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ABSTRACT

A disentangled representation encodes generative factors of data in a separable
and compact pattern. Thus it is widely believed that such a representation for-
mat benefits downstream tasks. In this paper, we challenge the necessity of dis-
entangled representation in downstream applications. Specifically, we show that
dimension-wise disentangled representations are not necessary for downstream
tasks using neural networks that take learned representations as input. We provide
extensive empirical evidence against the necessity of disentanglement, covering
multiple datasets, representation learning methods, and downstream network ar-
chitectures. Moreover, our study reveals that informativeness of representations
best accounts for downstream performance. The positive correlation between the
informativeness and disentanglement explains the claimed usefulness of disentan-
gled representations in previous works.

1 INTRODUCTION

Disentanglement has been considered an essential property of representation learning (Bengio et al.,
2013; Peters et al., 2017; Goodfellow et al., 2016; Bengio et al., 2007; Schmidhuber, 1992; Lake
et al., 2017; Tschannen et al., 2018). Though there is no widely accepted formal definition yet, the
fundamental intuition is that a disentangled representation should separately and distinctly capture
information from generative data factors (Bengio et al., 2013). In practice, disentanglement is often
implemented to emphasize a dimension-wise relationship, i.e., a representation dimension should
capture information from exactly one factor and vice versa (Locatello et al., 2019b; Higgins et al.,
2016; Kim & Mnih, 2018; Chen et al., 2018; Eastwood & Williams, 2018; Ridgeway & Mozer,
2018; Kumar et al., 2017; Do & Tran, 2019). Disentangled representations offer human-interpretable
factor dependencies. Therefore, in theory, they are robust to variations in the natural data and are
expected to benefit downstream performances (Bengio et al., 2013).

Researchers are interested in empirically verifying these purported advantages. Especially, they fo-
cus on the following two-staged tasks: (1) extracting representations in an unsupervised manner
from data, (2) then performing downstream neural networks training based on learned representa-
tions (van Steenkiste et al., 2019; Locatello et al., 2019a; Dittadi et al., 2020; Locatello et al., 2020).
Among various downstream tasks, except the ones that explicitly require disentanglement (Higgins
et al., 2018b; Gabbay & Hoshen, 2021; Schölkopf et al., 2021), abstract visual reasoning is widely
recognized as a popular testbed (van Steenkiste et al., 2019; Locatello et al., 2020; Schölkopf et al.,
2021). The premise behind it aligns with the goals of machine intelligence (Snow et al., 1984;
Carpenter et al., 1990). Moreover, its mechanism ensures valid measurement of representations
downstream performance (Fleuret et al., 2011; Barrett et al., 2018).

In the abstract visual reasoning task, intelligent agents are asked to take human IQ tests, i.e., predict
the missing panel of Raven’s Progressive Matrices (RPMs) (Raven, 1941). Indeed it is a challenging
task for representation learning (Barrett et al., 2018; van Steenkiste et al., 2019). Disentanglement
literature often takes this task as an encouraging example to show that disentanglement leads to
quicker learning and better final performance (van Steenkiste et al., 2019; Locatello et al., 2020;
Schölkopf et al., 2021).

However, on the abstract visual reasoning task, we find that rotating disentangled representations,
i.e., multiplying the representations by an orthonormal matrix, has no impact on sample efficiency
and final accuracy. We construct the most disentangled representations, i.e., normalized true factors.
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Then we solve the downstream tasks from them and their rotated variants. As shown in Figure 2a,
there is little difference between the accuracy curves of original and rotated representations through-
out the learning process. On one hand, this phenomenon is surprising since the rotation decreases
dimension-wise disentanglement by destroying axis alignment (Locatello et al., 2019b). Indeed, in
Figure 2b we can observe notable drops in disentanglement metric scores (first 5 columns). Our find-
ing demonstrates that disentanglement does not affect the downstream learning trajectory, which is
against the commonly believed usefulness of disentanglement. On the other hand, it is not surprising
since we apply an invertible linear transform. We can observe that Logistic Regression (LR) accu-
racy remains 100% before and after rotation, indicating that a simple linear layer could eliminate
the effects of rotation.

Per such facts, some questions arise: Are disentangled representations necessary for two-staged
tasks? If not, which property matters? To address them, we conduct an extensive empirical study
based on abstract reasoning tasks. Our contributions are as follows.

• We challenge the necessity of disentanglement for abstract reasoning tasks. We find that (1) entan-
gling representations by random rotation has little impact, and (2) general-purpose representation
learning methods could reach better or competitive performance than disentanglement methods.

• Following Eastwood & Williams (2018), we term what information the representation has learned
as informativeness. We show that informativeness matters downstream performance most. (1)
Logistic regression (LR) accuracy on factor classification correlates most with downstream per-
formance, comparing with disentanglement metrics. (2) Conditioning on close LR accuracy, dis-
entanglement still correlates mildly. (3) The informativeness is behind the previously argued
usefulness of disentanglement since we observe a positive correlation between LR and disentan-
glement metrics.

• We conduct a large-scale empirical study supporting our claim. We train 720 representation learn-
ing models covering two datasets, including both disentanglement and general-purpose methods.
Then we train 5 WReNs (Barrett et al., 2018) and 5 Transformers (Vaswani et al., 2017; Hahne
et al., 2019) using the outputs of each representation learning model to perform abstract reasoning,
yielding a total of 7200 abstract reasoning models.

2 RELATED WORK

Disentangled representation learning. There is no agreed-upon formal definition of disentangle-
ment. Therefore, in practice, disentanglement is often interpreted as a one-to-one mapping between
representation dimensions and generative factors of data, which we term “dimension-wise disen-
tanglement”. It requires that the representation dimension encode only one factor and vice versa
(Locatello et al., 2019b; Eastwood & Williams, 2018; Kumar et al., 2017; Do & Tran, 2019). Be-
sides dimension-wise disentanglement, Higgins et al. (2018a) propose a definition from the group
theory perspective. However, its requirement in interaction with the environment prevents applicable
learning methods for existing disentanglement benchmarks (Caselles-Dupré et al., 2019).

Adopting the dimension-wise definition, researchers develop methods and metrics. SOTA disentan-
glement methods are mainly variants of generative methods (Higgins et al., 2016; Kim & Mnih,
2018; Burgess et al., 2018; Kumar et al., 2017; Chen et al., 2018; 2016; Jeon et al., 2018; Lin et al.,
2020). Corresponding metrics are designed in the following ways (Zaidi et al., 2020): interven-
ing factors (Higgins et al., 2016; Kim & Mnih, 2018), estimating mutual information (Chen et al.,
2018), and developing classifiers (Eastwood & Williams, 2018; Kumar et al., 2017). Another line of
work related to disentangled representation learning is the Independent Component Analysis (ICA)
(Comon, 1994). ICA aims to recover independent components of the data, using the mean corre-
lation coefficient (MCC) as the metric. However, ICA models require access to auxiliary variables
(Hyvarinen et al., 2019), leading to inevitable supervision for image datasets training (Hyvarinen
& Morioka, 2016; Khemakhem et al., 2020a;b; Klindt et al., 2020). In this paper, we focus on the
downstream performance of unsupervised representation learning.

Downstream tasks. It is widely believed that disentangled representations benefit downstream
tasks. Intuitively, they offer a human-understandable structure with ready access to salient factors,
hence should be enjoying robust generalization capacity (Bengio et al., 2013; Do & Tran, 2019).
Several works conduct empirical studies on downstream tasks to support the notions above, includ-
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ing abstract reasoning (van Steenkiste et al., 2019), fairness (Locatello et al., 2019a), and sim2real
transfer (Dittadi et al., 2020). Among these works, van Steenkiste et al. (2019) provide the most en-
couraging evidence from abstract reasoning tasks. We adopt their settings and investigate the same
tasks. However, their results are questionable. Firstly, it underestimates factors’ linear classification
accuracy, yielding a weaker correlation between informativeness and downstream performance (see
Figure 9 in Appendix A.3). Moreover, only variants of VAEs are considered. We address these
issues and achieve opposite conclusions.

Abstract visual reasoning has been a popular benchmark to measure the representation’s down-
stream performance, especially in disentanglement literature (Steenbrugge et al., 2018; van
Steenkiste et al., 2019; Dittadi et al., 2020; Locatello et al., 2020; Schölkopf et al., 2021). The most
common type is the Raven’s Progressive Matrices (RPMs) (Raven, 1941), which highly emphasize
abstract and relational reasoning capacities and effectively represent human intelligence (Snow et al.,
1984; Carpenter et al., 1990). To solve RPMs, one is asked to complete the missing panel of a 3× 3
grid by exploring the logical relationships of 8 context panels. Moreover, abstract visual reasoning
is a well-developed benchmark for representation learning. Given that it is coupled with a principle
treatment of generalization (Fleuret et al., 2011), a neural network can not solve reasoning tasks by
simply memorizing superficial statistical features. Besides, it can avoid pitfalls where test-specific
heuristics learned by downstream models obscures the original properties of representations (Barrett
et al., 2018). To summarize, (1) the goal of abstract visual reasoning highlights our requirements for
representation learning, and (2) its mechanism ensures valid measurements. For these reasons, we
focus on the necessity of disentanglement for the abstract reasoning task.

3 DOWNSTREAM BENCHMARK: ABSTRACT VISUAL REASONING

This section contains background on the downstream benchmark framework. We first introduce
the definition of the abstract visual reasoning task. Then we present the framework’s ingredients:
representation learning methods, metrics, and abstract reasoning models.

3.1 ABSTRACT VISUAL REASONING AS A TWO-STAGED TASK

Figure 1: An example of RPM on
3DShapes from van Steenkiste et al.
(2019).

The abstract visual reasoning tasks are highly inspired by
the famous human IQ test, Raven’s Progressive Matrices
(RPMs) (Raven, 1941). Figure 1 shows an RPM question
in our evaluation dataset. There are eight context panels
and one missing panel in the left part of the figure. The
context panels are arranged following some logical rules
across rows. During the test, the subject must pick one of
the six candidates listed in the right part to fix the missing
panel. The goal is to maintain the logical relationships
given by the contexts. More details of RPMs are available
in Appendix A.4.

We adopt RPMs as a downstream benchmark following
van Steenkiste et al. (2019). To measure the necessity of disentanglement for downstream tasks,
we separate the evaluation process into two stages: (1) In Stage-1, representation learning models
extract representations from images of which RPMs consist, and (2) in Stage-2, abstract reasoning
models predict the missing panels from the frozen representations of contexts and answer candi-
dates. Correspondingly, we denote representation learning models as Stage-1 models while abstract
reasoning models as Stage-2 models. For Stage-1, we measure the disentanglement properties of
the representations. A diverse set of Stage-1 and Stage-2 models are trained, yielding multiple sam-
ples from the joint distribution of representation metric scores and downstream accuracy. Finally,
we study the relationships between representation qualities and downstream performance. We aim
to investigate whether more disentangled representations perform better on abstract reasoning tasks.

The two-staged framework leverages large-scale experiments to reveal connections between the dis-
entanglement of representations and their downstream performance. It provides a precise measure-
ment of the importance of disentanglement. Therefore the two-staged framework is widely-accepted
(van Steenkiste et al., 2019; Locatello et al., 2019a; Dittadi et al., 2020; Locatello et al., 2020).
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3.2 BACKGROUND OF REPRESENTATION LEARNING

Disentangled representation learning methods. The seminal works of Higgins et al. (2016) and
Chen et al. (2016) embody disentanglement by augmenting deep generative models (Kingma &
Welling, 2013; Goodfellow et al., 2014). For disentangled representation learning methods, we
focus on variants of VAE. Namely, β-VAE (Higgins et al., 2016), AnnealedVAE (Burgess et al.,
2018), β-TCVAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018), and DIP-VAE (Kumar et al.,
2017). They achieve disentanglement mainly by encouraging independence between representation
dimensions. Please refer to Appendix A.2 for details.

General-purpose representation learning methods. In our study, methods not (explicitly) encour-
aging disentanglement are called general-purpose methods. We take BYOL (Grill et al., 2020) as a
representative. BYOL is a negative-free contrastive learning method. It creates different “views” of
an image by data augmentation and pulls together their distance in representation space. To avoid
collapsing to trivial representations, a predictor appending to one of the siamese encoders and ex-
ponential moving average update strategy (He et al., 2020) are employed. It does not encourage
disentanglement due to the lack of regularizers. Indeed, the empirical evidence in Cao et al. (2022)
demonstrates that representations learned by BYOL have weak disentanglement.

Representation property metrics. Considered properties of representations cover two axes of met-
rics: disentanglement metrics and informativeness metrics (Eastwood & Williams, 2018). We in-
clude BetaVAE score (Higgins et al., 2016), FactorVAE score (Kim & Mnih, 2018), Mutual Infor-
mation Gap (Chen et al., 2018) , SAP (Kumar et al., 2017), and DCI Disentanglement (Eastwood
& Williams, 2018). Locatello et al. (2019b) proves their agreement on VAE methods with exten-
sive experiments. Though their measurements are different, their results are positively correlated.
On the other hand, informativeness requires representations to encode enough information about
factors. In this work, we employ Logistic Regression (LR). It is a favorable metric adopted by un-
supervised pretraining literature (He et al., 2020; Grill et al., 2020; Caron et al., 2021). Given the
weak capacity of linear models, a higher LR accuracy ensures that sufficient information is explicitly
encoded. However, it does not emphasize a dimension-wise encoding pattern like disentanglement.
To distinguish, we term the property indicated by LR as informativeness.

3.3 BACKGROUND OF METHODS FOR ABSTRACT REASONING

In Stage-1, we extract representations of eight context panels (the left part of Figure 1) and six
answer candidates (the right part of Figure 1). Then in Stage-2, downstream models perform abstract
reasoning from the (frozen) representations. Abstract reasoning models evaluate whether filling the
blank panel by a candidate follows the logical rules given by contexts. For a trial Ti of one candidate
ai ∈ A = {a1, ..., a6} and eight context panels C = {c1, ..., c8}, its score is calculated as follows:

Yi = Stage2(Stage1(Ti)), Stage1(Ti) = {Stage1(c1), . . . ,Stage1(c8)} ∪ {Stage1(ai)}, (1)

where Yi is the score of trial Ti, Stage1(·),Stage2(·) denote the forward process of the Stage-1 and
Stage-2 models, and Stage1(Ti) is the representations of contexts and candidate ai. After evaluating
all trials {T1, T2, . . . , T6}, the output answer is argmaxi Yi.

We implement two different well-defined structures of Stage-2 models, namely, WReN (Barrett
et al., 2018) and Transformer (Vaswani et al., 2017; Hahne et al., 2019). First, they employ an
MLP or a Transformer to embed an RPM trial. Then an MLP head predicts a scalar score from the
embeddings.

4 EXPERIMENTS

In this Section, we conduct a systematic empirical study about representation properties’ impacts on
downstream performance. First, we introduce our experimental conditions in Section 4.1. Then we
provide empirical evidence to challenge the necessity of disentanglement (Section 4.2) and to tell
which property matters (Section 4.3).

4.1 EXPERIMENTS SETUP

We build upon the experiment conditions of van Steenkiste et al. (2019). Abstract visual reasoning

tasks, i.e., RPMs, are solved through a two-stage process: data
Stage-1−−−−→ representations

Stage-2−−−−→
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RPM answers. We first train Stage-1 models in an unsupervised manner and evaluate their disen-
tanglement and informativeness. Then Stage-2 models are trained and evaluated on downstream
tasks, yielding an abstract reasoning accuracy of a representation. Provided with a large amount
of (representation property score, downstream performance) pairs, we conduct a systematic study
to investigate the necessity of disentanglement. More implementation details are available in Ap-
pendix A.

Datasets. We replicate the RPM generation protocol in van Steenkiste et al. (2019). The panel
images consist of disentanglement benchmark image datasets, namely, Abstract dSprites (Matthey
et al., 2017; van Steenkiste et al., 2019) and 3DShapes (Burgess & Kim, 2018). The rows of RPMs
are arranged following the logical AND of ground truth factors. As for hardness, we only reserve
hard-mixed, whose contexts and candidates are more confusing. According to the generation pro-
cess, the size of generated RPMs is sufficiently large (about 10144), allowing us to produce fresh
samples throughout training.

Reference models. Stage-1 models extract representations from RPM’s panels. To ensure the gener-
alizability of the results, we include 360 disentangled VAEs (denoted as DisVAEs) and 360 BYOLs.
Our choices of Stage-1 models cover both disentangled and general-purpose representation learning
methods. Moreover, we are interested in the overall relationship between representation properties
and downstream performance. Therefore we need to study the correlation between two distributions,
i.e., representation metric scores and downstream performance. For this, we include various sam-
ples for both Stage-1 and Stage-2 to ensure they are representative enough. For Stage-1, a diverse
set of configurations are included for each type of representation learning model. According to the
histograms in Appendix C.4, our choices span various disentanglement and informativeness scores.
For Stage-2, to better estimate the downstream performance distribution, we use multiple Stage-2
configurations for each representation instead of searching for the best one. Specifically, we train
10 Stage-2 models (5 WReNs and 5 Transformers) for every Stage-1 model. Stage-2 configurations
are randomly sampled from a search space described in Appendix A.3 and shared across Stage-1
models. By this, we ensure fair comparisons across representations.

Training protocol. Training is conducted two-staged. Firstly, we train Stage-1 models in an unsu-
pervised manner on the dataset consisting of RPMs’ panels, i.e., Abstract dSprites or 3DShapes. For
DisVAE models, we use the training protocol of van Steenkiste et al. (2019), while for BYOL mod-
els, we follow Cao et al. (2022). In Stage-2, all models are trained for 10K iterations with a batch
size of 32. After every 100 iterations, we evaluate the accuracy on newly generated 50 mini-batches
of unseen RPM samples for validation and another 50 mini-batches for testing.

Evaluation protocol. We first evaluate the two stages separately. Then we analyze the relationship
between the two stages, i.e., representation properties and downstream performance. Specifically, to
challenge the necessity of disentanglement, we are interested in whether more disentangled repre-
sentations lead to better downstream performance. Further, if it turns out that disentanglement is of
limited importance, can we find another metric that better accounts for downstream performance?
Therefore, for Stage-1, we employ representation metrics described in Section 3.2 to measure two
aspects: disentanglement and informativeness. For all Stage-1 models, we compute the following
metric scores: BetaVAE score, FactorVAE score, MIG, SAP, and LR accuracy. DCI Disentanglement
is only evaluated for DisVAEs since it takes hours to develop the Gradient Boosting Trees required
during the evaluation process on high-dimensional representations of BYOLs (Cao et al., 2022). For
Stage-2, we inspect accuracy on newly generated test sets every 100 iterations, yielding accuracy for
multiple training steps. Since every step sees fresh samples, we employ training curves to measure
sample efficiency. We also report accuracy-#samples curves in Appendix C.2 .

To summarize the downstream performance of a Stage-1 model, over 5 WReNs or 5 Transformers
in Stage-2, we report the mean accuracy denoted as WReN or Trans., and max accuracy denoted as
WReN⋆ or Trans.⋆. Finally, we calculate the rank correlation (Spearman) between the mean per-
formance of Stage-1 models (WReN and Trans.) at certain Stage-2 steps and their Stage-1 metric
scores. A larger correlation indicates a higher significance of the representation property on down-
stream performance.

5



Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Steps

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

True factors Rotated true factors

(a)

BetaVAE
 Score

FactorVAE
 Score

DCI-D MIG SAP LR

Metric

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

True factors Rotated true factors

(b)
Figure 2: Downstream accuracy and metric scores of original/rotated true factor values with 5 con-
figurations of rotation matrices and downstream model structures. (a) Average downstream accuracy
throughout training. The shaded area indicates max and min values. (b) The violin plot of metric
scores of original/rotated true factor values. Scores with deterministic values collapse to a line. The
first 5 metrics measure disentanglement while LR measures informativeness.
4.2 ARE DISENTANGLED REPRESENTATIONS NECESSARY?

Hereafter we challenge the necessity of disentanglement. We begin by comparing a disentangled
representation v.s. a deliberately designed, entangled representation on the downstream perfor-
mance. Then we discuss the necessity of disentanglement inductive bias by evaluating the perfor-
mance of disentanglement and general-purpose representation learning methods.

Effects of attenuating disentanglement. We first construct the most disentangled representations,
i.e., the normalized true factor values. We normalize the true factor values to have zero means and
unit standard deviations, yielding 6-d representations (note that Abstract dSprites and 3DShapes
are both labeled with 6 ground truth factors). Then we rotate the constructed representations by
multiplying randomly generated orthonormal matrices. Afterward, each dimension of the rotated
feature captures a combination of factors, thus destroying disentanglement. Finally, we perform
abstract reasoning training from true factors before and after rotations. We also conduct rotations on
representations learned by DisVAEs.
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Figure 3: Average downstream accuracy of Dis-
VAEs’ representations w/ and w/o rotation on
3DShapes with WReN as Stage-2 models. We
select the most disentangled DisVAE in terms of
FactorVAE score. The two curves are almost iden-
tical.

We run 5 seeds defining the randomly gener-
ated rotation matrices and Stage-2 model con-
figurations. We report results on 3DShapes
with original/rotated true factors as represen-
tations and WReNs as Stage-2 models in Fig-
ure 2. As depicted in Figure 2a, there is lit-
tle difference between performance before and
after rotation throughout the training process.
Yet Figure 2b shows significant drops in disen-
tanglement metric scores. This surprising phe-
nomenon suggests that even though we dras-
tically entangle the representations, the down-
stream performance remains unchanged, firmly
against the necessity of disentanglement. How-
ever, we can see from Figure 2b that LR scores
are 100% before and after rotation. It is easy
to understand because the rotation we applied
is just an invertible linear transform, which a simple LR can recover, not to mention more capa-
ble Stage-2 models. Moreover, we observe similar results for learned representations (Figure 3).
We select the most disentangled DisVAE measured by FactorVAE score among the 180 DisVAE
models trained on 3DShapes (recall Section 4.1). As shown in Figure 3, rotation does not hurt the
performance of representations learned by DisVAEs, backing up our claim that disentanglement
representations might not be necessary to achieve good downstream performance. More results of
rotation experiments on other datasets are reported in Appendix C.3.

Summary: Destroying disentanglement (by random rotation) in representations does not have a
noticeable impact on downstream performance throughout training.

Advantages of disentanglement inductive bias. From previous results, we demonstrate that both
high performance and high sample efficiency can be achieved even if we deliberately destroy disen-
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Figure 4: Average test accuracy on 3DShapes throughout the training. We select the Stage-1 models
with best WReN or Trans. among 3600 checkpoints on 3DShapes. Stage-1 models with disentan-
glement inductive bias (DisVAEs) are not necessarily better than those without such bias (BYOL) in
terms of sample efficiency and final accuracy.

Table 1: Best downstream test performance (%) of different stage1 models. The step with the highest
validation accuracy is reported. The numbers in the parentheses are STDs.

Dataset Stage1 WReN⋆ WReN Trans.⋆ Trans.

3DShapes DisVAEs 89.9 84.8(0.91) 96.4 87.0(6.36)
BYOL 93.9 87.1(4.68) 95.0 88.0(2.62)

Abstract
dSprites

DisVAEs 76.5 68.7(1.39) 72.5 66.4(7.06)
BYOL 78.3 72.2(3.11) 81.4 78.1(1.75)

tanglement. Further, we are interested in the inductive biases of Stage-1 models: Do disentangled
representation learning models have absolute advantages on downstream performance over general-
purpose models? For this, we compare the downstream performance of different families of learning
models described in Section 4.1, including BYOL, β-VAE, AnnealedVAE, β-TCVAE, FactorVAE,
DIP-VAE-I, and DIP-VAE-II. Among them, BYOL does not explicitly encourage disentanglement.
On the other hand, all DisVAEs are disentangled representation learning methods. From a large pool
of 7200 checkpoints, we report the best performance for each model family.

Figure 4 shows overviews of training trajectories of Stage-1 models with the highest performing
WReN and Trans. on 3DShpaes for multiple training steps. For WReN as Stage-2 models (Fig-
ure 4a), BYOL leads at the beginning, then DisVAEs catch up, and finally, BYOL converges at a
higher accuracy. In contrast, when Stage-2 models are Transformers, BYOL’s curve grows faster,
but DisVAEs and BYOL converge with comparable performance. In general, the two curves evolve
in almost identical patterns with small gaps, indicating that disentanglement inductive bias is of lim-
ited utility in improving downstream sample efficiency. Corresponding analysis on Abstract dSprites
is available in Appendix C.3, where we reach the same conclusions. As for final performance, we
report maximal WReN, WReN⋆, Trans. and Trans.⋆ across different Stage-2 models and datasets
in Table 1. We select checkpoints to evaluate based on validation accuracy. In particular, the best
WReN and Trans. of BYOL are higher than that of DisVAEs’. In addition, it appears that BYOL
performs better than or on par with DisVAEs in terms of WReN⋆ and Trans.⋆. Especially, BYOL
outperforms DisVAEs on Abstract dSprites with a considerable margin.

Summary: Models not intended for disentangled representation learning can reach superior or com-
parable downstream performance. Therefore disentanglement inductive bias does not necessarily
lead to better sample efficiency or final accuracy.

4.3 WHICH PROPERTY MATTERS DOWNSTREAM PERFORMANCE?

The results in Section 4.2 provide encouraging cases against the necessity of disentanglement.
Additionally, we are interested in several further issues: (1) Which property matters downstream
performance most? (2) How can we interpret the previously claimed benefits from disentangle-
ment(Bengio et al., 2013; Higgins et al., 2016; van Steenkiste et al., 2019; Locatello et al., 2019a;
Dittadi et al., 2020)? On account of these questions, we start by investigating how different repre-
sentation properties influence downstream accuracy. We include informativeness and various disen-
tanglement metrics.
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Figure 5: Rank correlations between WReN or Trans. and representation metrics on 3DShapes. We
denote the step with the highest validation accuracy as “Best”. The brighter the panel, the more
correlated the representation metric is with the downstream performance.
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Figure 6: Representation metrics versus WReN at step 10000, where Stage-1 models are BYOL, and
the dataset is 3DShapes. We can observe a strong positive correlation between the informativeness
metric scores and downstream accuracy.

Recall that we train 720 Stage-1 and 7200 Stage-2 models (see Section 4.1). By taking WReN and
Trans. as measurements (average reasoning accuracy over 5 WReNs or 5 Transformers), we yield
720 representations paired with their downstream performance. Generally, our analysis is based
on rank correlation (Spearman) between representation metric scores and downstream performance.
If the correlation score is high, we can conclude that the representation property measured by the
considered metric score is significant to downstream performance.

The representation property of the most significance. We calculate the rank correlation between
downstream accuracy and disentanglement and informativeness scores. Meanwhile, we report rank
correlation at steps 1K, 2K, 5K, and 10K, and the step with the highest validation accuracy. From
correlations at different training steps, we can tell how a representation property affects sample
efficiency.

Figure 5 displays rank correlations between representation metric scores and abstract reasoning test
accuracy on 3DShapes. Firstly we can find that Logistic Regression accuracy (LR) correlates most
with downstream performance. The strong correlation is exploited for all considered models at mul-
tiple steps. Since LR requires sufficient information to be captured and extracted easily from repre-
sentations, we can conclude that the informativeness matters most in broad conditions. In contrast,
we observe that the importance of disentanglement varies among Stage-1 model families. Disen-
tangled representation learning models (DisVAEs) exhibit strong positive correlations for several
disentanglement metrics (but weaker than LR), such as FactorVAE score and DCI Disentanglement.
However, their significance does not apply to BYOL, where the correlation of disentanglement is
mild or even negative. In Figure 6 we plot the (WReN, metric score) pairs at step 10000. Indeed,
for BYOL-WReN on 3DShapes, we can see the linear regression provides a good fit of downstream
accuracy and informativeness metrics. As for disentanglement metrics, we can see that BetaVAE
score and FactorVAE score suffer from narrow spreads. For MIG and SAP, the regression lines have
negative slopes. We conduct a similar analysis on Abstract dSprites and take the same observations.
Please refer to Appendix C.4 for more details.
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(a) Overall rank correlations.
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(b) Correlations of adjusted metrics.

Figure 7: (a) Correlations between metrics and (b) correlations between adjusted metrics and down-
stream accuracy when using DisVAEs-WReN pipeline on 3DShapes. Disentanglement metrics ex-
hibit positive correlations with LR. Yet when conditioned on close informativeness, their adjusted
versions show mild correlations.

Summary: The informativeness influences downstream performance most. The results are consis-
tent across datasets and model structures.

Understanding for the previously claimed success of disentanglement. Previous works (van
Steenkiste et al., 2019; Locatello et al., 2019a; Dittadi et al., 2020; Locatello et al., 2020) have re-
ported empirical evidence backing up the advantages of disentangled representations. Consistently,
we observe relatively strong correlations with disentanglement metrics, especially when Stage-1
models are DisVAEs in Figure 5. Based on our conclusion on the significance of the informativeness,
we study the DisVAE-WReN case and provide some insights to explain why the disentanglement
metrics have a high correlation to downstream performance in some cases.

We compute the overall correlations between metrics. The results are shown in Figure 7. For Dis-
VAEs, we find that informativeness and disentanglement have high correlation scores. In particular,
we can observe relatively strong correlations between LR and FactorVAE score and BetaVAE score.
Accordingly, these disentanglement metrics exhibit relatively strong correlations with downstream
performance in Figure 5a. In contrast, other disentanglement metrics correlate mildly with LR. And
they are ineffective for downstream performance. Therefore, disentanglement metrics are not truly
predictable for downstream performance, but LR is.

To “purify” the effect of disentanglement, a natural question is: If two representations are of close
informativeness, does the more disentangled one more helpful for downstream tasks? For this, we
employ adjusted metrics in Locatello et al. (2019a):

Adj. Metric = Metric− 1

5

∑
i∈N(LR)

Metrici, (2)

For a representation and a certain metric (we care more about disentanglement metrics), we de-
note its original metric score as Metric. Then we find its 5 nearest neighbors in terms of LR,
which we write as N(LR). Finally, the difference between the original metric score and the mean
score of the nearest neighbors is reported as adjusted metrics. Intuitively, we calculate the relative
disentanglement for representations with close LR.

Figure 7b displays correlations between adjusted metrics and downstream performance. We can find
that all adjusted disentanglement metrics correlate mildly with downstream performance. From this,
we can see that when informativeness is close, being disentangled contributes only a small portion
to the downstream performance when the downstream training steps are limited (In our case, less
than or equal to 2000 steps, see Figure 4 and Figure 7).

Summary: The informativeness is the most predictable metric for downstream performance. Dis-
entanglement only brings small extra benefits at the very beginning of downstream training.

5 CONCLUSION

In this paper, we challenge the necessity of dimension-wise disentanglement for downstream tasks.
We conduct a large-scale empirical study on the abstract visual reasoning task. We start by showing
that high downstream performance can be achieved by less disentangled representations. In addition,
we identify that the informativeness is of the most significance. Finally, we conclude that dimension-
wise disentanglement is unnecessary for downstream tasks using deep neural networks with learned
representations as input.
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REPRODUCIBILITY STATEMENT

We provide information to reproduce our results in Appendix A. We commit to making our codes
publicly available.
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tanglement: A review of metrics. arXiv preprint arXiv:2012.09276, 2020.

A REPRODUCIBILITY

In this Section, we provide implementation details to ensure reproducibility. In addition, we commit
to making our codes, configurations, and running logs publicly available. All experiments are run
on a machine with 2 Intel Xeon Gold 5218R 20-core processors and 4 Nvidia GeForce RTX 3090
GPUs.

A.1 REPRESENTATION LEARNING METHODS

We include both disentangled representation learning methods and general-purpose representation
learning methods. i.e., DisVAEs and BYOL (Grill et al., 2020).

DisVAEs implementation. The DisVAEs include β-VAE (Higgins et al., 2016), Annealed-
VAE (Burgess et al., 2018), β-TCVAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018), and
DIP-VAE-I and DIP-VAE-II (Kumar et al., 2017). We use the output of the encoder, the mean of
qϕ(z|x), as representations. Hereafter, we introduce details for each method. The above methods
encourage disentanglement by adding regularizers to ELBO. Adopting the notation in Tschannen
et al. (2018), their objectives can be written in the following unified form:

Ep(x)[Eqϕ(z|x)[− log pθ(x|z)]] + λ1Ep(x)[R1(qϕ(z|x))] + λ2R2(qϕ(z)), (3)

where qϕ(z|x) is the posterior parameterized by the output of the encoder, pθ(x|z) is induced by
the decoder output, R1, R2 are the regularizer applying to the posterior and aggregate posterior,
and λ1, λ2 are the coefficients controlling regularization. In the objective of β-VAE, β = λ1 >
1, λ2 = 0. Taking R1(qϕ(z|x)) := DKL[qϕ(z|x)||p(z)] forces the posterior to be close to the prior
(usually unit gaussian), hence penalizing the capacity of the information bottleneck and encourage
disentanglement. FactorVAE and β-TCVAE takes λ1 = 0, λ2 = 1. With R2(qϕ(z)) := TC(qϕ(z)),
they penalize the Total Correlation (TC) (Watanabe, 1960). FactorVAE estimates TC by adversarial
training, while β-TCVAE estimates TC by biased Monte Carlo sampling. Finally, DIP-VAE-I and
DIP-VAE-II take λ1 = 0, λ2 ≥ 1 and R2(qϕ(z)) := ||Covqϕ(z) − I||2F , penalizing the distance
between aggregated posterior and factorized prior.

We use the code and configurations from the DisLib 1 (Locatello et al., 2019b). As for parameters,
we use the same sweep as van Steenkiste et al. (2019): for each one of the 6 DisVAEs, we use 6
configurations. We train each model using 5 different random seeds. Since we consider 2 datasets
(3DShapes and Abstract dSprites), finally, we yield 6 ∗ 6 ∗ 5 ∗ 2 = 360 DisVAE checkpoints.
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projection

ema

online

target

Figure 8: The pipeline of BYOL (Grill et al., 2020).

BYOL implementation. BYOL (Grill et al., 2020) is a contrastive learning method. Figure 8
shows its pipeline. For each image x, we first create two “views” of it by data augmentation, i.e.,
x1 and x2. Then they are input to the siamese encoders: the online encoder and the target encoder.
Specifically, x1 is fed to the online encoder, while x2 is fed to the target encoder, yielding the output

1https://github.com/google-research/disentanglement_lib.git
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Table 2: The representation network architecture of our BYOL implementation, following Cao et al.
(2022). Besides, there is a ReLU activation layer and a possible normalization layer following each
convolutional layer to create a stack of (Conv-ReLU-Norm) blocks. The normalization stratege
norm and representation dimension D are parameters to be set.

Representation Network
input: 64× 64 images
pipeline:

4×4 conv, stride 2, 32-channel
4×4 conv, stride 2, 32-channel
4×4 conv, stride 2, 64-channel
4×4 conv, stride 2, 64-channel
4×4 conv, stride 2, 128-channel
1×1 conv, stride 1, D-channel

z1 and z2, respectively. As for architectures, both encoders share the same representation network
and projection MLP. The prediction MLP is appended to the online encoder in order to avoid BYOL
learning trivial representations. The objective of BYOL is

L = − ⟨z1, z2⟩
∥z1∥2∥z2∥2

. (4)

We are pulling the representations of the two “views” close. While training, the online encoder’s
parameters are updated by gradient descent. However, the target encoder’s parameters are updated
by the online parameters’ Exponential Moving Average (EMA) (He et al., 2020). After training, we
only keep the online encoder and use the output of the representation network as representations.

We use the PyTorch implementation of BYOL 2. We use the representation network architecture
as shown in Table 2, where the representation dimension D is a parameter to be set. Except for
normalization and output dimensions, the representation network architecture of BYOL and the
encoder architecture of DisVAEs are similar. As for predictor and projector, we use the pipeline
Linear→ BN → ReLU → Linear with 256 hidden neurons. We train the BYOLs for 105 epochs
using the Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and learning rate (lr) as a variable
parameter. For augmentation, we use the pipeline of Cao et al. (2022) (in PyTorch-style):

1. RandomApply(transforms.ColorJitter(xjit, xjit, xjit, 0.2), p=0.8)

2. RandomGrayScale(p=pgray)

3. RandomHorizontalFlip()

4. RandomApply(transforms.GaussianBlur((3,3), (1.0, 2.0)), p=0.2)

5. RandomResizeCrop(size=(64, 64), scale=(xcrop, 1.0))

The xjit, pgray, and xcrop are parameters to be set. xjit controls how much to jitter brightness, contrast,
and saturation. pgray controls the probability to convert the image to grayscale. xcrop defines the lower
bound for the random area of the crop.

We perform a parameter sweep on the cross product of intervals of parameters D, norm, lr,
xjit, pgray, and xcrop. On 3DShapes, we use the following parameter grid (in scikit-learn style):

[
{’D’: [32, 64, 128], ’lr’: [3e-2, 3e-3], ’norm’: [BatchNorm()],
’x_jit’: [0.6, 0.8], ’p_gray’: [0.5, 0.7, 0.9], ’x_crop’: [1.0]},
{’D’: [256], ’lr’: [3e-4, 3e-5],
’norm’: [BatchNorm(), GroupNorm(num_groups=4)], ’x_jit’: [0.4, 0.8],
’p_gray’: [0.3, 0.5, 0.7], ’x_crop’: [1.0]}

]

On Abstract dSprites, we use the following parameter grid:

2https://github.com/lucidrains/byol-pytorch.git
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[
{’D’: [32, 64, 128], ’lr’: [3e-3, 3e-4], ’norm’: [BatchNorm()],
’x_jit’: [0.6, 0.8], ’p_gray’: [0.0, 0.1, 0.2], ’x_crop’: [0.6]},
{’D’: [256], ’lr’: [3e-4, 3e-5],
’norm’: [BatchNorm(), GroupNorm(num_groups=4)], ’x_jit’: [0.4, 0.8],
’p_gray’: [0.0, 0.1, 0.2], ’x_crop’: [0.6]}

]

For each parameter configuration, we run it with 3 random seeds. Finally, we trained 360 BYOLs in
total.

A.2 ABSTRACT REASONING METHODS

We include two abstract reasoning network architectures: WReN (Barrett et al., 2018; van Steenkiste
et al., 2019) and Transformer (Vaswani et al., 2017; Hahne et al., 2019).

WReN implementation. WReN consists of two parts: graph MLP and edge MLP. Here we use the
same notations as in Section 3.3. For the representations of a trial Stage1(Ti), edge MLP takes a
pair of representations in Stage1(Ti) as input and embed them to edge embeddings. Then all edge
embeddings of Stage1(Ti) (in total C2

9=36) are added up and input to the graph MLP. Finally, the
graph MLP output a scalar score, predicting the correctness of the trial Ti.

We use the code (van Steenkiste et al., 2019) to implement WReN. And we use the same parameter
searching spaces as them. All WReNs are trained in 10K steps with a batch size of 32. The learning
rate for the Adam optimizer is sampled from the set {0.01, 0.001, 0.0001} while β1 = 0.9, β2 =
0.999, and ϵ = 10−8. For the edge MLP in the WReN model, we uniformly sample its hidden units
in 256 or 512, and we uniformly choose its number of hidden layers in 2, 3, or 4. Similarly, for
the graph MLP in the WReN model, we uniformly sample its hidden units in 128 or 512, and we
uniformly choose its number of hidden layers in 1 or 2 before the final linear layer to predict the
final score. We also uniformly sample whether we apply no dropout, dropout of 0.25, dropout of
0.5, or dropout of 0.75 to units before this last layer.

Transformer implementation. We simplify the architecture of Hahne et al. (2019). Here we treat
Stage1(Ti) as a sequence. We first linear project all representations and prepend them with a learn-
able [class] token. We add them with learnable positional embeddings. Then they are input into
a stack of Transformer blocks (Vaswani et al., 2017). Finally, an MLP predicts a scalar score from
the class embedding of the final Transformer block.

We implement the Transformer architecture ourselves with utilities of the DisLib code base. All
Transformers are trained for the same steps and same batch size as WReN, i.e., 10K steps with a
batch size of 32. We use the Adam optimizer with weight decay and cosine learning rate scheduler.
The learning rate for the Adam optimizer is uniformly selected from {5e− 4, 6e− 4, 7e− 4}. The
depth of Transformer blocks is uniformly set to be 2, 3, or 4. The dimensions of q, k, v of the self-
attention model are uniformly 32 or 64. The MLP head uses the same architecture and parameter
space as the graph MLP in WReN. For other fixed parameters, please refer to our codes for details.

A.3 REPRESENTATION METRICS

In the main text, we employ disentanglement and informativeness metrics to measure the properties
of representations. Here we provide more details.

Disentanglement metrics. We use the setup and implementation of Locatello et al. (2019b). Here
we briefly introduce the details of our considered metrics. Namely, BetaVAE score (Higgins et al.,
2016), FactorVAE score (Kim & Mnih, 2018), Mutual Information Gap (Chen et al., 2018) , SAP
(Kumar et al., 2017), and DCI Disentanglement (Eastwood & Williams, 2018). The BetaVAE score
and the FactorVAE score predict the intervened factor from representations to measure disentangle-
ment. The Mutual Information Gap and SAP compute the gap in response for each factor between
the two highest representation dimensions. The difference is that MIG measures mutual informa-
tion while SAP measures classification accuracy. The DCI Disentanglement calculates the entropy
of the relative importance of a latent dimension in predicting factors. We follow previous studies
(Locatello et al., 2019b; van Steenkiste et al., 2019; Locatello et al., 2019a; Dittadi et al., 2020) to
develop a Gradient Boosting Tree (GBT) for prediction during the DCI Disentanglement evaluation.
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Though according to Eastwood & Williams (2018) any classifier could be used. As reported by
Cao et al. (2022), the GBT takes hours to train from high-dimensional representations learned by
BYOL. Thus we only report DCI Disentanglement score for DisVAEs.
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Figure 9: (a) Prediction accuracy by “multinomial” LR, denoted as LR (mn), and “one v.s. rest” LR,
denoted as LR (ovr) of DisVAEs on 3DShapes. (b) LR (mn) and LR (ovr)’s correlations with the
downstream performance of the DisVAEs-WReN pipeline.
Informativeness metrics. We use LR to measure the informativeness of representations. We train
a Logistic Regression model to predict factor values from representations. We use 10000 samples to
train LR. Unlike van Steenkiste et al. (2019), we use “multinomial” instead of “one v.s. rest” as the
multi-class classification scheme. As shown in Figure 9a, for the same set of representations, “one
v.s. Rest” LR has inferior prediction accuracy. Moreover, ranking by scores of these two LRs yields
different results. In Figure ,9b we can observe different correlations of the “one v.s. Rest” LR. To
better estimate informativeness, we use “multinomial” LR as the measurement.

A.4 ABSTRACT VISUAL REASONING DATASETS

We use the two abstract visual reasoning datasets developed by van Steenkiste et al. (2019). i.e.,
Ravens’ Progressive Matrices created from 3DShapes (Burgess & Kim, 2018) and Abstract dSprites
(Matthey et al., 2017; van Steenkiste et al., 2019).

We sketch the rules here by taking the RPM in Figure 1 as an example. The reasoning attributes
are the ground truth factors of 3DShpaes. i.e., floor hue, wall hue, object hue, scale, shape, and
orientation. Each row in the 3 × 3 matrix has 1, 2, or 3 ground truth factors taking a fixed value.
And the 3 rows have the same fixed ground truth factors, though they might take different values.
From the context panels, one should discover the underlying logical relationship. Finally, one is
asked to fill the missing panel by one of the candidates. For the RPM in Figure 1, from the contexts,
we can infer that the fixed factors are: wall hue, shape, and orientation. Then for the third row,
from the first 2 panels, we know that the values for the shared factors are: the wall hue is blue, the
shape is cylinder, and the orientation is the azimuth that makes the wall corner appears in the righter
part of the image. So we choose the candidate with these factor values as the solution, as shown in
Figure 10a. Figure 10b shows a sample of RPMs with answers on Abstract dSprites.

B ABLATIONS ON GENERAL-PURPOSE REPRESENTATION LEARNING
METHODS

In the main text, we use BYOL as a representative of general-purpose representation learning meth-
ods. For completeness, here we introduce another general-purpose method, SimSiam (Chen & He,
2021). We modify the code of BYOL 3 to train SimSiams on 3DShapes with the following parameter
grid:

[
{’D’: [512], ’lr’: [3e-4, 3e-5],
’norm’: [BatchNorm()], ’x_jit’: [0.4, 0.8],

3https://github.com/lucidrains/byol-pytorch.git
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(a) (b)

Figure 10: RPM questions with solutions on (a) 3DShapes and (b) Abstract dSprites.
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Figure 11: Correlations of SimSiam-WReN on 3DShapes.
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Figure 12: (a) Average downstream accuracy throughout training from ground truth factors with and
without rotation. (b) The violin plot of metric scores of original/rotated true factor values.

’p_gray’: [0.3, 0.5, 0.7], ’x_crop’: [0.6, 1.0]}
]

For each configuration, we run with 3 seeds. So finally, we yield 72 SimSiams. Then we use the
same WReNs for DisVAEs and BYOLs as Stage-2 models.

The results of SimSiam-WReN agree with our conclusions in the main text. As for the best per-
formance, we have WReN=85.1% and WReN⋆=94.1%, which is better than DisVAEs’. Figure 11
shows the correlations of downstream performance and representation properties. LR still correlates
most for all considered steps.

C ADDITIONAL RESULTS
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Table 3: The model type and the step achieving the performance in Table 1. We report in the form
of model@step. For WReN and Trans., we report the mean steps and STDs.

Dataset Stage1 WReN⋆ WReN Trans.⋆ Trans.

3DShapes DisVAEs AnnealedVAE
@9600

β-VAE
@8400(712)

DIP-VAE-I
@9900

β-TCVAE
@9100(901)

3DShapes BYOL BYOL
@10000

BYOL
@8900(849)

BYOL
@8600

BYOL
@8860(937)

Abstract dSprites DisVAEs β-VAE
@9900

DIP-VAE-I
@8920(898)

DIP-VAE-I
@9400

DIP-VAE-I
@9380(172)

Abstract dSprites BYOL BYOL
@8100

BYOL
@8320(1195)

BYOL
@8800

BYOL
@8100(725)
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Figure 13: Accuracy v.s. #samples curves of the most disentangled DisVAEs before and after rota-
tion. It is consistent with Figure 3.
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Figure 14: Accuracy v.s. #samples curves of the Stage-1 models with the best WReN or Trans.. It
is consistent with Figure 4

C.1 ADDITIONAL RESULTS OF FINAL PERFORMANCE

In Table 1 we report the best final performance of DisVAEs and BYOLs. Here we provide more
details on which type of DisVAEs at which steps achieve the reported performance in Table 1. We
can observe that the best DisVAEs vary with different datasets and Stage-2 models. As for the best
steps, except 3DShapes-WReN, BYOL achieves the best performance earlier than DisVAEs.

C.2 ACCURACY-#SAMPLES CURVES

We employ training curves (accuracy-step) in the main text to evaluate sample efficiency following
van Steenkiste et al. (2019). For completeness, here we show accuracy-#samples curves.

We present the accuracy-#samples versions of Figure 3 and Figure 4, i.e., Figure 13 and Figure 14.
We train the same models as in the main text until convergence with fixed training data sizes of 100,
1000, 5000, 7000, and 10000 batches. Then for each sample size, we plot the test performance at the
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Table 4: Mean metric scores with STDs of different Stage-1 models.

Dataset Stage1 BetaVAE FactorVAE MIG SAP LR

3DShapes DisVAEs 93.7(7.7) 82.3(11.1) 25.5(15.1) 6.5(3.8) 78.0(9.6)
3DShapes BYOL 99.9(0.3) 96.1 (4.6) 8.1(5.3) 1.2(0.9) 96.6(1.8)

Abstract dSprites DisVAEs 62.3(14.1) 49.1(10.5) 13.3(7.0) 6.8(3.4) 36.8(4.4)
Abstract dSprites BYOL 63.6(17.0) 62.4(11.8) 2.6(1.8) 0.5(0.3) 43.0(8.2)

step with the highest validation accuracy. We can see the ranking of representations and evolving
patterns of both types of curves agree well.

C.3 ADDITIONAL RESULTS OF RANDOM ROTATION EXPERIMENTS

This section contains additional results of the random rotation experiments. Here we report the
downstream performance of deliberately entangled (by random rotation) representations.
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Figure 15: Test accuracy curves through training for representations before and after rotation on
Abstract dSprites. Like for 3DShapes, we select the DisVAEs with the highest FactorVAE score.
The two curves are almost identical.

Figure 12 shows the same experiments as Figure 2 on Abstract dSprites. We can observe that the
two curves in Figure 12a are almost identical. And in Figure 12b, we can observe that disentangle-
ment metric scores drop drastically while LR remains the same. We notice that LR is not 100%.
This is because some factors of Abstract dSprites have too many support values. e.g., the x and y
positions both have 32 possible values. However, our conclusion in the main text still holds as we
observe that LR is invariant to random rotation. On Abstract dSprites, we randomly rotate the most
disentangled representations from DisVAEs (measured by FactorVAE score). In Figure 15, we can
see that rotation has little impact on the training trajectories. So our conclusion is similar across
datasets.

C.4 ADDITIONAL RESULTS OF CORRELATIONS

In this part, we report additional results related to the correlations between representation metrics
and downstream performance.

Absolute values of metric scores and downstream accuracy. We show the histograms as a sanity
check of the distribution of metric scores and downstream accuracy. Figure 16 presents the score
distributions of each metric. We report the mean metric scores with STDs to depict the overall
properties for Stage-1 models in Table 4. Figure 17 and Figure 18 display the distributions of
downstream performance.

Rank correlations. This part contains additional results of rank correlations. On 3DShapes, Fig-
ure 19 displays rank correlations between adjusted metrics and downstream accuracy, Figure 20
shows the overall correlation between metrics. On Abstract dSprites, Figure 21 shows correlations
between metrics and downstream performance. Then Figure 22 presents correlations between ad-
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justed metrics and downstream performance. Finally, Figure 23 displays the overall correlations
between metrics.

Plots of (metric score, downstream accuracy) pairs. Figures 24, 25, 26, 27, 28, 29, 30, and 31
provide an in-depth view of the correlations, where we plot (metrics, downstream accuracy) pairs.
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Figure 16: Histograms of metric scores of DisVAEs and BYOL on 3dShapes and Abstract dSprites.
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Figure 17: Histograms of downstream accuracy for multiple steps on 3DShapes.
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Figure 18: Histograms of downstream accuracy for multiple steps on Abstract dSprites.
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Figure 19: Rank correlation between WReN or Trans. and adjusted metric scores on 3DShapes.
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Figure 20: Overall correlation between metric scores on 3DShapes.
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Figure 21: Rank correlation between WReN or Trans. and metric scores on Abstract dSprites.
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Figure 22: Rank correlation between WReN or Trans. and adjusted metric scores on Abstract
dSprites.
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Figure 24: DisVAEs’ metric scores v.s. WReN on 3DShapes.
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Figure 25: DisVAEs’ metric scores v.s. Trans. on 3DShapes.
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Figure 26: BYOLs’ metric scores v.s. WReN on 3DShapes.
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Figure 27: BYOLs’ metric scores v.s. Trans. on 3DShapes.

28



Under review as a conference paper at ICLR 2023

0.4 0.5 0.6

0.4

0.6

0.8

Sc
or

e 
va

lu
e

Score = BetaVAE | Step = 1000

0.5 0.6

0.4

0.6

0.8

Score = BetaVAE | Step = 2000

0.5 0.6

0.4

0.6

0.8

Score = BetaVAE | Step = 5000

0.5 0.6
0.4

0.6

0.8

Score = BetaVAE | Step = 10000

0.5 0.6
0.4

0.6

0.8

Score = BetaVAE | Step = Best

0.4 0.5 0.6

0.4

0.6

0.8

Sc
or

e 
va

lu
e

Score = FactorVAE | Step = 1000

0.5 0.6

0.4

0.6

0.8

Score = FactorVAE | Step = 2000

0.5 0.6

0.4

0.6

0.8

Score = FactorVAE | Step = 5000

0.5 0.6

0.4

0.6

0.8

Score = FactorVAE | Step = 10000

0.5 0.6

0.4

0.6

0.8

Score = FactorVAE | Step = Best

0.4 0.5 0.6

0.1

0.2

0.3

0.4

Sc
or

e 
va

lu
e

Score = DCI-D | Step = 1000

0.5 0.6

0.1

0.2

0.3

0.4
Score = DCI-D | Step = 2000

0.5 0.6

0.1

0.2

0.3

0.4
Score = DCI-D | Step = 5000

0.5 0.6

0.1

0.2

0.3

0.4
Score = DCI-D | Step = 10000

0.5 0.6

0.1

0.2

0.3

0.4
Score = DCI-D | Step = Best

0.4 0.5 0.6
0.0

0.1

0.2

0.3

Sc
or

e 
va

lu
e

Score = MIG | Step = 1000

0.5 0.6
0.0

0.1

0.2

0.3

Score = MIG | Step = 2000

0.5 0.6
0.0

0.1

0.2

0.3

Score = MIG | Step = 5000

0.5 0.6
0.0

0.1

0.2

0.3

Score = MIG | Step = 10000

0.5 0.6
0.0

0.1

0.2

0.3

Score = MIG | Step = Best

0.4 0.5 0.6
0.00

0.05

0.10

0.15

Sc
or

e 
va

lu
e

Score = SAP | Step = 1000

0.5 0.6
0.00

0.05

0.10

0.15
Score = SAP | Step = 2000

0.5 0.6
0.00

0.05

0.10

0.15
Score = SAP | Step = 5000

0.5 0.6
0.00

0.05

0.10

0.15
Score = SAP | Step = 10000

0.5 0.6
0.00

0.05

0.10

0.15
Score = SAP | Step = Best

0.4 0.5 0.6
Avg accuracy

0.3

0.4

0.5

Sc
or

e 
va

lu
e

Score = LR | Step = 1000

0.5 0.6
Avg accuracy

0.3

0.4

0.5

Score = LR | Step = 2000

0.5 0.6
Avg accuracy

0.3

0.4

0.5

Score = LR | Step = 5000

0.5 0.6
Avg accuracy

0.3

0.4

0.5

Score = LR | Step = 10000

0.5 0.6
Avg accuracy

0.3

0.4

0.5

Score = LR | Step = Best

Figure 28: DisVAEs’ metric scores v.s. WReN on Abstract dSprites.
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Figure 29: DisVAEs’ metric scores v.s. Trans. on Abstract dSprites.
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Figure 30: BYOLs’ metric scores v.s. WReN on Abstract dSprites.
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Figure 31: BYOLs’ metric scores v.s. Trans. on Abstract dSprites.
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