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Abstract

Hybrid self-supervised learning methods that combine masked image modelling and con-
trastive learning have demonstrated state-of-the-art performance across many vision tasks.
In this work we identify a property overlooked by previous hybrid methods: they can
achieve considerable efficiency improvements compared to contrastive learning, whilst still
outperforming the constituent contrastive and masked image modelling training components.
To demonstrate this, we introduce CAN a minimal and conceptually clean synthesis of
(C) contrastive learning, (A) masked autoencoders, and (N) the noise prediction approach
used in diffusion models. CAN is designed to be efficient, masking 50% of patches in both
views, meaning that the overall FLOPs load of SimCLR is 70% higher than CAN for ViT-L
backbones. Our combined approach outperforms its MAE and SimCLR constituent parts
on an extensive set of downstream transfer learning and robustness tasks under both linear
probe and finetune protocols, and pre-training on large scale datasets such as JFT-300M
and ImageNet-21K. Code is provided in the supplementary material, and will be publicly
released.

1 Introduction

Contrastive learning (Chen et al., 2020b) and masked image models such as MAE (He et al., 2022) employ
very different learning mechanisms. The former learns to extract features that are invariant to certain
semantics-preserving variations in data, while latter reconstructs missing parts of an input, thereby learning
spatial statistical correlations in data. Because of this, Aybrid methods have recently been proposed that
combine aspects of both with the goal of building a reinforced and improved training mechanism (Huang
et al., 2022; Tao et al., 2022). However, existing hybrid methods tend to suffer from two weaknesses compared
to MAE: 1) training costs scale more poorly as model size increases, and 2) the re-introduction of complexity-
increasing tricks such as multi-cropping and use of momentum updated target networks that are commonplace
in contrastive learning. This increase in complexity is especially harmful to fast iteration of new models and
methods given the increased adoption of web-scale training datasets (Yu et al., 2022; Radford et al., 2021; Jia
et al., 2021) and the extreme accompanying costs.

In this work we introduce CAN—a hybrid contrastive masked autoencoder designed with simplicity and
efficiency as priorities. In the process our aim is to demonstrate that hybrid methods are not only a promising
path to improved state-of-the-art performance (as prior work has shown) but can improve feature learning
without higher computation costs or more complex training recipes. As well as a minimal fusion of contrastive
learning and masked autoencoders, CAN additionally uses the denoising loss that has driven advances in
diffusion models (Ho et al., 2020; Song et al., 2021). This loss predicts the noise added to an input image,
introducing negligible overheads. Denoising offers a promising third complementary learning mechanism to
contrastive learning and masked autoencoding by forcing the model to learn high-frequency information,
whereas autoencoder reconstructions focus on low-frequency information (Hou et al., 2017).

We show that CAN performs favourably according to key metrics: 1) performance-efficiency trade-off
compared to contrastive learning and MAE, and 2) scalability to pre-training on large datasets. Indeed, CAN
enjoys stronger performance than its constituent parts on their own, whilst using considerably fewer FLOPs
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Figure 1: CAN enjoys a favourable performance-efficiency trade-off. Left: CAN scales more effiently than
SimCLR since it uses masked inputs. Middle and right: CAN outperforms SimCLR and MAE on ImageNet
linear probe and finetune evaluations for ViT-L models when pre-training on uncurated data such as JFT-
300M.

than contrastive learning. This advantage conttinue to hold when pre-training on large datasets such as
JFT-300M and ImageNet-21K, which consist of 300M and 14M images, respectively. For instance, evaluating
JET-trained ViT-L models using the top-1 accuracy of an ImageNet-trained linear probe, MAE achieves
64.1% and SimCLR achieves 73.4%, while CAN achieves 75.4%. In short, the advantages of CAN are:

1. Simplicity. CAN is a minimal synthesis of three powerful self-supervised learning methods: con-
trastive learning, masked autoencoders, and denoising.

2. Efficiency. CAN enjoys a favourable efficiency-performance trade-off (Figure 1), e.g., SImCLR uses
70% more FLOPs than CAN with ViT-L backbones.

3. Scalability. CAN scales well to training on large image datasets, such as JF'T-300M and ImageNet-
21K.

CAN is more efficient than SimCLR since it masks 50% of patches in each view. This also translates to faster
run-times, with our largest training (ViT-L 5000 epochs) taking 2 weeks for SimCLR, and 1 week for CAN on
our hardware. Our aim is to scale and solve SSL in a practical setting, specifically pre-training on large-scale
datasets like JF'T300M and ImageNet21k. We demonstrate that while pre-training on these large-scale
datasets, we often outperform MAE, SimCLR baselines by a significant margin across 15 downstream datasets
encompassing linear evaluation, fine-tuning, few-shot learning, and robustness settings.

2 Related Work

Masked image models with Vision Transformers. The advent of the Vision Transformer (ViT)
(Dosovitskiy et al., 2021b) provoked a focused effort to develop strong self-supervised learning frameworks for
ViT backbones. Works such as DINO (Caron et al., 2021) and MoCo-v3 (Chen et al., 2021b) demonstrated
that techniques developed with ConvNet backbones in mind could also perform competitively using ViTs after
proper tuning to suit the new architecture. ViT-specific methods have emerged since then, particularly masked
image modelling (Bao et al., 2022; Chen et al., 2022; Xie et al., 2022), which use a mask-and-reconstruct
training mechanism, taking inspiration from pre-training methods used in NLP (Devlin et al., 2018). This
classical idea (Ballard, 1987) is enjoying a rejuvenation thanks to favourable efficiency when combined with
the vision transformer architecture (Dosovitskiy et al., 2021b). Most notably MAE (He et al., 2022) showed
that classical masked autoencoding approaches could be used to pre-train ViTs without passing masked tokens
through the encoder. This provides a significant efficiency boost; our method similarly takes advantage of
this.

Contrastive learning in computer vision. Self-supervision has received significant attention in computer
vision as it offers a way to extract general purpose features without supervision. In particular, contrastive
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learning (van den Oord et al., 2018; Hénalff et al., 2020; Chen et al., 2020b; He et al., 2020; Tian et al., 2020;
Chuang et al., 2020; Hénaff et al., 2021) has achieved state of the art performance by enforcing invariance
to augmentations, whilst using negative samples (Robinson et al., 2021a; Ge et al., 2021) to avoid trivial
solutions by spreading the embedding out uniformly on the sphere (Wang & Isola, 2020). The contrastive
pre-training task is conceptually very different from masked image models such as MAE, which learn spatial
statistical dependencies. Another distinction is that autoencoders encourage information preservation in
latent representations, whilst contrastive learning could suppress features (Chen et al., 2021a; Robinson et al.,
2021b). This leads us to hypothesize that the two approaches learn different, complementary data features.
This motivates us to combine contrastive learning and masked image modelling so as to develop a reinforced
pre-training task that enjoys the merits of each.

Denoising diffusion models. Denoising autoencoders (DAE) (Vincent et al., 2010) learn to reconstruct
clean data given a noisy input. By learning to map low-density data regions to high-density regions, DAE
learns the shape of the data manifold. This connection was made precise by Vincent (2011), who showed
that DAEs learn the score-function s(x) = Vi log p(x). This key observation underpins the significant recent
advances in generative diffusion models, which use an estimate of the score-function to generate samples (Ho
et al., 2020; Song et al., 2021). The recent success of DAEs in generative modelling has not yet translated to
representation learning, with some exceptions (Asiedu et al., 2022; Zaidi et al., 2022). In this work we exploit
a denoising autoencoder to eliminate the MAE inefficiency of reconstructing unmasked patches but never
using them.

Siamese masked image modelling. Several recent works propose approaches that combine ideas from
masked image modelling and Siamese self-supervised learning. For instance, Huang et al. (2022) propose
a combination of contrastive and masked reconstruction objectives using one masked view, and one full
(unmasked) view. Other recent works (Tao et al., 2022; Chen et al., 2022; Assran et al., 2022) use similar
asymmetric designs. The key distinction between CAN and these works is that we strike a different balance,
focusing on developing a simple, and efficient method. For instance we use two masked views and no
momentum encoder. We hope the simplicity and efficiency of CAN, and our experiments showing it’s
scalability, will make it easy to adapt and modify in future work.

3 A simple contrastive masked autoencoder framework

Our approach is a minimal synthesis of contrastive learning, the masked autoencoder (MAE) (He et al.,
2022), and the denoising loss used in the training of diffusion models. We focus on simplicity and scalability,
aiming to design a hybrid with as few complex or costly components as possible. We also aim to minimize
wasted computation: in particular, the MAE decoder requires reconstructions of all patches, but only those
of masked patches are used in the loss, a fact that CAN exploits. Below, first we detail the basic pipeline
of generating views and passing masked inputs through the encoder and decoder, then explain the three
objectives we use: contrastive, reconstruction, and denoising. The penultimate section describes the combined
objective, and the final section discusses scalability.

3.1 Overview of method

Given a batch of n images {bz}"_,, we generate two views bx}, bz? € R"*W*3 of each image without
supervision using the same data augmentations as Chen et al. (2020b). Each image is then split into
T = (h/p) x (w/p) non-overlapping patches of size p x p: ble,patch7 bxf’patch € RT*Pxpx3 in preparation for
input to the ViT encoder. We always assume that p divides h and w. Two masks bM}, bM? € {0,1}T
are independently generated, with a 1 in coordinate ¢t € {1,...T'} indicating that the ¢-th patch is masked.
Each patch is masked independently with probability r, conditioned on always having exactly 7" = r - T
patches masked, which we assume is an integer. In all CAN experiments our default masking rate is r = 50%
unless explicitly stated otherwise (note that for all MAE results we follow the exact settings as in (He et al.,
2022) using the default r = 75%). Following He et al. (2022), only the T — T’ unmasked patches are passed
to the ViT encoder, which processes the two views in parallel. Masking a large fraction of patches from
both views makes our method much more efficient (see Table 1) than contrastive methods that use two
full views and recent works that use one full view and one masked view (Assran et al., 2022; Huang et al.,
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Figure 2: The CAN framework: Two views of an image are generated, 50% of patches randomly
masked in each, and noise is added to patches. An encoder is trained to solve three tasks: 1)
Reconstruction: encoded patches are passed to a decoder that reconstructs missing patches, 2)
Denoise: reconstructs the noise added to unmasked patches, and 3) Contrast: pooled patches
are passed to a contrastive loss, using in-batch samples as negatives (Chen et al., 2020b).

2022). Finally, we collect the embeddings of unmasked tokens bz}, bz2 € R(T=T)*d and reshape into 7' x d
tensors by adding a learned [M] embedding to positions correspondlng to masked tokens. The result is passed

Al a2
through a comparatively lightweight ViT decoder to produce outputs bz, , br; in image space R"*w*3,

3.2 Contrastive learning objective

The embeddings bz}, bz2 € R(T=T)%d returned by the encoder are pooled via a simple mean along the first

dimension to form d-dimensional embeddings, which are passed through a lightweight MLP projection head

that maps into a lower dimension space R", r < d, and normalized to unit length to produce embeddings

bul,bu? € R" for i = 1,...n. For the ith batch item we collect the other 2n — 2 samples in-batch
= {buj, bu3};.; to use as negatives, and compute the Liytonce loss:

TR

where 7 > 0 is a temperature parameter, defaulting to 0.1. Our choice of InfoNCE objective is justified by
recent work (Koppula et al., 2022) that found that a simple InfoNCE objective as in SimCLR scales to large
dataset better than methods such as BYOL (Grill et al., 2020) or DINO (Caron et al., 2020).

ebu} T bu? /T

1Tbu? T bu? Tbu— /T
7'/ +Zbu*€/\/’ie ‘ /

v=

3.3 Patch reconstruction objective

Al a2
The outputs bz;,bx,;, ¢ =1,...,n of the ViT decoder are trained to reconstruct the missing patches of each
image. As in He et al. (2022), we find it best to only compute the reconstruction loss on masked patches:

Lree = ZZHbM” (bay — b, )|I3

v1211

where o multiplies all pixels in the ¢th patch of the residual image bxy — bz, by (bM?), € {0,1}.

Whilst computing the loss only on masked patches gives better performance, it indicates wasted computation
since the decoder also produces reconstructions for unmasked patches. To avoid waste we propose an
alternative objective specifically for unmasked patches, which we discuss next.
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Figure 3: Denoising: Both the encoded patches and the noise level o are passed to the decoder by passing o
through an MLP, and adding the result to each embedded token.

3.4 Denoising objective

Inspired by the significant advances in diffusion modelling using denoising training objectives (Ho et al., 2020;
Kingma et al., 2021) and their equivalent score-based counterparts (Song et al., 2021; Vincent, 2011) we
revisit the suitability of denoising for self-supervised learning. We add independent isotropic Gaussian noise
to each image bz! < bx! + ofbe! with be! ~ N (b0, ) and o} uniformly sampled from an interval [0, oyax]-
This noisy input is masked and passed to the encoder as described in Section 3.1. When passing encoded
patches to the decoder we make a small addition to the method in Section 3.1 to provide the decoder with
information on the noise level o} to help it separate noise from the ground truth image. This is motivated by
denoising diffusion methods, which pass both the noisy image and the noise level as inputs to the denoising
model (Ho et al., 2020). We approach this by using o? as a positional encoding in the decoder, similarly
to Vaswani et al. (2017). First we produce a sinusoidal embedding of ¢¥ € R¢, which is passed through a
lightweight 2 layer MLP with ReLU activations of constant width d to produce a (learnable) embedding
bpY € R, whose dimension matches the latent dimension of bz? € R7*?. We add the result to each embedded
token (including missing tokens [M]) to provide noise-level information: (bz?), <— (bz}),+bpY fort=1...,T,
and pass the result to the decoder producing be;. We define our denoising loss function, which is computed
only on unmasked pixels:

1 " ~ U 2
Edenoise = % Z Z ||(1 - szU) © (Ufbef - bmi )||2

v=1,2 i=1

where, o multiplies pixels by the patch-level masking as in Section 3.3. Note that the reconstruction loss Lyec
still uses the clean input bz as its target, with no noise added. The denoising loss is extremely lightweight,
introducing only a very small overhead due to the MLP. We emphasize that the reconstruction of noise
patches comes at zero additional cost since the decoder produces reconstructions of all patches, both masked
and unmasked, but only reconstructions of masked patches are used in L.. Finally, it has been observed in
the diffusion modelling literature that although it is equivalent to train a denoising model to estimate the
noise be, or to estimate the clean input bz (Vincent, 2011), there is an empirical gap, with noise target faring
better. While we do not pursue it further, our testing corroborates this.

3.5 The combined objective function

The overall CAN objective trains the encoder and decoder to optimize three losses combined:

ECAN = AInfoNCE‘CInfoNCE + Arecﬁrec + )\denoise‘cdenoise

where 0 < AmfoNCE; Arecs Adenoises @A AnfoNCE + Arec + Adenoise = 1 weight the objectives. In practice
we parameterize the weights by eliminating one variable using the equality constraint, taking: Ajec =
(1 = Amnfoncr) © A and Adenoise = (1 — Amfoncr) © (1 — A) where 0 < A < 1. This parameterization makes it
easy to control the weighting between the two reconstruction losses Lyec, Ldenoise On the one hand, and the
contrastive loss Lintonce on the other. We find that performance is robust to the choice of A, and many
choices of Amfonce also work well (see Section 5).
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Architecture Epochs IN-1K top-1

MoCLR (Tian et al., 2021) R50 5000 67.6
BYOL (Grill et al., 2020) R50 5000 67.9
DnC (Tian et al., 2021) R50 1000 67.9
DnC (Tian et al., 2021) R50 4500 70.7
MoCLR (Tian et al., 2021) R200%2 5000 74.2
DnC (Tian et al., 2021) R200x2 3000 77.3
MAET (He et al., 2022) ViT-L 1600 50.5
MAE! (He et al., 2022) ViT-L 5000 64.1
SimCLR' (Chen et al., 2020b) ViT-B 800 65.8
SimCLR! (Chen et al., 2020b)  ViT-L 800 72.6
SimCLR' (Chen et al., 2020b) ViT-L 1600 73.1
SimCLR' (Chen et al., 2020b) ViT-L 5000 73.4
CAN (ours) ViT-B 800 67.1
CAN (ours) ViT-L 800 72.8
CAN (ours) ViT-L 1600 74.3
CAN (ours) ViT-L 3000 75.3
CAN (ours) ViT-L 5000 75.4

Table 1: JFT-300M pre-training: Comparison to the state of the art on ImageNet linear probe. CAN
outperforms all methods except DnC, which uses a complicated multi-stage training process. Computation is
measured as ImageNet-equivalent epochs. TOur implementation of (Chen et al., 2020b) and (He et al., 2022).

3.6 Discussion on Efficiency

The efficiency of CAN arises from masking 50% of both views. We also omit certain design choices in the
interests of efficiency: we do not use a momentum encoder or multiple views (multi-crop). Each of these
components tends to add significant (2x or more) expense to training. Even without these components CAN
achieves strong performance, outperforming its key constituent parts SimCLR and MAE.

4 Results

4.1 Pre-training on uncurated data: JFT-300M

A key promise of self-supervised learning is to allow models to be trained on extremely large scale image
datasets collected from the Web. Not only is such data likely to be unannotated, but also uncurated: images
containing many objects, variable lighting, artifacts (e.g., watermarks) and so on. The large variation in
images found online presents a major challenge to self-supervised learning, and it is not guaranteed that
methods that work well on curated (and comparatively smaller) datasets such as ImageNet will work equally
well on less curated data. To study how CAN scales to large datasets we use JET-300M (Sun et al., 2017), a
dataset of around 300 million images.

Setup. Training time is measured in ImageNet-equivalent epochs: 1 epoch equals 1281167 /[batch size| steps,
the number of steps in one IN-1K epoch. Models are evaluated using linear probe and finetuning on IN-1K.
All hyperparameers were tuned on IN-1K, besides learning rate and weight decay which we cut by a factor of
4 and 2 respectively to stabilize training on JFT-300M. See Appendix C and Section 5 for details.

Results. Figure 1 compares CAN to SimCLR and MAE baselines using ViT-L models. CAN achieves a
much better trade-off between efficiency (measured in FLOPs) and performance using ViT-L models for all
three methods: SimCLR uses 70% more FLOPs than CAN, which consistently outperforms both SimCLR
and MAE: for training ViT-L models for 5000 epochs, CAN achieves an IN-1K linear probe performance of
75.4%, compared to 73.4% for SimCLR and 64.1% for MAE. The relatively poorer linear probe performance
of MAE on JFT-300M highlights the non-triviality of scaling from IN-1K to larger datasets and suggests that
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Method Pre-training epochs Encoder No Additional params. Masked image Finetune Linear probe
MoCo-v3 (Chen et al., 2021b) 300 ViT-B X X 83.0 76.7
DINO (Caron et al., 2021) 1600 ViT-B X X 82.8 78.2
CIM (Fang et al., 2022) 300 ViT-B X X 83.1 —
CAE (Chen et al., 2022) 800 ViT-B X X 83.8 68.6
CAE (Chen et al., 2022) 1600 ViT-B X X 83.9 70.4
BEIiT (Bao et al., 2022) 800 ViT-B X X 83.2 37.6*
SimMIM (Xie et al., 2022) 800 ViT-B v X 83.8 56.7
MAE (He et al., 2022) 800 ViT-B v v 83.1 —
MAE (He et al., 2022) 1600 ViT-B v v 83.6 68.0
CAN (ours) 800 ViT-B 4 v 83.4 74.0
CAN (ours) 1600 ViT-B v v 83.6 74.8
SimCLRT (Chen et al., 2020b) 800 ViT-L 4 X 834 73.9
MAE (He et al., 2022) 800 ViT-L v v 84.9 73.5
MAET (He et al., 2022) 800 ViT-L v v 83.7 71.4
CAN (ours) 800 ViT-L 4 v 84.7 76.2

Table 2: Finetune and linear probe results with pre-training on ImageNet-1K. Note that CAN
does not use multi-crop augmentation or momentum encoder. fOur implementation of (Chen et al., 2020b)
and (He et al., 2022). *Quoted from Chen et al. (2022).

while MAE is scalable for model size, scalability to larger datasets requires further study. Figure 1 (right)
gives finetuning results. CAN performs favourably: for a 5000 epoch pre-training schedule, CAN achieves
an IN-1K linear probe performance of 86.1%, compared to 85.5% for SImCLR and 85.4% for MAE. CAN
also enjoys better scaling with training schedule length than either MAE or SimCLR, with the difference in
performance becoming larger for longer schedules. We hypothesize that this is not coincidental, and that
strong pre-training tasks like CAN play an important role in scalability.

We also compare CAN to the current state of the art on JFT-300M pre-training in Table 1. Our best
performance, 75.4% with ViT-L outperforms all methods besides DnC, with 77.3% (Tian et al., 2021) with
R200x2. However we note that CAN is considerably simpler than DnC, which involves training 10 separate
“expert” models (each as large as the final model), and then using MoCLR (an improvement of SimCLR that
adds a momentum encoder and more), using distillation to produce a single final model. Our calculations
suggest that training a ViT-L with CAN is about 3% faster than training the considerably smaller ResNet50
with DnC in terms of wall clock time (see Appendix B for explanation). CAN on ViT-L outperforms MoCLR
with R200x2 backbone (similar parameter counts), where we note that MoCLR, performs as well or better
than BYOL and MoCo-v3 on IN-1K (Tian et al., 2021).

4.2 Pre-training on ImageNet-21K

We also consider the performance of CAN on pre-training on ImageNet-21K (IN-21K), a publicly available
dataset of 14.2 million images Deng et al. (2009). We use the same hyperparameter settings as JET-300M.
We run a full set of evaluations on linear probe (Table 6), robustness (Figure 15), and few-shot learning
(Figure 16) (see Sections 4.4 and 4.5 for details on few-shot and robustness evaluations). Results are reported
in Appendix A.1. CAN also performs well with IN-21K pre-training, with CAN finetuned on IN-1K showing
better robustness than MAE and SimCLR in 8 out of 8 cases, and CAN achieving best 25-shot performance
on 6 out of 9 datasets.

4.3 Pre-training on ImageNet-1K

Next we evaluate our method using ImageNet (IN-1K) pre-training to verify that it is also competitive in
this setting. Results in Table 2 record the top-1 accuracy on IN-1K classification of finetuned models and
linear probes. Finetuning CAN achieves 83.6% with ViT-B, outperforming other contrastive approaches such
as MoCo-v3 (83.0%), and is competitive with other state-of-the-art approaches such as CAE (83.9%). The
linear probe performance of CAN is 74.8% using ViT-B, beating all masked image modelling methods, the
best of which is CAE with 70.4% (Chen et al., 2022). CAN is only outperformed by MoCo-v3 and DINO,
which use momentum encoders and two full image views, and in the case of DINO 10 multi-crop views. Note
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Figure 4: Few-shot: ViT-L models pre-trained on JFE'T-300M for 5000 epochs are evaluated on 9
datasets in few-shot setting (10-shot and 25-shot). CAN outperforms MAE and SimCLR.

that the masked image column indicates whether a method uses one or more full image views as input to
the model, and the no additional parameters column indicates whether a method relies on other parameters
besides the main encoder, e.g., from a pre-trained tokenizer, or a momentum updated target encoder. We
also report results for our MAE implementation, which approximately matches the numbers reported in He
et al. (2022), validating our MAE results on JFT-300M.

4.4 Few-shot learning

We use linear probes to evaluate suitability of CAN for few-shot learning, following the protocol of Dosovitskiy
et al. (2021a). We use the models pre-trained on JFT-300M for 5000 epochs whose ImageNet performance
is recorded in Figure 1. Results in Figure 4 for few-shot transfer learning on 9 other datasets show that
the superior performance on IN-1K translates to strong performance on other tasks. We also note that our
25-shot ViT-L models beat full-shot both DnC and BYOL ResNet50 models (also trained for 5000 epochs on
JFT-300M) on 6 out of 8 datasets (Tian et al., 2021). See Appendix A for many additional results, including
pre-training on IN-21K.

4.5 Robustness to distribution shift

Finally, we consider the robustness of CAN to distribution shifts. We use ViT-L backbones trained for 5000
epochs on JFT-300M, which have been finetuned on IN-1K. Model performance is evaluated on a number of
different validation sets with the same 1000 classes as IN-1K Mao et al. (2022). Figure 5 reports results on
the following 7 validation sets, which cover a large variety of distribution shifts: original IN-1K (Deng et al.,
2009), IN-v2 (Recht et al., 2019), IN-Real. (Beyer et al., 2020), IN-Adversarial (Hendrycks et al., 2021b),
IN-Rendition (Hendrycks et al., 2021a), ObjectNet (Barbu et al., 2019). CAN performs favourably under
both JFT-300M, IN-21K and IN-1K pre-training, beating SimCLR and MAE baselines in nearly all cases.
See Appendix A for additional results.

5 Hyperparameter analysis

Method Contrastive loss | Reconstruction loss |
We study the different components of SimCLR. 9.157 o
CAN to better understand the effect of the MAE o 0.1658
different mechanisms, and to determine CAN (ours) 9.143 0.1633

optimal parameter configurations. All ab-
lations use ViT-B models trained for 100
epochs on IN-1K and evaluated with a lin-
ear probe on IN-1K unless explicitly said
otherwise. We use the best loss weights

Table 3: Loss complementarity. CAN training achieves lower
training loss for both contrastive and reconstruction than individ-
ual training. All methods use 50% masking for fair comparison.
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Figure 5: Robustness: Evaluating performance under distribution shifts with respect to models
finetuned on IN-1K. Validation performance of ViT-L models is reported on 7 different datasets.

and noise level in these experiments for
experiments in Section 4.

Complementarity of contrastive and reconstruction
losses. A key hypothesis motivating our work is that con-
trastive learning and masked autoencoder reconstruction may 67.9 68.6 68.4 68.9
not only be compatible training objectives, but are comple-
mentary ones. Table 3 compares the final training value of
the contrastive Linfonce and reconstruction L. when jointly

None +noise +noise, +loss Full

Table 4: Denoising objective. “Full” de-
notes the entire method as described in Sec-

trained (i.e., CAN) compared to only optimizing Lmtonce (Sim- tion 3.4

CLR) or only L;o. (MAE). The results support the hypothesis:

joint training achieves a lower loss on both objectives compared AN CN CA CAN (full)
to individual training. 42.8 68.5 67.9 68.9

Ablating CAN loss terms. CAN is comprised of three
components: (C) contrastive, (A) masked autoencoder, and (N)
denoising losses. We ablate each of the three components in
Table 5, setting the loss weight to zero to “remove” a component.
We use ViT-B models pre-trained for 100 epochs. Removing any component leads to worse performance,
with contrastive loss hurting the most.

Table 5: CAN loss terms. We remove
each of the three loss terms in CAN one by
one.

Denoising method. Table 4 studies the effect of each of the components of the denoising method. We
use ViT-B models trained for 100 epochs on ImageNet, and consider four settings, each adding in more
parts of the method: 1) CAN with no denoising, 2) adding noise to the input only, 3) adding noise and
using the denoising loss, and 4) the full method with all of the described components, including using o7
as a positional encoding in the decoder. Results show that simply adding noise as a data augmentation
improves performance by 0.7%, which can be improved to 1% by adding a reconstruction loss with noise
level passed as an argument. The noise level argument is necessary: the reconstruction loss without noise
level argument performs worse (68.4%) than noise with no reconstruction at all (68.6%). We emphasize that
the improvement from denoising comes at minimal run time and memory cost, since it uses reconstructions
produced by the decoder, which in the case of MAE are simply thrown away unused. We also tried predicting
the clean patches instead of noise, and found it worked poorly, corroborating similar findings in the diffusion
literature.

Masking rate. Figure 6 reports the behavior of CAN and SimCLR under different masking rates on IN-1K
and JFT-300M pre-training (for JET-300M we use 800 epochs). The performance of SimCLR decreases
as the masking rate increases, suggesting that masking is not an effective data augmentation. In contrast,
performance of CAN peaks at a non-zero masking rate, but at a much lower rate than the 75% used by MAE
on IN-1K. This occurs since very low masking rates are preferred by the contrastive part of CAN, but severely
damage the autoencoder part as it can learn trivial solutions. The considerable efficiency improvement from
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Figure 6: CAN and SimCLR with different masking rates. ViT-B models are pre-trained for 100
epochs on IN-1K (left), and 800 epochs on JFT-300M (right).

~
IS}
L
Yy
o
©
=)

o
S
L
o
©
w»

v
o
L

top-1 accuracy
8
o

N
o

top-1 accuracy

top-1 accurac

000 005 010 015 020 0.0 01 02 03 00 01 02 03 o4
Contrastive loss weight Maximum noise level Denoising loss weight

Figure 7: ViT-B models pre-trained on IN-1K for 100 epochs. Left: The best contrastive loss
weight is small but non-negative. Middle: A wide range of oy, values improve over no-noise.
Right: Performance is not sensitive to the denoising loss weight.

masking 50% of patches more than compensates for the small drop in performance for a fixed number of
epochs.

Contrastive loss weight. We vary the weighting A\insoncE used to weight the contribution of the contrastive
and reconstruction losses. Recall that larger AinfoncE places higher weight on the contrastive loss. Results in
Figure 7 show that the best weight is Aiusonce = 0.03, which approximately balances the magnitudes of the
two terms (see Table 3).

Denoising loss weight and noise level. We study the noise level interval [0, oymax] from which to sample
input noise, and the weight A\ balancing the denoising and reconstruction losses. Results in Fig. 7 show that
the best maximum noise level is oyax = 0.05, and that similar performance is attained for different weights
on the denoising loss.

6 Discussion

We present CAN, a simple, efficient and scalable self-supervised method for visual representation learning.
CAN combines ideas from contrastive learning, masked autoencoding, and diffusion denoising into a single
high-performing method. Extensive empirical results show that CAN scales with minimal changes to the
large uncurated datasets, outperforming SimCLR and MAE methods on a wide range of downstream tasks
and evaluations, including ImageNet linear probes, few-shot, robustness, and finetuning. Our results suggests
that combining different self-supervised methods can produce better results than the constituent parts alone.
Further exploration of this search space appears a promising avenue for future work.

10



Under review as submission to TMLR

References

Emmanuel Brempong Asiedu, Simon Kornblith, Ting Chen, Niki Parmar, Matthias Minderer, and Mohammad
Norouzi. Decoder denoising pretraining for semantic segmentation. preprint arXiv:2205.11423, 2022.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand
Joulin, Michael Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient learning. In
preprint arXiv:2204.07141, 2022.

Dana H Ballard. Modular learning in neural networks. In Association for the Advancement of Artificial
Intelligence (AAAI), volume 647, pp. 279-284, 1987.

Hangbo Bao, Li Dong, and Furu Wei. BEiT: BERT pre-training of image transformers. In Int. Conf. on
Learning Representations (ICLR), 2022.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum,
and Boris Katz. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition
models. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and A&ron van den Oord. Are we done
with ImageNet? In preprint arXiv:2006.07159, 2020.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised
learning of visual features by contrasting cluster assignments. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 9912-9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Int. Conference on Computer Vision

(ICCV), pp. 9650-9660, 2021.

Mark Chen, Alec Radford, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In Int. Conference on Machine Learning (ICML), 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Int. Conference on Machine Learning (ICML), pp. 1597-1607. PMLR,
2020b.

Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. In Advances in Neural
Information Processing Systems (NeurIPS), volume 34, pp. 11834-11845, 2021a.

Xijaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han, Ping
Luo, Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised representation learning. In
preprint arXiv:2202.03026, 2022.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers.
In Int. Conference on Computer Vision (ICCV), pp. 9640-9649, 2021b.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. Debiased
contrastive learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp.
8765-8775, 2020.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. RandAugment: Practical automated
data augmentation with a reduced search space. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 3008-3017, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248-255.
Teee, 2009.

11



Under review as submission to TMLR

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In North American Chapter of the Association for Computational
Linguistics (NAACL), 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. In Int. Conf. on Learning
Representations (ICLR), 2021a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In Int. Conf. on Learning Representations (ICLR), 2021b.

Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, and Furu Wei. Corrupted image modeling for self-
supervised visual pre-training. preprint arXiv:2202.03382, 2022.

Songwei Ge, Shlok Kumar Mishra, Haohan Wang, Chun-Liang Li, and David Jacobs. Robust contrastive
learning using negative samples with diminished semantics. In Advances in Neural Information Processing
Systems (NeurIPS), volume abs/2110.14189, 2021.

Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNet in 1 hour.
preprint arXiv:1706.0267, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your

own latent-a new approach to self-supervised learning. Advances in neural information processing systems,
33:21271-21284, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9729-9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders
are scalable vision learners. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 16000-16009, June 2022.

Olivier Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami, and Aéron
van den Oord. Data-efficient image recognition with contrastive predictive coding. In Int. Conference on
Machine Learning (ICML), pp. 4182-4192, 2020.

Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Adron Van den Oord, Oriol Vinyals, and Jodo
Carreira. Efficient visual pretraining with contrastive detection. In Int. Conference on Computer Vision
(ICCV), 2021.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Int. Conference on Computer Vision (ICCV), pp. 8340-8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15262-15271, 2021b.

Charles Herrmann, Kyle Sargent, Lu Jiang, Ramin Zabih, Huiwen Chang, Ce Liu, Dilip Krishnan, and
Deqing Sun. Pyramid adversarial training improves ViT performance. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 13419-13429, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pp. 6840-6851, 2020.

12



Under review as submission to TMLR

Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu. Deep feature consistent variational autoencoder. In
2017 IEEE winter conference on applications of computer vision (WACV), pp. 1133-1141. IEEE, 2017.

Zhicheng Huang, Xiaojie Jin, Chengze Lu, Qibin Hou, Ming-Ming Cheng, Dongmei Fu, Xiaohui Shen, and
Jiashi Feng. Contrastive masked autoencoders are stronger vision learners. arXivw:2207.13532v1, 2022.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International Conference on Machine Learning, pp. 4904-4916. PMLR, 2021.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In Advances in
Neural Information Processing Systems (NeurIPS), volume 34, pp. 21696-21707, 2021.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation learning. In ECCV, 2020.

Skanda Koppula, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arandjelovic, Jodo
Carreira, and Olivier Hénaff. Where should i spend my flops? efficiency evaluations of visual pre-training
methods. arXiv preprint arXiv:2209.15589, 2022.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in Adam. preprint arXiv:1711.05101,
2017a.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Int. Conf. on
Learning Representations (ICLR), 2017b.

Chengzhi Mao, Lu Jiang, Mostafa Dehghani, Carl Vondrick, Rahul Sukthankar, and Irfan Essa. Discrete
representations strengthen vision transformer robustness. In Int. Conf. on Learning Representations
(ICLR), 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning, pp. 8748-8763. PMLR, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers generalize
to ImageNet? In Int. Conference on Machine Learning (ICML), pp. 5389-5400. PMLR, 2019.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with hard
negative samples. In Int. Conf. on Learning Representations (ICLR), 2021a.

Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can contrastive
learning avoid shortcut solutions? In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pp. 4974-4986, 2021b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In Int. Conf. on Learning
Representations (ICLR), 2021.

Andreas Steiner, Alexander Kolesnikov, , Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.
How to train your ViT? Data, augmentation, and regularization in vision transformers. In Transactions on
Machine Learning Research (TMLR), 2021.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness
of data in deep learning era. In Int. Conference on Computer Vision (ICCV), pp. 843-852, 2017.

Chenxin Tao, Xizhou Zhu, Gao Huang, Yu Qiao, Xiaogang Wang, and Jifeng Dai. Siamese image modeling
for self-supervised vision representation learning. In preprint arXiv:2206.01204, 2022.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Europ. Conference on
Computer Vision (ECCV), pp. 776-794, 2020.

13



Under review as submission to TMLR

Yonglong Tian, Olivier J Henaff, and Aéron van den Oord. Divide and contrast: Self-supervised learning
from uncurated data. In Int. Conference on Computer Vision (ICCV), pp. 10063-10074, 2021.

Aédron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
preprint arXiv:1807.03748, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23
(7):1661-1674, 2011.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and Léon Bottou.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising
criterion. Journal of machine learning research, 11(12), 2010.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and
uniformity on the hypersphere. In Int. Conference on Machine Learning (ICML), pp. 9929-9939. PMLR,
2020.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim:
A simple framework for masked image modeling. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9653-9663, 2022.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. In ECCV, 2017.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. CoCa:
Contrastive captioners are image-text foundation models. preprint arXiw:2205.01917, 2022.

Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro Sanchez-
Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via denoising for molecular
property prediction. preprint arXiv:2206.00133, 2022.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. In
Association for the Advancement of Artificial Intelligence (AAAI), 2020.

14



	Introduction
	Related Work
	A simple contrastive masked autoencoder framework
	Overview of method
	Contrastive learning objective
	Patch reconstruction objective
	Denoising objective
	The combined objective function
	Discussion on Efficiency

	Results
	Pre-training on uncurated data: JFT-300M
	Pre-training on ImageNet-21K
	Pre-training on ImageNet-1K
	Few-shot learning
	Robustness to distribution shift

	Hyperparameter analysis
	Discussion
	Additional Transfer Learning Results
	ImageNet-21K pre-training.

	Runtime of CAN compared to DnC
	Hyperparameter settings
	Pre-training hyperparameters
	Finetuning and linear probe hyperparameters


