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ABSTRACT

Molecular representation learning (MRL) aims to embed molecules into vectors
in a high dimensional latent space, which can be used (and reused) for the pre-
diction of various molecular properties. Most current MRL models exploited
the SMILES (Simplified Molecular-Input Line-Entry System) strings or molec-
ular graphs as the input format of molecules. As a result, these methods may
not capture the full information encoded in the three-dimensional (3D) molecu-
lar conformations (also known as the conformers). With mature algorithms for
generating 3D molecular conformers, we propose to engage the abundant geomet-
ric information in the molecular conformers by representing molecules as point
sets, and adapt the point-based deep neural network for MRL. Specifically, we de-
signed an atom-shared elemental operation that extracts features from individual
atoms as well as atomic interactions (including covalent bonds and non-covalent
interactions), and a mini-network that ensures the representation invariant to ro-
tations and translations of the molecular conformers. We trained the deep neural
network (referred to as Mol3DNet) for a variety of tasks of molecular properties
prediction using benchmarking datasets. The experimental results demonstrated
that Mol3DNet achieves state-of-the-art performance on these classification and
regression tasks, except for one task (solubility prediction) where all deep learning
models underperform a customized machine learning model.

1 INTRODUCTION

How to represent molecules is a fundamental problem in computational molecular science. Tradi-
tionally, molecules are represented in intuitive formats such as chemical formulas, structural for-
mulas, or skeletal formulas. However, these formats cannot be directly input into computers. To
encode molecules in computers, researchers designed the string representations, e.g., the commonly
used SMILES (Simplified Molecular-Input Line-Entry System) (Weininger, 1988) strings, and the
graph representations, e.g., the molecular graph (McNaught et al., 1997). Both methods were used
in molecular representation learning (MRL), which aims to learn a high dimensional vector repre-
sentation of molecules (Li et al., 2001) using deep neural networks (DNNs). The learned vectors
can be used for various prediction tasks in molecular science, such as the prediction of chemical
properties (Wu et al., 2018; Zhu et al., 2022), chemical reactions (Fooshee et al., 2018), the interface
(Fout et al., 2017) and affinity (Wang et al., 2021b) of protein–ligand interactions, and putative
drugs (Lavecchia, 2019; Gentile et al., 2020), etc.

SMILES-based methods. The SMILES-based MRL methods consider each SMILES string as a
sequence, and then exploited natural language processing (NLP) models (e.g. Transformer (Vaswani
et al., 2017) and BERT (Devlin et al., 2018)) to learn latent representations from sequences. For in-
stance, Molecular Transformer (Schwaller et al., 2019; Pesciullesi et al., 2020), MolBERT (Fabian
et al., 2020) and SMILES-BERT (Wang et al., 2019) were developed for MRL and the prediction of
molecular properties. Despite some successes, because SMILES encodes only partial structural in-
formation of molecules, these methods often encounter the bottleneck in improving the performance
of prediction tasks (Li et al., 2018).

Graph-based methods. Many of the recent MRL methods exploit the molecular graph, a graph rep-
resentation of molecules in which the atoms in a molecule are represented as nodes and the covalent
bonds are presented as edges. Molecular graphs can be processed by different kinds of graph neural
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networks (GNNs), such as GCN (Kipf & Welling, 2016) or GIN (Xu et al., 2018). Built upon these
model architectures, different operations were designed to automatically extract molecular features
(e.g., neural graph fingerprints (NFP) (Duvenaud et al., 2015)) that simulate the topological finger-
prints such as the extended-connectivity circular fingerprints (ECFP) (Rogers & Hahn, 2010) for
molecular characterization. Several recent researches attempted to incorporate additional structural
information for MRL. For instance, DimeNet (Gasteiger et al., 2019) and DimeNet++ (Klicpera
et al., 2020) performed message passing utilizing the bond angles and lengths, which is embed-
ded by spherical Bessel functions and spherical harmonics. SphereNet (Liu et al., 2021b) proposed
spherical message passing to learn features from molecular graphs with bond lengths, angles and tor-
sions. GraphMVP (Jing et al., 2021) applied self-supervised learning to train 2D GNN and 3D GNN
together, aiming to improve 2D MRL by complementary 3D geometric information. MolR (Wang
et al., 2021a) integrated chemical reaction information into the learning of the molecular graph
embedding. Compared with the SMILES-based methods, the graph-based methods exploited 2D
topological information as well as some 3D geometric information for MRL. Nevertheless, in these
models, only the local geometric information related to the covalent interactions (i.e., bond lengths,
angles and torsions) were considered and encoded as the attributes of the respective atoms, and thus
the 3D structural information may not be fully captured during the learning process.

Point-based methods. Finally, following the convention in quantum mechanics and molecular
dynamics, a chemical molecule can also be encoded as a set of atomic points, each with a 3D co-
ordinate. The covalent bonds between atoms do not need to be encoded explicitly because they
are attributed by the overlap between the atomic orbitals, and can be inferred from the types and
3D coordinates of respective atoms. In principle, the point-based representation captures the com-
plete structural information about the molecule, and thus serves as the adequate input for MRL.
In practice, however, very few point-based DNN models were developed specifically for MRL.
SchNet (Schütt et al., 2017) is the most known model in this category, which used continuous-filter
convolutional layers to capture the subtle positional changes among the atoms in a molecule by ex-
tracting features from the pairwise distances between atoms. However, the SchNet model does not
explicitly utilize the coordinates of atoms, and neglected the direction of atomic interactions, which
contains important information about the bond angles and the topology of molecular substructures.

In this paper, we propose to encode a molecule as a points set (or a points cloud), which allows for
the direct representation of the molecule’s 3D conformation as well as the learning of interactions
between each atom and its nearest neighbors. We designed the architecture of the deep neural net-
work by integrating essential components in two baseline models, PointNet (Qi et al., 2017) and
DGCNN (Manessi et al., 2020), which were designed to address 3D computer vision problems, but
have not been applied to MRL and molecular properties prediction. To adapt these models for our
purpose, we revised the model in two aspects: 1) the points in a molecular point cloud are anno-
tated by not only their x, y, z-coordinates, but also atomic attributes (such as the type and mass
of the atoms); and 2) the molecular point cloud accepts only the rotation and translation as invari-
ant transformations (i.e., under these transformations, the molecular point clouds are considered
as the equivalent inputs), but not other affine transformations such as dilations and shears that are
accepted in a conventional point cloud model for computer vision tasks. To implement these adap-
tions, we designed an elemental operation, MolAConv, to extract features from the attributes of
individual atoms as well as their neighbors, and modified the transformation network into TnRNet,
in which only rotation and translation transformations are accepted. We show that point-based meth-
ods achieve comparable performance with graph-based methods, while our point-based model for
MRL named Mol3DNet performs state-of-the-art in both classification and regression tasks except
for the solubility prediction where all deep learning models underperform a customized machine
learning model.

2 BACKGROUND

2.1 GENERATING 3D MOLECULAR CONFORMATIONS

The 3D conformation of a chemical compound can be determined by experimental methods, e.g.,
X-ray Crystallography or Nuclear Magnetic Resonance (NMR). However, these modern technolo-
gies are expensive and time-consuming. Hence, computational methods were developed to simu-
late the 3D conformations (i.e., the conformers) automatically from the 2D molecular graphs. The
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Model Input of Each Layer Elemental Operation (h)

PointNet x
(l)
i (coordinates of point-i in layer-l) x

(l+1)
i = MLP(x(l)

i )

DGCNN x
(l)
i (coordinates of point-i in layer-l)

x
(l+1)
i = max

j∈N (x
(l)
i )

MLP(x(l)
j − x

(l)
i , x

(l)
i )

where N (x
(l)
i ) denotes the k-nearest neighbors of x(l)

i

SchNet
ri (coordinates of point-i)
z
(l)
i (features of point-i in layer-l)

z
(l+1)
i = MLP(

∑n
j=1 CF(x(l)

j , ri, rj))

CF(xj , ri, rj) = xj · exp(−γ∥∥ri − rj∥ − µ∥2)
where γ and µ are parameters of continuous-filter

Table 1: The elemental operations of point-based deep neural networks. The input x(l)
i and z

(l)
i are

dynamic among layers, while ri is constant.

Experimental-Torsion with basic Knowledge Distance Geometry (ETKDG) (Riniker & Landrum,
2015) is a commonly used rule-based conformer generation algorithm, which is implemented in
the open-source RDKit package. In the latest version (ETKDGv3) (Wang et al., 2020), the algo-
rithm was further improved for the conformer generation of molecules containing small or large
aliphatic (i.e., non-aromatic) rings. In addition to ETKDG, several commercial software tools based
on more accurate knowledge-based algorithms are available. Implemented in the OpenEye pack-
age, OMEGA (Hawkins et al., 2010; Hawkins & Nicholls, 2012) used GPU to accelerate compu-
tation. More recently, machine learning models were also developed for 3D conformer generation.
For instance, GraphDG (Simm & Hernández-Lobato, 2019) exploited a probabilistic model, while
GeoMol (Ganea et al., 2021) exploited a message passing neural networks (MPNNs) to generate
statistically independent samples of molecular graphs. Notably, machine learning models often rely
heavily on the training data and the tuning of hyper-parameters, and are not obviously better than
conventional computational methods. Therefore, in this study, we used the conventional computa-
tional methods, specifically, the open source RDKit package and the commercial method OMEGA,
to generate 3D conformers used as the input to our model Mol3DNet.

2.2 POINT-BASED DEEP NEURAL NETWORKS

The point-based deep neural networks (DNNs) should follow two invariance principles: permutation
invariance and transformation invariance. PointNet (Qi et al., 2017) is the first to introduce DNNs
on point clouds. It applies a multi-layer perceptron (MLP) to each point, named shared-MLP, so
that the model prediction is independent on the order of the points in the input point cloud, which is
distinct from the models for learning on the structured inputs like images and sequences. In addition,
a mini-network is designed to predict the affine transformation matrix, which are then incorporated
into the model to ensure the affine transformations (e.g., rotation, translation, dilation, and shear) of
the input point cloud do not affect the prediction outcome of the model. PointNet does not explicitly
model the interactions among the points in the point cloud. To address this issue, DGCNN (Manessi
et al., 2020) used an MLP to extract the pairwise features between each point and its neighbors. Our
model attempts to combine these two approaches to extract the features from each individual atom
as well as its geometrically close neighbors (based on their atomic attributes).

Consider a point set with n points, denoted as X = {x1, x2, ..., xn} ⊆ RF . In the point-based
DNNs, each layer operates on the output point set from the previous layer, and thus, F has the same
dimensions as the output from the previous layer, which varies for different layers. For point clouds
used in computer vision, each element (point) is typically represented by the x, y, z-coordinates in
the 3D Euclidean space (F = 3) at the first layer, while in the molecular point sets each element
(atom) is represented by atomic attributes in addition to the atom’s x, y, z-coordinates in the 3D
conformers (F = 21 as shown in Table 6).

Following PointNet, the general idea of permutation invariance in feature extraction is to apply a
symmetric function to the elements in the point set:

f({x1, x2, ..., xn}) ≈ g(h(x1), h(x2), ..., h(xn)) (1)

where f : 2R
F → R, h : RF → RK and g : RK × ...× RK︸ ︷︷ ︸

n

→ R.
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Figure 1: The Elemental operation MolAConv. MolAConv consists of three subnetworks for the
feature extraction and integration in four steps: (i) for atom i with the input attribute vector xi, a
local subgraph is built containing its k-nearest neighbors, whose attribute vectors are denoted by
xj , j ∈ N (xi); (ii) through the neighbor feature extraction subnetwork (hΘ and attΘ), the neighbor
features are derived from xi and xj , and then concatenated to derive the neighbor feature vector ei
by applying the aggregate operation (

∑
); (iii) through the atom feature extraction subnetwork (hΨ),

the atom feature vector is derived from the atom attributes xi; and (iv) finally, through the feature
integration subnetwork (hΩ), the feature vectors of the atom and its neighbors are integrated into a
latent feature vector x(l+1)

i with a shortcut connection.

Usually, g can be concretized by using max-pooling (max), summarizing (
∑

) or other symmetric
operations, after which the results will be the same no matter which order of the elements are in the
input. The elemental operations (h) of PointNet, DGCNN and SchNet are summarized in Table 1.

3 METHODOLOGY

3.1 ELEMENTAL OPERATION

In the existing deep learning methods on point clouds, only the x, y, z-coordinates are taken into
consideration. Unlike point clouds in computer vision, atomic attributes are crucial for MRL and
molecular properties prediction. Hence, we designed the elemental operation MolAConv (Molecu-
lar Attentional Convolution as shown in Figure 1), aiming to extract both the geometric and atomic
attributes which are summarized in Table 6. The model can be easily extended if additional attributes
need to be incorporated.

For neighbor features, we modified the elemental operation of DGCNN by leveraging multi-head
attention assisting the model in paying various concentrations to neighbors. In DGCNN, the features
between atom pairs (i.e., an atom and one of its neighbors) are extracted by the displacement vector,
xj − xi. In MRL, however, we need to incorporate the non-coordinate attributes of the atoms: for
example, the displacement on the dimensions of the one-hot encoding of the atom types (Table 6) is
meaningless. Hence, in MolAConv, we concatenate xj and xi as the input to the neighbor feature
extraction subnetwork in order for the network to learn the integrative geometric and atomic features.
Here, the multi-head self-attention is modified such that it could be shared by the atoms, which
guarantees the permutation invariance. Besides, in our model, we used the

∑
(instead of max-

pooling in DGCNN) as the aggregate function to make full use of all neighbors’ features, Therefore,
the neighbor features e(l)i is computed by:

e
(l)
i =

∑
j∈N (x

(l)
i )

attΘ(hΘ(x
(l)
i , x

(l)
j )) (2)

where attΘ is the atom-shared multi-head self-attention:

Scaled Dot-Product Attention(V,K,Q) = V · Softmax(KT ·Q) (3)
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Head1 = Scaled Dot-Product Attention(W v

1 x,W
v
1 x,W

v
1 x)

Head2 = Scaled Dot-Product Attention(W v
2 x,W

v
2 x,W

v
2 x)

. . .
Headh = Scaled Dot-Product Attention(W v

hx,W
v
hx,W

v
hx)

(4)

attΘ(x) = W o · [Head1,Head2, ...,Headh] (5)

Here, the input is one atom feature x ∈ Rd×k, and W v
i , W k

i , W q
i (i = 1, 2, ..., h) and W o are

the shared weights among all atoms (i.e., the shared linear), and thus W v
i x, W k

i x, and W q
i x are

not affected by the permutation of atoms. The shared linear can be easily implemented by the
convolution with a 1×1 kernel similar to the shared MLP (Lin et al., 2013). When implementing the
scaled dot-product attention shared by all atoms, the input is the features of all atoms, X ∈ Rd×n×k,
where d is the number of the atomic attributes, n is the number of atoms, and k is the number
of nearest neighbors. We unfold the input along the n and k axis to obtain X ∈ Rd×n′

, where
n′ = n× k, and then the conventional scaled dot-product attention can be applied.

We prove the scaled dot-product attention satisfies the principle of permutation invariance in Sec-
tion B. Because the atom-shared scaled dot-product attention is a permutation equivariance and the
neighbor features e(l)i are obtained by using the aggregate function (

∑
) over all neighboring atoms,

e
(l)
i is a permutation invariance.

To highlight the atomic attributes of center atom, we extracted its features separately through the
atom feature extraction subnetwork,

f
(l)
i = hΨ(x

(l)
i ) (6)

The overall network is deep due to the various operations for feature extraction. The alleviate the
problem of vanishing gradient in deep neural networks, we adopted the shortcut connections (He
et al., 2016), and the feature vector of point i at the layer (l + 1) is updated by:

x
(l+1)
i = hΩ(e

(l)
i , f

(l)
i ) + Upsampling(x(l)

i ) (7)

In addition, different molecules consist of different numbers of atoms, and thus we need to align the
atomic point sets into the input of a fixed size. The point clouds in computer vision applications
are usually dense, and the subset points sampled from the cloud may serve as the input of the same
size. For atomic point clouds, the sampling of atoms may miss significant information about the
molecular structure. Here, the atomic points are padded into a fixed size (e.g., 300) with zeros, and a
binary mask is applied on the point set at every layer, which guarantees that the output of MolAConv
has the same number of points as the input. In the end, the elemental operation is sequentialized to
form the encoder of the neural network for learning the molecular representation at different scales.

3.2 ALIGNMENT NETWORK FOR ROTATION AND TRANSLATION

In order to satisfy the principle of transformation invariance, we designed an alignment mini-neural
network called TnRNet (Translation and Rotation Network) to learn the transformation parameters
from the input 3D coordinates, including the rotation angles α, β, γ ∈ [0, 2π) along x, y, z-axis and
the translation shifts u, v, w along x, y, z-axis. Specifically,

(α/2π β/2π γ/2π u v w) = Softmax(hΦ(z
(0)
i )) (8)

where z(0)i denotes the x, y, z-coordinates of atoms-i in layer-0, hΦ is concretized as a shared-MLP.
Then the transformation matrix M can be assembled as:

M =

1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

×

 cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

×

cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

×

1 0 0 u
0 1 0 v
0 0 1 w
0 0 0 1


(9)
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Figure 2: The architecture of Mol3DNet. Mol3DNet is a point-based neural network that uses the
MolAConv as the elemental operation. The input of the network is the x, y, z-coordinates and the
attributes of the atoms shaped in a N ×F matrix. The additional input of meta-data (e.g., the adduct
ions type of collision cross-section prediction) is used when necessary. The output of the network
can be the properties of the molecule, e.g., the collision cross section, the water solubility, etc.

which can be applied on the original x, y, z-coordinates, mapping a molecule to the canonical space
before feature extraction. This transformation guarantees that the same molecule with the atomic
coordinates being rotated and/or translated are embedded into the same representation vector in
the latent space by the encoder. Notably, we do not enforce the encoder to be dilation or shear
invariant because the distances between all pairs of atomic points should remain the same for the
same molecule because of the rigid chemical interactions between atoms.

The transformed coordinates can be processed by matrix M :(
p′x p′y p′z 1

)T
= M × (px py pz 1)

T (10)

where px, py , pz are the original coordinates, and p′x, p′y , p′z are the transformed coordinates. The
detailed architecture of TnRNet is illustrated in Figure 4 (a).

3.3 ARCHITECTURE OF MOL3DNET

Based on the elemental operation MolAConv and the alignment network TnRNet, we constructed
the Mol3Dnet, a point-based deep neural network for molecular representation learning and molec-
ular properties prediction from 3D conformers, as illustrated in Figure 2. The input of the network
is an encoded 3D conformation (x, y, z-coordinates) and other related atomic attributes of a small
molecule shaped a N ×F matrix, where N denotes the maximum number of points, and F denotes
the number of attributes (Table 6). The input coordinates are first transformed by the predicted trans-
formation matrix, and the resulting point set is fed into the encoder established by with MolAConv.
The features from different layers are concatenated and max-pooled into a vector in the latent space,
i.e., the embedding vector. From the embedding vector, the output is obtained by a decoder consist-
ing of five repeated residual fully connected blocks (details are in Section A.2). Also, the additional
meta-data is used when the predicted properties come from different experimental conditions, such
as the adduct ions types for the prediction of collision cross-section.

4 EXPERIMENTS

The following settings for Mol3DNet are used in both classification and regression experiments.
The maximum number of atoms in each molecule is limited to 300 (i.e., n = 300), which covers
most of the chemical compounds of interest. The neighborhood number is set to 5 (i.e., k = 5) by
default because it covers all covalent interactions and strong non-covalent interactions in molecules.
We investigate the impact of the choice of k on the performance of Mol3DNet in Section E. The
molecular conformers generated by ETKDG and OMEGA are taken (Section 4.3) as the input to
Mol3DNet, whose results are reported separately. The detailed network configurations and hyper-
parameters’ values can be seen in Section D.
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Category Model BBBP Tox21 ToxCast Sider ClinTox HIV

Graph-Based
Methods

GCN 69.2 72.2 57.0 52.7 79.2 71.3
GIN 63.0 72.4 58.6 52.3 78.0 69.5
NFP 69.3 75.7 60.5 56.3 76.7 71.9
GraphMVP 68.5 74.5 62.7 62.3 79.0 74.8
GraphMVP-G 70.8 75.9 63.1 60.2 79.1 76.0
GraphMVP-C 72.4 74.4 63.1 63.9 77.5 77.0
SphereNet 70.7 76.5 75.4 65.8 80.9 71.8

Point-Based
Methods

SchNet 67.3 72.7 63.5 58.8 79.5 76.8
PointNet 68.6 70.5 74.4 63.3 78.2 76.9
DGCNN 72.3 75.5 75.2 63.2 81.5 75.1
Mol3DNet-ETKDG 73.6 76.1 76.6 67.1 82.9 76.9
Mol3DNet-OMEGA 75.9 76.6 74.6 69.1 79.9 77.4

Table 2: Comparison of the molecular properties prediction (classification) by different models. The
mean AUC-ROC scores are reported as the measurement. The best results are shown in bold and the
second best results are shown with underlines.

4.1 CLASSIFICATION TASKS FOR PROPERTIES PREDICTION

Datasets. We set up the benchmark with seven classification datasets: BBBP, Tox21, ToxCast, Sider,
ClinTox, and HIV, proposed by (Wu et al., 2018). Each dataset contains thousands of molecules
SMILES strings labeled with binary classes (the exact numbers are shown in Table 7). Scaffold
splitting is used to partition the molecules into a training and a testing subset in the ratio of 9:1.

Baselines. We compared Mol3DNet with a selected set of DNN models designed for MRL and
chemical properties prediction, including the state-of-the-art graph-based and point-based meth-
ods. GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018), and NFP (Duvenaud et al., 2015) are
the classical graph-based DNN models1, while GraphMVP (Jing et al., 2021) and SphereNet (Liu
et al., 2021b) are recently developed graph-based DNN models2. GraphMVP, GraphMVP-C, and
GraphMVP-G are pretrained on GEOM (Axelrod & Gomez-Bombarelli, 2022), containing 37 mil-
lion energy-annotated conformations for over 450,000 molecules. For the point-based methods,
we compared Mol3DNet against SchNet (Schütt et al., 2017), a classical model for MRL. We also
implemented two baseline point-based models, PointNet (Qi et al., 2017) and DGCNN (Manessi
et al., 2020), both equipped with the same decoder for MRL, which makes it a fair comparison
against Mol3DNet. It is worth noting that in our implementations of these two models, in addition
to the coordinates of the points, we incorporate the atomic attributes in the same way as the input to
Mol3DNet so that these point-based models are adapted for molecules.

Results. The complete classification results are summarized in Table 2 (for detailed results see
GitHub3). We observe that the baseline point-based methods (PointNet and DGCNN) perform better
than the classical (GCN, GIN and NFP), and comparably with more recent graph-based methods
(SphereNet and GraphMVP), which shows the advantage of representing molecules as point sets.
On the other hand, our methods, Mol3DNet-ETKDG and Mol3DNet-OMEGA, performed better
than the baseline and the classical (SchNet) point-based models, and achieved the highest AUC-
ROC score in all tasks. It is worth noting that both Mol3DNet models were not pretrained on the
GEOM dataset as the GraphMVP models (Jing et al., 2021). We anticipated the performance of
our models will be further improved after pretraining. In addition, the attentional score maps are
visualized in Section F.

4.2 REGRESSION TASKS FOR PROPERTIES PREDICTION

Datasets. The following three recent experimental datasets are chosen to compare the performance
of the models on the regression tasks for molecular properties prediction: AllCCS (Zhou et al.,
2020) of molecules’ collisional cross section (CCS) measured by ion mobility spectrometry (IMS),
SMRT (Domingo-Almenara et al., 2019) of molecules’ elution time (ET) in liquid chromatography

1GCN, GIN and NFP were implemented in the TorchDrug package (Tang et al., 2021)
2SphereNet was implemented in the DIG package (Liu et al., 2021a).
3They are temporarily placed in supplementary material, which will be public on GitHub soon.
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Category Model AllCCS & BushCCS SMRT AqSolDB
MAE ↓ R2 ↑ MAE ↓ R2 ↑ MAE ↓ R2 ↑

Graph-Based
Methods

GCN 19.593 0.550 104.867 0.574 1.261 0.511
GIN 19.922 0.462 94.309 0.611 1.193 0.558
NFP 22.354 0.577 84.619 0.697 1.153 0.614
GraphMVP 11.243 0.823 54.495 0.817 0.719 0.792
GraphMVP-G 9.006 0.860 53.511 0.818 0.714 0.798
GraphMVP-C 9.226 0.855 54.508 0.818 0.719 0.793

Customized
Methods

AllCCS 9.781 0.781 - - - -
SMRT-DLM - - 58.534 0.775 - -
AqSolPred - - - - 0.559 0.872

Point-Based
Methods

SchNet 9.363 0.760 97.924 0.571 0.800 0.754
PointNet 8.267 0.833 58.249 0.749 0.801 0.780
DGCNN 8.128 0.826 52.506 0.788 0.864 0.740
Mol3DNet-ETKDG 7.342 0.884 52.354 0.769 0.772 0.770
Mol3DNet-OMEGA 4.801 0.943 51.109 0.809 0.746 0.770

Table 3: Comparison of deep learning models on the regression tasks for molecular properties pre-
diction. The mean absolute error (MAE) and the coefficient of determination (R2) is used as the
metrics. The best and the second best result is highlighted in bold and underlined respectively.

(LC), and AqSolDB (Sorkun et al., 2019) of molecules’ solubility in water. Except for the CCS
dataset, we randomly split the whole dataset into the training and test subsets by 9:1. For the com-
parison with the latest CCS prediction method (Zhou et al., 2020), which as trained on the whole
AllCCS dataset but as not open-sourced, we trained all models using the entire ALLCCS dataset
and then used another CCS dataset from Bush Lab (Bush et al., 2010) (BushCCS) that which does
not overlap with AllCCS, as the testing set for all the models. The adduct ion types are encoded into
one-hot encoding as the meta-data for CCS prediction. The statistics of all the datasets, including
their sizes, ranges, mean, and standard deviation (SD), are summarized in Table 8.

Baselines. Besides the baselines used in the benchmark of the classification tasks, the customized
machine learning models (Zhou et al., 2020; Domingo-Almenara et al., 2019; Sorkun et al., 2021)
designed for the specific tasks are also included in the comparison.

Results. The point-based models (SchNet, PointNet, DGCNN, and Mol3DNet) perform better than
the classical graph-based models (GCN, GIN, and NFP) in all three tasks. PointNet and DGCNN
perform comparably with the pretrained graph-based models (GraphMVP) on the three tasks, while
the two Mol3DNet models perform significantly better than GraphMPV models on CCS prediction,
while Mol3DNet models perform slightly worse than GraphMPV models on the solubility predic-
tion. It is worth noting that a molecule’ CCS is highly dependent on the 3D conformations (Nielson
et al., 2021), whereas the solubility is dependent mostly on the molecule’s functional groups. As a
result, it is not surprising to observe that the point-based models perform the best for the CCS pre-
diction, but not so well on the solubility prediction. In particular, all deep learning models perform
worse than the customized machine learning model (Sorkun et al., 2021)4 using manually crafted
features as input for solubility prediction, indicating MRL may not be necessary for all tasks of
molecular properties prediction.

4.3 ABLATION STUDY: EFFECTS OF MOLECULAR CONFORMERS

In this section, we compare the performance of different molecular conformer generation methods
on the experimental conformers’ dataset, and study their impact on properties prediction.

Datasets. We compare the popular computational molecular conformers generation algorithms on
the Platinum Diverse Dataset (Friedrich et al., 2017), a high-quality benchmarking dataset of 2, 859
protein-bound ligand conformations extracted from the Protein Data Bank (Berman et al., 2000). For
each molecule, only the conformers with the lowest energy are generated, which is the closest status

4We show different results here with Sorkun et al. (2021)’s paper because in their experiments the training
set and test set are overlapped. We remove the overlapped subset from the training set and repeat the experi-
ments.
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Cost/License RMSD (Å) Speed
2D free/BSD 46.432 714.750
ETKDG free/BSD 46.416 26.229
ETKDGv3 free/BSD 46.418 19.449
OMEGA commercial 43.292 8.962

Table 4: Comparison of 3D conformers generation
algorithms on the Platinum Diverse Dataset. The
speed is measured by the number of molecules pro-
cessed by each algorithm per second.
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Figure 3: RMSD correlation matrix among
molecular conformers.

to experimental benchmarks. Root-mean-square deviation (RMSD) using Kabsch algorithm (Kab-
sch, 1976) for rotation is used as the metrics.

Results. As Table 4 shows, OMEGA performs best in terms of accuracy. However, when gener-
ating the lowest energy conformer for each molecule, OMEGA does not show an obvious advan-
tage in speed. The correlations of RMSDs between different conformers are plotted in Figure 3,
which shows that the average RMSD between ETKDG and ETKDGv3 conformers is relatively
small (1.555 Å). Therefore, in our experiments, we trained two Mol3DNet models using the input
of the conformers generated by the open-source algorithm ETKDG, and the commercial algorithm
OMEGA, respectively. The comparison of these two types of models are shown in Table 2 and Ta-
ble 3. We observed that some tasks were sensitive to the conformers, for instance, BBBP, Sider, and
CCS, in which Mol3DNet-OMEGA performs significantly better than Mol3DNet-ETKDG, proba-
bly because these molecular properties are highly dependent on 3D molecular conformations. How-
ever, in most cases, the ETKDG and OMEGA conformers achieve similar performances for molec-
ular properties prediction. Hence, ETKDG is usable in most tasks as an open-source conformer
generation algorithm.

4.4 ABLATION STUDY: EFFECTS OF COMPONENTS IN MOLACONV

The improvement of each components in MolAConv on BBBP classification is shown in Table 5.
All the results are based on the ETKDG conformers. The other configurations are the same as the
experimental setup in Section D. The MolAConv using atom shared-head attention, sum aggregate
function, and skip connection perform best.

Components AUC-ROC Score
Atom Shared Multi-Head Attention Aggregate Function Skip Connection

✓ sum ✓ 73.6
✓ max ✓ 70.4
× sum ✓ 67.7
✓ sum × 65.8

Table 5: Ablation study results of components in MolAConv.

5 CONCLUSION AND FUTURE WORK

In this paper, we present Mol3DNet, a deep neural network for molecular representation learning that
represents the molecules into point sets instead of molecular graphs, and follows two principles of
point-based DNN (permutation invariance and transformation invariance, respectively). The exper-
iments on regression and classification tasks demonstrate that Mol3DNet performs state-of-the-art
except for solubility prediction. We anticipated that Mol3DNet could be enhanced by pretraining
on GEOM dataset (Axelrod & Gomez-Bombarelli, 2022). In addition, our approach connected the
molecules with point sets, so that point-based generative models may be adapted for molecular gen-
erative models.
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A ARCHITECTURAL DETAILS

A.1 ATOM FEATURE SPECIFICATION

In addition to x, y, z-coordinates, we chose 19 essential atomic attributions (Rogers & Hahn, 2010;
Duvenaud et al., 2015; Coley et al., 2017) as the input features. All of the atomic attributions shown
in Table 6 can be obtained by RDKit package. The molecules are removed if containing any atom
not in the following types: C, H, O, N, F, S, Cl, P, B, Br, I.

Index Description Data Type
0-2 x, y, z coordinates vector
3-14 atom type (C, H, O, N, F, S, Cl, P, B, Br, I) one-hot encoding
15 number of immediate neighbors who are nonhydrogen atoms scalar
16 valence minus the number of hydrogens scalar
17 atomic mass scalar
18 atomic charge scalar
19 number of implicit hydrogens scalar
20 is aromatic boolean
21 is in a ring boolean

Table 6: Encoding of the atomic attributes in the input to the 3D molecular DNN.

A.2 ARCHITECTURE OF TNRNET AND DECODER

We design TnRNet to predict the translation and rotation parameters from atomic x, y, z-coordinates.
It is a mini network using shared-MLP as elemental operation, max pooling as the aggregate func-
tion, and sigmoid as activation function limiting the predicted rotation angles (α, β, and γ) to [0, 2π]
and limiting the predicted translation distance (p, q, and r) to [0, 1]. The detailed structure is shown
in Figure 4 (a). Referring to ResNet (He et al., 2016), we implement a decoder with stacked fully
connected layers and skip connections shown in Figure 4 (b). It is also be used in the baseline mod-
els, PointNet (Qi et al., 2017) and DGCNN (Manessi et al., 2020) so that we could except the effects
of the decoder when comparing different molecular representation learning methods.
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Figure 4: (a) Using TnRNet to establish the transform matrix M . In TnRNet, the x, y, z-coordinates
of atoms are used to predict the rotation angles α, β, γ and translation distance p, q, r in axes. The
transform matrix M is assembled in Equation 9. (b) The decoder consists of 5 residual fully con-
nected blocks (ResFC). Each block is equipped with fully connected layers with skip connections.
The last three ResFC is equipped with dropout to release the overfitting.
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B PERMUTATION INVARIANCE PROVE

Definition B.1 (Permutation Equivariance). Let π be a permutation of n elements. The permutation
of X ∈ Rd×n′

can be represented as XPπ , where Pπ ∈ Rn′×n′
denotes the permutation matrix

associated with π, defined as Pπ = [eπ(1), eπ(2), ..., eπ(n)], and ei is a one-hot vector of length n

with its i-th elements being 1. We call the operation A : Rd×n′ → Rd×n′
a permutation equivariance

if A(XPπ) = A(X)Pπ .

Definition B.2 (Permutation Invariance). The operation A : Rd×n′ → Rd×n′
is a permutation

invariance if A(XPπ) = A(X).

Lemma B.1. If the input of the scaled dot-product attention is X ∈ Rd×n′
, it is a permu-

tation equivariance along the n′ axis, i.e., Scaled Dot-Product Attention(XPπ, XPπ, XPπ) =
Scaled Dot-Product Attention(X,X,X) · Pπ .

Proof. We apply XPπ in Equation 3 and obtain,

Left = XPπ · Softmax((XPπ)
T · (XPπ))

= XPπ · Softmax(PT
π ·XT ·X · Pπ)

= XPπP
T
π · Softmax(XT ·X)Pπ

= X · Softmax(XT ·X)Pπ = Right

(11)

It should be noted that PπP
T
π = I since Pπ is an orthogonal matrix. And it is easy to verify that

Softmax(PT
π MPπ) = PT

π Softmax(M)Pπ , because each element in Pπ is between 0 to 1. Therefore,
we prove that the scaled dot-product attention is a permutation equivariance.

C DATASETS OVERVIEW

The following Table 7 and Table 8 show the statistics information of the datasets used in the classi-
fication and regression experiments respectively. Comparing the molecular number before and after
preprocess, it demonstrates that limiting the atom into 11 major types (C, H, O, N, F, S, Cl, P, B,
Br, I) will only exclude a few molecules in the data set.

Dataset Description # Mol # Mol after Prepossess # Tasks
BBBP Binary labels of blood-brain barrier penetration. 2039 2021 1

Tox21
Qualitative toxicity measurements on 12
biological targets, including nuclear receptors
and stress response pathways.

7831 7615 12

ToxCast Toxicology data based on in vitro high-
throughput screening. 8575 7922 617

Sider
Marketed drugs and adverse drug reactions
(ADR) dataset, grouped into 27 system organ
classes.

1427 1313 27

ClinTox
Qualitative data of drugs approved by the FDA
and those that have failed clinical trials for
toxicity reasons.

1478 1454 2

HIV Experimentally measured abilities to inhibit
HIV replication. 41127 39289 1

Table 7: The statistics information of classification datasets.

D EXPERIMENTAL SETUP

The detailed configurations are shown in Table 9. All the generation algorithms of molecular con-
formers were executed on a server with 12 CPU (Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz)
and GPU (GeForce RTX 2080 Ti). The 2D, ETKDG, and ETKDGv3 conformers were generated
using the RDKit python package, and the OMEGA conformers were generated using the OpenEye
python package.
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Dataset # Mol # Mol after Prepossess Range Mean ± S.D.
AllCCS 3539 2193 [105.900, 322.500] 169.512±36.799
BushCCS 1224 1163 [108.800, 355.800] 174.066±34.501
SMRT 80038 79952 [0.300, 1471.700] 790.111±206.651
AqSolDB 9982 9041 [-13.171, 2.137] -2.951±2.324

Table 8: The statistics information of regression datasets. Part of BushCCS is removed because they
overlap with AllCCS data. In the experiments, we use AllCCS for training and BushCCS for testing,
which causes data leaking if not removed the overlap data.

Hyperparameters Values of classification Values of regression
Batch size 16 16
Maximum atom number 300 300
Neighbors number (k) 5 5
Heads number (h) 4 4
Input dimension 21 21
Encoder layers size 64, 64, 128, 128, 256, 512, 1024 64, 64, 128, 128, 256, 512, 1024
Embedding dimension 2048 2048
Decoder layers size 2048, 1024, 512, 256, 128, 64 2048, 2048, 2048, 2048, 2048

Table 9: Values for hyper-parameters on all the regression and classification experiments.
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Figure 5: AUC-ROC scores on BBBP test subdataset of different number of neighbors.

Datasets. We use the BBBP dataset as an example to analyze the effect of number of neighbors.

Experiments configuration. We experimented the numbers of neighbors from 1 to 7 (k =
1, 2, ..., 7). To make a fair comparison, we fix the total number of atoms at 300 (n = 300), and
the batch size at 16. For each selection of k, we repeat the experiments three times and report the
mean and standard deviation of the AUC-ROC score.

Results. From Figure 5, when the number of neighbors is less than 5 (k ≤ 5), the mean AUC-ROC
score improves with the increasing k. However, when k > 5, the score decreases with the increasing
k. This result suggests that for the BBBP dataset, it is sufficient to consider the interaction between
an atom with five of its neighbors, and the interaction between more distant atoms has little or even
a negative impact on improving the model performance.
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F ATTENTION MAP VISUALIZATION

Based on the representation learning on the BBBP dataset using the same configuration as Sec-
tion 4.1, the attention scores from different layers are visualized in Figure 6. To streamline the
visualization, we plot the attention scores in two-dimensional molecular graphs. For the same cen-
tral atom, the k-nearest neighbors are switched among the layers because of the dynamic feature
extraction. The bottom MolAConv layers focus on the local structure (the neighbors are close to the
central atom in Euclid Space) while the top layers focus on abstract global features.

Figure 6: Heap maps of attention scores in each MolAConv layer. From left to right columns denote
the 1st layer to the 5th layer, respectively. The center atom is labeled in red, and its k-nearest
neighbors are labeled in blue. The higher the attention weight the darker the blue.
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