

000 001 CCRA: OPTIMIZING VISION-LANGUAGE CONSIS- 002 TENCY VIA CROSS-LAYER REGIONAL ATTENTION 003 ALIGNMENT 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Vision-Language Models (VLMs) face challenges in effectively coordinating di-
014 verse cross-attention mechanisms for visual-language alignment, leading to at-
015 tention drift and suboptimal performance. We propose Consistent Cross-layer
016 Regional Alignment (CCRA), which introduces Layer-Patch-Wise Cross Atten-
017 tion (LPWCA) to capture fine-grained regional-semantic correlations by jointly
018 weighting patch and layer-wise embedding. Also, we employ a novel Progres-
019 sive Attention Integration (PAI) that systematically coordinates patch-layer-wise,
020 layer-wise, and patch-wise attention mechanisms in sequence. This progressive
021 design ensures consistency from semantic to regional levels while preventing at-
022 tention drift and maximizing each attention’s benefits. Experimental results on
023 eleven diverse vision-language benchmarks demonstrate that our CCRA-enhanced
024 VLMs achieves state-of-the-art performance, outperforming all baseline methods
025 with only 3.55M additional parameters, while providing enhanced interpretability
026 through more regionally-focused and semantically-aligned attention patterns.
027
028

1 INTRODUCTION

030 Vision-Language Models (VLMs) have fundamentally transformed visual question answering (Jia
031 et al., 2024), object detection (Liu et al., 2024b), segmentation (Khan et al., 2022), OCR (Singh
032 et al., 2019b), etc. A key insight is that diverse tasks, expressed through different text queries,
033 demand very different kinds of information from the same image. This difference concerns not only
034 which regions should be attended to, but also which embedding layers deserve greater emphasis
035 when transferring semantic information (Lin et al., 2025b). This presents a fundamental challenge:
036 how to optimize vision information extraction to better align with the specific needs of text queries
037 for optimal performance.

038 Existing approaches to vision-language alignment fall into several categories. Some methods ex-
039 tract image embeddings from specific layers of the vision encoder and then perform Patch-Wise
040 Cross Attention (PWCA) between textual and visual embeddings, as in VC-GPT (Luo et al., 2022),
041 Flamingo (Alayrac et al., 2022), and TiMix (Jiang et al., 2024). However, diverse tasks often require
042 a different emphasis on visual features at multiple semantic levels (Wu et al., 2022). To address
043 this limitation in vision-language alignment, other approaches employ Layer-Wise Cross Atten-
044 tion (LWCA) to assign importance weights across different layers, as in IGVA (Li et al., 2025b),
045 MLVF (Lin et al., 2025a), Dense Connector (Yao et al., 2024a) and MMFuser (Cao et al., 2024).

046 Despite these advances, a critical limitation persists: harmonic coordination between diverse at-
047 tention mechanisms lacks effective organization, potentially leading to mismatched attention from
048 different perspectives and resulting in suboptimal performance and poor interpretability. To address
049 this limitation, we propose **Consistent Cross-layer Regional Alignment (CCRA)** with two key
050 contributions:

051 1. **Layer-Patch-Wise Cross Attention (LPWCA):** Beyond existing LWCA and PWCA, we intro-
052 duce LPWCA to capture fine-grained regional-semantic correlations, enabling superior perfor-
053 mance across diverse tasks.

054
 055 **2. Progressive Attention Integration (PAI):** We systematically integrate all three attention mech-
 056 anisms through progressively operating LPWCA, optimized Gaussian-smoothed LWCA and fi-
 057 nally PWCA. This design maximizes the benefits of individual attention mechanisms while en-
 058 suring consistency in both semantic and regional levels, enhancing both performance and inter-
 059 pretability.

060 To demonstrate CCRA’s effectiveness in improving generalization performance and interpretability,
 061 we evaluate our CCRA-enhanced LLaVA-v1.5-7B model on diverse vision tasks and visualize at-
 062 tention patterns through feature heatmaps. Our results demonstrate that the proposed model outper-
 063 forms all baseline methods across markedly different tasks with diverse task queries. Meanwhile,
 064 the feature heatmaps visualize the adaptivity and consistency of feature attention, which supports
 065 the superior performance of VLM across diverse tasks, and also provide more interpretable visual
 066 representations of feature importance compared to existing approaches.

067 2 RELATED WORK

069 2.1 VLM WITHOUT VISION-LANGUAGE ALIGNMENT

070 Conventional VLMs often decouple the processing of visual and textual embeddings, e.g.,
 071 LLaVA (Liu et al., 2023), MiniGPT-v2 (Chen et al., 2023), and LLaMA-Adapter-v2 (Gao et al.,
 072 2023). They often extract a single-layer embedding from the visual encoder and feed it together
 073 with textual embeddings to pre-trained encoders such as CLIP (Jiang et al., 2023). However, diverse
 074 tasks often require visual features from a broader range of semantic levels (Iana et al., 2024). Ac-
 075 cordingly, recent advances leverage cross-layer visual features for comprehensive representations.
 076 These approaches capture both low-level details from early layers and high-level semantics from
 077 deeper layers. To reduce feature redundancy and noise, these methods also involved similarity-
 078 based (Raghu et al., 2021; Yao et al., 2024b; Sun et al., 2025) and proportion-based (Cao et al.,
 079 2024; Chen et al., 2024a;b) layer feature selection has been explored. However, these methods op-
 080 erate independently of textual input, failing to consider that different tasks have varying visual re-
 081 quirements. Early layers handle color and many spatial tasks such as counting or localization well (Chen
 082 et al., 2025; Yao et al., 2024b). OCR is also sensitive to visual details in the shallow layers, and
 083 insufficient low-level information may lead to recognition errors (Cao et al., 2024). By contrast,
 084 high-level semantic reasoning, long-horizon action understanding, and knowledge-intensive ques-
 085 tion answering rely on the deepest visual representations (Li et al., 2025a). Such methods do not
 086 consider text-image alignment, leading to suboptimal VLM performance.

088 2.2 VLM WITH VISION-LANGUAGE ALIGNMENT

089 Recent advances in vision-language alignment have explored various mechanisms to bridge textual
 090 semantics with visual representations. One line of research emphasizes PWCA, where image em-
 091 beddings extracted from specific layers of the vision encoder are aligned with textual queries through
 092 cross-attention, as in VC-GPT (Luo et al., 2022), Flamingo (Alayrac et al., 2022), TiMix (Jiang et al.,
 093 2024), and EVEv2 (Diao et al., 2025). This approach enhances fine-grained regional control and
 094 enriches visual representation, making it particularly effective for tasks requiring precise regional
 095 alignment (Yue et al., 2024). Another line focuses on LWCA, which aggregates visual features from
 096 multiple encoder layers, often guided by the textual instruction, to adaptively weight semantic levels.
 097 Representative works include the Instruction-Guided Vision Aggregator (IGVA) (Li et al., 2025b),
 098 while other works such as MLVF (Lin et al., 2025a), the Dense Connector (Yao et al., 2024a), and
 099 MMFuser (Cao et al., 2024) further highlight the benefit of leveraging multi-layer visual signals.

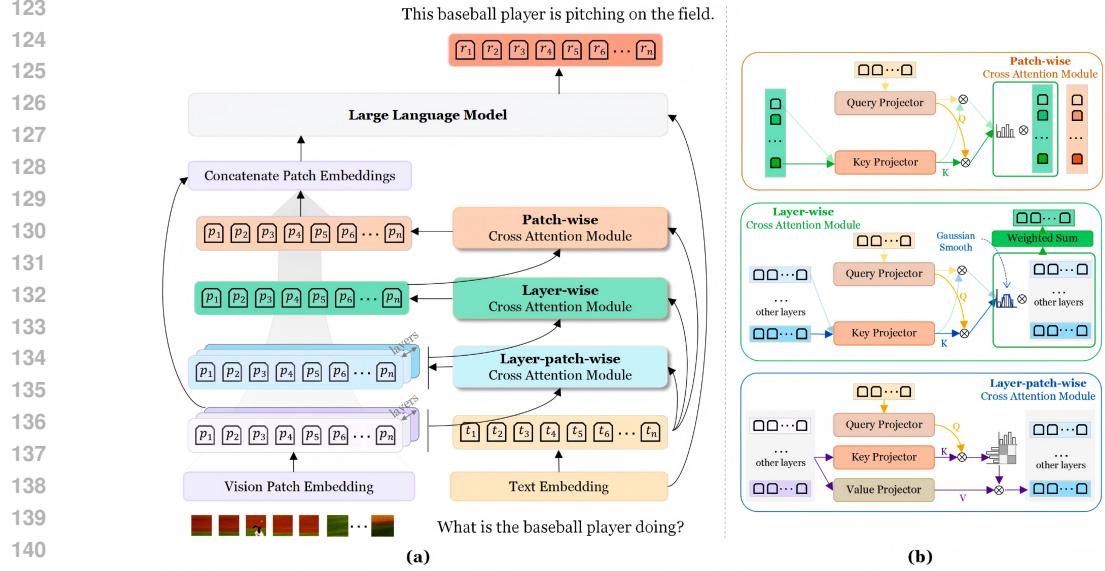
100 Despite their respective strengths, LWCA and PWCA are typically designed independently, often
 101 lacking consistency between regional and semantic focus. This decoupled design leads to atten-
 102 tion drift, where attention across layers inconsistently shifts regions of focus, undermining stable
 103 alignment and interpretability (Li et al., 2025a). Moreover, relying solely on one form of attention
 104 neglects the relative importance between regional location and semantic depth, limiting the model’s
 105 ability to effectively optimize vision-language features.

106 To address these limitations, recent works have attempted to combine PWCA and LWCA. For ex-
 107 ample, Liu et al. (2025) proposed a unified framework that compresses patch-level information via

108 MLPs and integrates it with cross-layer attention, offering a more holistic alignment. However, rigid
 109 coordination may lead to inorganic coordination between different attentions and provide suboptimal
 110 performance on complex multimodal tasks (Nam et al., 2017; Liu et al., 2025).
 111

112 3 METHODOLOGY

113 As discussed above, diverse attention mechanisms have their specific benefits, but a mechanism
 114 is needed to harmoniously integrate all these visual-language cross attentions to globally optimize
 115 VLM’s performance across different tasks. In addition, considering the need for human being’s
 116 understanding, we also need to consider the feature interpretability as a further constraint. To reflect
 117 these considerations, we propose **Consistent Cross-layer Regional Alignment (CCRA)**, a novel
 118 framework to unify diverse visual-language cross attention under one umbrella for optimal task-
 119 oriented performance, and also support consistent feature attention for interpretable understanding.
 120 CCRA differs from the previous work in the following two aspects, which is shown in Figure 1.
 121



142 Figure 1: (a) An overview of our VLM with Consistent Cross-layer Regional Alignment. LPWCA,
 143 LWCA, and PWCA are progressively used to align both textual embedding and visual embedding
 144 gradually for optimal task-oriented performance (b) The detailed illustration of LPWCA, LWCA
 145 and PWCA, where LPWCA provides joint and global optimization between regional and semantic
 146 information; the optimized Gaussian-smoothed LWCA provides continuous attention along semantic
 147 aspect; the PWCA provides the consistency constraint along regional aspect.
 148

- 149 1. **Layer-Patch-Wise Cross Attention (LPWCA):** we first introduced LPWCA, to complement ex-
 150 isting LWCA and PWCA. By such a design, we connect the correlation between layer- and patch-
 151 wise information, thus provide a finer-grained feature control than merely LWCA and PWCA.
 152 (Sec. 3.1)
- 153 2. **Progressive Attention Integration (PAI):** Beyond LPWCA, We proposed PAI to harmoniously
 154 unify all three attention mechanisms (LPWCA, LWCA, PWCA) in progressive granularity se-
 155 quence for optimal task-oriented performance, and provide consistent semantic and regional fea-
 156 ture attention for human beings’ understanding. (Sec.3.2)

157 3.1 LAYER-PATCH-WISE CROSS ATTENTION

158 In addition to LWCA and PWCA, which provide semantic and regional attention respectively, we
 159 complement them with the layer-patch-wise cross attention (LPWCA) as a fundamental operation,
 160 to reflect the global and joint importance on both aspects.
 161

To do so, the multi-layer visual features extracted from a visual encoder (e.g., CLIP ViT (Radford et al., 2021)): $\mathbf{F}_v^l \in \mathbb{R}^{N \times d}$, where $l \in \{1, 2, \dots, L\}$ is the layer index, and N, d are the number of image patches and the feature dimension, respectively, are flattened into a unified patch-layer feature sequence $\mathbf{F}_{\text{stack}}$:

$$\mathbf{F}_{\text{stack}} = [\mathbf{F}_v^1; \mathbf{F}_v^2; \dots; \mathbf{F}_v^L] \in \mathbb{R}^{L \times (N \times d)}. \quad (1)$$

Through such a way, the hierarchical structure of feature space, which can be viewed from patch and layer perspective, are unified into the same space.

Then in order to align with the textual query, we first process the query into a set of textual embeddings $\mathbf{F}_t \in \mathbb{R}^{T \times d}$. A self-attention module is first applied over \mathbf{F}_t to compute token-contextualised importance scores $\alpha_t \in \mathbb{R}^T$, which indicate the relative contribution of each token in guiding the visual alignment.

$$\alpha_t = \text{Softmax}(\text{SelfAttention}(\mathbf{F}_t)). \quad (2)$$

Next, the textual embeddings \mathbf{F}_t are projected into a query space $\mathbf{Q}(\mathbf{F}_t)$, while the stacked visual features $\mathbf{F}_{\text{stack}}$ are projected into a key space $\mathbf{K}(\mathbf{F}_{\text{stack}})$. The layer-patch attention scores $\mathbf{A}_{lp} \in \mathbb{R}^{T \times (L \times N)}$ can thus be computed:

$$\mathbf{A}_{lp} = \frac{1}{\sqrt{d}} \mathbf{Q}(\mathbf{F}_t) \mathbf{K}(\mathbf{F}_{\text{stack}})^\top. \quad (3)$$

Then \mathbf{A}_{lp} is aggregated across all textual tokens using the learned importance weights α_t to form a unified attention map $\mathbf{W}_{lp} \in \mathbb{R}^{L \times N}$ over spatial patches and layers:

$$\mathbf{W}_{lp} = \alpha_t^\top \mathbf{A}_{lp}, \quad (4)$$

Such a map demonstrates the global importance of every patch feature, regardless of where and which layer it is located at. This map is then used to modulate the original stacked features $\mathbf{F}_{\text{stack}}$ via element-wise multiplication, followed by a residual connection and layer normalization $LN(\cdot)$:

$$\mathbf{F}_{lp} = LN(\mathbf{F}_{\text{stack}} \odot \mathbf{W}_{lp} + \mathbf{F}_{\text{stack}}). \quad (5)$$

where $\mathbf{F}_{lp} \in \mathbb{R}^{L \times (N \times d)}$ are the features aligned with the textual query from a joint patch-layer perspective. These features are then reshaped back to $\mathbb{R}^{L \times N \times d}$ to recover the per-layer structure for the next stage. With such an attention mechanism, we provide a more comprehensive textual-image alignment than only considering the patch- or layer-wise impact.

3.2 PROGRESSIVE ATTENTION INTEGRATION

Although LPWCA provides finer-grained attention, LWCA is crucial for focusing on semantically relevant layers, while PWCA constrains attention to consistent regions across layers. Without them, the learned features could be semantically or spatially inconsistent, making them difficult for humans to interpret. Therefore, Progressive Attention Integration (PAI) is proposed to integrate all three mechanisms harmoniously.

Integration with LWCA. Based on the globally-aligned features \mathbf{F}_{lp} from LPWCA (reshaped to $L \times N \times d$), we apply a revised LWCA to provide continuous semantic attention. Specifically, the visual features are first spatially averaged to obtain a set of layer-level descriptors:

$$\mathbf{F}_{\text{layer}} = [\text{AvgPool}(\mathbf{F}_{lp}^1); \dots; \text{AvgPool}(\mathbf{F}_{lp}^L)] \in \mathbb{R}^{L \times d}. \quad (6)$$

Then, cross-attention scores $\mathbf{A}_l \in \mathbb{R}^{T \times L}$ are computed between textual embeddings and layer descriptors, followed by aggregation using the same token importance weights α_t :

$$\mathbf{A}_l = \frac{1}{\sqrt{d}} \mathbf{Q}(\mathbf{F}_t) \mathbf{K}(\mathbf{F}_{\text{layer}})^\top; \quad (7)$$

$$\mathbf{w}_l = \alpha_t^\top \mathbf{A}_l, \quad \mathbf{w}_l \in \mathbb{R}^L. \quad (8)$$

Previous approaches to LWCA often select specific layers or cluster them to avoid sharp, noisy transitions in attention weights, which could disrupt the semantic smoothness across layers (Sung et al., 2023; Li et al., 2025b; Lin et al., 2025c). However, this strategy risks discarding valuable information from the omitted layers. To address this, we introduce a Gaussian smoothing kernel applied to the raw layer attention scores \mathbf{w}_l . This method allows us to utilize information from all layers while simultaneously enforcing a smooth attention distribution, thus obtaining the final, refined layer weights $\hat{\mathbf{w}}_l \in \mathbb{R}^L$ that maintain both completeness of information and semantic consistency.

216 The semantically-aligned visual representation $\mathbf{F}_{\text{semantic}} \in \mathbb{R}^{N \times d}$ is derived via a weighted aggregation
 217 of the globally-aligned layer features. Let $\hat{\mathbf{F}}_{\text{lp}}$ be the result of the weighted sum. A residual
 218 connection and layer normalization are then applied:
 219

$$\hat{\mathbf{F}}_{\text{lp}} = \sum_{l=1}^L \hat{w}_{l,l} \cdot \mathbf{F}_{\text{lp}}^l \quad (9)$$

$$\mathbf{F}_{\text{semantic}} = \text{LN} \left(\hat{\mathbf{F}}_{\text{lp}} + \text{AvgPool}(\hat{\mathbf{F}}_{\text{lp}}) \right). \quad (10)$$

225 **Integration with PWCA.** Furthermore, to maintain regional consistency, we apply PWCA on
 226 $\mathbf{F}_{\text{semantic}}$. We first compute cross-attention between language tokens and the patch features of
 227 $\mathbf{F}_{\text{semantic}}$:

$$\mathbf{A}_p = \frac{1}{\sqrt{d}} \mathbf{Q}(\mathbf{F}_t) \mathbf{K}(\mathbf{F}_{\text{semantic}})^\top, \quad (11)$$

230 where $\mathbf{A}_p \in \mathbb{R}^{T \times N}$. The scores are then aggregated using the token importance weights α_t to get
 231 patch weights $\mathbf{w}_p \in \mathbb{R}^N$:

$$\mathbf{w}_p = \alpha_t^\top \mathbf{A}_p. \quad (12)$$

233 Finally, a residual connection and layer normalization are applied to obtain the regionally-aligned
 234 visual representation $\mathbf{F}_{\text{regional}} \in \mathbb{R}^{N \times d}$:

$$\mathbf{F}_{\text{regional}} = \text{LN}(\mathbf{F}_{\text{semantic}} \odot (1 + \mathbf{w}_p)). \quad (13)$$

237 To preserve both the original high-level visual semantics and the newly refined features, we concatenate
 238 $\mathbf{F}_{\text{regional}}$ with the original final-layer visual feature \mathbf{F}_v^L :

$$\mathbf{F}_{\text{fused}} = [\mathbf{F}_{\text{regional}}; \mathbf{F}_v^L] \in \mathbb{R}^{N \times 2d}. \quad (14)$$

241 **Visual-textual Feature Fusion** To align with the hidden dimension d of the large language model,
 242 we apply a visual projection head $\text{Proj}_{\text{vis}} : \mathbb{R}^{2d} \rightarrow \mathbb{R}^d$ to each fused patch token. Subsequently, the
 243 resulting visual representation is then concatenated with the textual embeddings \mathbf{F}_t and passed into
 244 a large language model for visual-language predictions (e.g., answer generation, captioning):

$$\hat{Y} = \text{LLM}([\text{Proj}_{\text{vis}}(\mathbf{F}_{\text{fused}}); \mathbf{F}_t]). \quad (15)$$

247 Through such a progressive integration of LPWCA, LWCA, and PWCA, the final visual feature
 248 $\mathbf{F}_{\text{fused}}$ from PAI is tightly aligned with textual query, which supports the optimal performance of
 249 VLM after the visual-textual feature fusion. Meanwhile, it is also further constrained in semantic
 250 smoothness and regional consistency, which provides understandable attention map for human
 251 being.

252 The effectiveness of CCRA also depends on a few interpretable hyperparameters, such as the layer
 253 smoothing kernel size and embedding dimensions. Their impacts are discussed in Appendix C.2.
 254 The overall training and inference procedure of CCRA is summarized in Algorithm 1.

256 **Algorithm 1:** Training and Inference of CCRA-based Vision-Language Model

257 **Input:** Image $I \in \mathbb{R}^{H \times W \times 3}$, Text sequence \mathcal{T} with token length T , Task label Y (for training)

258 **Output:** Prediction \hat{Y} or updated model parameters

259 **1. Visual and Text Encoding**

260 $\mathbf{F}_{\text{stack}} \leftarrow \text{VisualEncoder}(I)$ $\mathbf{F}_t \leftarrow \text{TextEncoder}(\mathcal{T})$

261 **2. Consistent Cross-layer Regional Alignment (CCRA)**

262 $\mathbf{F}_{\text{lp}} \leftarrow \text{LPWCA}(\mathbf{F}_t, \mathbf{F}_{\text{stack}})$ $\mathbf{F}_{\text{semantic}} \leftarrow \text{LWCA}(\mathbf{F}_t, \mathbf{F}_{\text{lp}})$ $\mathbf{F}_{\text{regional}} \leftarrow \text{PWCA}(\mathbf{F}_t, \mathbf{F}_{\text{semantic}})$ $\mathbf{F}_{\text{fused}} \leftarrow \text{Fuse}(\mathbf{F}_{\text{regional}}, \mathbf{F}_v^L)$

263 **3. Training Stage 1: Feature Alignment Pretraining**

264 $\hat{Y} \leftarrow \text{LLM}([\text{Proj}_{\text{vis}}(\mathbf{F}_{\text{fused}}); \mathbf{F}_t])$ // Caption prediction; freeze VisualEncoder and LLM

265 $\mathcal{L}_{\text{pretrain}} \leftarrow \text{CrossEntropy}(\hat{Y}, Y)$

266 **4. Training Stage 2: End-to-End Finetuning**

267 $\hat{Y} \leftarrow \text{LLM}([\text{Proj}_{\text{vis}}(\mathbf{F}_{\text{fused}}); \mathbf{F}_t])$ // Task-specific prediction; freeze VisualEncoder only

268 $\mathcal{L}_{\text{finetune}} \leftarrow \text{CrossEntropy}(\hat{Y}, Y)$

269 **5. Model Inference (if label Y is not available)**

270 Execute steps 1 and 2, then skip steps 3 and 4

271 $\hat{Y} \leftarrow \text{LLM}([\text{Proj}_{\text{vis}}(\mathbf{F}_{\text{fused}}); \mathbf{F}_t])$

270 **4 EXPERIMENT**
 271

272 We first outline the experimental setup (Section 4.1). We then evaluate CCRA on eleven public
 273 benchmarks spanning compositional reasoning, OCR, instruction following, and domain-specific
 274 tasks, comparing against state-of-the-art baselines (Table 1). Beyond accuracy, we analyze the at-
 275 tention behavior of LPWCA/LWCA/PWCA with quantitative consistency metrics and qualitative
 276 heatmaps (Section 4.2), compare coordination strategies in an integration study (Section 4.3), and
 277 validate each component via ablations (Section 4.4).

278 **279 4.1 EXPERIMENTAL SETUP**
 280

281 We follow the two-stage training strategy of LLaVA-v1.5-7B. In the pre-training stage on LLaVA-
 282 LCS-558K, CCRA is not applied due to the lack of annotations. In the instruction-tuning stage on
 283 LLaVA-Instruct-665K, CCRA is integrated to enhance vision–language consistency. Apart from
 284 this modification, the optimization procedure is identical to LLaVA. Further details are provided in
 285 Appendix B.

286 We evaluate CCRA on eleven widely-used benchmarks with diverse task requirements, they are
 287 GQA (Hudson & Manning, 2019), ScienceQA(SQA) (Lu et al., 2022), TextVQA (Singh et al.,
 288 2019a), VizWiz (Gurari et al., 2018), MMB-en (Liu et al., 2024c), MM-Vet (Yu et al., 2023), SEED-
 289 I (Li et al., 2024), MMMU (Yue et al., 2024), MME-p (Fu et al., 2023a), and POPE (Li et al.,
 290 2023b). Notably, for ScienceQA, we only evaluate on the set with image context. More details
 291 on dataset can be found in Appendix A. Parallelly, SOTA methods including LLaVA-v1.5-7B (Liu
 292 et al., 2024a), LLaVA-v1.5-13B (Liu et al., 2024a), mPLUG-Owl2 (Ye et al., 2024), MiniGPT-
 293 v2 (Chen et al., 2023), LLaMA-Adapter-v2 (Gao et al., 2023), IDEFICS (Laurençon et al., 2023),
 294 Flamingo (Alayrac et al., 2022), DenseConnector (Yao et al., 2024b), MMFuser (Cao et al., 2024),
 295 IGVA (Li et al., 2025a) and Qwen-VL-Chat (Bai et al., 2023), are used to compare with CCRA, to
 296 demonstrate CCRA’s advance.

297 **298 4.2 RESULTS AND ANALYSIS**
 299

300 **4.2.1 OVERALL PERFORMANCE**
 301

302 CCRA achieves the best results across eleven benchmarks in Table 1. Accuracy is used for most
 303 tasks, MME-p uses the official MME-p score and POPE uses the F1 score. The additional attention
 304 operations introduce only 3.55M parameters, which is negligible relative to a seven billion parameter
 305 backbone, yet they allow LLaVA-v1.5-7B with CCRA to surpass LLaVA-v1.5-13B. This shows
 306 that even lightweight consistency constraints can yield substantial improvements in vision–language
 307 alignment.

308 **Table 1:** Comparison across 11 benchmarks. Models are grouped by whether they adopt vision-
 309 language alignment.

Model	LLM	Resolution	Train Data	GQA	SQA	TextVQA	VizWiz	MMB-en	MM-Vet	SEED-I	MMMU	MME-p	POPE	
Metric				Acc(%)	Acc(%)	Acc(%)	Acc(%)	Acc(%)	Acc(%)	Acc(%)	Acc(%)	MME-p Score	F1-Score	
Models without Vision-Language Alignment														
LLaVA-v1.5-7B	Vicuna-v1.5-7B	336	0.5M+0.6M	61.9	67.1	58.1	53.2	63.9	32.8	67.2	34.9	1480.6	86.9	
LLaVA-v1.5-13B	Vicuna-v1.5-13B	336	0.5M+0.6M	63.3	71.0	61.3	53.6	67.7	36.1	68.2	34.9	-	87.2	
MiniGPT-v2	LLaMA 2-7B	448	-	60.1	-	-	53.6	9.4	-	-	-	-	-	
IDEFICS	LLaMA-7B	224	1.6B	38.4	-	25.9	35.5	48.2	-	-	-	-	-	
LLaMA-Adapter-v2	LLaMA-7B	336	0.6M	-	-	-	41.0	31.5	32.7	29.8	972.7	-	-	
mPLUG-Owl2	LLaMA 2-7B	448	384M+1.2M	56.1	68.7	54.3	54.5	64.5	36.2	57.8	-	1450.2	86.2	
Qwen-VL-Chat	Qwen-7B	448	1.4B+50M+0.3M	57.5	68.2	61.5	38.9	60.6	-	65.4	35.9	1487.6	-	
Models with PWCA-Enhanced Vision-Language Alignment														
Flamingo	Chinchilla-70B	336	43M + 185M	-	-	37.9	49.8	-	-	-	-	-	-	
Models with LWCA-Enhanced Vision-Language Alignment														
DenseConnector	-	-	-	63.8	69.5	59.2	-	66.8	32.7	-	34.8	-	86.6	
MMFuser	Vicuna-13B	336	0.5M+0.6M	62.8	68.7	58.8	53.4	67.5	32.6	60.8	-	1479.7	86.3	
IGVA	Vicuna-v1.5-7B	336	0.5M+0.6M	63.1	70.2	59.4	54.3	66.9	33.5	68.3	36.4	1519.8	87.8	
Model with CCRA-Enhanced Vision-Language Alignment														
Ours	Vicuna-v1.5-7B	336	0.5M+0.6M	64.2	71.3	63.1	54.6	67.9	37.5	69.6	37.6	1525.6	88.9	

322 **323 Performance Improvements.** A closer look at Table 1 highlights where the improvements come
 324 from. CCRA surpasses IGVA by 1.1 on GQA, 1.3 on SEED-I, and 1.0 on MMB-en, and exceeds

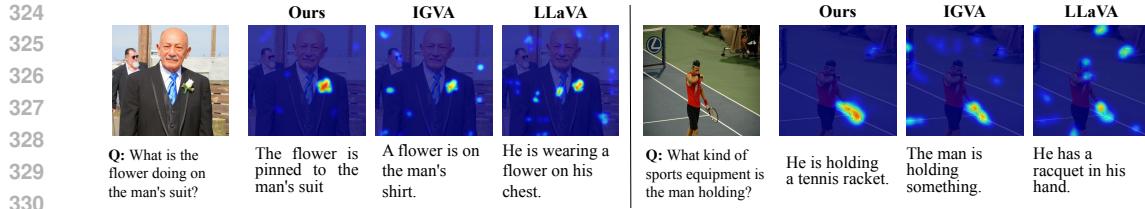


Figure 2: Cross-attention maps averaged over mid-layers of the LLM. CCRA directs attention more consistently to task relevant regions compared to IGVA and LLaVA baselines, resulting in answers that align better with visual evidence.

MMFuser by 4.3 on TextVQA and 4.9 on MM-Vet. These improvements arise from the LPWCA and PAI modules as shown in Table 4 and Table 3, which refine alignment through layer-patch correlation and progressive integration of attention mechanisms.

Interpretability Improvements. We further examine how CCRA improves the use of visual features inside the language model. Figure 2 shows that CCRA produces features that guide the LLM to focus on the relevant regions of the task, producing accurate and semantically aligned responses. In contrast, IGVA and LLaVA lead to more diffuse and inconsistent attention, often associated with vague or incorrect output.

4.2.2 ATTENTION ANALYSIS

Layer-Patch-Wise Cross Attention Behavior. LPWCA aligns spatial regions across layers, yielding more consistent focus. Quantitatively, it reduces cross-layer divergence (lower JS), improves similarity (higher cosine), stabilizes spatial centroids (lower drift), and increases patch stability. In addition, LPWCA shows stronger agreement with the final PWCA map and induces smoother LWCA weights (lower TV, higher entropy), indicating more coherent integration across modules. All metrics are summarized in Table 2 and formally defined in Appendix C.1, where they are computed on both pre- and post-LPWCA features under identical projections and normalization. Qualitatively, Figure 3 visualizes patch-layer scores from representative layers (12, 18, 24), showing that LPWCA consistently highlights shoes and shirts across depth, confirming stable region-layer alignment under language guidance.

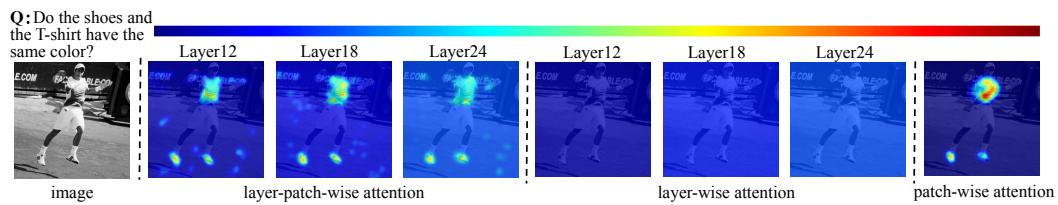


Figure 3: Qualitative visualization of the three attention modules in CCRA under the query “Do the shoes and the T-shirt have the same color?”. From left to right: input image and question, LPWCA, LWCA and PWCA. Together, these modules produce consistent semantic-regional alignment.

Table 2: Attention consistency metrics before and after LPWCA ($L=24$). All metrics are computed on F_{stack} (pre-LPWCA) and F_{lp} (post-LPWCA) using identical projections and normalization.

Metric	JS-avg \downarrow	Cos-avg \uparrow	Drift \downarrow	Std _{patch} \downarrow	JS-to-final \downarrow	Cos-to-final \uparrow	TV(w) \downarrow	Entropy $H(w)$ \uparrow
F_{stack}	0.218	0.731	0.064	0.052	0.173	0.754	0.060	2.41
F_{lp}	0.147	0.812	0.041	0.038	0.119	0.835	0.028	2.95

Layer-Wise Cross Attention Behavior. LWCA identifies the semantic depth most relevant to a query. As shown in Figure 4, appearance questions activate lower and middle layers, while reasoning questions shift focus to deeper layers, and removing Gaussian smoothing leads to performance drops

(Table 4). For qualitative analysis, we visualize layer attention scores across depth after smoothing and select representative layers (12, 18, 24), mapping them back to patches. As shown in Figure 3, LWCA emphasizes semantic depth while leaving spatial grounding to PWCA.

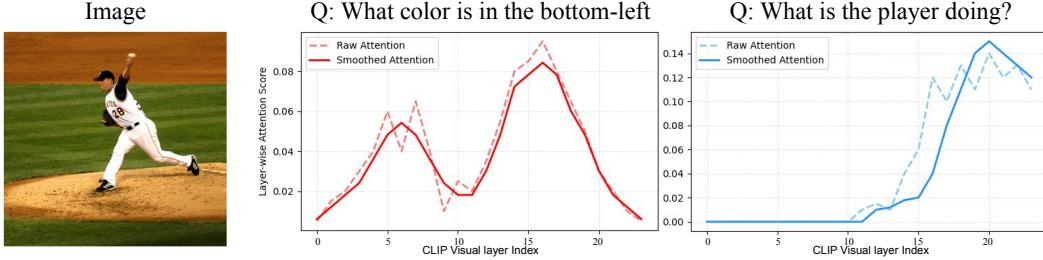


Figure 4: Comparison of LWCA distributions for queries of different semantic levels. Shallow appearance-based queries activate earlier layers, while high-level reasoning queries attend to deeper layers. Smoothed attention curves (solid) reveal more coherent trends than raw attention (dashed).

Patch-Wise Cross Attention Behavior. PWCA provides fine-grained spatial grounding on the fused representation. Removing PWCA leads to clear drops on TextVQA, VizWiz, and MMMU (Table 4), confirming its importance for OCR- and grounding-heavy tasks. For qualitative analysis, we visualize the attention scores of PWCA as shown in Figure 3, PWCA sharply localizes the shoes and shirt, complementing LPWCA’s region–layer alignment and LWCA’s semantic weighting.

4.3 ATTENTION INTEGRATION STUDY

To better prove why PAI is superior to other integration strategies, we compared **PAI** (Figure 5 (c)) with two of its variants (Figure 5): (a) **Decoupled Integration**, where patch-wise and layer-wise cross attentions are fused in parallel before entering the LLM; and (b) **Shuffled Integration**, which reverses the order of patch- and layer-wise operations in PAI.

The performance is reported in Table 3, where our proposed PAI demonstrates the best performance. Furthermore, the text-attention is visualized in Figure 6 to intuitively check the vision-language alignment. The figure shows that the PAI produces sharper, more consistent, and semantically focused attention, while both variants exhibit dispersed or misaligned patterns. These results prove the effectiveness of our dedicated design for PAI.

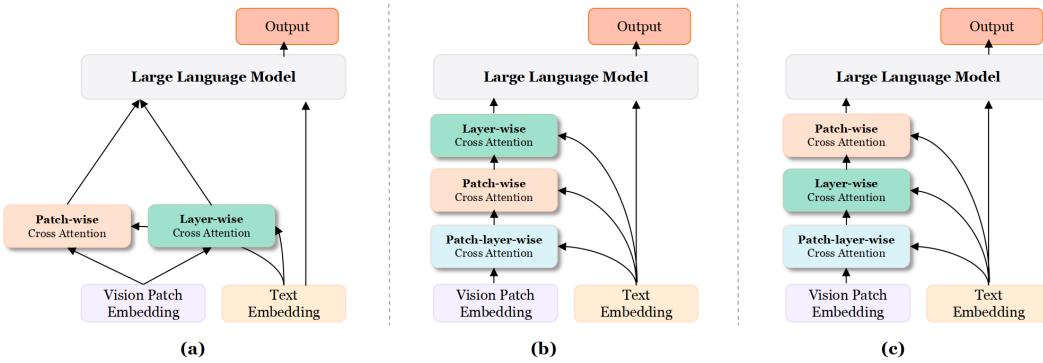


Figure 5: Comparison of cross-attention coordination strategies for combining patch-level (regional) and layer-level (semantic) information. (a) **Decoupled Integration**: PWCA and LWCA attentions are applied independently and fused in parallel before LLM input. (b) **Shuffled Integration**: A reversed ordering of patch-wise and layer-wise attention compared to PAI. (c) **Progressive Attention Integration**: Our progressive strategy that sequentially applies patch-layer-wise, layer-wise, and patch-wise attention to iteratively refine visual features.

432

433

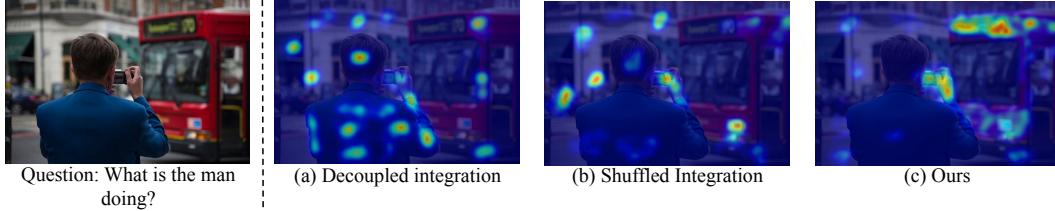
Table 3: Performance comparison between PAI and its variants

434

435

Model Variant	GQA	SQA	TextVQA	VizWiz	MMB-en	MM-Vet	SEED-I	MMMU	MME-p	POPE
Decoupled Integration	63.1	70.2	58.7	53.0	67.0	36.5	68.5	36.6	1497.7	87.4
Shuffled Integration	63.8	70.8	59.3	53.7	67.3	37.0	68.9	36.8	1501.6	88.2
Ours (PAI)	64.2	71.3	63.1	54.6	67.9	37.5	69.6	37.6	1525.6	88.9

438



440

441

442

443

444

445

Figure 6: Cross-attention maps from the LLM under different coordination strategies. CCRA (c) yields sharper and more semantically aligned attention compared to (a) independent coordination and (b) a variant progressive design. These visualizations confirm the effectiveness of our full progressive attention refinement.

446

448

4.4 ABLATION STUDY

449

450

451

452

453

We conduct ablations on each attention mechanism (Table 4). PWCA mainly benefits fine-grained tasks (TextVQA, VizWiz, MMMU), LWCA supports semantic reasoning (SQA, MMB-en, SEED-I), and LPWCA ensures cross-layer consistency (MM-Vet, POPE). Gaussian smoothing in LWCA yields small but consistent gains (e.g., -0.4 on SQA, -0.7 on POPE) and stabilizes attention distributions, as illustrated in Figure 4.

454

455

456

457

458

459

460

461

Table 4: Ablation study results of CCRA

Model Variant	GQA	SQA	TextVQA	VizWiz	MMB-en	MM-Vet	SEED-I	MMMU	MME-p	POPE
Ours (CCRA)	64.2	71.3	63.1	54.6	67.9	37.5	69.6	37.6	1525.6	88.9
w/o PWCA	62.9	69.5	58.8	53.2	67.1	36.8	68.3	36.4	1513.2	87.5
w/o LWCA	63.4	70.1	58.2	53.9	66.7	36.0	68.1	36.9	1510.3	87.0
w/o LPWCA	62.7	70.6	59.0	52.8	66.9	37.1	68.7	36.3	1514.6	88.7
w/o Gaussian smoothing	63.8	70.9	59.1	54.0	67.3	36.5	69.0	36.7	1516.2	88.2

462

464

465

466

467

5 CONCLUSION

468

469

470

471

We proposed Consistent Cross-layer Regional Alignment (CCRA), which integrates layer-patch and progressive attention for more stable visual-language alignment. Layer-Patch-wise Cross Attention (LPWCA) captures fine-grained regional-semantic correlations by jointly considering spatial and depth-wise semantics, providing more comprehensive visual-language alignment than existing patch-wise or layer-wise mechanisms alone. Progressive Attention Integration (PAI) systematically coordinates all three attention mechanisms in sequence, ensuring consistency from semantic to regional levels while maximizing each attention benefits and preventing attention drift. Experimental results across eleven benchmarks demonstrate that our CCRA-enhanced model achieves state-of-the-art performance, outperforming all baseline methods while adding only 3.55M parameters, with visualization analyses confirming more focused and semantically aligned attention patterns.

472

473

474

475

476

477

478

479

480

481

Beyond the advanced performance of CCRA, we realize that there is still an optimization space to be explored. Future work could explore alternative smoothing mechanisms for optimizing LWCA beyond the current Gaussian smoothing approach to achieve better integration within the progressive attention framework and further improve vision-language alignment performance.

482

483

484

485

486
487
ETHICS STATEMENT488
489
490
491
492
493
This work proposes CCRA, a framework for optimizing cross-layer and regional attention consistency in vision-language models. All experiments were conducted using publicly available datasets and benchmarks in the multimodal community, such as GQA, ScienceQA, TextVQA, VizWiz, MM-Bench, MM-Vet, SEED-I, MMMU, MME-p, and POPE. These datasets are widely adopted for academic research and do not contain sensitive personal information. No human subjects, private data, or animal studies were involved.494
495
496
497
498
499
The proposed method is developed purely for advancing multimodal alignment research and poses minimal direct ethical concerns. However, as with any powerful vision-language system, potential misuse remains possible in domains such as surveillance, disinformation, or decision-making in safety-critical applications. To reduce risks, we emphasize that this work is intended solely for academic research. Responsible use requires careful evaluation of societal impacts, robustness against hallucinations, and deployment only under appropriate safeguards.500
501
REPRODUCIBILITY STATEMENT502
503
504
505
506
To ensure reproducibility, we will release the full implementation of CCRA, including model code, training pipelines, and inference scripts. All datasets employed in this study are publicly accessible. The paper and appendix provide complete details of model architecture, hyperparameters, optimization schedules, and computational resources. Our training follows the established two-stage LLaVA pipeline, with CCRA integrated as an additional module.507
508
509
510
We further report extensive ablations, hyperparameter sensitivity analyses, and qualitative visualizations of attention maps to validate each component of the framework. Upon acceptance, we will make pretrained checkpoints, dataset preparation instructions, and experimental logs available to support transparent verification and future research.511
512
513
REFERENCES514
515
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.518
519
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.521
522
Yue Cao, Yangzhou Liu, Zhe Chen, Guangchen Shi, Wenhui Wang, Danhuai Zhao, and Tong Lu. Mmfuser: Multimodal multi-layer feature fuser for fine-grained vision-language understanding. *arXiv preprint arXiv:2410.11829*, 2024.525
526
Gongwei Chen, Leyang Shen, Rui Shao, Xiang Deng, and Liqiang Nie. Lion: Empowering multi-modal large language model with dual-level visual knowledge. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26540–26550, 2024a.528
529
Haoran Chen, Junyan Lin, Xinhao Chen, Yue Fan, Xin Jin, Hui Su, Jianfeng Dong, Jinlan Fu, and Xiaoyu Shen. Rethinking visual layer selection in multimodal llms. *arXiv preprint arXiv:2504.21447*, 2025.532
533
Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large language model as a unified interface for vision-language multi-task learning. *arXiv preprint arXiv:2310.09478*, 2023.536
537
Kaibing Chen, Dong Shen, Hanwen Zhong, Huasong Zhong, Kui Xia, Di Xu, Wei Yuan, Yifei Hu, Bin Wen, Tianke Zhang, Changyi Liu, Dewen Fan, Huihui Xiao, Jiahong Wu, Fan Yang, Size Li, and Di Zhang. Evlm: An efficient vision-language model for visual understanding, 2024b. URL <https://arxiv.org/abs/2407.14177>.

540 Haiwen Diao, Xiaotong Li, Yufeng Cui, Yueze Wang, Haoge Deng, Ting Pan, Wenxuan Wang,
 541 Huchuan Lu, and Xinlong Wang. Eeve2: Improved baselines for encoder-free vision-language
 542 models. *arXiv preprint arXiv:2502.06788*, 2025.

543 Yuxin Fu et al. Mme: A comprehensive evaluation benchmark for multimodal large language models.
 544 *arXiv preprint arXiv:2306.13345*, 2023a.

545 Yuxin Fu et al. Mm-vet: Evaluating multi-modal models from the perspective of vision-language
 546 alignment. *arXiv preprint arXiv:2308.06662*, 2023b.

547 Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
 548 Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
 549 *arXiv preprint arXiv:2304.15010*, 2023.

550 Danna Gurari et al. Vizwiz grand challenge: Answering visual questions from blind people. In
 551 *CVPR*, 2018.

552 Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein, Trevor Darrell, and Kate Saenko. Are
 553 you looking? grounding to multiple modalities in vision-and-language navigation. *arXiv preprint
 554 arXiv:1906.00347*, 2019.

555 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 556 and compositional question answering. In *CVPR*, 2019.

557 Andreea Iana, Goran Glavaš, and Heiko Paulheim. Peeling back the layers: An in-depth evaluation
 558 of encoder architectures in neural news recommenders, 2024. URL <https://arxiv.org/abs/2410.01470>.

559 Ziheng Jia, Zicheng Zhang, Jiaying Qian, Haoning Wu, Wei Sun, Chunyi Li, Xiaohong Liu, Weisi
 560 Lin, Guangtao Zhai, and Xiongkuo Min. Vqa²: Visual question answering for video quality
 561 assessment, 2024. URL <https://arxiv.org/abs/2411.03795>.

562 Chaoya Jiang, Wei ye, Haiyang Xu, Qinghao Ye, Ming Yan, Ji Zhang, and Shikun Zhang. Timix:
 563 Text-aware image mixing for effective vision-language pre-training, 2024. URL <https://arxiv.org/abs/2312.08846>.

564 Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin'e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
 565 Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
 566 models. *arXiv preprint arXiv:2310.08825*, 2023.

567 Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
 568 Mubarak Shah. Transformers in vision: A survey. *ACM Computing Surveys*, 54(10s):1–41,
 569 January 2022. ISSN 1557-7341. doi: 10.1145/3505244. URL <http://dx.doi.org/10.1145/3505244>.

570 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
 571 Thomas Wang, Siddharth Karamcheti, Alexander Rush, Douwe Kiela, et al. Obelics: An open
 572 web-scale filtered dataset of interleaved image-text documents. *Advances in Neural Information
 573 Processing Systems*, 36:71683–71702, 2023.

574 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 575 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF
 576 Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024.

577 Chunyuan Li et al. Mmbench: Is your multi-modal model an all-rounder? *arXiv preprint
 578 arXiv:2306.05685*, 2023a.

579 Xiaodong Li, Yujie Zheng, Hao Chen, Xinyang Chen, Yuheng Liang, Chenguang Lai, Bin Li, and
 580 Xiangyang Xue. Instruction-guided fusion of multi-layer visual features in large vision-language
 581 models. *arXiv preprint arXiv:2501.08443*, 2025a.

582 Xu Li, Yi Zheng, Haotian Chen, Xiaolei Chen, Yuxuan Liang, Chenghang Lai, Bin Li, and Xi-
 583 angyang Xue. Instruction-guided fusion of multi-layer visual features in large vision-language
 584 models, 2025b. URL <https://arxiv.org/abs/2501.08443>.

594 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 595 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.
 596

597 Junyan Lin, Haoran Chen, Yue Fan, Yingqi Fan, Xin Jin, Hui Su, Jinlan Fu, and Xiaoyu Shen.
 598 Multi-layer visual feature fusion in multimodal ILMs: Methods, analysis, and best practices. In
 599 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4156–4166, 2025a.

600 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He,
 601 Hao Jiang, Mengze Li, Xiaohui Song, Siliang Tang, Jun Xiao, Hui Lin, Yueling Zhuang,
 602 and Beng Chin Ooi. Healthgpt: A medical large vision-language model for unifying com-
 603 prehension and generation via heterogeneous knowledge adaptation, 2025b. URL <https://arxiv.org/abs/2502.09838>.
 604

605 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao
 606 Jiang, Mengze Li, Xiaohui Song, et al. Healthgpt: A medical large vision-language model for
 607 unifying comprehension and generation via heterogeneous knowledge adaptation. *arXiv preprint
 608 arXiv:2502.09838*, 2025c.
 609

610 Haotian Liu, Chunyuan Li, Qingsheng Wu, and Yong Jae Lee. Visual instruction tuning, 2023.
 611

612 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 613 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 614 pp. 26296–26306, 2024a.

615 Juntao Liu, Liqiang Niu, Wenchao Chen, Jie Zhou, and Fandong Meng. Laco: Efficient layer-
 616 wise compression of visual tokens for multimodal large language models. *arXiv preprint
 617 arXiv:2507.02279*, 2025.

618 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 619 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 620 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 621 2024b.

622 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 623 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 624 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024c.
 625

626 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 627 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 628 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 629 2022.

630 Ziyang Luo, Yadong Xi, Rongsheng Zhang, and Jing Ma. A frustratingly simple approach for end-
 631 to-end image captioning. *arXiv preprint arXiv:2201.12723*, 2022.

632 Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim. Dual attention networks for multimodal rea-
 633 soning and matching. In *Proceedings of the IEEE conference on computer vision and pattern
 634 recognition*, pp. 299–307, 2017.

635 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 636 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 637 models from natural language supervision. In *International conference on machine learning*, pp.
 638 8748–8763. PMLR, 2021.

639 Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
 640 Do vision transformers see like convolutional neural networks? *Advances in neural information
 641 processing systems*, 34:12116–12128, 2021.

642 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 643 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
 644 conference on computer vision and pattern recognition*, pp. 8317–8326, 2019a.

645 Amanpreet Singh et al. Textvqa: Visual question answering on textual content in images. In *CVPR*,
 646 2019b.

648 Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. In
 649 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 25219–25227,
 650 2025.

651

652 Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Ecoflap: Efficient coarse-to-fine layer-wise pruning
 653 for vision-language models. *arXiv preprint arXiv:2310.02998*, 2023.

654 Dongming Wu, Xingping Dong, Ling Shao, and Jianbing Shen. Multi-level representation learning
 655 with semantic alignment for referring video object segmentation. In *Proceedings of the IEEE/CVF*
 656 *Conference on Computer Vision and Pattern Recognition*, pp. 4996–5005, 2022.

657

658 Huanjin Yao, Wenhao Wu, Taojiannan Yang, Yuxin Song, Mengxi Zhang, Haocheng Feng, Yifan
 659 Sun, Zhiheng Li, Wanli Ouyang, and Jingdong Wang. Dense connector for mllms. In A. Globerson,
 660 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in
 661 Neural Information Processing Systems*, volume 37, pp. 33108–33140. Curran Associates, Inc.,
 662 2024a. URL [https://proceedings.neurips.cc/paper_files/paper/2024/
 663 file/3a10c46572628d58cb44fb705f25cbbf-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/3a10c46572628d58cb44fb705f25cbbf-Paper-Conference.pdf).

664 Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan
 665 Sun, Zhiheng Li, Wanli Ouyang, and Jingdong Wang. Dense connector for mllms. *Advances in
 666 Neural Information Processing Systems*, 37:33108–33140, 2024b.

667

668 Yuzhe Yao et al. Pope: Probing lmms’ visual grounding via perception-oriented probing evaluation.
 669 *arXiv preprint arXiv:2309.09507*, 2023.

670 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
 671 Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality collabora-
 672 tion. In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp.
 673 13040–13051, 2024.

674

675 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 676 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv
 677 preprint arXiv:2308.02490*, 2023.

678 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 679 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 680 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 681 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

682

683 Aoxin Zeng et al. Mmmu: A massive multi-discipline multimodal understanding benchmark. *arXiv
 684 preprint arXiv:2306.13394*, 2023.

685 Zhaoyang Zhu et al. Seed-bench: Benchmarking multimodal language models with generative
 686 completions. *arXiv preprint arXiv:2307.16102*, 2023.

687

688 A DATASET OVERVIEW

691 Detailed information about all our 10 datasets is introduced as follows.

692 **GQA** GQA (Hudson & Manning, 2019) is a large-scale benchmark for compositional visual rea-
 693 soning, comprising real-world images annotated with structured scene graphs. It contains over 22
 694 million questions across 100K images, designed to evaluate multi-step reasoning that involves at-
 695 tributes, spatial relations, and logical consistency.

696 **SQA** The Spatial Question Answering (SQA) (Hu et al., 2019) dataset evaluates a model’s ability
 697 to comprehend spatial relationships between objects. It features questions derived from the VQA
 698 dataset, with a specific focus on prepositions such as “left of” or “above.”

699 **TextVQA** TextVQA (Singh et al., 2019b) evaluates the ability to answer questions that require
 700 recognizing and interpreting text within images. The dataset includes over 45K questions on images
 701 with naturally occurring text, requiring robust OCR and multimodal reasoning capabilities.

702 **VizWiz** VizWiz (Gurari et al., 2018) contains visual questions posed by visually impaired users.
 703 The dataset consists of real-world, often noisy images and naturally phrased questions, establishing
 704 it as a benchmark for accessibility-focused VQA and open-ended question understanding.

705 **MMBench-en** MMBench-en (Li et al., 2023a) is a comprehensive benchmark that evaluates
 706 English-language multimodal models across multiple tasks. It features classification-style questions
 707 covering perception, reasoning, and instruction-following to assess model generalization across di-
 708 verse domains.

709 **MM-Vet** MM-Vet (Fu et al., 2023b) is a curated benchmark that probes vision-language alignment
 710 and reasoning consistency. It includes challenging visual questions with distractors, evaluating a
 711 model’s ability to perceive images accurately rather than relying on language priors. MM-Vet em-
 712 ploys a normalized score, computed by averaging accuracies across seven core visual reasoning
 713 skills, each weighted equally.

714 **SEED-I** SEED-I (Zhu et al., 2023), a subset of SEED-Bench, evaluates multimodal instruction-
 715 following in vision-centric tasks. It includes open-ended prompts that require image understanding,
 716 captioning, and grounding based on natural user instructions.

717 **MMMU** The Massive Multi-discipline Multimodal Understanding (MMMU) benchmark (Zeng
 718 et al., 2023) contains over 10K expert-level questions spanning 57 disciplines, such as medicine,
 719 law, and physics. It assesses the capacity of models to handle college-level, multi-disciplinary ques-
 720 tions.

721 **MME-p** MME-p (Fu et al., 2023a), the perception-oriented subset of the MME benchmark, eval-
 722 uates fine-grained visual capabilities, including object counting, attribute recognition, OCR, and
 723 positional reasoning. It is designed to isolate core perceptual skills from higher-level cognitive rea-
 724 soning.

725 **POPE** The POPE benchmark (Yao et al., 2023) evaluates whether models ground their answers in
 726 visual input or rely on spurious language biases. It presents contrastive image-question pairs to
 727 assess the strength of visual grounding and robustness against hallucination.

731 B DETAILED EXPERIMENTAL SETUP

732 In this appendix, we provide a detailed overview of our two-stage training pipeline, covering both
 733 optimization settings and resource utilization.

734 **Training Configurations.** The complete hyperparameters and hardware configurations for both
 735 training stages are summarized in Table 5. In the pre-training stage, we train the model on the
 736 LLaVA-LCS-558K dataset for one epoch (2,179 steps), using a batch size of 256 and a learning rate
 737 of 1×10^{-3} , consistent with the LLaVA-v1.5-7B training strategy. For the visual instruction tuning
 738 stage, we switch to the LLaVA-Instruct-665K dataset, reduce the batch size to 128, and decrease
 739 the learning rate to 1×10^{-5} to ensure training stability. Both stages employ a cosine learning rate
 740 schedule with a 3% warm-up period and the AdamW optimizer. We conduct distributed training on
 741 8 NVIDIA A100 GPUs (80GB each), with DeepSpeed ZeRO-2 optimization enabled for memory
 742 efficiency.

743 **Resource Usage.** As detailed in Table 5, the pre-training stage is memory-efficient, as only a small
 744 adapter module is trained while the remainder of the model remains frozen. In contrast, the instruc-
 745 tion tuning stage involves optimizing the full model, including the language model, vision encoder,
 746 and our proposed CCRA module. This full-model optimization leads to an increase in peak GPU
 747 memory usage, despite a reduction in batch size. The CCRA module contributes minimally to this
 748 increase, adding less than 3GB of memory overhead. Even with 32-bit precision, the entire model
 749 can be accommodated on a single A100 80GB GPU. With the exception of the CCRA integration,
 750 the training pipeline strictly adheres to the original LLaVA setup to ensure a fair and controlled
 751 comparison.

756

757

Table 5: Training configuration and resource usage per stage.

758

759

Setting	Pretraining	Visual Instruction Tuning
Dataset	LLaVA-LCS-558K	LLaVA-Instruct-665K
GPUs	8xA100 80GB	8xA100 80GB
Batch size	256	128
Total steps	2,179	5,194
Epochs	1	1
Learning rate	1e-3	1e-5
Schedule	cosine	cosine
Warm-up	3%	3%
Optimizer	AdamW	AdamW
ZeRO Stage	ZERO-2	ZeRO-2
Wall-clock time (h)	4	10
Aggregate GPU-hours	32	80
Peak VRAM / card	73GB	76GB

768

769

C ADDITIONAL EXPERIMENTAL RESULTS

770

771

C.1 DEFINITIONS OF ATTENTION CONSISTENCY METRICS

772

773

In the main paper (Table 2), we report several metrics to quantify consistency before and after LPWCA. Here we provide precise definitions with complete notation.

774

775

Let $F_{\text{stack}} \in \mathbb{R}^{L \times P \times d}$ be stacked encoder features across L layers with P patches per layer, and $F_{\text{lp}} \in \mathbb{R}^{L \times P \times d}$ the features after LPWCA modulation. We use $X \in F_{\text{stack}}, F_{\text{lp}}$ to denote either feature set. Each patch feature $X_{l,p} \in \mathbb{R}^d$ corresponds to patch p at layer l .

776

777

Patch scores and per-layer distributions. We denote by $Q, K : \mathbb{R}^d \rightarrow \mathbb{R}^{d_h}$ fixed linear projections for queries and keys. Let $F_q \in \mathbb{R}^d$ be a text-derived query embedding (e.g., from the final text token). The unnormalized score for patch p at layer l is

778

779

$$s_l(p; X) = \frac{1}{\sqrt{d_h}} \langle Q(F_q), K(X_{l,p}) \rangle$$

780

781

We normalize within each layer to obtain a patch distribution

782

783

$$p_l(p; X) = \frac{\exp(s_l(p; X))}{\sum_{p'=1}^P \exp(s_l(p'; X))}.$$

784

785

1. Layer-wise similarity. We measure the agreement of per-layer patch distributions across all layer pairs:

786

787

$$\text{JS-avg}(X) = \frac{2}{L(L-1)} \sum_{l < k} \text{JS}(p_l(\cdot; X), p_k(\cdot; X)).$$

788

789

$$\text{Cos-avg}(X) = \frac{2}{L(L-1)} \sum_{l < k} \frac{\langle p_l(\cdot; X), p_k(\cdot; X) \rangle}{\|p_l(\cdot; X)\|_2 \|p_k(\cdot; X)\|_2}.$$

800

801

802

2. Spatial drift. Let $\mathbf{u}_p \in \mathbb{R}^2$ denote the spatial coordinate of patch p on the image grid. The centroid of layer l is

803

804

805

806

807

808

809

$$\mu_l(X) = \sum_{p=1}^P p_l(p; X) \mathbf{u}_p$$

810 **3. Patch-wise stability.** We measure the variance of attention assigned to the same patch across
 811 layers:

$$813 \quad 814 \quad \text{Std}_{\text{patch}}(X) = \frac{1}{P} \sum_{p=1}^P \text{Std}(\{p_l(p; X)\}_{l=1}^L)$$

817 **4. Agreement with final PWCA.** Let $p^* \in \mathbb{R}^P$ be the final PWCA patch distribution produced
 818 by the model. We measure its agreement with per-layer distributions:

$$820 \quad 821 \quad \text{JS-to-final}(X) = \frac{1}{L} \sum_{l=1}^L \text{JS}(p_l(\cdot; X), p^*).$$

$$824 \quad 825 \quad \text{Cos-to-final}(X) = \frac{1}{L} \sum_{l=1}^L \frac{\langle p_l(\cdot; X), p^* \rangle}{\|p_l(\cdot; X)\|_2 \|p^*\|_2}.$$

827 **5. Layer weight smoothness (LWCA only).** Let $w \in \mathbb{R}^L$ denote the normalized weights assigned
 828 by LWCA across layers. We report their total variation and entropy:

$$830 \quad 831 \quad \text{TV}(w) = \frac{1}{L-1} \sum_{l=1}^{L-1} |w_{l+1} - w_l|, \quad H(w) = - \sum_{l=1}^L w_l \log w_l$$

834 All metrics are computed for both F_{stack} (pre-LPWCA) and F_{lp} (post-LPWCA) under the same pro-
 835 jections and normalization. Together, these metrics quantify cross-layer agreement, spatial stability,
 836 alignment with PWCA, and the smoothness of LWCA integration.

838 C.2 HYPERPARAMETER SENSITIVITY ANALYSIS

840 To evaluate the robustness of CCRA to key hyperparameters, we conduct a sensitivity analysis on the
 841 attention projection dimension, d_{hidden} , and the Gaussian smoothing kernel size, k . These parameters
 842 respectively control the expressiveness of text-image alignment and the continuity of layer-wise
 843 semantic attention.

844 We vary d_{hidden} across the set $\{64, 96, 128, 160, 192, 256, 320, 384\}$ and k across $\{2, 3, 4, 5, 6, 7\}$,
 845 while evaluating accuracy on the GQA benchmark. As shown in Figure 7, the model demonstrates
 846 consistent performance across these settings. Notably, $d_{\text{hidden}} = 128$ and $k = 5$ yield the optimal
 847 trade-off between performance and stability, aligning with our default configuration.

849 D QUALITATIVE EXAMPLES OF MODEL PREDICTIONS

851 To better illustrate the behavior of our CCRA model across diverse visual-language tasks, we present
 852 qualitative examples categorized into four groups: counting, OCR, object grounding, and binary
 853 (yes/no) questions. Each example includes an input image, a task-specific question, and the model’s
 854 generated response.

855
 856
 857
 858
 859
 860
 861
 862
 863

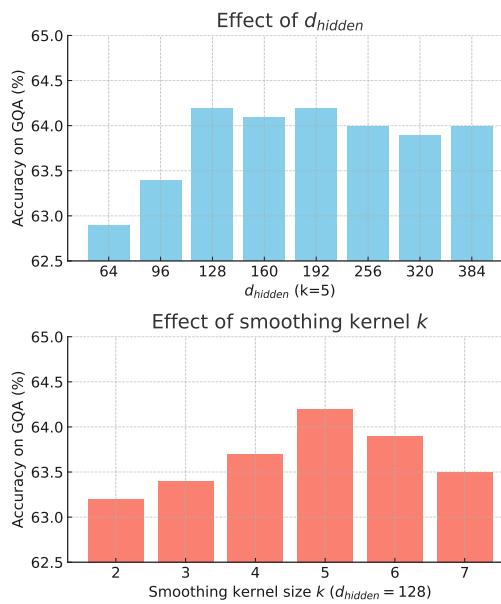


Figure 7: Sensitivity of CCRA on the GQA dataset with respect to hidden dimension d_{hidden} and smoothing kernel size k .

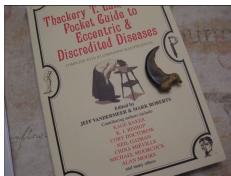
(a) Counting Task

Q: How many green apples are there?

A: There are 2 green apples in the image. You can spot them by their distinct bright green color. They stand out clearly among the red and yellow ones.

Q: How many apples are there in total?

A: In total, there are 9 apples in the image.



(b) OCR

Q: Who edited the book?
Reference OCR token: Thackery, Pocket, Eccentric, Guide, &, to, Discredited, Diseases, COMPLETE, AA, by, MARK, ROBERTS, include:, JEFF, VANDERMEER, Edited, &, Contributing, KAGE, authors, BAKER, CORY, DOCTOROW, BISHOP, NEIL, MICHAEL, MIEVILLE, MOORCOCK, MOORE, others, CHINA, GAIMAN, ALAN, many, and
Answer the question using a single word or phrase.

A: Jeff VanderMeer & Mark Roberts

(c) Object grounding

Q: Where is the backpack?

A: The red backpack is located on the left side of the desk. It occupies the bottom-left corner of the image and is partially cropped, with one black strap extending outward.

(d) Yes/No questions

Q: Is the cat wearing a collar?

A: No, the cat is not wearing any collar in this image.

Figure 8: Qualitative examples of CCRA model predictions across diverse tasks: (a) Counting (e.g., number of apples), (b) OCR (e.g., book editors), (c) Object Grounding (e.g., backpack location), and (d) Yes/No questions (e.g., presence of a collar).

918 As shown in Figure 8, the model demonstrates fine-grained understanding across various challenges,
919 such as distinguishing apple colors and quantities, reading book titles and editor names, spatially
920 grounding objects in cluttered scenes, and answering binary attribute-based questions. These results
921 highlight the model’s capability to effectively align vision and language under varying semantic
922 demands.

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971