑦, 𝑠𝑤 , 𝑠ℎ, 𝑠𝑎],

= [𝑥
𝑠 − 𝑥𝑜
𝑥𝑜

,
𝑦𝑠 − 𝑦𝑜
𝑦𝑜

, log
𝑤𝑠

𝑤𝑜
, log

ℎ𝑠

ℎ𝑜
, log

𝑤𝑠 · ℎ𝑠
𝑤𝑜 · ℎ𝑜 ] .

(12)

Finally, the subject feature, the object feature, and the relative posi-
tion are projected to form the final representation of the subject-
object relation 𝑒𝑠𝑜 using a two-layer MLP as:

𝑒𝑠𝑜 = MLP(Concat(𝑒𝐿𝑠 , 𝑒𝐿𝑜 , 𝜃𝑟𝑠𝑜 )) . (13)

3.4 One-stage Relation Detector
After obtaining the unified embedding 𝑒𝑠𝑜 that contains rich spa-
tiotemporal information, we further process it to achieve one-stage
relation classification and temporal localization through the one-
stage relation detector. The one-stage relation detector is composed
of a Relation Encoder 𝐸𝑚𝑢𝑙 , relation decoder 𝐷𝑟𝑒𝑙 , and temporal
mask decoder 𝐷𝑚𝑠𝑘 .

Relation Encoder.We follow the design of feature pyramid net-
work [16] and implement our relation encoder to capture multiscale
features over varying temporal lengths. The relation encoder is
stacked by a series of transformer blocks, which share a similar
architecture with blocks defined in Eq. 10. Additionally, we propose
to downsample the features before inputting them into each trans-
former block to perceive more long-range temporal information. By
treating the unified features embedding 𝑒𝑠𝑜 as the input of the first
encoding block, the calculation of each block can be formulated as:

𝑎𝑙−1 = 𝛿 (𝑎𝑙−1),

𝑎𝑙 = LocalSA(𝑎𝑙−1) + (𝑎𝑙−1),

𝑎𝑙 = MLP(𝑎𝑙 ) + 𝑎𝑙 ,

(14)

where 𝑎𝑙−1 is the output of the previous block and 𝛿 is the down-
sampling operation. In this way, multi-scale spatiotemporal features
can be obtained from different layers of the relation encoder, form-
ing a feature pyramid A = {𝑎1, 𝑎2, ..., 𝑎𝐿𝑒 }, where 𝐿𝑒 is the number
of transformer blocks.
Relation Decoder and Temporal Mask Decoder. We employ
a query-based transformer as our relation decoder and a feature
pyramid decoder for temporal mask generation.

For the relation classification, our relation decoder receives 𝑎𝐿𝑒
as its input to access high-dimensional semantic information. Specif-
ically, the relation decoder consists of 𝐿𝑟𝑒𝑙 transformer blocks with
𝑁𝑞 learnable query embeddings 𝑞 ∈ R𝑁𝑞×𝑑 , which serve as tem-
plate learners for all possible relation instances within a video. 𝑁𝑞
and 𝑑 denote the number and dimension of query embeddings. The
calculation can be formulated as:

𝑞𝑙 = LocalSA(𝑞𝑙−1),

𝑒𝑙
𝑟𝑒𝑙

= LocalCA(𝑞𝑙 , 𝑒𝑙−1
𝑟𝑒𝑙

),
(15)

where 𝑒1
𝑟𝑒𝑙

= 𝑎𝐿𝑒 . The final output of relation decoder 𝑒𝑐𝑙𝑠 = 𝑒
𝐿𝑟𝑒𝑙
𝑟𝑒𝑙

will pass through a classification head 𝐻𝑐𝑙𝑠 to output the categories
of the detected relations.

For temporal relation localization, we generate a fine-grained
mask using the temporal mask decoder for precise relation bound-
ary detection in a per-frame mode. The temporal mask decoder
contains a series of lateral connection layers for progressively up-
sampling the pyramid feature A. The number of lateral connection
layers is the same as the number of transformer blocks in 𝐸𝑚𝑢𝑙 .
Concretely, the feature aggregation in the 𝑙-th layer is

𝑎𝑙 = Conv1D(𝜂 (𝑎𝑙−1) + Conv1D(𝑎𝑙 )), (16)

where 𝜂 denotes the upsampling operation, which performs linear
interpolation on 𝑎𝑙−1. The decoder’s output 𝑒𝑚𝑠𝑘 is recovered to the
same length with 𝑒𝑠𝑜 for better perception of temporal variations,
and finally incorporates the classification embedding 𝑒𝑐𝑙𝑠 through
the localization head 𝐻𝑙𝑜𝑐 to generate per-frame relation mask.

3.5 Training and Inference
Loss Functions. Similar to MaskFormer [7], we employ a Bipartite
Matching strategy to assign different queries to learn the corre-
sponding instances. The matching cost for relation classification
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Table 1: Comparison with state-of-the-arts on VidOR dataset. For detectors, FR, MG, and IE symbolize Faster R-CNN [26],
MEGA [6], and Integrated Encoder, respectively. For extra features, L and M denote Language and Mask features, whereas
I3D [4] and CLIP [25] denote visual feature extractor. For Social Fabric and our VrdONE, we represent the variants with extra
features with a "-X" postfix. The best and second best performances are bolded and underlined.

Method Detector Extra
Feature

Relation Detection Relation Tagging
mAP R@50 R@100 P@1 P@5 P@10

VRD-STGC [18] FR – 6.85 8.21 9.90 48.92 36.78 –
IVRD [14] FR – 7.42 7.36 9.41 53.40 42.70 –
TSPN [40] FR – 7.61 9.33 10.71 53.14 42.22 34.94

VIDVRD II [30] FR – 8.65 8.59 10.69 57.40 44.54 33.30
BIG [11] MG I3D+L 8.54 8.03 10.04 64.42 51.80 40.96
HCM [38] MG – 10.44 9.74 11.23 67.43 52.19 40.30

VRDFormer [43] IE – 11.19 11.05 13.34 63.71 51.07 39.89
Social Fabric [5] FR I3D 9.54 8.49 10.17 59.24 47.24 35.99
Social Fabric-X [5] FR I3D+L+M 11.21 9.99 11.94 68.86 55.16 43.40

VrdONE MG – 11.86 11.13 14.21 66.11 54.92 43.90
VrdONE-X MG CLIP 12.17 11.41 14.55 67.67 55.58 44.28

and mask prediction is denoted as

L𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 = 𝜆𝑐𝑙𝑠 · CE(𝑝𝑖 , 𝑐
𝑔𝑡

𝑗
) + L𝑚𝑎𝑠𝑘 (�̂�𝑖 ,𝑚

𝑔𝑡

𝑗
), (17)

where the classification cost −𝑝𝑖 (𝑐𝑔𝑡𝑗 ) used in DETR [3] is replaced
by Cross Entropy loss. This substitution is made perhaps due to
the fact that −𝑝𝑖 (𝑐𝑔𝑡𝑗 ) incurs a higher cost than cross entropy, po-
tentially leading to premature overfitting in the training process,
thereby hindering our model’s learning. The L𝑚𝑎𝑠𝑘 is

L𝑚𝑎𝑠𝑘 = 𝜆𝑚𝑓 · FL(�̂�𝑖 ,𝑚
𝑔𝑡

𝑗
) + 𝜆𝑚𝑑 · Dice(�̂�𝑖 ,𝑚

𝑔𝑡

𝑗
), (18)

which is a binary focal loss [17] and a dice loss [23] respectively.
The overall loss function for training is given by:

L = 𝜆𝑐𝑙𝑠 · CE(𝑝𝜎 (𝑖 ) , 𝑐
𝑔𝑡

𝑖
) + I

𝑐
𝑔𝑡

𝑖
≠∅L𝑚𝑎𝑠𝑘 (𝑚𝜎 (𝑖 ) ,𝑚

𝑔𝑡

𝑖
), (19)

where 𝜎 (𝑖) denotes the index of the query matched to the ground
truth with index 𝑖 .
Inference Phrase. During testing, we exhaustively enumerate
all possible pairs to detect relations within the current video, re-
sulting in 𝑁 × (𝑁 − 1) potential subject-object pairs for inference.
However, our model is capable of parallelly detecting all possi-
ble subject-object pairs and outputting all detection results in one
step. For segmented frames, we consider those with a foreground
probability greater than 0.5 as the detected relation range. Any
post-processing to avoid isolated noisy positive points is ignored,
as we have observed that our model demonstrates robustness in ac-
curately identifying the temporal boundaries of relation instances.

4 EXPERIMENTS
Datasets. To evaluate our method, we conduct experiments on two
datasets: ImageNet-VidVRD [31] and Video Object Relation (Vi-
dOR) [29]. ImageNet-VidVRD comprises 1,000 videos sourced from
the ILSVRC2016-VID dataset [28], with a total duration of approx-
imately 3 hours. It contains 35 entity categories and 132 relation
categories. Annotations in ImageNet-VidVRD are coarsely labeled

with relation lengths as multiples of 15 frames, while entity track-
lets are densely annotated in each frame to form ⟨subject, predicate,
object ⟩ triplets. The dataset is split into 800 training videos and 200
testing videos. The VidOR dataset consists of 10,000 user-generated
videos selected from YFCC-100M [33], totaling approximately 98.6
hours. There are 80 entity categories and 50 predicate categories. Vi-
dOR is partitioned into a training set with 7,000 videos, a validation
set with 835 videos, and a testing set with 2,165 videos. Following
standard practice, we train our model on the training set and test
on the validation set. Unlike ImageNet-VidVRD, which has sparse
annotations, VidOR provides densely labeled relations on the tem-
poral dimension, demanding more precise reasoning capabilities.
Additionally, as depicted in Fig. 3, the mean durations of relations in
VidOR are typically much longer than those in ImageNet-VidVRD
and vary across relation categories, posing additional challenges.
Evaluation Metrics. We assess VrdONE’s performance on two
tasks: (1) Relation Detection (RelDet): This task involves detecting
a set of visual relation triplets, and the corresponding tracklets of
subject and object. A detected triplet is deemed correct if suffices
both matching the ground-truth triplet and the detected tracklets
manifest sufficient overlap with the ground-truth, e.g., 𝑣𝐼𝑜𝑈 > 0.5.
We utilize mAP and Recall@K (R@K, K=50, 100) as the metrics
for RelDet. (2) Relation Tagging (RelTag): This task only solely
evaluates the precision of visual relation triplets and disregards the
localization results of tracklets. Precision@K (P@K, where K=1, 5,
10) is employed as the evaluation metric for RelTag.
Implementation Details. Following [11, 38], we utilize the pre-
trained Object Detector MEGA [6] with backbone ResNet-101 [12].
Detection results are consolidated into object tracklets using deep-
SORT [39].We set themaximum length of overlapped subject-object
durations as 512, otherwise cut out the outer length. The Multi-
scale Transformer Encoder incorporates 3 blocks, alongside the
output from SOS, resulting in a 4-layer feature pyramid. With a
downsampling ratio of 2, the feature pyramid comprises lengths
of [512, 256, 128, 64] respectively. The decoder consists of 4 layers,
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Table 2: Comparison with state-of-the-arts on VidVRD dataset. † denotes the version implemented by the authors.

Method Detector Extra
Feature

Relation Detection Relation Tagging
mAP R@50 R@100 P@1 P@5 P@10

VRD-STGC [18] FR I3D 18.38 11.21 13.69 60.00 43.10 32.24
IVRD [14] FR – 22.97 12.40 14.46 68.83 49.87 35.57
TSPN [40] FR – 18.90 11.56 14.13 60.50 43.80 33.73

Social Fabric [5] FR – 19.23 12.74 16.19 57.50 43.40 31.90
Social Fabric-X [5] FR I3D+L+M 20.08 13.73 16.88 62.50 49.20 38.45
VIDVRD II† [30] FR – 23.85 9.74 10.86 73.00 53.20 39.75

BIG [11] MG – 26.08 14.10 16.25 73.00 55.10 40.00
HCM [38] MG – 29.68 17.97 21.45 78.50 57.40 43.55

VrdONE MG – 31.33 18.20 21.61 80.50 59.40 44.17

with the number of queries 𝑁𝑞 set as 9. Parameters 𝜆𝑐𝑙𝑠 , 𝜆𝑚𝑓 , 𝜆𝑚𝑑

are set to 2, 2, and 5.
Prior to Local Attention and MLP computation, calculating Local

Attention and MLP, LayerNorm [2] is implemented. Drop-out and
Drop-path [13] rates are specified as 0 and 0.1. Training of VrdONE
employs the AdamW [21] optimizer with a learning rate of 2×10−4.
Warmup and Exponential Moving Average (EMA) techniques are
employed to enhance and stabilize the training process.

4.1 Comparison with State-of-the-Arts
We conduct experiments on ImageNet-VidVRD and VidOR datasets
and compare our VrdONE with the state-of-the-art methods on
RelDet and RelTag tasks, as illustrated in Table 1 and Table 2.

On the VidOR dataset, we implement two versions VrdONE de-
tector with the ordinary one obeys a traditional pipeline while the
extra version incorporates features extracted by the CLIP [25] im-
age encoder. For the ordinary implementation, our vanilla VrdONE
achieves state-of-the-art performance on four metrics. In particular,
VrdONE exhibits a noticeable improvement (+0.67%, +0.08%, and
+0.87%) on all the RelDet metrics compared to the previous state-
of-the-art [38, 43], indicating a comprehensive enhancement in the
temporal boundary localization by leveraging the spatiotemporal
interaction. As for the implementation with additional CLIP fea-
tures, method [11] and implementation [5] with extra features are
also involved for a fair comparison. With extra CLIP [25] features
integrated, VrdONE achieves the best or second-best performance
across all six metrics. Specifically, VrdONE balances tasks between
RelDet with RelTag, maintaining robust relation classification per-
formance comparable to specialized models like Social Fabric [5],
which excel in perceiving category relationships. Notably, VrdONE
demonstrates a significant advantage in temporal boundary local-
ization performance, showing improvements of +0.96%, +0.36%, and
+1.21% on mAP, R@50, and R@100, respectively.

On the VidVRD dataset, VrdONE outperforms HCM by +1.17%,
+0.23%, +0.16%, +2.00%, +2.00%, and +0.62% in terms of all the RelDet
and RelTag metrics. By amalgamating the diverse metrics across
both datasets, our VrdONE demonstrates exceptional performance,
thereby validating the efficacy of the single-step methodology.

Table 3: Ablation of Subject-Object Synergy (SOS) module.
"w/o SOS" denotes the removal of SOS module. "w/o IAB",
Cross" and "IAB" indicate SOS with the removal of IAB mod-
ule, basic cross-attention, and Interactive Attention Block,
respectively. ∗ indicates our implementation.

Approach Relation Detection Relation Tagging
mAP R@50 R@100 P@1 P@5 P@10

w/o SOS 11.28 10.83 13.64 65.74 54.68 44.06
w/o IAB 11.60 10.97 14.01 65.98 54.54 43.79
Cross 11.72 11.09 14.11 66.82 54.87 43.74
IAB∗ 11.86 11.13 14.21 66.11 54.92 43.90

Table 4: Ablation of the number of queries. The number of
queries 𝑁𝑞 is set within the range of [5, 13].

𝑁𝑞
Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

5 11.62 11.02 13.98 66.59 54.06 43.16
7 11.82 11.08 14.10 66.23 55.17 43.93
9∗ 11.86 11.13 14.21 66.11 54.92 43.90
11 11.66 11.00 13.98 66.11 54.85 43.89
13 11.59 11.03 14.16 66.95 54.47 43.97

4.2 Ablation Studies
In this section, we conduct comprehensive ablation studies to
demonstrate the effectiveness of the proposed Subject-Object Syn-
ergy Module. Additionally, we evaluate several critical parameters
to affirm the robustness of our method.
Subject-Object Synergy Module. In Table 3, we present three
variants to illustrate the effectiveness of the Subject-Object Syn-
ergy (SOS) module, including the removal of SOS and two different
implementations of SOS (cross-attention vs. Interactive Attention
Block). Without SOS, the results demonstrate a substantial drop
(-0.32% mAP and -0.24% P@1) in detection and classification accu-
racy, indicating the importance of capturing the temporal feature
patterns. Moreover, our IAB achieves superior perception of tempo-
ral and spatial representation within video clips, showing a notable
advantage (+0.26 mAP) compared to the basic cross-attention.
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Table 5: Ablation of video length. Input videos are cropped
to a unified length from a range of 256 to 1024.

Video
Length

Relation Detection Relation Tagging
mAP R@50 R@100 P@1 P@5 P@10

256 11.72 11.04 14.01 66.95 55.18 43.89
512* 11.86 11.13 14.21 66.11 54.92 43.90
1024 11.71 11.10 14.05 65.50 54.73 44.17

Table 6: Ablation of the number of the Subject-Object Synergy
(SOS) module. Different numbers of the SOSmodules ranging
from 1 to 3 are stacked in the test.

No. of
SOS

Relation Detection Relation Tagging
mAP R@50 R@100 P@1 P@5 P@10

1 11.76 11.16 14.18 65.87 54.30 43.52
2* 11.86 11.13 14.21 66.11 54.92 43.90
3 11.61 11.13 14.15 65.87 55.17 43.53

Number of Queries. The number of queries determines the ca-
pability of the video reasoning. A tight setting of 𝑁𝑞 hinders the
modeling of diverse relationships, while an excessive query number
results in redundant training complexity. Consequently, selecting
an appropriate 𝑁𝑞 significantly affects its performance. Previous
works [11] based on two-stage detection typically leverage a large
query number (e.g.,𝑁𝑞 = 100) to simultaneously detect the relations
of all the subject-object pairs. Distinct from that, our work inde-
pendently estimates the relation for each pair, therefore requiring
fewer queries, as demonstrated in Table 4. This can be extensively
supported by a quantitative evaluation indicating that, on average,
each subject-object pair in a single video clip in the VidOR training
dataset is associated with 2.30 relations.
Video length. Table 5 shows the impact of the input length of the
video clips. Empirically, we truncate/pad the videos to a uniform
length of 512 for best performance.
Number of SOS modules. Table 6 illustrates the influence of the
number of the Subject-Object Synergy layers. Accordingly, we set
the number of layers as 2 in practice.

4.3 Qualitative Results
In Fig. 5, we present several visualization examples for comparison
with BIG-C, VidVRD-II, and our VrdONE. The top part of Fig. 5
exhibits a sophisticated scene that features multiple humans and
heavily occluded objects from VidOR dataset. Nonetheless, our Vr-
dONE precisely captures the most of the relations. Specifically, our
method can simultaneously consider spatial relations and action re-
lations, e.g. “adult-play(instr)-guitar” and “guitar-in front of-adult”,
demonstrating that our method adequately considers spatiotempo-
ral variance. In contrast, BIG [11] and VIDVRD II [30] are afflicted
by the missed and wrong detections, especially in the case of the
human and object interaction like “adult-play(instr)-guitar”. In an-
other easier case drawn from the VidVRD dataset, our VrdONE
can produce diverse and confident detection results. It is worth
mentioning that VrdONE accurately comprehends size and location
relationships, affirming its advanced spatiotemporal understanding.
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Figure 5: Visualization of video relation detection and rela-
tion tagging results with open-source methods on VidOR
dataset (top) and VidVRD dataset (bottom). The

√
, ×, and ⃝

represent correct, false and missing detection respectively.

Based on the results of the qualitative experiments above, we
can fully demonstrate the superiority of our method and the effec-
tiveness of spatiotemporal synergistic learning.

5 CONCLUSION
In this paper, we reframe the Video Visual Relation Detection chal-
lenge as a 1D instance segmentation problem and unveil VrdONE, a
pioneering one-stage detection model designed to curtail redundant
heuristic post-processing. By leveraging the dynamic interplay be-
tween subject-object pairs, VrdONE enhances video representation,
improving both temporal classification and localization tasks. The
novel Subject-Object Synergy (SOS) module within VrdONE adeptly
captures both transient and lasting relations by synthesizing mutual
features. Comprehensive quantitative and qualitative assessments
affirm that VrdONE achieves unparalleled performance in its field.

Limitations. Despite VrdONE’s advanced capabilities, it does
exhibit certain constraints. Its effectiveness is partly dependent
on the quality of the underlying pretrained video detection and
tracking algorithms, as it utilizes processed tracklets for input. Addi-
tionally, VrdONE processes all possible subject-object pairs during
inference without any preliminary filtering, potentially diminishing
its overall efficiency.
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