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Abstract

Model-based deep learning approaches, such as unrolled neural networks, have
been shown to be effective tools for efficiently solving inverse problems. However,
the memory costs of training unrolled networks remain high, especially when the
target data is high-resolution and high-dimensional. This often requires trade-offs
in either network depth to reduce model size, or data resolution to reduce data
size. To address this, we propose DL-Subspace - a novel unrolled network archi-
tecture which reduces memory usage by solving for a compact, low-dimensional
representation of the target instead of the target itself. DL-Subspace is applied
to accelerated magnetic resonance image reconstruction, demonstrating up to 4×
higher memory efficiency and 4× faster inference speed while maintaining similar
image quality as conventional unrolled networks.

1 Introduction

Model-based deep learning approaches have become effective tools for efficiently solving inverse
problems that arise in a variety of computational imaging applications, including magnetic resonance
imaging (MRI) [1, 2, 3, 4, 5]. Unrolled optimization is one such approach where a conventional
optimization algorithm is unrolled to a fixed number of iterations, and its regularization steps are
replaced with neural networks whose weights are learned by training the unrolled network end-to-end
in a supervised fashion [6]. However, the memory costs of training unrolled networks remain high,
especially when the target data is high-resolution and/or high-dimensional. This often requires trade-
offs in either the number of unrolled iterations to reduce model size, or the training data resolution to
reduce the input data size.

A novel unrolled network, known as DL-Subspace, is proposed to curb memory requirements by
solving for a compact low-dimensional representation of the target instead of the target itself. We
apply this technique to accelerated MRI reconstruction of high-resolution spatio-temporal data, and
demonstrate 2-4× higher memory efficiency and 3-4× faster inference speed while maintaining
similar image quality metrics as state-of-the-art unrolled neural network architectures.

2 Preliminaries

2.1 Dynamic MRI Reconstruction

Let X ∈ CN×T denote a time-series of MR images where N is the image size and T is the number
of time frames. The goal of dynamic MRI reconstruction is to resolve X from a set of undersampled
measurements Y ∈ CMC×T where M is the number of measurements per time frame, and C is the
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Figure 1: Linearly reconstructed images are converted into blocks and decomposed using the singular
value decomposition (Xb = UΣV H ) to initialize the block-wise basis functions as L(0)

b = UΣ1/2

and R
(0)
b = V Σ1/2. These complex-valued basis functions are iteratively processed by the DL-

Subspace network by alternating conjugate gradient (CG) and ResNet [7] updates. The real and
imaginary part of the basis functions are treated as real-valued channels within each ResNet.

number of receivers in a phased coil array. These measurements, also known as k-space, are related
to the images by a system of linear equations:

Y = A(X) +W (1)

where A : CN×T → CMC×T is the MRI system matrix comprised of coil sensitivity maps, Fourier
transform, and k-space sampling mask. The system noise W ∈ CMC×T is modelled by additive
complex-valued white Gaussian noise. Image reconstruction is commonly performed by solving an
inverse problem wherein X is estimated given explicit knowledge of Y and A.

2.2 Subspace Model

However, solving for X can be computationally expensive, especially when X has high spatiotem-
poral resolution. In the past, subspace models have been used to re-formulate the dynamic MRI
reconstruction problem to instead solve for the subspace of X instead of X directly [8, 9, 10, 11, 12].
Here, we consider a subspace model that exploits locally low-rank structure on image blocks of size
B × B × T [9]. Concretely, the time-series images can be split up into NB overlapping blocks
Xb ∈ CB2×T where each block is denoted by index b. Each block can then be decomposed into a
product of two matrices:

Xb = LbR
H
b (2)

where Lb ∈ CB2×K and Rb ∈ CT×K contain K spatial and temporal basis functions respectively.
The data is said to live in a low-dimensional subspace if Xb can be compactly represented using
relatively few basis functions (K << T ). The original time-series data X can be re-formed by
multiplying Lb and Rb and summing over all of the blocks:

X =

NB∑
b=1

Mb

(
LbR

H
b

)
(3)

where the operator Mb : CB2×T → CN×T is used to embed each input block back into its original
position in the full image. The new system of equations can be defined as:

Y = A

(
NB∑
b=1

Mb(LbR
H
b )

)
+W. (4)

In subspace reconstruction, a bi-linear inverse problem is solved to estimate Lb and Rb given explicit
knowledge of Y and A. Since this problem is ill-posed, it is common to enforce sparse structure on
Rb such as in dictionary learning approaches [13, 14].
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Figure 2: Memory usage (GB) and inference speed (sec/slice) benchmarks are evaluated for DL-
Subspace with varying block size (B) and number of basis functions (K). For reference, memory
usage during inference for DL-ESPIRiT and MoDL is 1.6 GB. Average inference speed for DL-
ESPIRiT and MoDL are 2.496 and 2.800 sec/slice respectively.

3 Methods

3.1 Deep subspace learning

The dictionary learning approach is generalized by instead learning a prior on Lb and Rb in a
data-driven manner by posing the following bi-linear inverse problem:

minimize
Lb,Rb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(LbR
(i)H
b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µl

NB∑
b=1

||Dl(Lb)−Lb||2F + µr

NB∑
b=1

||Dr(Rb)−Rb||2F

(5)
where Dl and Dr are 2-D and 1-D convolutional neural networks (CNNs) that denoise the spatial and
temporal basis functions respectively. Inspired by an unrolled alternating minimization approach by
Arvinte et al. [15], this problem is broken down into simpler convex sub-problems by first minimizing
with respect to Lb, then minimizing with respect to Rb, and repeating this process until convergence.
As shown in Section A.2, each sub-problem can be solved using MoDL [3] to form the following
update rule:

U
(i+1)
b = arg min

Lb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(LbR
(i)H
b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µl

NB∑
b=1

||L(i)
b − Lb||2F (6)

L
(i+1)
b = Dl

(
U

(i+1)
b

)
(7)

V
(i+1)
b = arg min

Rb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(L
(i+1)
b RH

b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µr

NB∑
b=1

||R(i)
b −Rb||2F (8)

R
(i+1)
b = Dr

(
V

(i+1)
b

)
. (9)

This update rule is unrolled to fixed number of iterations and used to form the deep learning-based
subspace (DL-Subspace) reconstruction network architecture shown in Fig. 1. The DL-Subspace
network is trained end-to-end by minimizing the complex-valued l1 loss:

L =

∣∣∣∣∣
∣∣∣∣∣X −

NB∑
b=1

Mb(L
(I)
b R

(I)H
b )

∣∣∣∣∣
∣∣∣∣∣
1

(10)

where L
(I)
b and R

(I)
b are the final iterates of the network, and X is the fully-sampled ground truth.

3.2 Experiments

Training Data: Fully-sampled, multi-slice 2D cardiac cine MRI datasets were collected from 21
healthy volunteers and 1 pediatric patient under IRB approval. For training, 17 volunteer datasets
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Figure 3: DL-ESPIRiT, MoDL, and DL-Subspace (proposed) networks are evaluated by reconstruct-
ing the test datasets with with different acceleration rates. Each reconstruction is evaluated in the
image domain against the fully-sampled ground truth images with respect to PSNR and SSIM. All
three methods demonstrate comparable metrics. DL-Subspace outperforms MoDL and DL-ESPIRiT
by a small margin for higher acceleration rates.

are split slice-by-slice to create 294 unique training examples, each with 20-25 temporal frames.
The input to the network is formed by retrospectively excluding k-space measurements using a
pseudo-random, variable-density undersampling pattern [16]. This process simulates a rapid MRI
acquisition that is accelerated by factors of 10-15 compared to the nominal fully-sampled acquisition.
Two volunteer datasets are used for validation, and the remaining datasets for testing.

Evaluation: For testing, we compare DL-Subspace against unrolled proximal gradient descent
(DL-ESPIRiT) [5] and unrolled half-quadratic splitting (MoDL) [3] networks. As shown in Table
1, the hyperparameters for each network are set such that they have the same number of learnable
parameters. All three networks are trained using the same dataset with a batch size of 1 and Adam
optimizer for 1000 epochs [17]. Once trained, reconstructions for each network are evaluated by
computing standard image quality metrics such as peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) with respect to fully-sampled ground truth images.

Benchmarks: Memory usage and average inference speed are benchmarked for DL-ESPIRiT, MoDL,
and DL-Subspace network with various hyperparameter configurations. Memory usage is measured
by internal profiling functions provided by PyTorch. Average inference times are computed by
averaging over 16 reconstructions of MRI data with matrix size of 200 × 180 and 20 temporal frames.

4 Results

DL-Subspace networks achieve 2-4× higher memory efficiency and 3-4× faster average inference
speed than both DL-ESPIRiT and MoDL. As shown in Fig. 2, the exact gain in memory efficiency
and inference speed depends on network hyperparameters such as block size (B) and the number
of basis functions (K). Based on preliminary hyperparameter tuning experiments shown in Fig. 4,
the DL-Subspace network with B = 16 and K = 12 is chosen for comparison against the other
networks. As shown in Fig. 3, DL-Subspace demonstrates better image quality metrics on average,
especially on data with high scan time accelerations. Example reconstructions shown in Figs. 5 & 6
depict similar image quality across all three networks, except DL-Subspace demonstrates slightly
better noise performance upon visual inspection.

5 Conclusion

A novel deep learning-based subspace reconstruction framework known as DL Subspace is proposed,
which uses a subspace model to curb the memory requirements of training unrolled neural networks
for high-dimensional image reconstruction. As a result, both memory efficiency and average inference
speed are improved by up to a factor of 4× without compromising image quality compared to state-
of-the-art unrolled networks.
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A Appendix

A.1 Model-based Deep Learning (MoDL)

Unrolled neural networks have demonstrated state-of-the-art performance in reconstruction of accel-
erated dynamic MRI data [2, 4, 5]. Model-based deep learning reconstruction (MoDL) is one such
approach that performs reconstruction by solving the following optimization problem [3]:

X̂ = arg min
X

||Y −A(X)||2F + µ||D(X)−X||2F (11)

where D is a 3D CNN which acts as a spatiotemporal denoiser on X , and µ is the regularization
strength. The problem in Eq. 11 is solved using the half quadratic splitting (HQS) algorithm which
alternates between two steps [18]. In the first step, D(X) is treated as a constant, and the optimization
problem in Eq. 11 is solved using a conjugate gradient (CG) solver. In the second step, the CNN is
applied to denoise the output of the first step. The MoDL update rule is defined as follows:

Z(i+1) = arg min
X

||Y −A(X)||2F + µ||X(i) −X||2F (12)

X(i+1) = D(Z(i+1)) (13)

Both of the HQS and CG iterations are unrolled to have a fixed number of iterations, and trained
end-to-end in a supervised fashion to learn the weights of D and the optimal value for µ from a
training dataset of historical exam data.

A.2 Applying MoDL to Subspace Reconstruction

In subspace reconstruction, an inverse problem is solved to estimate the low-dimensional subspace
of X instead of X directly. As mentioned in Section 3.1, this inverse problem can be written in the
following form:

minimize
Lb,Rb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(LbR
(i)H
b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µl

NB∑
b=1

||Dl(Lb)−Lb||2F + µr

NB∑
b=1

||Dr(Rb)−Rb||2F

(14)
where Dl and Dr are simpler 2-D and 1-D CNNs that denoise the spatial and temporal basis functions
respectively. The regularization strengths µl and µr are parameters that must be learned along with
the CNN weights. This non-convex problem is broken down into simpler convex sub-problems by
applying alternating minimization:

L
(i+1)
b = arg min

Lb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(LbR
(i)H
b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µl

NB∑
b=1

||Dl(Lb)− Lb||2F (15)

R
(i+1)
b = arg min

Rb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(L
(i+1)
b RH

b )

)∣∣∣∣∣
∣∣∣∣∣
2

2

+ µr

NB∑
b=1

||Dr(Rb)−Rb||2F . (16)

Both sub-problems take the form of the problem solved by MoDL in Eqn. 11. Therefore, the MoDL
update rule can be used to solve Eqns. 15 & 16 which forms the following 4-step update rule:

U
(i+1)
b = arg min

Lb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(LbR
(i)H
b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µl

NB∑
b=1

||L(i)
b − Lb||2F (17)

L
(i+1)
b = Dl

(
U

(i+1)
b

)
(18)

V
(i+1)
b = arg min

Rb

∣∣∣∣∣
∣∣∣∣∣Y −A

(
NB∑
b=1

Mb(L
(i+1)
b RH

b )

)∣∣∣∣∣
∣∣∣∣∣
2

F

+ µr

NB∑
b=1

||R(i)
b −Rb||2F (19)

R
(i+1)
b = Dr

(
V

(i+1)
b

)
. (20)
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A.3 How to choose the number of basis functions

The number of spatial and basis functions (K) is a network hyperparameter that needs to be tuned
empirically for each imaging application. In this work, B fixed to 16, and K is chosen by training
multiple networks with K = 4, 8, 12 and finding the network with the lowest average validation loss.
As shown by the plots in Fig. 4, the DL-Subspace network with K = 12 basis functions performs the
best on average. Better performance may be achieved by training with more basis functions, however,
there are diminishing returns to adding more basis functions. Additionally, the representations Lb and
Rb become less compact as the number of basis functions is increased, leading to decreased memory
efficiency. Trade-offs between memory efficiency and reconstruction performance and will be the
subject of future work.

Figure 4: The average L1 loss and peak signal-to-noise ratio (PSNR) is evaluated over the validation
set for DL-Subspace networks with varying numbers of basis functions (K).

A.4 Network Hyperparameters

# Unrolls # CG Unrolls # Learnable
Parameters

Sub-Network
Architecture Kernel Size # Input

Features
# Hidden
Features

DL-ESPIRiT 10 N/A 8.5 million 2D+Time ResNet-5 3 x 3 x 3 2 88
MoDL 10 10 8.5 million 2D+Time ResNet-5 3 x 3 x 3 2 88

DL-Subspace 10 10 8.6 million 2D ResNet-5 3 x 3 24 128
1D ResNet-5 3 x 1 24 128

Table 1: Table containing hyperparameters for DL-ESPIRiT, MoDL, and DL-Subspace (proposed).
Note that the number of hidden features for DL-ESPIRiT and MoDL networks is modified such that
the total number of learnable parameters for all networks remain roughly the same. To increase model
expressivity, the ResNet weights are not shared between unrolled iterations.
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A.5 Reconstruction examples on volunteer data

Figure 5: With IRB approval, one fully-sampled 2D cardiac cine MRI scan is performed on a healthy
volunteer. The data is retrospectively undersampled to simulate an accelerated scan that is faster
than the fully-sampled scan by a factor of 14. The undersampled data is reconstructed using (from
left-to-right): zero-filling, DL-ESPIRiT, MoDL, and DL-Subspace. Magnitude images and y-t plots
with corresponding error images and error y-t plots are shown here. No significant difference in
image quality is observed between the deep learning-based methods.

A.6 Reconstruction examples on patient data

Figure 6: With IRB approval, two prospectively undersampled 2D cardiac cine MRI scans are per-
formed in a pediatric patient. The first acquisition is uniformly undersampled (R=2) and reconstructed
using SENSE (reference). The second acquisition is prospectively undersampled by a variable-density
ky-t undersampling pattern (R=12) and reconstructed using DL-ESPIRiT, MoDL, and DL-Subspace.
The top and bottom rows show the same images, except the bottom row is windowed to better
appreciate noise in the four reconstructions. The DL-Subspace images are observed to be the least
noisy due to the denoising effect of reconstructing the target in a compressed subspace. This is best
appreciated in the liver and hepatic vessels (blue arrows).
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