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Cluster Aware Graph Anomaly Detection
Anonymous Author(s)

Abstract
Graph anomaly detection has gained significant attention across

various domains, particularly in critical applications like fraud de-

tection in e-commerce platforms and insider threat detection in

cybersecurity. Usually, these data are composed of multiple types

(e.g., user information and transaction records for financial data),

thus exhibiting view heterogeneity. However, in the era of big data,

the heterogeneity of views and the lack of label information pose

substantial challenges to traditional approaches. Existing unsuper-

vised graph anomaly detection methods often struggle with high-

dimensionality issues, rely on strong assumptions about graph struc-

tures or fail to handle complex multi-view graphs. To address these

challenges, we propose a cluster aware multi-view graph anomaly

detection method, called CARE. Our approach captures both local

and global node affinities by augmenting the graph’s adjacency

matrix with the pseudo-label (i.e., soft membership assignments)

without any strong assumption about the graph. To mitigate poten-

tial biases from the pseudo-label, we introduce a similarity-guided

loss. Theoretically, we show that the proposed similarity-guided

loss is a variant of contrastive learning loss, and we present how this

loss alleviates the bias introduced by pseudo-label with the connec-

tion to graph spectral clustering. Experimental results on several

datasets demonstrate the effectiveness and efficiency of our pro-

posed framework. Specifically, CARE outperforms the second-best

competitors by more than 39% on the Amazon dataset with respect

to AUPRC and 18.7% on the YelpChi dataset with respect to AUROC.

The code of our method is available at the anonymous GitHub link:

https://anonymous.4open.science/r/CARE-demo-1C7F.

1 Introduction
Graph-based anomaly detection has been an important research

area across diverse domains for decades, particularly within high-

impact applications, such as fraud detection within e-commerce

platforms [50, 53, 61] and insider threat detection in the cybersecu-

rity domain [9, 19, 28]. For instance, in the realm of e-commerce,

leveraging a graph-based anomaly detection algorithm proves in-

valuable for identifying fraudulent sellers by analyzing the proper-

ties (i.e., attributes) and connections (i.e., structure) among users [30].

Similarly, in the context of insider threat detection, constructing

a graph based on users’ activities allows investigators to discern

anomalous users in the organization by exploring the substructure

of the graph [20].
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In the era of big data, the collected data often exhibit heteroge-

neous views (e. g., various data) and lack labeled data. For example,

in the e-commerce platform, multiple types of data can be collected

for heterogeneous graph construction, including the user’s shop-

ping history, search trends, and product ratings [29]; in credit card

fraud detection, the data are composed of both cardholder infor-

mation and transaction records (e. g., online purchase records) [73].

However, obtaining labels is often impractical due to the expense as-

sociated with labeling services and the demand for domain-specific

expertise in discerning malicious patterns [70]. This highlights the

need for innovative approaches that can deal with the intricacies

of heterogeneous and unlabeled datasets.

Until then, many unsupervised anomaly detection methods [11,

23, 55] have been proposed and they can be categorized into two

branches, including feature reconstructionmethods and self-supervised

learning methods. The feature reconstruction approaches focus on

minimizing the reconstruction error of node attributes or struc-

tures [2, 13, 14]. However, these feature reconstruction based meth-

ods tend to suffer from the curse of high dimensionality [17], espe-

cially for citation network where the word occurrence is extracted

as the node attributes. Another direction is the self-supervised

learning methods [2, 27, 38, 49, 66, 72], which aim to design a proxy

task related to anomaly detection, whereas these methods tend

to have strong assumptions regarding the graph structure, thus

only performing well on some graphs with certain structures. For

instance, TAM [49] holds the one-class homophily assumption that

normal nodes tend to have much stronger affinity with each other

than with the abnormal nodes and the authors propose to maximize

the local node similarity. However, TAM fails to consider a situation

where the normal nodes and their normal neighbors might come

from different classes, indicating the distinct features for these con-

nected normal nodes. A general limitation for both branches is that

many of these methods [14, 26, 72] are designed for single-view

graphs, suffering from the presence of multiple views.

To address these limitations, we propose a unifiedCluster AwaRE

graph anomaly detection method to identify anomalous nodes in

multi-view graphs, named CARE. In this work, we propose to cap-

ture both local and global node affinity and design an anomaly score

function to assigning higher anomaly scores to nodes that are less

similar to their neighbors based on both node attributes and struc-

tural similarity. Since the raw adjacency matrix in the graph only

contains the local node affinity information, we measure the global

node affinity by leveraging the pseudo-label (i.e., soft membership

assignments) to augment the original adjacency matrix without any

strong assumption about the graph. To reduce the potential bias

introduced by the pseudo-label during the optimization, we propose

a similarity-guided loss that utilizes the soft assignment to build

a similarity map to help the model learn robust representations.

Theoretically, we analyze that the proposed similarity-guided loss is

a variant of the contrastive loss, and we present how the proposed

regularization mitigates the potential bias by connecting it with

1
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graph spectral clustering. Our main contributions are summarized

below:

• A novel self-supervised framework for detecting anomalies

in multi-view graphs.

• Anovel similarity-guided contrastive loss for learning graph

contextual information and its theoretical analysis showing

the connection to graph spectral clustering.

• Theoretical analysis showing the negative impact of other

types of contrastive loss.

• Experimental results on six datasets demonstrating the ef-

fectiveness and efficiency of the proposed framework.

The rest of this paper is organized as follows. After briefly review-

ing the related work in Section 2, we then introduce a multi-view

graph anomaly detection framework in Section 3. Next, we conduct

the systematic evaluation of the proposed framework on several

datasets in Section 4 before we conclude the paper in Section 5.

2 Related Work
In this section, we briefly review the related work on clustering

and anomaly detection.

2.1 Clustering
In the past decades, clustering methods gradually evolved from

traditional shallow methods, (e. g., Non-Negative Matrix Factoriza-

tion (NMF) methods [4, 52, 68] and spectral clustering methods [5,

37, 43]), to deep learning-based methods (e. g., deep NMF [56, 69],

graph neural network clustering methods [8, 39, 60], autoencoder-

based clustering methods [15, 24]). For example, the authors of [52]

propose an NMF-based clustering method that models the intrinsic

geometrical structure of the data by assuming that several neigh-

boring points should be close in the low dimensional subspace.

The work in [4] presents a semi-NMF clustering method by taking

advantage of the mutual reinforcement between data reduction and

clustering tasks. Additionally, [69] extends shallow NMF to a deep

Semi-NMF for multi-view clustering by learning the hierarchical

structure of multi-view data and maximizing the mutual informa-

tion of each pair of views. Different from these methods, this paper

first follows the idea of the graph pooling method [67] to get the soft

assignment, aiming to capture the global node affinity information

and regularize the learned representations by the similarity-guided

contrastive loss.

2.2 Anomaly Detection
Anomaly detection has been studied for decades [22, 35, 42, 48]. The

increasing demand in many domains, such as financial fraud detec-

tion, anomaly detection in cybersecurity, etc., has attracted many

researchers’ attention, and a variety of outstanding algorithms have

been proposed, ranging from shallow algorithms [1, 10, 40, 65] to

deep models [3, 12, 34, 45, 46, 74]. To name a few, [65] presents an

algorithm named Outlier Pursuit, which projects the raw data to the

low-dimensional subspace and identifies the corrupted points with

PCA; [12] encodes observed co-occurrence in different events into

a hidden space and utilizes the weighted pairwise interactions of

different entity types to define the event probability. AnoGAN [3]

is a generative adversarial network (GAN) based anomaly detec-

tion method, which utilizes the generator and the discriminator to

capture the normal patterns while the anomalies are detected based

on the residual score and the discrimination score. HCM-A [27]

designs a self-supervised learning loss by forcing the prediction

of the shortest path length between pairs of nodes. ComGA [41]

proposes a community-aware attributed graph anomaly detection

method to detect community structure of the graph. CONAD [66]

integrates human knowledge of different anomaly types via data

augmentation and introduces a contrastive learning-based method

for graph anomaly detection. TAM [49] proposes a scoring measure

by assigning large score to the nodes that are less affiliated with

their neighbors and introduce truncated affinity maximization to

reduce the bias during the optimization. In contrast, this paper

proposes to capture both local and global node affinity information,

and we propose similarity-guided contrastive learning loss to learn

robust representations and to mitigate potential bias.

3 Proposed CARE Framework
In this section, we present our proposed framework, CARE, for

multi-view graph anomaly detection. We begin by defining the

notation and then introduce cluster-aware node affinity learning

alongside the similarity-guided contrastive learning loss. Next, we

outline the overall objective function and the inference process for

detecting anomalies. Finally, we analyze the limitations of using

weakly supervised contrastive loss in our method.

3.1 Notation
Throughout this paper, we use regular letters to denote scalars (e. g.,

𝛼), boldface lowercase letters to denote vectors (e. g., 𝒙), and bold-

face uppercase letters for matrices (e. g., 𝑨). Given an undirected

graph G = (𝑽 , 𝑬1, ..., 𝑬𝑣,𝑿1, ...,𝑿 𝑣), our objective is to identify

anomalous nodes in the graph, where 𝑣 represents the number of

views, 𝑽 consists of 𝑛 vertices, 𝑬𝑣
consists of𝑚𝑣

edges,𝑿 𝑣 ∈ R𝑛×𝑑𝑣

denotes the feature matrix of the 𝑣-th view and 𝑑𝑣 is the feature

dimension. For clarity, we denote𝑢𝑖 as node 𝑖 , 𝒙𝑣𝑖 ∈ R𝑑𝑣 as the node
attributes of 𝑢𝑖 for the 𝑣-th view, 𝒉𝑖 ∈ R𝑑 as the embedding of node

𝑢𝑖 by any type of GNNs and 𝑑 is the feature dimensionality of the

hidden representation. 𝑯 𝑣 ∈ R𝑛×𝑑𝑣
is the node embedding matrix.

We let 𝑨𝑣 ∈ R𝑛×𝑛
denote the adjacency matrix of the 𝑣-th view

where 𝑨𝑣
𝑖 𝑗

= 1 iff node 𝑢𝑖 and node 𝑢 𝑗 are connected, 𝑫𝑣 ∈ R𝑛×𝑛

denotes the diagonal matrix of vertex degrees for the 𝑣-th view, and

𝑰 ∈ R𝑛×𝑛
denotes the identity matrix. The symbols are summarized

in Table 1.

3.2 Cluster-Aware Node Affinity Learning
Many self-supervised learning methods [2, 27, 38, 49, 66, 72] aim

to design a proxy task relevant to the anomaly detection. One

branch [16, 49] is to maximize the local node similarity for a multi-

view graph as follows:

L1 =

𝑣∑︁
𝑎=1

∑︁
𝑢𝑖

1

|N𝑎 (𝑖) |
∑︁

𝑢 𝑗 ∈N𝑎 (𝑖 )
sim(𝒉𝑎𝑖 ,𝒉

𝑎
𝑗 )

=

𝑣∑︁
𝑎=1

∑︁
𝑢𝑖

∑︁
𝑢 𝑗

1

𝑫𝑎
𝑖

𝑨𝑎
𝑖 𝑗 · sim(𝒉𝑎𝑖 ,𝒉

𝑎
𝑗 ) (1)

2
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Figure 1: The overview of CARE. It first extracts the global node affinity based on the soft assignment by graph clustering
method, and then combines the global node affinity and local node affinity together. Similarity-guided graph contrastive loss is
then introduced to mitigate the potential bias.

Table 1: Definition of Symbols

Symbols Definition

𝑽 The set of vertices

𝑬𝑎 The set of edges for the 𝑎-th view

𝑨𝑎
The 𝑎-th view adjacency matrix

𝑿𝑎
The 𝑎-th view node attribute matrix

𝑣 (𝑛) The number of views (nodes)

𝑫𝑎
The degree matrix for the 𝑎-th view

𝑯𝑎
The the 𝑎-th view node representations

�̂� The adjacency matrix augmented by cluster similarity

𝑴𝑎
The soft membership matrix for the 𝑎-th view

�̄� The average node representations

�̄� The average soft membership matrix

�̃� The normalized augmented adjacency matrix

where sim(𝒉𝑎
𝑖
,𝒉𝑎

𝑗
) =

𝒉𝑎
𝑖
(𝒉𝑎

𝑗
)𝑇

|𝒉𝑎
𝑖
| |𝒉𝑎

𝑗
| measures the similarity of node em-

bedding between the node 𝑢𝑖 and its neighbor 𝑢 𝑗 based on the 𝑎-th

view of the graph, N𝑎 (𝑖) denotes the neighbors of the node 𝑢𝑖 and
𝑫𝑎
𝑖
is the degree of the node 𝑢𝑖 for the 𝑎-th view. However, these

methods typically rely on one-class homophily assumption, which
posits that normal nodes tend to exhibit strong affinities with each

other, while the affinities among abnormal nodes are significantly

weaker. This assumption is overly restrictive, as it focuses exclu-

sively on extracting local node affinities while neglecting global

node affinities.

A naive solution to relax this constraint is to incorporate high-

order information by extending the local 1-hop neighbors to 𝑘-hop

neighbors. However, this approach presents two main issues. First,

including high-order neighbors inevitably introduces more abnor-

mal nodes during the node affinity maximization process, resulting

in a sub-optimal solution. Second, it overlooks a crucial scenario

where normal anchor nodes and their neighbors may belong to

different classes, indicating that these connected normal nodes may

have distinct features. Since both normal neighbors from different

classes and abnormal neighbors possess features that differ from

those of normal anchor nodes, incorporating these distinct features

in node affinity learning decreases the likelihood of detecting ab-

normal nodes. Furthermore, adding high-order neighbors in node

affinity learning also increases the probability of including neigh-

bors from different classes, exacerbating the problem. To address

this issue, we propose incorporating label information into the local

node affinity maximization as follows:

L2 =

𝑣∑︁
𝑎=1

∑︁
𝑢𝑖

∑︁
𝑢 𝑗

1∑
𝑢 𝑗
(𝑨𝑎

𝑖 𝑗
+ 𝑺𝑎

𝑖 𝑗
) (𝑨

𝑎
𝑖 𝑗 + 𝑺𝑎𝑖 𝑗 ) · sim(𝒉𝑎𝑖 ,𝒉

𝑎
𝑗 ) (2)

where 𝑺𝑖 𝑗 = 1 if node 𝑢𝑖 and node 𝑢 𝑗 belong to the same class and

𝑺𝑖 𝑗 = 0 otherwise. Compared to L1, L2 further encodes the label in-

formation in the node affinity learning. However, label information

is often unavailable due to the high costs of labeling services and the

rapid growth of new data. To address this issue, we propose replac-

ing the unavailable label information with pseudo-labels derived

from a graph clustering method. Following the idea of differential

graph pooling [67], we employ a one-layer Graph Convolutional

Network (GCN) [32] with a softmax activation function to model

soft membership assignments as follows:

𝑴𝑎 = GCN
𝑎 (𝑨𝑎,𝑿𝑎,𝑾𝑎)

�̄� =
1

𝑣

𝑣∑︁
𝑎=1

𝑴𝑎
(3)

where𝑾𝑎 ∈ R𝑑𝑎×𝑐 is the weight matrix of GCN for the 𝑎-th view

and 𝑐 is the number of clusters and we aggregate soft membership

assignments from all views to obtain �̄� . We then augment the

adjacency matrix by incorporating the clustering results as follows:

�̂� = (1 − 𝛼)�̄� + 𝛼�̄��̄�𝑇
(4)

where �̄� = 1

𝑣

∑𝑣
𝑎=1

𝑨𝑎
and 𝛼 ∈ [0, 1] is a hyper-parameter balanc-

ing the importance between raw adjacencymatrix and the similarity

of the soft membership assignments. Our goal is to maximize the

cluster-aware node affinity as follows:

L𝐴 (𝑢𝑖 ) =
∑︁
𝑢 𝑗

1

�̂�𝑖

�̂�𝑖 𝑗 · sim(�̄�𝑖 , �̄� 𝑗 ) +
𝑣∑︁

𝑎=1

| |𝒉𝑎𝑖 − �̄�𝑖 | |2 (5)

where �̂�𝑖 =
∑
𝑢 𝑗

�̂�𝑖 𝑗 measures the degree of node 𝑢𝑖 in the new

adjacency matrix and 𝒉𝒊 =
1

𝑣

∑𝑣
𝑎=1

𝒉𝑎
𝑖
is the average node represen-

tation. The second term enforces consistency in node embeddings

across all views. However, optimization using Eq. 5 may be sig-

nificantly biased by low-quality soft membership assignments at

the early stages. To address this issue, we introduce the similarity-

guided graph contrastive regularization.

3
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3.3 Similarity-guided Graph Contrastive
Regularization

To mitigate potential bias introduced by low-quality soft member-

ship assignments, we propose a similarity-guided graph contrastive

loss that minimizes the difference between the similarity of the soft

assignment and the similarity of node representations for any pair

of nodes. This is formulated as follows:

L2 = min

�̄�
| |�̄��̄�𝑇 − �̄� �̄�𝑇 | |2𝐹 (6)

where �̄� is the soft assignment matrix computed in Eq. 3. L2 aims

to learn the hidden representations such that the representations of

node 𝑢𝑖 and node 𝑢 𝑗 are expected to be close in the latent space if

their soft membership assignments are similar. Following the idea

of many existing methods restoring graph structure along with the

node attributes of the graph [2, 27, 49, 72], we propose to take the

graph topological structure into consideration, reformulating the

similarity-guided graph contrastive loss as:

L𝐶 = min

�̄�
| |�̃� − �̄� �̄�𝑇 | |2𝐹 (7)

where �̃� = �̃�−1/2�̂��̃�−1/2
is the normalized augmented adjacency

matrix, and �̃� ∈ R𝑛×𝑛
is the diagonal matrix with �̃�𝑖𝑖 =

∑
𝑢 𝑗

�̂�𝑖 𝑗 .

Theoretical Justification.We aim to provide a theoretical analysis

of how the proposed similarity-guided graph contrastive regular-

ization mitigates potential bias by connecting it with graph spectral

clustering. Before delving into the direct analysis of bias mitigation,

we first demonstrate that L𝐶 functions as a contrastive learning

loss.

Lemma 3.1. (Similarity-guided Graph Contrastive Loss) Let �̄� be
the output of a one-layer graph neural network defined in Eq. 3. Then,
we have

L𝐶 = L𝑓 +𝐶 (8)

where L𝑓 = −∑𝑛
𝑖=1

∑𝑛
𝑗=1

log

exp(2�̃�𝑖 𝑗 �̄�𝑖 �̄�𝑇𝑗 )
Π𝑛
𝑘=1

exp( (�̄�𝑖 �̄�𝑇𝑘 )2 )1/𝑛 is a graph con-

trastive loss and 𝐶 is a constant.

See proof in Appendix A.1.
Remark: Compared to traditional contrastive learning losses, the

denominator of L𝑓 in Lemma 3.1 is the product of the exponen-

tial similarity between two node embeddings rather than a sum-

mation. The weakly supervised contrastive methods [57, 71] im-

pose a constraint that forces a given pair of nodes to form a pos-

itive/negative pair based on their likelihood of being assigned to

the same cluster (further discussion can be found in Subsection 3.5).

Unlike these "discrete" formulations regarding positive and negative

pairs, our approach is in a continuous form. In L𝑓 , 𝑺𝑖 𝑗 = �̄�𝑖�̄�𝑇
𝑗

can be interpreted as the similarity measurement of a node pair

(𝑢𝑖 , 𝑢 𝑗 ) in terms of soft assignment, guiding the similarity of the

representations of two nodes in the latent space. If we ignore

the influence of the adjacency matrix in �̃� = �̃�−1/2�̂��̃�−1/2 =

�̃�−1/2 (𝛼�̄��̄�𝑇 + (1 − 𝛼) 1

𝑣

∑𝑣
𝑎=1

𝑨)�̃�−1/2
by setting 𝛼 to be 1 (i. e.,

�̃� = �̃�−1/2�̄��̄�𝑇 �̃�−1/2
), it would be interesting to see that when

two nodes are sampled from two distant clusters, �̃�𝑖 𝑗 ≈ 0 and

log

exp(2𝑺𝑖 𝑗 �̄�𝑖 �̄�𝑇𝑗 )

Π𝑛
𝑘=1

exp( (�̄�𝑖 �̄�𝑇𝑘 )2 ) 1

𝑛
= 0 for this pair of nodes. Notice that for

the node pair (𝑢𝑖 , 𝑢 𝑗 ) with high confidence being assigned to the

same cluster, the weight 𝑺𝑖 𝑗 is larger than the weight 𝑺𝑖𝑘 for the

uncertain node pair (𝑢𝑖 , 𝑢𝑘 ), where the node 𝑢𝑘 has low confidence

to be assigned to the same cluster as 𝑢𝑖 . By reducing the weight

for these unreliable positive pairs, the negative impact of uncertain

pseudo-labels can be alleviated.

Next, we aim to clarify our proposed contrastive loss by demon-

strating the connection between L𝐶 and graph spectral clustering.

Lemma 3.2. (Graph Contrastive Spectral Clustering) Let �̄� be the
output of a one-layer graph neural network defined in Eq. 3 and �̄�𝑖 and
�̄� 𝑗 be unit vectors. Then, minimizing L𝐶 is equivalent to minimizing
the following loss function:

minL𝐶 = min[2𝑇𝑟 (�̄�𝑇 𝑳�̄� ) + 𝑅(�̄� )] (9)

where 𝑳 = 𝑰 −�̃� can be considered as the normalized graph Laplacian,
𝑰 is the identity matrix and 𝑅(�̄� ) = | |�̄� �̄�𝑇 | |2

𝐹
is the regularization

term.

See proof in Appendix A.2.
Remark: Based on Lemma 3.2, L𝐶 can be considered as the graph

spectral clustering. Graph spectral clustering [59] aims to find clus-

ters that minimize connections between different clusters while

maximizing the connections within each cluster. Traditional graph

spectral clustering [6] aims to find the embedding �̄� such that

𝑇𝑟 (�̄�𝑇 𝑳′�̄� ) is minimized, where 𝑳′ is the normalized graph Lapla-

cian. The first term of Eq. 9 is similar to the objective function in

traditional graph spectral clustering, but we enhance it by incorpo-

rating the similarity measurement 𝑺𝑖 𝑗 = �̄�𝑖�̄�𝑇
𝑗
into the normalized

graph Laplacian. By including the similarity measurement in the

graph spectral clustering, we reinforce L𝐶 to mitigate the bias in-

troduced by the clustering method defined in Eq. 3. It is important

to note that in Lemma 3.2, the constraint that �̄�𝑖 and �̄� 𝑗 are unit

vectors is a common practice in many existing works [25, 62, 75].

This constraint can be easily implemented through normalization,

i. e., �̄�𝑖 =
�̄�𝑖

| |�̄�𝑖 | |2
.

3.4 Objective Function and Inference
Now, we are ready to introduce the overall objective function:

min 𝐽 = −
∑︁
𝑢𝑖

L𝐴 (𝑢𝑖 ) + 𝜆L𝐶
(10)

where L𝐴 is the cluster-aware node affinity loss and L𝐶 is the

similarity-guided graph contrastive loss. 𝜆 is a constant parameter

balancing these two terms. During the inference stage, we directly

use the cluster-aware node affinity loss L𝐴 as the abnormal score:

𝑠𝑐𝑜𝑟𝑒𝑖 = −L𝐴 (𝑢𝑖 ) (11)

3.5 Why can’t weakly supervised contrastive
learning loss be used as a regularization?

One effective remedy to reduce uncertainty and learn high-quality

representations in an unsupervised setting is through contrastive

learning loss, which has demonstrated significant performance im-

provements in representation quality [25, 51, 58, 70]. However, an

existing study [70] has theoretically proved that simply applying

vanilla contrastive learning loss (i. e., InfoNCE [58]) can easily lead

to the suboptimal solution. Similarly, according to [62], both normal
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Table 2: Statistics of the datasets, including the number of
nodes, anomalies, and edges for two views.

Name |𝑽 | |𝑬1 | |𝑬2 | # Anomalies

BlogCatalog 5,196 171,743 - 298

Amazon 10,244 175,608 - 445

YelpChi 24,741 49,315 - 597

CERT 1,000 24,213 22,467 70

IMDB 4,780 1,811,262 419,883 334

DBLP 4,057 299,499 520,440 283

and abnormal nodes are uniformly distributed in the unit hyper-

sphere in the latent space by minimizing the vanilla contrastive

learning loss, which leads to worse performance for the anom-

aly detection task. To address this issue, many weakly supervised

contrastive losses [57, 71] are proposed by incorporating the seman-

tic information, such as the clustering results, into a contrastive

regularization term as follows:

L3 = −
𝑛∑︁
𝑖=1

∑︁
𝑗∈𝐶 (𝑖 ), 𝑗≠𝑖

log

sim(�̄�𝑖 , �̄� 𝑗 )
sim(�̄�𝑖 , �̄� 𝑗 ) +

∑
𝑘∉𝐶 (𝑖 ) sim(�̄�𝑖 , �̄�𝑘 )

(12)

where �̄�𝑖 =
∑𝑣
𝑎=1

𝒉𝑎
𝑖
is the representation for node 𝑢𝑖 aggregated

over all views, sim(�̄�𝑖 , �̄� 𝑗 ) = exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏) and 𝜏 is the temperature.

𝑗 ∈ 𝐶 (𝑖) means that node𝑢 𝑗 and node𝑢𝑖 are assigned into the same

cluster or form a positive pair, while 𝑘 ∉ 𝐶 (𝑖) means that node

𝑢𝑘 and node 𝑢𝑖 are assigned into two different clusters, resulting

in a negative pair. The intuition of the above equation is that if

two nodes are from the same cluster, they should be close in the

latent space by maximizing their similarity. However, we find out

that the construction of the positive and negative pairs in Eq. 12

heavily relies on the quality of the soft assignment, while directly

converting the soft assignment to the binary membership inevitably

introduces bias/noise during the training phase. This bias will be

amplified further in the node affinity learning as we mentioned

in Subsection 3.2. (We also validate this in the ablation study in

Subsection 4.3.) Here, we theoretically analyze that including this

bias in the weakly supervised contrastive loss defined in Eq. 12

leads to suboptimal solution. Formally, we first define what is a

true positive pair and a false positive pair respectively, and then

introduce Theorem 3.4 to show the issue in Eq. 12.

Definition 3.3. Given a sample 𝒙 𝒊 , we say (𝒙𝑖 , 𝒙 𝑗 ) is a true positive
pair (or a false negative pair), if their optimal representations satisfy

exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏) > 1 for a small positive value 𝜏 . Similarly, we say (𝒙𝑖 ,

𝒙𝑘 ) is a false positive pair (or a true negative pair), if their optimal

representations satisfy exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏) ≈ 0 for a small positive value

𝜏 .

Theorem 3.4. Given the contrastive learning loss function L3, if
there exists one false positive sample in the batch during training, the
contrastive learning loss will lead to a sub-optimal solution.

See proof in Appendix A.3.

4 Experimental Results
In this section, we demonstrate the performance of our proposed

framework in terms of both effectiveness and efficiency by compar-

ing it with state-of-the-art methods.

4.1 Experiment Setup
4.1.1 Datasets: We evaluate the performance of our proposed

framework on six datasets for both single-view and multi-view

graph anomaly detection scenarios, including the Insider Threat

Test (CERT) [20], DBLP [63], IMDB [63], BlogCatalog [54], Ama-

zon [18] and YelpChi [33] datasets. Among these datasets, CERT,

IMDB, and DBLP are multi-view graphs, while BlogCatalog, Ama-

zon, and YelpChi are single-view graphs. CERT, Amazon, and YelpChi

are real-world datasets, whereas IMDB, DBLP, and BlogCatalog are

semi-synthetic graphs. (See Appendix B.1 for the details of generat-

ing anomalous nodes.) Specifically, the CERT dataset is a collection

of synthetic insider threat test datasets that provides both synthetic

background data and data from synthetic malicious actors. This

dataset does not include a feature matrix, so we use node2vec [21]

to extract two feature matrices as two views. IMDB is a movie

network, where each node corresponds to a movie, and two adja-

cency matrices indicate whether two movies share the same actor

or director. DBLP is a citation network, where each node corre-

sponds to an academic research paper, and two adjacency matrices

indicate whether two papers share the same authors or if one pa-

per cites another. Amazon is a review network, where each node

represents a product in the musical instruments category, and its

attributes are extracted from product reviews. Similarly, the Yelp

dataset contains hotel and restaurant reviews, either filtered (spam)

or recommended (legitimate) by Yelp [18]. The statistics of these

graphs are summarized in Table 2.

4.1.2 Experiment Setting: The neural network structure of the pro-

posed framework is GCN [32]. The hyper-parameters 𝛼 and 𝜆 for

each dataset are specified in Appendix B.2. In all experiments, we

set the initial learning rate to be 1e-5, the hidden feature dimension

to be 128 and use Adam [31] as the optimizer. The similarity func-

tion sim(𝑎, 𝑏) is defined as sim(𝑎, 𝑏) = exp( 𝑎·𝑏𝑇
|𝑎 | |𝑏 | ). We use TAM

as the backbone of our method to capture local node affinity. The

number of GCN layers is set to 2. The experiments are performed

on a Windows machine with a 24GB RTX 4090 GPU. The code of

our framework can be found in the anonymous GitHub link
∗
.

4.1.3 Evaluation Metrics: Following [44, 49], all methods are eval-

uated based on Area Under the Receiver Operating Characteris-

tic Curve (AUROC) and Area Under the Precision-Recall Curve

(AUPRC). Higher AUROC/AUPRC indicates better performance.

All of the experiments are repeated five times with different random

seeds and the mean and standard deviation are reported.

4.1.4 Baseline Methods: In our experiments, we compare our pro-

posed framework CARE with state-of-the-art methods in the fol-

lowing two settings.

For single-view graphs, we compare CARE with the following

eight baseline methods: (1). ANOMALOUS [47]: a shallow method,

jointly conducting attribute selection and anomaly detection as a

whole based on CUR decomposition and residual analysis; (2).Dom-
inant [14]: a graph auto-encoder-based deep neural network model

for graph anomaly detection, which encodes both the topological

structure and node attributes to node embedding; (3). CoLA [38]:

a contrastive self-supervised graph anomaly detection method by

∗
https://anonymous.4open.science/r/CARE-demo-1C7F
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exploiting the local information; (4). SLGAD [72]: an unsupervised

framework for outlier detection based on unlabeled in-distribution

data, which uses contrastive learning loss as a regularization; (5).

HCM-A [27]: a self-supervised learning by forcing the prediction of

the shortest path length between pairs of nodes; (6).ComGA [41]: a

community-aware attributed graph anomaly detection framework;

(7). CONAD [66]: a contrastive learning-based graph anomaly de-

tection method; (8). TAM [49]: an unsupervised anomaly method,

proposing a scoring measure by assigning large score to the nodes

that are less affiliated with their neighbors.

For multi-view graphs, we compare CARE with the following

five baseline methods: (1).MLRA [36]: a multi-view non-negative

matrix factorization-based method for anomaly detection, which

performs cross-view low-rank analysis for revealing the intrinsic

structures of data; (2). NSNMF [2]: an NMF based method, in-

corporating the neighborhood structural similarity information

into the NMF framework to improve the anomaly detection per-

formance; (3). SRLSP [64]: a multi-view detection method based

on the local similarity relation and data reconstruction; (4). NC-
MOD [13]: an auto-encoder-based multi-view anomaly detection

method, which proposes neighborhood consensus networks to en-

code graph neighborhood information; (5) We also report the per-

formance of TAM [49] on these multi-view graphs by averaging the

adjacency matrix or concatenating two feature matrices together.

We omit the comparison with other baseline methods since TAM

outperforms them.

4.2 Experimental Analysis
4.2.1 Multi-view Graph Scenario. In this subsection, we evalu-

ate the performance of CARE by comparing it with five baseline

methods on three multi-view graphs, i. e., CERT, IMDB and DBLP

datasets. The experimental results with respect to AUROC and

AUPRC are presented in Table 3. We observe the following: (i)

MLRA and NSNMF exhibit the poor performance among all base-

line methods across most datasets. This can be attributed to their

design, which is optimized for independent and identically dis-

tributed data (e.g., image data). Thus, these two methods struggle

to capture graph topological information, resulting in lower per-

formance in both AUPRC and AUROC. (ii) In contrast, NCMOD

incorporates graph topological information into the learned repre-

sentation through its proposed neighborhood consensus networks,

thus achieving the second-best performance on the IMDB and DBLP

datasets. (iii) TAM suffers from the inability to handle multi-view

graphs, performing worse than several self-supervised learning

methods designed for multi-view graphs (e.g., NCMOD). (iv) Our

proposed method outperforms all baselines in terms of AUROC and

AUPRC across all datasets. Notably, graph-based anomaly detection

methods designed for single views (e.g., TAM) falter in the presence

of view heterogeneity as simply concatenating input features from

multiple views distorts the feature space, resulting in significant

performance challenges. In contrast, our method excels by encoding

both local and global node affinities in the learned representation

and mitigating biases through the proposed similarity-guided graph

contrastive loss.

4.2.2 Single-view Graph Scenario. Next, we evaluate the perfor-
mance of CARE by comparing it to eight baseline methods on three

single-view graphs, i. e., BlogCatalog, Amazon and YelpChi datasets.

The experimental results with respect to AUROC and AUPRC are

presented in Table 4. We have the following observations: (i) TAM

outperformsmost baselinemethods across three single-view graphs.

We attribute its great performance to the design of normal structure-

preserved graph truncation to remove edges connecting normal

and abnormal nodes. (ii) While TAM excels on BlogCatalog, CARE

still ranks as a close second, showcasing its robustness in handling

single-view graphs. (iii) CARE proves to be a highly competitive

approach, demonstrating superior performance on the Amazon and

YelpChi datasets. Notably, CARE surpasses TAM, the second-best

method, by over 15.9% in AUROC and 39.3% in AUPRC on the

Amazon dataset. Similarly, on the YelpChi dataset, CARE improves

AUROC by over 18.7% compared to TAM. The ability of CARE

to capture both local and global node affinity information in the

learned representations enables it to perform effectively on the

Amazon and YelpChi datasets. By leveraging its similarity-guided

graph contrastive loss, CARE enhances representation learning,

allowing it to better distinguish between normal and anomalous

nodes. Overall, these results emphasize that while TAM leverages

truncated affinity maximization techniques to tailor the raw adja-

cency matrix, CARE offers a more flexible and powerful approach

by incorporating global and local affinities, making it a highly effec-

tive method in the single-view graph anomaly detection scenario.

Its ability to significantly outperform other baselines on challenging

datasets like Amazon and YelpChi demonstrates the effectiveness

of the proposed method.

4.3 Ablation Study
In this subsection, we conduct an ablation study to demonstrate the

necessity of each component of CARE and validate the effectiveness

of similarity-guided graph contrastive loss over vanilla and weakly

supervised contrastive loss. Specifically, CARE-A removes the simi-

larity measurement of soft membership and replaces L𝐴 with L2.

CARE-G refers to a variant of our proposed method by removing

similarity-guided contrastive learning loss. CARE-InfoNCE replaces

the similarity-guide contrastive loss with the vanilla contrastive

loss while CARE-WSC substitutes it with the weakly supervised

loss as shown in Eq. 12. The experimental results with respect to

AUROC on the BlogCatalog, Amazon, DBLP, and IMDB datasets

are presented in Table 5. Our observations are as follows:

• Global Node Affinity: CARE shows slight improvements

on Amazon and BlogCatalog compared to CARE-A. How-

ever, excluding the global node affinity matrix (i. e., the

similarity map of the soft membership) in CARE-A results

in significant performance drops of approximately 40% on

DBLP and 56% on IMDB, highlighting the importance of

capturing global affinities in certain datasets.

• Similarity-Guided Loss: Removing the similarity-guided

graph contrastive loss (i.e., CARE-G) leads to an average

AUROC performance drop of 15% across the four datasets,

underscoring the critical role of this regularization in miti-

gating bias and improving performance.

• Contrastive Loss Substitutions: Replacing the similarity-

guided loss with either the vanilla contrastive loss (i.e.,

CARE-InfoNCE) or the weakly supervised contrastive loss

6
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Table 3: Results on multi-view graphs (i. e., CERT, IMDB, DBLP) with respect to AUROC and AUPRC. We boldface the best
performance and underline the second-best.

Method CERT IMDB DBLP
AUPRC AUROC AUPRC AUROC AUPRC AUROC

MLRA 0.0379 ± 0.001 0.3829 ± 0.003 0.2695 ± 0.007 0.5926 ± 0.005 0.2211 ± 0.005 0.5568 ± 0.005

NSNMF 0.0704 ± 0.001 0.4578 ± 0.001 0.0634 ± 0.000 0.4969 ± 0.001 0.1436 ± 0.007 0.6418 ± 0.001

NCMOD 0.0749 ± 0.001 0.5133 ± 0.001 0.6629 ± 0.013 0.8030 ± 0.007 0.4809 ± 0.006 0.7271 ± 0.004

SRSLP 0.0806 ± 0.007 0.5405 ± 0.003 0.5552 ± 0.017 0.7343 ± 0.003 0.0643 ± 0.002 0.5228 ± 0.001

TAM 0.0771 ± 0.007 0.5400 ± 0.005 0.6521 ± 0.016 0.8233 ± 0.013 0.3466 ± 0.016 0.6690 ± 0.005

CARE 0.1198 ± 0.003 0.6056 ± 0.001 0.8804 ± 0.024 0.8792 ± 0.031 0.6380 ± 0.027 0.8868 ± 0.007

Table 4: Results on single-view datasets (i. e., BlogCatalog, Amazon, YelpChi) with respect to AUROC and AUPRC. We boldface
the best performance and underline the second-best.

Method BlogCatalog Amazon YelpChi
AUPRC AUROC AUPRC AUROC AUPRC AUROC

ANOMALOUS 0.0652 ± 0.005 0.5652 ± 0.025 0.0558 ± 0.001 0.4457 ± 0.005 0.0519 ± 0.002 0.4956 ± 0.003

Dominant 0.3102 ± 0.011 0.7590 ± 0.010 0.1424 ± 0.002 0.5996 ± 0.002 0.0395 ± 0.020 0.4133 ± 0.100

CoLA 0.3270 ± 0.000 0.7746 ± 0.009 0.0677 ± 0.001 0.5898 ± 0.011 0.0448 ± 0.002 0.4636 ± 0.001

SLGAD 0.3882 ± 0.007 0.8123 ± 0.002 0.0634 ± 0.005 0.5937 ± 0.005 0.0350 ± 0.000 0.3312 ± 0.035

HCM-A 0.3139 ± 0.001 0.7980 ± 0.004 0.0527 ± 0.015 0.3956 ± 0.014 0.0287 ± 0.012 0.4593 ± 0.005

ComGA 0.3293 ± 0.028 0.7683 ± 0.004 0.1153 ± 0.005 0.5895 ± 0.010 0.0423 ± 0.000 0.4391 ± 0.000

CONAD 0.3284 ± 0.004 0.7807 ± 0.003 0.1372 ± 0.009 0.6142 ± 0.008 0.0405 ± 0.002 0.4588 ± 0.003

TAM 0.4182 ± 0.225 0.8248 ± 0.003 0.2634 ± 0.008 0.7064 ± 0.008 0.0778 ± 0.009 0.5643 ± 0.007

CARE 0.4043 ± 0.010 0.8194 ± 0.003 0.6563 ± 0.011 0.8656 ± 0.002 0.1218 ± 0.003 0.7516 ± 0.003

Table 5: Ablation study on BlogCatalog, Amazon, DBLP and IMDB datasets with respect to AUROC.

Model BlogCatalog Amazon DBLP IMDB AVERAGE

CARE 0.8194 ± 0.000 0.8656 ± 0.002 0.8868 ± 0.007 0.8792 ± 0.031 0.8628
CARE-A 0.8144 ± 0.000 0.8514 ± 0.003 0.4831 ± 0.002 0.2138 ± 0.013 0.5907

CARE-G 0.6313 ± 0.002 0.8645 ± 0.004 0.8639 ± 0.003 0.4996 ± 0.001 0.7148

CARE-InfoNCE 0.7685 ± 0.001 0.7737 ± 0.006 0.8560 ± 0.005 0.8452 ± 0.032 0.8108

CARE-WSC 0.7639 ± 0.011 0.8019 ± 0.004 0.8538 ± 0.006 0.8581 ± 0.005 0.8194

(i.e., CARE-WSC) results in a 4% to 5% performance reduc-

tion on average. This aligns with the theoretical analysis in

Theorem 3.4, suggesting that neither the vanilla nor weakly

supervised contrastive losses are as effective in mitigating

bias as the similarity-guided approach.

These results validate the necessity of the global affinity informa-

tion and the similarity-guided contrastive loss, both of which are

essential for the robustness and effectiveness of CARE.

4.4 Parameter Analysis
In this subsection, we delve into the parameter sensitivity analysis

of the CARE framework on the four datasets, specifically exploring

the impact of 𝛼 , 𝜆, and the number of clusters. In the experiment,

the mean and standard deviation of AUROC over five rounds are

reported. We fix the number of clusters to be 10 and vary the values

of𝛼 and 𝜆while recording the AUROC of CARE. The performance is

visualized in Figure 2, where the x, y, and z axes represent 𝛼 , log(𝜆),
and AUROC, respectively. From observation, CARE achieves the

best performance when 𝛼 = 0.4 on the Amazon and DBLP datasets,

while it reaches its peak performance at𝛼 = 0.01 on the BlogCatalog

dataset and 𝛼 = 1 on the IMDB dataset. Upon investigation, we find

that the number of edges in the first view on the IMDB dataset is

unusually large compared to the number of edges in the second view

as presented in Table 2. Due to this unusual pattern, we hypothesize

that the raw adjacency matrix is not reliable and thus the global

node affinity (i. e., similarity of soft assignment) plays a crucial

role in detecting anomalous nodes. Thus, by setting 𝛼 = 1, we

exclude the local node affinity in the loss functionL𝐴 and therefore

CARE achieves better performance solely relying on the global

node affinity. In terms of the parameter analysis on 𝜆, we find that

CARE prefers a smaller value of 𝜆 (e. g., 𝜆 = 0.1). One explanation

for this is that a large value of 𝜆 tends to overly dominate the

optimization of the overall objective function as 𝜆 is used to balance

the importance between the similarity-guided contrastive loss and

the node affinity learning loss. In the subsequent experiment, we

scrutinize the role of the number of clusters in shaping the anomaly

detection criteria. Figure 3 illustrates the results, with the x and y

axes representing the values of the number of clusters and AUROC,

respectively. We observe that changing the number of the clusters

does not greatly influence the performance of CARE across these

four datasets. Notably, CARE achieves better performance when the

number of clusters is 5 or 10 on most datasets, suggesting that the
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Figure 2: 𝛼 , log(𝜆) v.s. AUROC on four datasets.

(a) Amazon dataset (b) BlogCatalog dataset (c) DBLP dataset (d) IMDB dataset

Figure 3: The number of clusters v.s. AUROC on four datasets.

proposed method prefers a small number of clusters. By reducing

the number of clusters, our method tends to generalize better by

capturing larger, more meaningful patterns in the data instead of

overfitting to noise.

4.5 Efficiency Analysis
Time Complexity. In this subsection, we analyze the time com-

plexity of our proposed CARE. Assume that the graph has 𝑛 nodes,

the input feature dimension is 𝑑 , the hidden feature dimension is 𝑓 ,

the number of nodes is𝑛, the number of edges is |𝐸 |, and the number

of clusters is 𝑘 . For ease of explanation, we only consider the 1-layer

case. Following [7], the time complexity of computing the soft mem-

bership matrix using GCN is𝑂 (𝑛𝑑𝑘 +𝑛 |𝐸 |𝑘 +𝑛). The complexity of

the GCN to capture the hidden representation 𝒉 is 𝑂 ( |𝐸 |𝑑 + 𝑛𝑑 𝑓 )
with sparse computation. The complexity of the similarity-guided

contrastive learning loss is 𝑂 (𝑛2 𝑓 ). However, in the experiments,

we can use the sampling strategy to sample 𝑝 (𝑝 << 𝑛) nodes and
thus the complexity can be reduced to𝑂 (𝑝2 𝑓 ). The total complexity

of CARE is 𝑂 (𝑛(𝑘𝑑 + 𝑓 𝑑 + |𝐸 |𝑘 + 1) + |𝐸 |𝑑 + 𝑝2 𝑓 ).
Running Time Analysis. Next, we experiment on the YelpChi

dataset to show the efficiency of our proposed CARE by changing

the number of nodes and the number of layers. The reason why we

only provide the efficiency analysis regarding the training/running

time vs the number of nodes on the YelpChi dataset is that we can

manually increase the number of nodes from 500 to 15,000 on this

dataset. For the other datasets (e.g., IMDB, BlogCatalog, Amazon,

DBLP), the number of nodes is less than 15,000 (see Table 2 for

details) and we cannot get the running time if the number of nodes

is set to be a value larger than 15,000. Thus, we do not provide the

efficiency analysis on small datasets. In the first experiment, we

fix the number of layers to be 1, the total number of iterations to

be 10,000 and adjust the number of nodes by randomly selecting

(a) The number of nodes vs (b) The number of layers vs

running time (in seconds) running time (in seconds)

Figure 4: Efficiency analysis on the YelpChi dataset

𝑘 nodes, where 𝑘 ∈ [500, 1000, 2000, 5000, 10000, 15000]. The ex-

perimental result is shown in Figure 4 (a). By observation, we find

that the running time is quadratic to the number of nodes. In the

second experiment, we fixed the number of nodes to be 2000, the

total number of iterations to be 10,000, and adjusted the number

of GCN layers from 1 layer to 4 layers. The experimental result is

shown in Figure 4 (b). We observe that the running time is almost

linear with respect to the number of layers.

5 Conclusion
In this paper, we proposed a novel self-supervised framework for

anomaly detection in multi-view graphs, addressing key limita-

tions of existing methods. By capturing both local and global node

affinities and leveraging a similarity-guided contrastive loss, our

approach effectively identifies anomalous nodes without relying

on strong structural assumptions. The proposed method not only

augments the graph structure with learned soft membership assign-

ments but also mitigates the negative impact of low-quality assign-

ments through a robust loss function, theoretically connected to

graph spectral clustering. Our experimental results on six datasets

demonstrate the superior performance of the proposed framework

in detecting anomalies in complex, multi-view graphs.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Cluster Aware Graph Anomaly Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Charu C. Aggarwal and Philip S. Yu. 2001. Outlier Detection for High Dimen-

sional Data. In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001. ACM, 37–46.

[2] Imtiaz Ahmed, Xia Ben Hu, Mithun P. Acharya, and Yu Ding. 2021. Neighborhood

Structure Assisted Non-negative Matrix Factorization and Its Application in

Unsupervised Point-wise Anomaly Detection. J. Mach. Learn. Res. 22 (2021),

34:1–34:32.

[3] Samet Akcay, Amir Atapour Abarghouei, and Toby P. Breckon. 2018. GANomaly:

Semi-supervised Anomaly Detection via Adversarial Training. In Computer
Vision - ACCV 2018 - 14th Asian Conference on Computer Vision, Perth, Australia,
December 2-6, 2018, Revised Selected Papers, Part III, Vol. 11363. Springer, 622–637.

[4] Kais Allab, Lazhar Labiod, and Mohamed Nadif. 2017. A Semi-NMF-PCA Unified

Framework for Data Clustering. IEEE Trans. Knowl. Data Eng. 29, 1 (2017), 2–16.
[5] Francis R. Bach and Michael I. Jordan. 2003. Learning Spectral Clustering. In

Advances in Neural Information Processing Systems 16 [Neural Information Pro-
cessing Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British
Columbia, Canada]. MIT Press, 305–312.

[6] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation. Neural Comput. 15, 6 (2003), 1373–1396.
[7] Derrick Blakely, Jack Lanchantin, and Yanjun Qi. 2021. Time and space complex-

ity of graph convolutional networks. Accessed on: Dec 31 (2021).
[8] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. 2020.

Structural Deep Clustering Network. In WWW ’20: The Web Conference 2020,
Taipei, Taiwan, April 20-24, 2020. ACM / IW3C2, 1400–1410.

[9] Oliver Brdiczka, Juan Liu, Bob Price, Jianqiang Shen, Akshay Patil, Richard Chow,

Eugene Bart, and Nicolas Ducheneaut. 2012. Proactive Insider Threat Detection

through Graph Learning and Psychological Context. In 2012 IEEE Symposium on
Security and Privacy Workshops, San Francisco, CA, USA, May 24-25, 2012. IEEE
Computer Society, 142–149.

[10] Emmanuel J Candès, Xiaodong Li, Yi Ma, and JohnWright. 2011. Robust principal

component analysis? Journal of the ACM (JACM) 58, 3 (2011), 1–37.
[11] Bo Chen, Jing Zhang, Xiaokang Zhang, Yuxiao Dong, Jian Song, Peng Zhang,

Kaibo Xu, Evgeny Kharlamov, and Jie Tang. 2023. GCCAD: Graph Contrastive

Coding for Anomaly Detection. IEEE Trans. Knowl. Data Eng. 35, 8 (2023), 8037–
8051.

[12] Ting Chen, Lu-An Tang, Yizhou Sun, Zhengzhang Chen, and Kai Zhang. 2016.

Entity Embedding-Based Anomaly Detection for Heterogeneous Categorical

Events. In Proceedings of the Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. IJCAI/AAAI
Press, 1396–1403.

[13] Li Cheng, Yijie Wang, and Xinwang Liu. 2021. Neighborhood Consensus Net-

works for Unsupervised Multi-view Outlier Detection. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press, 7099–7106.

[14] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep Anomaly

Detection on Attributed Networks. In Proceedings of the 2019 SIAM International
Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2-4, 2019.
SIAM, 594–602.

[15] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and

Heng Huang. 2017. Deep Clustering via Joint Convolutional Autoencoder Em-

bedding and Relative Entropy Minimization. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer

Society, 5747–5756.

[16] Xiangyu Dong, Xingyi Zhang, Yanni Sun, Lei Chen, Mingxuan Yuan, and Sibo

Wang. 2024. SmoothGNN: Smoothing-based GNN for Unsupervised Node Anom-

aly Detection. CoRR abs/2405.17525 (2024).

[17] David L Donoho et al. 2000. High-dimensional data analysis: The curses and

blessings of dimensionality. AMS math challenges lecture 1, 2000 (2000), 32.
[18] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S. Yu.

2020. Enhancing Graph Neural Network-based Fraud Detectors against Cam-

ouflaged Fraudsters. In CIKM ’20: The 29th ACM International Conference on
Information and Knowledge Management, Virtual Event, Ireland, October 19-23,
2020, Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe

Cudré-Mauroux (Eds.). ACM, 315–324.

[19] William Eberle, Jeffrey Graves, and Lawrence Holder. 2010. Insider threat de-

tection using a graph-based approach. Journal of Applied Security Research 6, 1

(2010), 32–81.

[20] Joshua Glasser and Brian Lindauer. 2013. Bridging the Gap: A Pragmatic Ap-

proach to Generating Insider Threat Data. In 2013 IEEE Symposium on Security
and Privacy Workshops, San Francisco, CA, USA, May 23-24, 2013. IEEE Computer

Society, 98–104.

[21] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[22] Frank E Grubbs. 1969. Procedures for detecting outlying observations in samples.

Technometrics 11, 1 (1969), 1–21.

[23] Xiaohong Guan, WeiWang, and Xiangliang Zhang. 2009. Fast intrusion detection

based on a non-negative matrix factorization model. J. Netw. Comput. Appl. 32, 1
(2009), 31–44.

[24] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. 2017. Deep Clustering with

Convolutional Autoencoders. InNeural Information Processing - 24th International
Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings,
Part II, Vol. 10635. Springer, 373–382.

[25] Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. 2021. Provable

Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss.

In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual. 5000–5011.

[26] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. 2016. FRAUDAR: Bounding Graph Fraud in the Face of Camouflage.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM,

895–904.

[27] Tianjin Huang, Yulong Pei, Vlado Menkovski, and Mykola Pechenizkiy. 2022.

Hop-Count Based Self-supervised Anomaly Detection on Attributed Networks.

InMachine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 13713), Massih-Reza Amini, Stéphane

Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigorios Tsoumakas

(Eds.). Springer, 225–241.

[28] Jianguo Jiang, Jiuming Chen, Tianbo Gu, Kim-Kwang Raymond Choo, Chao

Liu, Min Yu, Weiqing Huang, and Prasant Mohapatra. 2019. Anomaly Detection

with Graph Convolutional Networks for Insider Threat and Fraud Detection. In

2019 IEEE Military Communications Conference, MILCOM 2019, Norfolk, VA, USA,
November 12-14, 2019. IEEE, 109–114.

[29] Petra Jílková and Petra Králová. 2021. Digital consumer behaviour and ecom-

merce trends during the COVID-19 crisis. International Advances in Economic
Research 27, 1 (2021), 83–85.

[30] Ming Jin, Yixin Liu, Yu Zheng, Lianhua Chi, Yuan-Fang Li, and Shirui Pan. 2021.

ANEMONE: Graph Anomaly Detection withMulti-Scale Contrastive Learning. In

CIKM ’21: The 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, Gianluca
Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong

(Eds.). ACM, 3122–3126.

[31] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[32] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

[33] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic

Embedding Trajectory in Temporal Interaction Networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin
Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM,

1269–1278.

[34] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. 2021. CutPaste:

Self-Supervised Learning for Anomaly Detection and Localization. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2021, June 19-25, 2021.
Computer Vision Foundation / IEEE, 9664–9674.

[35] Jianbo Li, Lecheng Zheng, Yada Zhu, and Jingrui He. 2021. Outlier Impact Char-

acterization for Time Series Data. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press,
11595–11603.

[36] Sheng Li, Ming Shao, and Yun Fu. 2015. Multi-View Low-Rank Analysis for

Outlier Detection. In Proceedings of the 2015 SIAM International Conference on
Data Mining, Vancouver, BC, Canada, April 30 - May 2, 2015. SIAM, 748–756.

[37] Zhenguo Li and Jianzhuang Liu. 2009. Constrained clustering by spectral kernel

learning. In IEEE 12th International Conference on Computer Vision, ICCV 2009,
Kyoto, Japan, September 27 - October 4, 2009. IEEE Computer Society, 421–427.

[38] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis.

2022. Anomaly Detection on Attributed Networks via Contrastive Self-

Supervised Learning. IEEE Trans. Neural Networks Learn. Syst. 33, 6 (2022),

2378–2392.

[39] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang,

and En Zhu. 2022. Deep Graph Clustering via Dual Correlation Reduction. In

Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022. AAAI Press, 7603–7611.

[40] Chang-Tien Lu, Dechang Chen, and Yufeng Kou. 2003. Algorithms for Spatial

Outlier Detection. In Proceedings of the 3rd IEEE International Conference on
9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Data Mining (ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA. IEEE
Computer Society, 597–600.

[41] Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang,

and Shan Xue. 2022. ComGA: Community-Aware Attributed Graph Anomaly

Detection. In WSDM ’22: The Fifteenth ACM International Conference on Web
Search and Data Mining, Virtual Event / Tempe, AZ, USA, February 21 - 25, 2022,
K. Selcuk Candan, Huan Liu, Leman Akoglu, Xin Luna Dong, and Jiliang Tang

(Eds.). ACM, 657–665.

[42] XiaoxiaoMa, JiaWu, ShanXue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong,

and Leman Akoglu. 2021. A comprehensive survey on graph anomaly detection

with deep learning. IEEE Transactions on Knowledge and Data Engineering (2021).
[43] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering:

Analysis and an algorithm. In Advances in Neural Information Processing Systems
14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada]. MIT Press, 849–856.

[44] Guansong Pang, Anton van den Hengel, Chunhua Shen, and Longbing Cao. 2021.

Toward Deep Supervised Anomaly Detection: Reinforcement Learning from

Partially Labeled Anomaly Data. In KDD ’21: The 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18,
2021, Feida Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). ACM, 1298–1308.

[45] Guansong Pang, Cheng Yan, Chunhua Shen, Anton van den Hengel, and Xiao

Bai. 2020. Self-Trained Deep Ordinal Regression for End-to-End Video Anomaly

Detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation

/ IEEE, 12170–12179.

[46] Hyunjong Park, Jongyoun Noh, and Bumsub Ham. 2020. Learning Memory-

Guided Normality for Anomaly Detection. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020. Computer Vision Foundation / IEEE, 14360–14369.

[47] Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, and Qinghua Zheng. 2018.

ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed

Networks. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme

Lang (Ed.). ijcai.org, 3513–3519.

[48] Tahereh Pourhabibi, Kok-Leong Ong, Booi H Kam, and Yee Ling Boo. 2020. Fraud

detection: A systematic literature review of graph-based anomaly detection

approaches. Decision Support Systems 133 (2020), 113303.
[49] Hezhe Qiao and Guansong Pang. 2023. Truncated Affinity Maximization: One-

class Homophily Modeling for Graph Anomaly Detection. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,

and Sergey Levine (Eds.).

[50] Jagdish Ramakrishnan, Elham Shaabani, Chao Li, and Mátyás A. Sustik. 2019.

Anomaly Detection for an E-commerce Pricing System. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin
Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM,

1917–1926.

[51] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and

Hrishikesh Khandeparkar. 2019. A Theoretical Analysis of Contrastive Unsuper-

vised Representation Learning. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
Vol. 97. PMLR, 5628–5637.

[52] Bin Shen and Luo Si. 2010. Non-Negative Matrix Factorization Clustering on

Multiple Manifolds. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI
Press.

[53] Pavel Slipenchuk and Anna Epishkina. 2019. Practical User and Entity Behavior

Analytics Methods for Fraud Detection Systems in Online Banking: A Survey.

948 (2019), 83–93.

[54] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, June 28 - July 1, 2009. ACM, 817–826.

[55] Hanghang Tong and Ching-Yung Lin. 2011. Non-Negative Residual Matrix

Factorization with Application to Graph Anomaly Detection. In Proceedings of
the Eleventh SIAM International Conference on Data Mining, SDM 2011, April 28-30,
2011, Mesa, Arizona, USA. SIAM / Omnipress, 143–153.

[56] George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Björn W.

Schuller. 2014. A Deep Semi-NMF Model for Learning Hidden Representations.

In Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, Vol. 32. JMLR.org, 1692–1700.

[57] Yao-Hung Hubert Tsai, Tianqin Li, Weixin Liu, Peiyuan Liao, Ruslan Salakhutdi-

nov, and Louis-Philippe Morency. 2022. LearningWeakly-supervised Contrastive

Representations. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[58] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning

with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).

[59] Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Stat. Comput. 17, 4
(2007), 395–416. https://doi.org/10.1007/S11222-007-9033-Z

[60] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.

MGAE: Marginalized Graph Autoencoder for Graph Clustering. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, CIKM
2017, Singapore, November 06 - 10, 2017. ACM, 889–898.

[61] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,

Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph

attentive network for financial fraud detection. In 2019 IEEE International Con-
ference on Data Mining (ICDM). IEEE, 598–607.

[62] Tongzhou Wang and Phillip Isola. 2020. Understanding Contrastive Represen-

tation Learning through Alignment and Uniformity on the Hypersphere. In

Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, Vol. 119. PMLR, 9929–9939.

[63] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.

Yu. 2019. Heterogeneous Graph Attention Network. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019. ACM, 2022–

2032.

[64] Yu Wang, Chuan Chen, Jinrong Lai, Lele Fu, Yuren Zhou, and Zibin Zheng.

2023. A Self-Representation Method with Local Similarity Preserving for Fast

Multi-View Outlier Detection. ACM Trans. Knowl. Discov. Data 17, 1 (2023),

2:1–2:20.

[65] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. 2010. Robust PCA via

Outlier Pursuit. In Advances in Neural Information Processing Systems 23: 24th
Annual Conference on Neural Information Processing Systems 2010. Proceedings of
a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada. Curran
Associates, Inc., 2496–2504.

[66] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. 2022. Con-

trastive Attributed Network Anomaly Detection with Data Augmentation. In

Advances in Knowledge Discovery and Data Mining - 26th Pacific-Asia Conference,
PAKDD 2022, Chengdu, China, May 16-19, 2022, Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 13281), João Gama, Tianrui Li, Yang Yu, Enhong Chen,

Yu Zheng, and Fei Teng (Eds.). Springer, 444–457.

[67] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,

and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with

Differentiable Pooling. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada. 4805–4815.

[68] Xianchao Zhang, Linlin Zong, Xinyue Liu, and Hong Yu. 2015. Constrained

NMF-Based Multi-View Clustering on Unmapped Data. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. AAAI Press, 3174–3180.

[69] Handong Zhao, Zhengming Ding, and Yun Fu. 2017. Multi-View Clustering via

Deep Matrix Factorization. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA. AAAI
Press, 2921–2927.

[70] Lecheng Zheng, Jinjun Xiong, Yada Zhu, and Jingrui He. 2022. Contrastive

Learning with Complex Heterogeneity. In KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
August 14 - 18, 2022. ACM, 2594–2604.

[71] Mingkai Zheng, Fei Wang, Shan You, Chen Qian, Changshui Zhang, Xiaogang

Wang, and Chang Xu. 2021. Weakly Supervised Contrastive Learning. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021. IEEE, 10022–10031.

[72] Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe

Chen. 2021. Generative and contrastive self-supervised learning for graph

anomaly detection. IEEE Transactions on Knowledge and Data Engineering (2021).
[73] Qiwei Zhong, Yang Liu, Xiang Ao, Binbin Hu, Jinghua Feng, Jiayu Tang, and

Qing He. 2020. Financial Defaulter Detection on Online Credit Payment via

Multi-view Attributed Heterogeneous Information Network. InWWW ’20: The
Web Conference 2020, Taipei, Taiwan, April 20-24, 2020. ACM / IW3C2, 785–795.

[74] Xiaokang Zhou, YiyongHu,Wei Liang, JianhuaMa, andQun Jin. 2021. Variational

LSTM Enhanced Anomaly Detection for Industrial Big Data. IEEE Trans. Ind.
Informatics 17, 5 (2021), 3469–3477.

[75] Hao Zhu, Ke Sun, and Peter Koniusz. 2021. Contrastive Laplacian Eigenmaps.

In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual. 5682–5695.

10

https://doi.org/10.1007/S11222-007-9033-Z


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Cluster Aware Graph Anomaly Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Proof
A.1 Proof for Lemma 3.1
Lemma 3.1: (Similarity-guided Graph Contrastive Loss) Let �̄� be
the output of a one-layer graph neural network defined in Eq. 3. Then,
L𝐶 is equivalent to the following loss function:

L𝐶 = L𝑓 +𝐶

where L𝑓 = −∑𝑛
𝑖=1

∑𝑛
𝑗=1

log

exp(2�̃�𝑖 𝑗 �̄�𝑖 �̄�𝑇𝑗 )
Π𝑛
𝑘=1

exp( (�̄�𝑖 �̄�𝑇𝑘 )2 )1/𝑛 is a graph con-

trastive loss and 𝐶 is a constant.

Proof.

min

�̄�
L𝐶 = min

�̄�
| |�̃� − �̄� �̄�𝑇 | |2𝐹

= min

�̄�

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(�̃�𝑖 𝑗 − �̄�𝑖 �̄�
𝑇
𝑗 )

2

= min

�̄�

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(�̃�2

𝑖 𝑗 − 2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗 + (�̄�𝑖 �̄�𝑇𝑗 )

2)

Notice that �̄� is independent of �̄� . When we fix the parameter

�̄� to update �̄� , then �̃�2

𝑖 𝑗
can be considered as a constant in this

optimization problem. Thus, we have

min

�̄�
L𝐶 = min

�̄�

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(−2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗 + (�̄�𝑖 �̄�𝑇𝑗 )

2) +𝐶

= min

�̄�

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(−2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗 +

1

𝑛

𝑛∑︁
𝑘=1

(�̄�𝑖 �̄�𝑇𝑘 )
2) +𝐶

= min

�̄�
−

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

log

exp(2�̃�𝑖 𝑗 �̄�𝑖 �̄�𝑇𝑗 )

Π𝑛
𝑘=1

exp((�̄�𝑖 �̄�𝑇𝑘 )
2)

1

𝑛

+𝐶

= min

�̄�
L𝑓 +𝐶

where L𝑓 = −∑𝑛
𝑖=1

∑𝑛
𝑗=1

log

exp(2�̃�𝑖 𝑗 �̄�𝑖 �̄�𝑇𝑗 )
Π𝑛
𝑘=1

exp( (�̄�𝑖 �̄�𝑇𝑘 )2 )1/𝑛 . Thus, we have

L𝐶 = L𝑓 +𝐶 , which completes the proof.

□

A.2 Proof for Lemma 3.2
Lemma 3.2: (Graph Contrastive Spectral Clustering) Let �̄� be the
output of a one-layer graph neural network defined in Eq. 3 and �̄�𝑖 and
�̄� 𝑗 be unit vectors. Then, minimizing L𝐶 is equivalent to minimizing
the following loss function:

minL𝐶 = min[2𝑇𝑟 (�̄�𝑇 𝑳�̄� ) + 𝑅(�̄� )]
where 𝑳 = 𝑰 −�̃� can be considered as the normalized graph Laplacian,
𝑰 is the identity matrix and 𝑅(�̄� ) = | |�̄� �̄�𝑇 | |2

𝐹
is the regularization

term.

Proof. Based on the proof in Lemma 3.1, we have

minL𝐶 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(−2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗 + (�̄�𝑖 �̄�𝑇𝑗 )

2)

= (
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(2�̃�𝑖 𝑗 − 2�̃�𝑖 𝑗 − 2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗 + (�̄�𝑖 �̄�𝑇𝑗 )

2)

Notice that �̃� = �̃�−1/2 (𝛼�̄��̄�𝑇 + (1 − 𝛼) 1

𝑣

∑𝑣
𝑎=1

𝑨𝑎)�̃�−1/2
and

�̃�𝑖𝑖 =
∑

𝑗 (𝛼�̄�𝑖�̄�𝑇
𝑗
+ (1 − 𝛼) 1

𝑣

∑𝑣
𝑎=1

𝑨𝑎
𝑖 𝑗
). We have

∑𝑛
𝑗=1

�̃�𝑖 𝑗 = 1

and thus

∑𝑛
𝑖=1

∑𝑛
𝑗=1

2�̃�𝑖 𝑗 is a constant, which can be ignored in this

optimization problem. Since �̄�𝑖 and �̄� 𝑗 are unit vectors, we have

minL𝐶 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(2�̃�𝑖 𝑗 − 2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗 + (�̄�𝑖 �̄�𝑇𝑗 )

2)

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

�̃�𝑖 𝑗 | |�̄�𝑖 | |22 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

�̃�𝑖 𝑗 | |�̄� 𝑗 | |22 −
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗

+
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(�̄�𝑖 �̄�𝑇𝑗 )
2

=

𝑛∑︁
𝑖=1

𝑰𝑖𝑖 | |�̄�𝑖 | |22 +
𝑛∑︁
𝑗=1

𝑰 𝑗 𝑗 | |�̄� 𝑗 | |22 −
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

2�̃�𝑖 𝑗 �̄�𝑖 �̄�
𝑇
𝑗

+
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(�̄�𝑖 �̄�𝑇𝑗 )
2

= 2𝑇𝑟 (�̄�𝑇 𝑳�̄� ) + 𝑅(�̄� )
(13)

where 𝑳 = 𝑰 − �̃� can be considered as the normalized graph Lapla-

cian, 𝑰 is the identity matrix and 𝑅(�̄� ) = | |�̄� �̄�𝑇 | |2
𝐹
, which com-

pletes the proof. □

A.3 Proof for theorem 3.4
Definition 3.3 Given a sample 𝒙 𝒊 , we say (𝒙𝑖 , 𝒙 𝑗 ) is a false negative
pair (or a true positive pair), if their optimal representations satisfy
exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏) > 1 for a small positive value 𝜏 . Similarly, we say (𝒙𝑖 ,
𝒙𝑘 ) is a true negative pair (or a false positive pair), if their optimal
representations satisfy exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏) ≈ 0 for a small positive value 𝜏 .

Theorem 3.4 Given the contrastive learning loss function L3, if
there exists one false positive sample in the batch during training, the
contrastive learning loss will lead to a sub-optimal solution.

Proof. We can rewrite L3 as follows:

L3 =
∑︁
𝑖

∑︁
𝑗∈𝐶 (𝑖 ), 𝑗≠𝑖

[log(
exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏) +

∑
𝑘∉𝐶 (𝑖 ) exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)

exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏)
)]

=
∑︁
𝑖

∑︁
𝑗∈𝐶 (𝑖 ), 𝑗≠𝑖

[log(exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏) +
∑︁

𝑘∉𝐶 (𝑖 )
exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)) − �̄�𝑖 �̄�

𝑇
𝑗 /𝜏]

=
∑︁

𝑗∈𝐶 (1), 𝑗≠1

[log(exp(�̄�1�̄�
𝑇
𝑗 /𝜏) +

∑︁
𝑘∉𝐶 (1)

exp(�̄�1�̄�
𝑇
𝑘
/𝜏)) − �̄�1�̄�

𝑇
𝑗 /𝜏]

+
∑︁
𝑖≠1

∑︁
𝑗∈𝐶 (𝑖 ), 𝑗≠𝑖

[log(exp(�̄�𝑖 �̄�𝑇𝑗 /𝜏) +
∑︁

𝑘∉𝐶 (𝑖 )
exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)) − �̄�𝑖 �̄�

𝑇
𝑗 /𝜏]

(14)

Here, we select 𝒙1 as the anchor node such that (𝒙𝑖 ,𝒙1) is a true

positive pair (i. e., 𝒙𝑖 and 𝒙1 are from the same cluster). Taking the

derivative of L3 with respect to �̄�1, we have
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𝜕L3

𝜕�̄�1

=
1

𝜏

∑︁
𝑗∈𝐶 (1), 𝑗≠1

[
exp(�̄�1�̄�𝑇𝑗 /𝜏)�̄� 𝑗 +

∑
𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄�𝑘

exp(�̄�1�̄�𝑇𝑗 /𝜏) +
∑
𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)

− �̄� 𝑗 ]

+ 1

𝜏

∑︁
𝑖≠1,𝑖∈𝐶 (1)

[
exp(�̄�𝑖 �̄�𝑇

1
/𝜏)�̄�𝑖

exp(�̄�𝑖 �̄�𝑇
1
/𝜏) +∑

𝑘∉𝐶 (𝑖 ) exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)
− �̄�𝑖 ]

=
1

𝜏

∑︁
𝑗∈𝐶 (1), 𝑗≠1

[
∑
𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄�𝑘 −∑

𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄� 𝑗

exp(�̄�1�̄�𝑇𝑗 /𝜏) +
∑
𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)

]

+ 1

𝜏

∑︁
𝑖≠1,𝑖∈𝐶 (1)

[
−∑

𝑘∉𝐶 (𝑖 ) exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)�̄�𝑖
exp(�̄�𝑖 �̄�𝑇

1
/𝜏) +∑

𝑘∉𝐶 (𝑖 ) exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)
]

Setting the gradient to 0, we have∑︁
𝑗∈𝐶 (1), 𝑗≠1

[
∑
𝑘∉𝐶 (1) [exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄� 𝑗 − exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄�𝑘 ]

exp(�̄�1�̄�𝑇𝑗 /𝜏) +
∑
𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)

]

+
∑︁

𝑖≠1,𝑖∈𝐶 (1)
[

∑
𝑘∉𝐶 (𝑖 ) exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)�̄�𝑖

exp(�̄�𝑖 �̄�𝑇
1
/𝜏) +∑

𝑘∉𝐶 (𝑖 ) exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏)
] = 0 (15)

As (𝒙𝑖 ,𝒙1) is a true positive pair, both (𝒙𝑖 , 𝒙𝑘 ) and (𝒙1, 𝒙𝑘 ) are true
negative pairs. According to Definition 3.3, exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏) ≈ 0 and

exp(�̄�1�̄�𝑇𝑘 /𝜏) ≈ 0 for some positive small values 𝜏 and both two

terms of Eq. 15 is 0. Thus, Eq. 15 holds.

Next, we want to show that if there exists one false positive

sample, we reach a contradiction. Assuming that 𝒙1 is one false

positive sample of 𝒙𝑖 in the batch, then both (𝒙1, 𝒙 𝑗 ) and (𝒙𝑖 , 𝒙1)

are false positive pairs and (𝒙1, 𝒙𝑘 ) is a false negative pair for some

𝑘 (e. g., 𝒙1 and 𝒙𝑘 are from the same cluster for some 𝑘). Similarly,

as (𝒙𝑖 , 𝒙𝑘 ) is a true negative pair for all 𝑘 , exp(�̄�𝑖 �̄�𝑇𝑘 /𝜏) ≈ 0 and the

second term of Eq. 15 is approximately 0. Therefore, we have∑︁
𝑗∈𝐶 (1), 𝑗≠1

∑
𝑘∉𝐶 (1) [exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄� 𝑗 − exp(�̄�1�̄�𝑇𝑘 /𝜏)�̄�𝑘 ]

exp(�̄�1�̄�𝑇𝑗 /𝜏) +
∑
𝑘∉𝐶 (1) exp(�̄�1�̄�𝑇𝑘 /𝜏)

+ 0 = 0∑︁
𝑗∈𝐶 (1), 𝑗≠1

∑︁
𝑘∉𝐶 (1)

[exp(�̄�1�̄�
𝑇
𝑘
/𝜏)�̄� 𝑗 − exp(�̄�1�̄�

𝑇
𝑘
/𝜏)�̄�𝑘 ] = 0 (16)

We multiply Eq. 16 by �̄�𝑇
𝑖
, where (𝒙𝑖 , 𝒙 𝑗 ) is a true positive pair for

any 𝑗 (i. e., both 𝒙𝑖 and 𝒙 𝑗 are from the same cluster) and (𝒙𝑖 , 𝒙𝑘 ) is
a true negative pair for any 𝑘 . Then, we have∑︁

𝑗∈𝐶 (1), 𝑗≠1

∑︁
𝑘∉𝐶 (1)

[exp(�̄�1�̄�
𝑇
𝑘
/𝜏)�̄� 𝑗 �̄�

𝑇
𝑖

+ exp(�̄�1�̄�
𝑇
𝑘
/𝜏) (−�̄�𝑘 �̄�𝑇𝑖 )] = 0 (17)

Since (𝒙𝑖 , 𝒙 𝑗 ) is a true positive pair and (𝒙𝑖 , 𝒙𝑘 ) is a true negative pair,

we have exp(�̄� 𝑗 �̄�𝑇𝑖 /𝜏) > 1 and exp(�̄�𝑘 �̄�𝑇𝑖 /𝜏) ≈ 0, which means that

�̄� 𝑗 �̄�𝑇𝑖 > 0 and �̄�𝑘 �̄�
𝑇
𝑖
< 0. Therefore, both two terms of Eq. 17 are

non-negative and Eq. 17 holds if and only if exp(�̄�1�̄�𝑇𝑘 /𝜏) ≈ 0 for

any 𝑘 ∉ 𝐶 (1) (i. e., (𝒙1, 𝒙𝑘 ) is a true negative pair for any 𝑘 ∉ 𝐶 (1)).
If (𝒙1, 𝒙𝑘 ) is a true negative pair for any𝑘 ∉ 𝐶 (1), then (𝒙1, 𝒙𝑖 ) has

to be a true positive pair, and it contradicts our assumption that 𝒙1

is a false positive sample of 𝒙𝑖 . Therefore, we reach a contradiction

and we could not get the optimal solution for �̄�1, which completes

the proof. □

B Experiments
In this section, we show the details of generating anomalous node

for the semi-supervised datasets, including IMDB and DBLP. We

also show the hyper-parameter specification for reproducing the

experimental results.

B.1 Anomalous node generation
We follow the published works [14] to generate anomalous nodes

by perturbing the topological structure or node attributes of an

attributed network. To perturb the topological structure of an attrib-

uted network, we adopt the method introduced by [14] to generate

some small cliques as in many real-world scenarios. A small clique

is a typical anomalous substructure due to larger node degrees than

normal nodes. By [1], after we specify the clique size as𝑚, we ran-

domly select𝑚 nodes from the network and then make those nodes

fully connected. Then all the𝑚 nodes in the clique are regarded as

anomalies. In addition to the injection of structural anomalies, we

adopt another attribute perturbation schema introduced by [14] to

generate anomalies from an attribute perspective. For each selected

node 𝑢𝑖 , we randomly pick another 𝑘 nodes and select node 𝑢 𝑗
whose attributes deviate the most from node 𝑢 𝑗 among the 𝑘 nodes

by maximizing the Euclidean distance | |𝑥𝑖 − 𝑥 𝑗 | |2. Afterward, we
then change the attributes 𝑥𝑖 of node 𝑢𝑖 to 𝑥 𝑗 .

B.2 Reproducibility
All of the real-world data sets are publicly available. The experi-

ments are performed on aWindows machine with a 24GB RTX 4090

GPU. We use TAM as the backbone of our method to capture the

local node affinity. We set the number of clusters to be 10, 𝜆 = 0.1

and 𝛼 = 0.8 for the CERT dataset. For the IMDB dataset, we set

the number of clusters to be 10, the value of 𝜆 = 1 and 𝛼 = 0.8. For

the DBLP dataset, we set the number of clusters to be 10, the value

of 𝜆 = 0.01 and 𝛼 = 0.8. For the BlogCatalog dataset, we set the

number of clusters to be 5, 𝜆 = 0.01 and 𝛼 = 0.01. For the Amazon

dataset, we set the number of clusters to be 10, 𝜆 = 1 and 𝛼 = 0.8.

For the Yelp dataset, we set the number of clusters to be 10, 𝜆 = 1

and 𝛼 = 0.8.
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