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ABSTRACT

Vision-Language Models (VLMs) face challenges in effectively coordinating di-
verse cross-attention mechanisms for visual-language alignment, leading to at-
tention drift and suboptimal performance. We propose Consistent Cross-layer
Regional Alignment (CCRA), which introduces Layer-Patch-Wise Cross Atten-
tion (LPWCA) to capture fine-grained regional-semantic correlations by jointly
weighting patch and layer-wise embedding. Also, we employ a novel Progres-
sive Attention Integration (PAI) that systematically coordinates patch-layer-wise,
layer-wise, and patch-wise attention mechanisms in sequence. This progressive
design ensures consistency from semantic to regional levels while preventing at-
tention drift and maximizing each attention’s benefits. Experimental results on
eleven diverse vision-language benchmarks demonstrate that our CCRA-enhanced
VLMs achieves state-of-the-art performance, outperforming all baseline methods
with only 3.55M additional parameters, while providing enhanced interpretability
through more regionally-focused and semantically-aligned attention patterns.

1 INTRODUCTION

Vision-Language Models (VLMs) have fundamentally transformed visual question answering (Jia
et al., 2024), object detection (Liu et al., 2024b), segmentation (Khan et al., 2022), OCR (Singh
et al., 2019b), etc. A key insight is that diverse tasks, expressed through different text queries,
demand very different kinds of information from the same image. This difference concerns not only
which regions should be attended to, but also which embedding layers deserve greater emphasis
when transferring semantic information (Lin et al., 2025b). This presents a fundamental challenge:
how to optimize vision information extraction to better align with the specific needs of text queries
for optimal performance.

Existing approaches to vision-language alignment fall into several categories. Some methods ex-
tract image embeddings from specific layers of the vision encoder and then perform Patch-Wise
Cross Attention (PWCA) between textual and visual embeddings, as in VC-GPT (Luo et al., 2022),
Flamingo (Alayrac et al., 2022), and TiMix (Jiang et al., 2024). However, diverse tasks often require
a different emphasis on visual features at multiple semantic levels (Wu et al., 2022). To address
this limitation in vision–language alignment, other approaches employ Layer-Wise Cross Atten-
tion (LWCA) to assign importance weights across different layers, as in IGVA (Li et al., 2025b),
MLVF (Lin et al., 2025a), Dense Connector (Yao et al., 2024a) and MMFuser (Cao et al., 2024).

Despite these advances, a critical limitation persists: harmonic coordination between diverse at-
tention mechanisms lacks effective organization, potentially leading to mismatched attention from
different perspectives and resulting in suboptimal performance and poor interpretability. To address
this limitation, we propose Consistent Cross-layer Regional Alignment (CCRA) with two key
contributions:

1. Layer-Patch-Wise Cross Attention (LPWCA): Beyond existing LWCA and PWCA, we intro-
duce LPWCA to capture fine-grained regional-semantic correlations, enabling superior perfor-
mance across diverse tasks.
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2. Progressive Attention Integration (PAI): We systematically integrate all three attention mech-
anisms through progressively operating LPWCA, optimized Gaussian-smoothed LWCA and fi-
nally PWCA. This design maximizes the benefits of individual attention mechanisms while en-
suring consistency in both semantic and regional levels, enhancing both performance and inter-
pretability.

To demonstrate CCRA’s effectiveness in improving generalization performance and interpretability,
we evaluate our CCRA-enhanced LLaVA-v1.5-7B model on diverse vision tasks and visualize at-
tention patterns through feature heatmaps. Our results demonstrate that the proposed model outper-
forms all baseline methods across markedly different tasks with diverse task queries. Meanwhile,
the feature heatmaps visualize the adaptivity and consistency of feature attention, which supports
the superior performance of VLM across diverse tasks, and also provide more interpretable visual
representations of feature importance compared to existing approaches.

2 RELATED WORK

2.1 VLM WITHOUT VISION-LANGUAGE ALIGNMENT

Conventional VLMs often decouple the processing of visual and textual embeddings, e.g.,
LLaVA (Liu et al., 2023), MiniGPT-v2 (Chen et al., 2023), and LLaMA-Adapter-v2 (Gao et al.,
2023). They often extract a single-layer embedding from the visual encoder and feed it together
with textual embeddings to pre-trained encoders such as CLIP (Jiang et al., 2023). However, diverse
tasks often require visual features from a broader range of semantic levels (Iana et al., 2024). Ac-
cordingly, recent advances leverage cross-layer visual features for comprehensive representations.
These approaches capture both low-level details from early layers and high-level semantics from
deeper layers. To reduce feature redundancy and noise, these methods also involved similarity-
based (Raghu et al., 2021; Yao et al., 2024b; Sun et al., 2025) and proportion-based (Cao et al.,
2024; Chen et al., 2024a;b) layer feature selection has been explored. However, these methods oper-
ate independently of textual input, failing to consider that different tasks have varying visual require-
ments. Early layers handle color and many spatial tasks such as counting or localization well (Chen
et al., 2025; Yao et al., 2024b). OCR is also sensitive to visual details in the shallow layers, and
insufficient low-level information may lead to recognition errors (Cao et al., 2024). By contrast,
high-level semantic reasoning, long-horizon action understanding, and knowledge-intensive ques-
tion answering rely on the deepest visual representations (Li et al., 2025a). Such methods do not
consider text-image alignment, leading to suboptimal VLM performance.

2.2 VLM WITH VISION-LANGUAGE ALIGNMENT

Recent advances in vision-language alignment have explored various mechanisms to bridge textual
semantics with visual representations. One line of research emphasizes PWCA, where image em-
beddings extracted from specific layers of the vision encoder are aligned with textual queries through
cross-attention, as in VC-GPT (Luo et al., 2022), Flamingo (Alayrac et al., 2022), TiMix (Jiang et al.,
2024), and EVEv2 (Diao et al., 2025). This approach enhances fine-grained regional control and
enriches visual representation, making it particularly effective for tasks requiring precise regional
alignment (Yue et al., 2024). Another line focuses on LWCA, which aggregates visual features from
multiple encoder layers, often guided by the textual instruction, to adaptively weight semantic levels.
Representative works include the Instruction-Guided Vision Aggregator (IGVA) (Li et al., 2025b),
while other works such as MLVF (Lin et al., 2025a), the Dense Connector (Yao et al., 2024a), and
MMFuser (Cao et al., 2024) further highlight the benefit of leveraging multi-layer visual signals.

Despite their respective strengths, LWCA and PWCA are typically designed independently, often
lacking consistency between regional and semantic focus. This decoupled design leads to atten-
tion drift, where attention across layers inconsistently shifts regions of focus, undermining stable
alignment and interpretability (Li et al., 2025a). Moreover, relying solely on one form of attention
neglects the relative importance between regional location and semantic depth, limiting the model’s
ability to effectively optimize vision-language features.

To address these limitations, recent works have attempted to combine PWCA and LWCA. For ex-
ample, Liu et al. (2025) proposed a unified framework that compresses patch-level information via

2
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MLPs and integrates it with cross-layer attention, offering a more holistic alignment. However, rigid
coordination may lead to inorganic coordination between different attentions and provide suboptimal
performance on complex multimodal tasks (Nam et al., 2017; Liu et al., 2025).

3 METHODOLOGY

As discussed above, diverse attention mechanisms have their specific benefits, but a mechanism
is needed to harmoniously integrate all these visual-language cross attentions to globally optimize
VLM’s performance across different tasks. In addition, considering the need for human being’s
understanding, we also need to consider the feature interpretability as a further constraint. To reflect
these considerations, we propose Consistent Cross-layer Regional Alignment (CCRA), a novel
framework to unify diverse visual-language cross attention under one umbrella for optimal task-
oriented performance, and also support consistent feature attention for interpretable understanding.
CCRA differs from the previous work in the following two aspects, which is shown in Figure 1.

Figure 1: (a) An overview of our VLM with Consistent Cross-layer Regional Alignment. LPWCA,
LWCA, and PWCA are progressively used to align both textual embedding and visual embedding
gradually for optimal task-oriented performance (b) The detailed illustration of LPWCA, LWCA
and PWCA, where LPWCA provides joint and global optimization between regional and semantic
information; the optimized Gaussian-smoothed LWCA provides continuous attention along seman-
tic aspect; the PWCA provides the consistency constraint along regional apsect.

1. Layer-Patch-Wise Cross Attention (LPWCA): we first introduced LPWCA, to complement ex-
ising LWCA and PWCA. By such a design, we connect the correlation between layer- and patch-
wise information, thus provide a finer-grained feature control than merely LWCA and PWCA.
(Sec. 3.1)

2. Progressive Attention Integration (PAI): Beyond LPWCA, We proposed PAI to harmoniously
unify all three attention mechanisms (LPWCA, LWCA, PWCA) in progressive granularity se-
quence for optimal task-oriented performance, and provide consistent semantic and regional fea-
ture attention for human beings’ understanding. (Sec.3.2)

3.1 LAYER-PATCH-WISE CROSS ATTENTION

In addition to LWCA and PWCA, which provide semantic and regional attention respectively, we
complement them with the layer-patch-wise cross attention (LPWCA) as a fundamental operation,
to reflect the global and joint importance on both aspects.

3
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To do so, the multi-layer visual features extracted from a visual encoder (e,g., CLIP ViT (Radford
et al., 2021)): Fl

v ∈ RN×d, where l ∈ {1, 2, . . . , L} is the layer index, and N , d are the number of
image patches and the feature dimension, respectively, are flattened into a unified patch-layer feature
sequence Fstack:

Fstack =
[
F1

v;F
2
v; · · · ;FL

v

]
∈ RL×(N×d). (1)

Through such a way, the hierarchical structure of feature space, which can be viewed from patch
and layer perspective, are unified into the same space.

Then in order to align with the textual query, we first process the query into a set of textual embed-
dings Ft ∈ RT×d. A self-attention module is first applied over Ft to compute token-contextualised
importance scores αt ∈ RT , which indicate the relative contribution of each token in guiding the
visual alignment.

αt = Softmax(SelfAttention(Ft)). (2)
Next, the textual embeddings Ft are projected into a query space Q(Ft), while the stacked visual
features Fstack are projected into a key space K(Fstack). The layer-patch attention scores Alp ∈
RT×(L×N) can thus be computed:

Alp =
1√
d
Q(Ft)K(Fstack)

⊤. (3)

Then Alp is aggregated across all textual tokens using the learned importance weights αt to form a
unified attention map Wlp ∈ RL×N over spatial patches and layers:

Wlp = α⊤t Alp, (4)

Such a map demonstrates the global importance of every patch feature, regardless of where and
which layer it is located at. This map is then used to modulate the original stacked features Fstack
via element-wise multiplication, followed by a residual connection and layer normalization LN(·):

Flp = LN(Fstack ⊙Wlp + Fstack). (5)

where Flp ∈ RL×(N×d) are the features aligned with the textual query from a joint patch-layer
perspective. These features are then reshaped back to RL×N×d to recover the per-layer structure for
the next stage. With such an attention mechanism, we provide a more comprehensive textual-image
alignment than only considering the patch- or layer-wise impact.

3.2 PROGRESSIVE ATTENTION INTEGRATION

Although LPWCA provides finer-grained attention, LWCA is crucial for focusing on semantically
relevant layers, while PWCA constrains attention to consistent regions across layers. Without them,
the learned features could be semantically or spatially inconsistent, making them difficult for humans
to interpret. Therefore, Progressive Attention Integration (PAI) is proposed to integrate all three
mechanisms harmoniously.

Integration with LWCA. Based on the globally-aligned features Flp from LPWCA (reshaped to
L ×N × d), we apply a revised LWCA to provide continuous semantic attention. Specifically, the
visual features are first spatially averaged to obtain a set of layer-level descriptors:

Flayer =
[
AvgPool(F1

lp); · · · ;AvgPool(FL
lp)
]
∈ RL×d. (6)

Then, cross-attention scores Al ∈ RT×L are computed between textual embeddings and layer de-
scriptors, followed by aggregation using the same token importance weights αt:

Al =
1√
d
Q(Ft)K(Flayer)

⊤; (7)

wl = α⊤t Al, wl ∈ RL. (8)

Previous approaches to LWCA often select specific layers or cluster them to avoid sharp, noisy tran-
sitions in attention weights, which could disrupt the semantic smoothness across layers (Sung et al.,
2023; Li et al., 2025b; Lin et al., 2025c). However, this strategy risks discarding valuable informa-
tion from the omitted layers. To address this, we introduce a Gaussian smoothing kernel applied
to the raw layer attention scores wl. This method allows us to utilize information from all layers
while simultaneously enforcing a smooth attention distribution, thus obtaining the final, refined layer
weights ŵl ∈ RL that maintain both completeness of information and semantic consistency.

4
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The semantically-aligned visual representation Fsemantic ∈ RN×d is derived via a weighted aggre-
gation of the globally-aligned layer features. Let F̂lp be the result of the weighted sum. A residual
connection and layer normalization are then applied:

F̂lp =

L∑
l=1

ŵl,l · Fl
lp (9)

Fsemantic = LN
(
F̂lp + AvgPool(F̂lp)

)
. (10)

Integration with PWCA. Furthermore, to maintain regional consistency, we apply PWCA on
Fsemantic. We first compute cross-attention between language tokens and the patch features of
Fsemantic:

Ap =
1√
d
Q(Ft)K(Fsemantic)

⊤, (11)

where Ap ∈ RT×N . The scores are then aggregated using the token importance weights αt to get
patch weights wp ∈ RN :

wp = α⊤t Ap. (12)

Finally, a residual connection and layer normalization are applied to obtain the regionally-aligned
visual representation Fregional ∈ RN×d:

Fregional = LN (Fsemantic ⊙ (1 +wp)) . (13)

To preserve both the original high-level visual semantics and the newly refined features, we concate-
nate Fregional with the original final-layer visual feature FL

v :

Ffused = [Fregional;F
L
v ] ∈ RN×2d. (14)

Visual-textual Feature Fusion To align with the hidden dimension d of the large language model,
we apply a visual projection head Projvis : R2d → Rd to each fused patch token. Subsequently, the
resulting visual representation is then concatenated with the textual embeddings Ft and passed into
a large language model for visual-language predictions (e.g., answer generation, captioning):

Ŷ = LLM([Projvis(Ffused);Ft]). (15)

Through such a progressive integration of LPWCA, LWCA, and PWCA, the final visual feature
Ffused from PAI is tightly aligned with textual query, which supports the optimal performacne of
VLM after the visual-textual feature fusion. Meanwhile, it is also further constrained in seman-
tic smoothness and regional consistency, which provides understandable attention map for human
being.

The effectiveness of CCRA also depends on a few interpretable hyperparameters, such as the layer
smoothing kernel size and embedding dimensions. Their impacts are discussed in Appendix C.2.
The overall training and inference procedure of CCRA is summarized in Algorithm 1.

Algorithm 1: Training and Inference of CCRA-based Vision-Language Model
Input: Image I ∈ RH×W×3, Text sequence T with token length T , Task label Y (for training)
Output: Prediction Ŷ or updated model parameters

1. Visual and Text Encoding
Fstack ← VisualEncoder(I) Ft ← TextEncoder(T )

2. Consistent Cross-layer Regional Alignment (CCRA)
Flp ← LPWCA(Ft,Fstack) Fsemantic ← LWCA(Ft,Flp) Fregional ← PWCA(Ft,Fsemantic) Ffused ← Fuse(Fregional,F

L
v )

3. Training Stage 1: Feature Alignment Pretraining
Ŷ ← LLM([Projvis(Ffused);Ft]) ; // Caption prediction; freeze VisualEncoder and LLM

Lpretrain ← CrossEntropy(Ŷ , Y )

4. Training Stage 2: End-to-End Finetuning
Ŷ ← LLM([Projvis(Ffused);Ft]) ; // Task-specific prediction; freeze VisualEncoder only

Lfinetune ← CrossEntropy(Ŷ , Y )

5. Model Inference (if label Y is not available)
Execute steps 1 and 2, then skip steps 3 and 4
Ŷ ← LLM([Projvis(Ffused);Ft])

5
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4 EXPERIMENT

We first outline the experimental setup (Section 4.1). We then evaluate CCRA on eleven public
benchmarks spanning compositional reasoning, OCR, instruction following, and domain-specific
tasks, comparing against state-of-the-art baselines (Table 1). Beyond accuracy, we analyze the at-
tention behavior of LPWCA/LWCA/PWCA with quantitative consistency metrics and qualitative
heatmaps (Section 4.2), compare coordination strategies in an integration study (Section 4.3), and
validate each component via ablations (Section 4.4).

4.1 EXPERIMENTAL SETUP

We follow the two-stage training strategy of LLaVA-v1.5-7B. In the pre-training stage on LLaVA-
LCS-558K, CCRA is not applied due to the lack of annotations. In the instruction-tuning stage on
LLaVA-Instruct-665K, CCRA is integrated to enhance vision–language consistency. Apart from
this modification, the optimization procedure is identical to LLaVA. Further details are provided in
Appendix B.

We evaluate CCRA on eleven widely-used benchmarks with diverse task requirements, they are
GQA (Hudson & Manning, 2019), ScienceQA(SQA) (Lu et al., 2022), TextVQA (Singh et al.,
2019a), VizWiz (Gurari et al., 2018), MMB-en (Liu et al., 2024c), MM-Vet (Yu et al., 2023), SEED-
I (Li et al., 2024), MMMU (Yue et al., 2024), MME-p (Fu et al., 2023a), and POPE (Li et al.,
2023b), Notably, for ScienceQA, we only evaluate on the set with image context. More details
on dataset can be found in Appendix A. Parallelly, SOTA methods including LLaVA-v1.5-7B (Liu
et al., 2024a), LLaVA-v1.5-13B (Liu et al., 2024a), mPLUG-Owl2 (Ye et al., 2024), MiniGPT-
v2 (Chen et al., 2023), LLaMA-Adapter-v2 (Gao et al., 2023), IDEFICS (Laurençon et al., 2023),
Flamingo (Alayrac et al., 2022), DenseConnector (Yao et al., 2024b), MMFuser (Cao et al., 2024),
IGVA (Li et al., 2025a) and Qwen-VL-Chat (Bai et al., 2023), are used to compare with CCRA, to
demonstrate CCRA’s advance.

4.2 RESULTS AND ANALYSIS

4.2.1 OVERALL PERFORMANCE

CCRA achieves the best results across eleven benchmarks in Table 1. Accuracy is used for most
tasks, MME-p uses the official MME-p score and POPE uses the F1 score. The additional attention
operations introduce only 3.55M parameters, which is negligible relative to a seven billion parameter
backbone, yet they allow LLaVA-v1.5-7B with CCRA to surpass LLaVA-v1.5-13B. This shows
that even lightweight consistency constraints can yield substantial improvements in vision-language
alignment.

Table 1: Comparison across 11 benchmarks. Models are grouped by whether they adopt vision-
language alignment.

Model LLM Resolution Train Data GQA SQA TextVQA VizWiz MMB-en MM-Vet SEED-I MMMU MME-p POPE

Metric Acc(%) Acc(%) Acc(%) Acc(%) Acc(%) Acc(%) Acc(%) Acc(%) MME-p Score F1-Score

Models without Vision-Language Alignment
LLaVA-v1.5-7B Vicuna-v1.5-7B 336 0.5M+0.6M 61.9 67.1 58.1 53.2 63.9 32.8 67.2 34.9 1480.6 86.9

LLaVA-v1.5-13B Vicuna-v1.5-13B 336 0.5M+0.6M 63.3 71.0 61.3 53.6 67.7 36.1 68.2 34.9 - 87.2
MiniGPT-v2 LLaMA 2-7B 448 - 60.1 - - 53.6 9.4 - - - - -

IDEFICS LLaMA-7B 224 1.6B 38.4 - 25.9 35.5 48.2 - - - - -
LLaMA-Adapter-v2 LLaMA-7B 336 0.6M - - - - 41.0 31.5 32.7 29.8 972.7 -

mPLUG-Owl2 LLaMA 2-7B 448 384M+1.2M 56.1 68.7 54.3 54.5 64.5 36.2 57.8 - 1450.2 86.2
Qwen-VL-Chat Qwen-7B 448 1.4B+50M+0.3M 57.5 68.2 61.5 38.9 60.6 - 65.4 35.9 1487.6 -

Models with PWCA-Enhanced Vision-Language Alignment
Flamingo Chinchilla-70B 336 43M + 185M - - 37.9 49.8 - - - - - -

Models with LWCA-Enhanced Vision-Language Alignment
DenseConnector - - - 63.8 69.5 59.2 - 66.8 32.7 - 34.8 - 86.6

MMFuser Vicuna-13B 336 0.5M+0.6M 62.8 68.7 58.8 53.4 67.5 32.6 60.8 - 1479.7 86.3
IGVA Vicuna-v1.5-7B 336 0.5M+0.6M 63.1 70.2 59.4 54.3 66.9 33.5 68.3 36.4 1519.8 87.8

Model with CCRA-Enhanced Vision-Language Alignment
Ours Vicuna-v1.5-7B 336 0.5M+0.6M 64.2 71.3 63.1 54.6 67.9 37.5 69.6 37.6 1525.6 88.9

Performance Improvements. A closer look at Table 1 highlights where the improvements come
from. CCRA surpasses IGVA by 1.1 on GQA, 1.3 on SEED-I, and 1.0 on MMB-en, and exceeds

6
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Q: What is the 
flower doing on 
the man's suit?

The flower is 
pinned to the 
man's suit

He is wearing a 
flower on his 
chest.

A flower is on 
the man's 
shirt.

Q: What kind of 
sports equipment is 
the man holding?

He is holding 
a tennis racket.

He has a 
racquet in his 
hand.

The man is 
holding 
something.

Ours IGVA LLaVA Ours IGVA LLaVA

Figure 2: Cross-attention maps averaged over mid-layers of the LLM. CCRA directs attention more
consistently to task relevant regions compared to IGVA and LLaVA baselines, resulting in answers
that align better with visual evidence.

MMFuser by 4.3 on TextVQA and 4.9 on MM-Vet. These improvements arise from the LPWCA
and PAI modules as shown in Table 4 and Table 3, which refine alignment through layer–patch
correlation and progressive integration of attention mechanisms.

Interpretability Improvements. We further examine how CCRA improves the use of visual fea-
tures inside the language model. Figure 2 shows that CCRA produces features that guide the LLM
to focus on the relevant regions of the task, producing accurate and semantically aligned responses.
In contrast, IGVA and LLaVA lead to more diffuse and inconsistent attention, often associated with
vague or incorrect output.

4.2.2 ATTENTION ANALYSIS

Layer-Patch-Wise Cross Attention Behavior. LPWCA aligns spatial regions across layers,
yielding more consistent focus. Quantitatively, it reduces cross-layer divergence (lower JS), im-
proves similarity (higher cosine), stabilizes spatial centroids (lower drift), and increases patch stabil-
ity. In addition, LPWCA shows stronger agreement with the final PWCA map and induces smoother
LWCA weights (lower TV, higher entropy), indicating more coherent integration across modules.
All metrics are summarized in Table 2 and formally defined in Appendix C.1, where they are com-
puted on both pre- and post-LPWCA features under identical projections and normalization. Qual-
itatively, Figure 3 visualizes patch–layer scores from representative layers (12, 18, 24), showing
that LPWCA consistently highlights shoes and shirts across depth, confirming stable region–layer
alignment under language guidance.

Layer12 Layer18 Layer24

patch-wise attentionlayer-wise attentionlayer-patch-wise attention

Q：Do the shoes and 
the T-shirt have the 
same color?

image

Layer12 Layer18 Layer24

Figure 3: Qualitative visualization of the three attention modules in CCRA under the query “Do the
shoes and the T-shirt have the same color?”. From left to right: input image and question, LPWCA,
LWCA and PWCA. Together, these modules produce consistent semantic-regional alignment.

Table 2: Attention consistency metrics before and after LPWCA (L=24). All metrics are computed
on Fstack (pre-LPWCA) and Flp (post-LPWCA) using identical projections and normalization.

Metric JS-avg ↓ Cos-avg ↑ Drift ↓ Stdpatch ↓ JS-to-final ↓ Cos-to-final ↑ TV(w) ↓ Entropy H(w) ↑
Fstack 0.218 0.731 0.064 0.052 0.173 0.754 0.060 2.41
Flp 0.147 0.812 0.041 0.038 0.119 0.835 0.028 2.95

Layer-Wise Cross Attention Behavior. LWCA identifies the semantic depth most relevant to a
query. As shown in Figure 4, appearance questions activate lower and middle layers, while reasoning
questions shift focus to deeper layers, and removing Gaussian smoothing leads to performance drops

7
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(Table 4). For qualitative analysis, we visualize layer attention scores across depth after smoothing
and select representative layers (12, 18, 24), mapping them back to patches. As shown in Figure 3,
LWCA emphasizes semantic depth while leaving spatial grounding to PWCA.

Q: What color is in the bottom-left Q: What is the player doing?Image

0 5 10 15 20
CLIP Visual layer Index

0 5 10 15 20
CLIP Visual layer Index

Figure 4: Comparison of LWCA distributions for queries of different semantic levels. Shallow
appearance-based queries activate earlier layers, while high-level reasoning queries attend to deeper
layers. Smoothed attention curves (solid) reveal more coherent trends than raw attention (dashed).

Patch-Wise Cross Attention Behavior. PWCA provides fine-grained spatial grounding on the
fused representation. Removing PWCA leads to clear drops on TextVQA, VizWiz, and MMMU
(Table 4), confirming its importance for OCR- and grounding-heavy tasks. For qualitative analysis,
we visualize the attention scores of PWCA as shown in Figure 3, PWCA sharply localizes the shoes
and shirt, complementing LPWCA’s region–layer alignment and LWCA’s semantic weighting.

4.3 ATTENTION INTEGRATION STUDY

To better prove why PAI is superior to other integration strategies, we compared PAI (Figure 5 (c))
with two of its variants (Figure 5): (a) Decoupled Integration, where patch-wise and layer-wise
cross attentions are fused in parallel before entering the LLM; and (b) Shuffled Integration, which
reverses the order of patch- and layer-wise operations in PAI.

The performance is reported in Table 3, where our proposed PAI demonstrates the best performance.
Furthermore, the text-attention is visualized in Figure 6 to intuitively check the vision-language
alignment. The figure shows that the PAI produces sharper, more consistent, and semantically fo-
cused attention, while both variants exhibit dispersed or misaligned patterns. These results prove
the effectiveness of our dedicated design for PAI.

Figure 5: Comparison of cross-attention coordination strategies for combining patch-level (re-
gional) and layer-level (semantic) information. (a) Decoupled Integration: PWCA and LWCA
attentions are applied independently and fused in parallel before LLM input. (b) Shuffled Integra-
tion: A reversed ordering of patch-wise and layer-wise attention compared to PAI. (c) Progressive
Attention Integration: Our progressive strategy that sequentially applies patch-layer-wise, layer-
wise, and patch-wise attention to iteratively refine visual features.
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Table 3: Performance comparison between PAI and its variants
Model Variant GQA SQA TextVQA VizWiz MMB-en MM-Vet SEED-I MMMU MME-p POPE

Decoupled Integration 63.1 70.2 58.7 53.0 67.0 36.5 68.5 36.6 1497.7 87.4
Shuffled Integration 63.8 70.8 59.3 53.7 67.3 37.0 68.9 36.8 1501.6 88.2

Ours (PAI) 64.2 71.3 63.1 54.6 67.9 37.5 69.6 37.6 1525.6 88.9

(a) Decoupled integration (c) Ours(b) Shuffled IntegrationQuestion: What is the man 
doing?

Figure 6: Cross-attention maps from the LLM under different coordination strategies. CCRA (c)
yields sharper and more semantically aligned attention compared to (a) independent coordination
and (b) a variant progressive design. These visualizations confirm the effectiveness of our full pro-
gressive attention refinement.

4.4 ABLATION STUDY

We conduct ablations on each attention mechanism (Table 4). PWCA mainly benefits fine-grained
tasks (TextVQA, VizWiz, MMMU), LWCA supports semantic reasoning (SQA, MMB-en, SEED-
I), and LPWCA ensures cross-layer consistency (MM-Vet, POPE). Gaussian smoothing in LWCA
yields small but consistent gains (e.g., –0.4 on SQA, –0.7 on POPE) and stabilizes attention distri-
butions, as illustrated in Figure 4.

Table 4: Ablation study results of CCRA
Model Variant GQA SQA TextVQA VizWiz MMB-en MM-Vet SEED-I MMMU MME-p POPE

Ours (CCRA) 64.2 71.3 63.1 54.6 67.9 37.5 69.6 37.6 1525.6 88.9

w/o PWCA 62.9 69.5 58.8 53.2 67.1 36.8 68.3 36.4 1513.2 87.5
w/o LWCA 63.4 70.1 58.2 53.9 66.7 36.0 68.1 36.9 1510.3 87.0

w/o LPWCA 62.7 70.6 59.0 52.8 66.9 37.1 68.7 36.3 1514.6 88.7
w/o Gaussian smoothing 63.8 70.9 59.1 54.0 67.3 36.5 69.0 36.7 1516.2 88.2

5 CONCLUSION

We proposed Consistent Cross-layer Regional Alignment (CCRA), which integrates layer-patch and
progressive attention for more stable visual-language alignment. Layer-Patch-wise Cross Atten-
tion (LPWCA) captures fine-grained regional-semantic correlations by jointly considering spatial
and depth-wise semantics, providing more comprehensive visual-language alignment than existing
patch-wise or layer-wise mechanisms alone. Progressive Attention Integration (PAI) systematically
coordinates all three attention mechanisms in sequence, ensuring consistency from semantic to re-
gional levels while maximizing eac attention benefits and preventing attention drift. Experimental
results across eleven benchmarks demonstrate that our CCRA-enhanced model achieves state-of-
the-art performance, outperforming all baseline methods while adding only 3.55M parameters, with
visualization analyses confirming more focused and semantically aligned attention patterns.

Beyond the advanced performance of CCRA, we realize that there is still an optimization space to
be explored. Future work could explore alternative smoothing mechanisms for optimizing LWCA
beyond the current Gaussian smoothing approach to achieve better integration within the progressive
attention framework and further improve vision-language alignment performance.
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ETHICS STATEMENT

This work proposes CCRA, a framework for optimizing cross-layer and regional attention consis-
tency in vision-language models. All experiments were conducted using publicly available datasets
and benchmarks in the multimodal community, such as GQA, ScienceQA, TextVQA, VizWiz, MM-
Bench, MM-Vet, SEED-I, MMMU, MME-p, and POPE. These datasets are widely adopted for
academic research and do not contain sensitive personal information. No human subjects, private
data, or animal studies were involved.

The proposed method is developed purely for advancing multimodal alignment research and poses
minimal direct ethical concerns. However, as with any powerful vision-language system, poten-
tial misuse remains possible in domains such as surveillance, disinformation, or decision-making in
safety-critical applications. To reduce risks, we emphasize that this work is intended solely for aca-
demic research. Responsible use requires careful evaluation of societal impacts, robustness against
hallucinations, and deployment only under appropriate safeguards.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release the full implementation of CCRA, including model code,
training pipelines, and inference scripts. All datasets employed in this study are publicly accessible.
The paper and appendix provide complete details of model architecture, hyperparameters, optimiza-
tion schedules, and computational resources. Our training follows the established two-stage LLaVA
pipeline, with CCRA integrated as an additional module.

We further report extensive ablations, hyperparameter sensitivity analyses, and qualitative visual-
izations of attention maps to validate each component of the framework. Upon acceptance, we will
make pretrained checkpoints, dataset preparation instructions, and experimental logs available to
support transparent verification and future research.
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Andreea Iana, Goran Glavaš, and Heiko Paulheim. Peeling back the layers: An in-depth evaluation
of encoder architectures in neural news recommenders, 2024. URL https://arxiv.org/
abs/2410.01470.

Ziheng Jia, Zicheng Zhang, Jiaying Qian, Haoning Wu, Wei Sun, Chunyi Li, Xiaohong Liu, Weisi
Lin, Guangtao Zhai, and Xiongkuo Min. Vqa2: Visual question answering for video quality
assessment, 2024. URL https://arxiv.org/abs/2411.03795.

Chaoya Jiang, Wei ye, Haiyang Xu, Qinghao Ye, Ming Yan, Ji Zhang, and Shikun Zhang. Timix:
Text-aware image mixing for effective vision-language pre-training, 2024. URL https://
arxiv.org/abs/2312.08846.

Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin’e Zhao, Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin
Li, and Hongkai Xiong. From clip to dino: Visual encoders shout in multi-modal large language
models. arXiv preprint arXiv:2310.08825, 2023.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys, 54(10s):1–41,
January 2022. ISSN 1557-7341. doi: 10.1145/3505244. URL http://dx.doi.org/10.
1145/3505244.
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A DATASET OVERVIEW

Detailed information about all our 10 datasets is introduced as follows.

GQA GQA (Hudson & Manning, 2019) is a large-scale benchmark for compositional visual rea-
soning, comprising real-world images annotated with structured scene graphs. It contains over 22
million questions across 100K images, designed to evaluate multi-step reasoning that involves at-
tributes, spatial relations, and logical consistency.

SQA The Spatial Question Answering (SQA) (Hu et al., 2019) dataset evaluates a model’s ability
to comprehend spatial relationships between objects. It features questions derived from the VQA
dataset, with a specific focus on prepositions such as “left of” or “above.”

TextVQA TextVQA (Singh et al., 2019b) evaluates the ability to answer questions that require
recognizing and interpreting text within images. The dataset includes over 45K questions on images
with naturally occurring text, requiring robust OCR and multimodal reasoning capabilities.
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VizWiz VizWiz (Gurari et al., 2018) contains visual questions posed by visually impaired users.
The dataset consists of real-world, often noisy images and naturally phrased questions, establishing
it as a benchmark for accessibility-focused VQA and open-ended question understanding.

MMBench-en MMBench-en (Li et al., 2023a) is a comprehensive benchmark that evaluates
English-language multimodal models across multiple tasks. It features classification-style questions
covering perception, reasoning, and instruction-following to assess model generalization across di-
verse domains.

MM-Vet MM-Vet (Fu et al., 2023b) is a curated benchmark that probes vision-language alignment
and reasoning consistency. It includes challenging visual questions with distractors, evaluating a
model’s ability to perceive images accurately rather than relying on language priors. MM-Vet em-
ploys a normalized score, computed by averaging accuracies across seven core visual reasoning
skills, each weighted equally.

SEED-I SEED-I (Zhu et al., 2023), a subset of SEED-Bench, evaluates multimodal instruction-
following in vision-centric tasks. It includes open-ended prompts that require image understanding,
captioning, and grounding based on natural user instructions.

MMMU The Massive Multi-discipline Multimodal Understanding (MMMU) benchmark (Zeng
et al., 2023) contains over 10K expert-level questions spanning 57 disciplines, such as medicine,
law, and physics. It assesses the capacity of models to handle college-level, multi-disciplinary ques-
tions.

MME-p MME-p (Fu et al., 2023a), the perception-oriented subset of the MME benchmark, eval-
uates fine-grained visual capabilities, including object counting, attribute recognition, OCR, and
positional reasoning. It is designed to isolate core perceptual skills from higher-level cognitive rea-
soning.

POPE The POPE benchmark (Yao et al., 2023) evaluates whether models ground their answers in
visual input or rely on spurious language biases. It presents contrastive image-question pairs to
assess the strength of visual grounding and robustness against hallucination.

B DETAILED EXPERIMENTAL SETUP

In this appendix, we provide a detailed overview of our two-stage training pipeline, covering both
optimization settings and resource utilization.

Training Configurations. The complete hyperparameters and hardware configurations for both
training stages are summarized in Table 5. In the pre-training stage, we train the model on the
LLaVA-LCS-558K dataset for one epoch (2,179 steps), using a batch size of 256 and a learning rate
of 1× 10−3, consistent with the LLaVA-v1.5-7B training strategy. For the visual instruction tuning
stage, we switch to the LLaVA-Instruct-665K dataset, reduce the batch size to 128, and decrease
the learning rate to 1 × 10−5 to ensure training stability. Both stages employ a cosine learning rate
schedule with a 3% warm-up period and the AdamW optimizer. We conduct distributed training on
8 NVIDIA A100 GPUs (80GB each), with DeepSpeed ZeRO-2 optimization enabled for memory
efficiency.

Resource Usage. As detailed in Table 5, the pre-training stage is memory-efficient, as only a small
adapter module is trained while the remainder of the model remains frozen. In contrast, the instruc-
tion tuning stage involves optimizing the full model, including the language model, vision encoder,
and our proposed CCRA module. This full-model optimization leads to an increase in peak GPU
memory usage, despite a reduction in batch size. The CCRA module contributes minimally to this
increase, adding less than 3GB of memory overhead. Even with 32-bit precision, the entire model
can be accommodated on a single A100 80GB GPU. With the exception of the CCRA integration,
the training pipeline strictly adheres to the original LLaVA setup to ensure a fair and controlled
comparison.
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Table 5: Training configuration and resource usage per stage.
Setting Pretraining Visual Instruction Tuning

Dataset LLaVA-LCS-558K LLaVA-Instruct-665K
GPUs 8×A100 80GB 8×A100 80GB

Batch size 256 128
Total steps 2,179 5,194

Epochs 1 1
Learning rate 1e-3 1e-5

Schedule cosine cosine
Warm-up 3% 3%
Optimizer AdamW AdamW

ZeRO Stage ZeRO-2 ZeRO-2
Wall-clock time (h) 4 10

Aggregate GPU-hours 32 80
Peak VRAM / card 73GB 76GB

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DEFINITIONS OF ATTENTION CONSISTENCY METRICS

In the main paper (Table 2), we report several metrics to quantify consistency before and after
LPWCA. Here we provide precise definitions with complete notation.

Let Fstack ∈ RL×P×d be stacked encoder features across L layers with P patches per layer, and
Flp ∈ RL×P×d the features after LPWCA modulation. We use X ∈ Fstack, Flp to denote either
feature set. Each patch feature Xl,p ∈ Rd corresponds to patch p at layer l.

Patch scores and per-layer distributions. We denote by Q,K : Rd → Rdh fixed linear projec-
tions for queries and keys. Let Fq ∈ Rd be a text-derived query embedding (e.g., from the final text
token). The unnormalized score for patch p at layer l is

sl(p;X) =
1√
dh

〈
Q(Fq),K(Xl,p)

〉
We normalize within each layer to obtain a patch distribution

pl(p;X) =
exp(sl(p;X))∑P

p′=1 exp(sl(p
′;X))

.

1. Layer-wise similarity. We measure the agreement of per-layer patch distributions across all
layer pairs:

JS-avg(X) = 2
L(L−1)

∑
l<k

JS
(
pl(·;X), pk(·;X)

)
.

Cos-avg(X) = 2
L(L−1)

∑
l<k

⟨pl(·;X), pk(·;X)⟩
∥pl(·;X)∥2 ∥pk(·;X)∥2

.

2. Spatial drift. Let up ∈ R2 denote the spatial coordinate of patch p on the image grid. The
centroid of layer l is

µl(X) =

P∑
p=1

pl(p;X)up
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3. Patch-wise stability. We measure the variance of attention assigned to the same patch across
layers:

Stdpatch(X) = 1
P

P∑
p=1

Std
(
{pl(p;X)}Ll=1

)
4. Agreement with final PWCA. Let p⋆ ∈ RP be the final PWCA patch distribution produced
by the model. We measure its agreement with per-layer distributions:

JS-to-final(X) = 1
L

L∑
l=1

JS
(
pl(·;X), p⋆

)
.

Cos-to-final(X) = 1
L

L∑
l=1

⟨pl(·;X), p⋆⟩
∥pl(·;X)∥2 ∥p⋆∥2

.

5. Layer weight smoothness (LWCA only). Let w ∈ RL denote the normalized weights assigned
by LWCA across layers. We report their total variation and entropy:

TV(w) = 1
L−1

L−1∑
l=1

|wl+1 − wl|, H(w) = −
L∑

l=1

wl logwl

All metrics are computed for both Fstack (pre-LPWCA) and Flp (post-LPWCA) under the same pro-
jections and normalization. Together, these metrics quantify cross-layer agreement, spatial stability,
alignment with PWCA, and the smoothness of LWCA integration.

C.2 HYPERPARAMETER SENSITIVITY ANALYSIS

To evaluate the robustness of CCRA to key hyperparameters, we conduct a sensitivity analysis on the
attention projection dimension, dhidden, and the Gaussian smoothing kernel size, k. These parameters
respectively control the expressiveness of text-image alignment and the continuity of layer-wise
semantic attention.

We vary dhidden across the set {64, 96, 128, 160, 192, 256, 320, 384} and k across {2, 3, 4, 5, 6, 7},
while evaluating accuracy on the GQA benchmark. As shown in Figure 7, the model demonstrates
consistent performance across these settings. Notably, dhidden = 128 and k = 5 yield the optimal
trade-off between performance and stability, aligning with our default configuration.

D QUALITATIVE EXAMPLES OF MODEL PREDICTIONS

To better illustrate the behavior of our CCRA model across diverse visual-language tasks, we present
qualitative examples categorized into four groups: counting, OCR, object grounding, and binary
(yes/no) questions. Each example includes an input image, a task-specific question, and the model’s
generated response.
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Figure 7: Sensitivity of CCRA on the GQA dataset with respect to hidden dimension dhidden and
smoothing kernel size k.

Q: How many green apples are there?
A: There are 2 green apples in the image. You can spot them by their distinct 
bright green color. They stand out clearly among the red and yellow ones.

Q: How many apples are there in total?
A: In total, there are 9 apples in the image. 

(a) Counting Task
Q: Who edited the book?\nReference OCR token: Thackery, Pocket, Eccentric, 
Guide, &, to, Discredited, Discases, COMPLETE, AA, by, MARK, ROBERTS, 
include:, JEFF, VANDERMEER, Edited, &, Contributing, KAGE, authors, 
BAKER, CORY, DOCTOROW, BISHOP, NEIL, MICHAEL, MIEVILLE, 
MOORCOCK, MOORE, others, CHINA, GAIMAN, ALAN, many, 
and\nAnswer the question using a single word or phrase.
A: Jeff VanderMeer & Mark Roberts

(b) OCR

(c) Object grounding

Q: Where is the backpack?

A:The red backpack is located on the left side of the desk. It occupies the 
bottom-left corner of the image and is partially cropped, with one black strap 
extending outward.

(d) Yes/No questions

Q: Is the cat wearing a collar?

A: No, the cat is not wearing any collar in 
this image.

Figure 8: Qualitative examples of CCRA model predictions across diverse tasks: (a) Counting (e.g.,
number of apples), (b) OCR (e.g., book editors), (c) Object Grounding (e.g., backpack location),
and (d) Yes/No questions (e.g., presence of a collar).
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As shown in Figure 8, the model demonstrates fine-grained understanding across various challenges,
such as distinguishing apple colors and quantities, reading book titles and editor names, spatially
grounding objects in cluttered scenes, and answering binary attribute-based questions. These results
highlight the model’s capability to effectively align vision and language under varying semantic
demands.
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