
Analyzing Modular Approaches for Visual Question Decomposition

Apoorv Khandelwal and Ellie Pavlick and Chen Sun
Brown University

Department of Computer Science
{apoorvkh,ellie_pavlick,chensun}@brown.edu

Abstract

Modular neural networks without additional
training have recently been shown to surpass
end-to-end neural networks on challenging
vision–language tasks. The latest such meth-
ods simultaneously introduce LLM-based code
generation to build programs and a number of
skill-specific, task-oriented modules to execute
them. In this paper, we focus on ViperGPT and
ask where its additional performance comes
from and how much is due to the (state-of-art,
end-to-end) BLIP-2 model it subsumes vs. ad-
ditional symbolic components. To do so, we
conduct a controlled study (comparing end-to-
end, modular, and prompting-based methods
across several VQA benchmarks). We find that
ViperGPT’s reported gains over BLIP-2 can
be attributed to its selection of task-specific
modules, and when we run ViperGPT using a
more task-agnostic selection of modules, these
gains go away. ViperGPT retains much of
its performance if we make prominent alter-
ations to its selection of modules: e.g. remov-
ing or retaining only BLIP-2. We also compare
ViperGPT against a prompting-based decom-
position strategy and find that, on some bench-
marks, modular approaches significantly ben-
efit by representing subtasks with natural lan-
guage, instead of code. Our code is fully avail-
able at https://github.com/brown-palm/
visual-question-decomposition.

1 Introduction

End-to-end neural networks (Li et al., 2023)
have been the predominant solution for vision–
language tasks, like Visual Question Answering
(VQA) (Goyal et al., 2017). However, these meth-
ods suffer from a lack of interpretability and gener-
alization capabilities. Instead, modular (or neuro-
symbolic) approaches (Andreas et al., 2015; John-
son et al., 2017; Hu et al., 2017; Yi et al., 2018)
have been long suggested as effective solutions
which address both of these limitations. These
methods synthesize symbolic programs that are

easily interpretable and can be executed (leverag-
ing distinct image or language processing modules)
to solve the task at hand. The most recent such mod-
els (Gupta and Kembhavi, 2023; Surís et al., 2023;
Subramanian et al., 2023) are training-free: they
leverage large language models (LLMs) to generate
programs and subsume powerful neural networks
as modules. Such approaches demonstrate strong
results and outperform end-to-end neural networks
on zero-shot vision–language tasks.

These recent modular approaches typically in-
clude state-of-the-art end-to-end networks, among
a complex schema of other modules and engineer-
ing designs. As a result, the contribution of these
networks is difficult to disentangle from the mod-
ularity of their overall system. Thus, in this pa-
per, we analyze ViperGPT, in which BLIP-2 (Li
et al., 2023) is a constituent module, as a represen-
tative example of a recent and performant modular
system for vision–language tasks. BLIP-2 can par-
ticularly (and in contrast from ViperGPT’s other
modules) solve VQA tasks on its own. We ask:
where does its additional performance come from,
and how much is due to the underlying BLIP-2
model vs. the additional symbolic components? To
answer our research questions, we conduct a con-
trolled study, comparing end-to-end, modular, and
prompting-based approaches (Sec. 2) on several
VQA benchmarks (Sec. 3). We make the following
specific contributions:

1. In Section 4, we find that ViperGPT’s advan-
tage over BLIP-2 alone is likely due to the
task-specific engineering in ViperGPT. Specif-
ically, we run ViperGPT in a task-agnostic
setting, in which we do not preselect different
subsets of modules for each task (as is done
in Surís et al. (2023)). We find that, without
the task-specific module selection, the aver-
age gain of ViperGPT over BLIP-2 disappears
(dropping from +8.7% to -0.8%). Moreover,
we find that removing the BLIP-2 module re-

https://github.com/brown-palm/visual-question-decomposition
https://github.com/brown-palm/visual-question-decomposition

Image
Question

Neural Network
for VQA

Question

End-to-end (BLIP-2) Modular (ViperGPT) Successive Prompting

Large
Language

Model

Code { }

🐍 Python Interpreter

Modules

BLIP-2

LLM (QA)

Other NNs

Symbolic
Algorithms

Image

Prediction

In-context ExamplesAPI { }

Large Language Model

Follow-up
Question

BLIP-2Image

Follow-up Q

BLIP-2
Prediction

(+)

Prompt

Prediction

Prediction

Question

Prompt

OR

Figure 1: A diagram of the end-to-end, modular, and prompting-based models (Sec. 2) we explore in this paper.
Each setting receives an image and question as input and produces a prediction as output (at which time it will
terminate). Similar colors across models in this diagram indeed refer to the same modules.

tains a significant percentage of ViperGPT’s
task-agnostic performance (i.e. 84% for the
direct answer setting and 87% for the multi-
ple choice setting). And, retaining only the
BLIP-2 module comprises 95% and 122%
of ViperGPT’s task-agnostic performance in
those settings.

2. In Section 5, we find that a prompting-based
(rather than code-based) method for question
decomposition still constitutes 92% of the
performance of an equivalent ViperGPT vari-
ant for direct answer benchmarks. Moreover,
this method actually exceeds ViperGPT by
+12% on average for multiple choice bench-
marks. (To the best of our knowledge, our
prompting-based method also presents the
highest score in the multiple choice setting of
A-OKVQA (Schwenk et al., 2022) compared
to any other training-free method.) These re-
sults suggest that, on some benchmarks, mod-
ular approaches significantly benefit by rep-
resenting subtasks with natural language, in-
stead of code.

3. In Section 6, we explore ViperGPT’s gener-
alization to out-of-domain benchmarks. Un-
like for in-domain datasets, we find that pro-
viding task-specific in-context examples ac-
tually leads to a performance drop by 11%
for A-OKVQA’s direct answer setting and 2%
on average for A-OKVQA and ScienceQA
multiple choice settings. We additionally ana-

lyze the code that is generated by ViperGPT
and observe higher runtime error rates for A-
OKVQA’s direct answer setting (3%) and the
multiple choice benchmarks (12–18%) than
the in-domain direct answer benchmarks (1–
2%). Finally, while the syntax error rate is 0%
for all direct answer benchmarks, it is 1–3%
for multiple choice benchmarks.

2 Models

In this section, we share specific design decisions
and implementation details for each of the three
model families we assess in this paper (i.e. end-to-
end, modular, and prompting-based). We addition-
ally visualize these approaches in Fig. 1.

2.1 End-to-end
As the end-to-end model in our analyses, we use
BLIP-2 (Li et al., 2023), an open-source state-
of-the-art vision-language model which can be
used for image captioning and zero-shot VQA. For
VQA, this model first encodes images using a pre-
trained image encoder and projects the resulting
encoding into the input space of a pre-trained lan-
guage model. That language model is then used to
generate a textual prediction, given the aforemen-
tioned image projection and VQA question.

As in Li et al. (2023), we prompt this model
with “Question: {} Short answer: []”. For
the direct answer setting, we generate text directly
from the language model. For the multiple choice
setting, we select the choice with the maximum log
likelihood for text generation.

We use the same settings as Surís et al. (2023,
ViperGPT) (i.e. the modular approach in Sec. 2.2)
to load and run the model. Specifically, we use the
ViT-g/14 image encoder from EVA-CLIP (Fang
et al., 2023) and FlanT5-XXL encoder–decoder
language model (Chung et al., 2022). We make
predictions using 8-bit inference (Dettmers et al.,
2022) and generate text with beam search (width =
5, length penalty = -1).

2.2 Modular

In this paper, we use ViperGPT (Surís et al.,
2023), which is a recent modular system for vision–
language tasks.

ViperGPT prompts a language model with a
VQA question and an API—which is an interface
for manipulating images—to generate a Python
program. This API is written in code and describes
a class ImagePatch and several functions, like
.find, .simple_query, etc. These functions in-
voke both symbolic algorithms (e.g. for iterat-
ing through elements, sorting lists, computing Eu-
clidean distances, etc.) and trained neural network
modules (for object detection, VQA, LLM queries,
etc.). When the Python program is executed, these
functions should manipulate the VQA image and
answer the question.

As a simple example, the question “How many
black cats are in the image?” might be written as:

def execute_command(image) -> str:
image_patch = ImagePatch(image)
cat_patches = image_patch.find('cat')
black_cat_patches = [
p for p in cat_patches if
p.verify_property('cat', 'black')

]
return len(black_cat_patches)

The program can then be executed using the
Python interpreter and several modules. In
this case, ImagePatch.find(object_name:
str) -> list[ImagePatch] utilizes an ob-
ject detection module to find all cats and
ImagePatch.verify_property(object_name:
str, property: str) -> bool utilizes text–
image similarity for determining whether those
cats are black.

Implementation. Our implementation of
ViperGPT uses the code1 released with the original

1https://github.com/cvlab-columbia/viper

ViperGPT paper (Surís et al., 2023). However, as
that codebase currently2 differs from the original
paper in several ways, we have modified it to
re-align it with the original report. Specifically, we
switch the code-generation model from ChatGPT
to Codex, revert the module set and prompt
text to those in Surís et al. (2023, Appendix
A–B), and otherwise make minor corrections to
the behavior and execution of ImagePatch and
execute_command. However, we find that only
the full API prompt is made available—not the
task-specific prompts—preventing us from exactly
replicating Surís et al. (2023).

Design choices. In our experiments and
like Surís et al. (2023), we prompt Codex
(code-davinci-002) (Chen et al., 2021a) for
code generation and use the same set of neural
modules: GLIP (Li et al., 2022), MiDaS (Ran-
ftl et al., 2020), BLIP-2 (Li et al., 2023),
X-VLM (Zeng et al., 2022), and InstructGPT
(text-davinci-003) (Ouyang et al., 2022).

For fairness in comparing with the model
in Sec. 2.3, we make a few additional design de-
cisions that deviate from Surís et al. (2023). For
our task-agnostic variant (Sec. 4), we use the full
ImagePatch API and external functions (exclud-
ing the VideoSegment class) in our prompt. We
specify further modifications for our other variants
in Sec. 4. We prompt the model with the follow-
ing signature: “def execute_command(image) ->
str:” (i.e. we explicitly add “-> str” to bet-
ter conform to the VQA task). During multiple
choice, Surís et al. (2023) provides another argu-
ment, possible_choices, to the signature. How-
ever, we extend this argument with an explicit list
of these choices.

For the direct answer setting, we use the text
as returned by the program as our predicted an-
swer. This text may be generated by a number of
modules (e.g. BLIP-2 or InstructGPT) or as a hard-
coded string in the program itself. For the multiple
choice setting, the returned text is not guaranteed to
match a choice in the provided list. So, we map the
returned text to the nearest choice by prompting In-
structGPT (text-davinci-003) with “Choices:
{} Candidate: {} Most similar choice: []”.
We select the choice with the highest log likelihood.

We elaborate further on our design choices and
how they make our experiments more fair in Ap-
pendix B.

2As of October 22, 2023.

https://github.com/cvlab-columbia/viper

2.3 Successive Prompting

Building programs is not the only way to decom-
pose problems. Recent work in NLP has found
that large language models improve performance
at reasoning tasks when solving problems step-
by-step (Wei et al., 2022; Kojima et al., 2022).
For question answering, decomposing a question
and answering one sub-question at a time leads
to further improvements (Press et al., 2022; Zhou
et al., 2023; Dua et al., 2022; Khot et al., 2023).
Moreover, recent work has started to invoke vision–
langauge models based on the outputs of langauge
models.

As a convergence of these directions, we
introduce a training-free method that jointly
and successively prompts an LLM (InstructGPT:
text-davinci-002) and VLM (BLIP-2) to de-
compose visual questions in natural language. We
call this “Successive Prompting” (following Dua
et al. (2022)). At each step, our method uses the
LLM to ask one follow-up question at a time. Each
follow-up question is answered independently by
the vision–language model. In the subsequent step,
the LLM uses all prior follow-up questions and an-
swers to generate the next follow-up question. After
some number of steps (as decided by the LLM), the
LLM should stop proposing follow-up questions
and will instead provide an answer to the original
question. We constrain the LLM’s behavior by ap-
pending the more likely prefix of “Follow-up:” or
“Answer to the original question:” (i.e. the stopping
criteria) to the prompt at the end of each step.

In order to prompt a large language model for
this task, we provide a high-level instruction along
with three dataset-specific in-context demonstra-
tions of visual question decompositions.

Our method generates text directly, which can
be used for the direct answer setting. Like with
ViperGPT, we also prompt our method with an
explicit list of choices during the multiple choice
setting. And, for the multiple choice setting, we
select the choice with the highest log likelihood as
the predicted answer.

3 Evaluation

We evaluate variants of end-to-end, modular, and
prompt-based methods (Sec. 2) on a set of VQA
benchmarks (Sec. 3.1) using direct answer and mul-
tiple choice evaluation metrics (Secs. 3.2 and 3.3).

3.1 Benchmarks
We evaluate methods on a set of five di-
verse VQA benchmarks: VQAv2 (Goyal et al.,
2017), GQA (Hudson and Manning, 2019), OK-
VQA (Marino et al., 2019), A-OKVQA (Schwenk
et al., 2022), and ScienceQA (Lu et al., 2022). We
use the following dataset splits as our benchmarks:
validation (1000 random samples) for VQAv2, test-
dev for GQA, testing for OK-VQA, validation for
A-OKVQA, and validation (IMG subset, QCIM
→ A format) for ScienceQA.

These datasets vary in the amount of percep-
tion, compositionality, knowledge, and reasoning
their problems require. More specifically: VQAv2
is a longstanding benchmark whose questions re-
quire primitive computer vision skills (e.g. classi-
fication, counting, etc). GQA focuses on composi-
tional questions and various reasoning skills. OK-
VQA requires “outside knowledge” about many
categories of objects and usually entails detect-
ing an object and asking for knowledge about that
object. A-OKVQA features “open-domain” ques-
tions that might also require some kind of common-
sense, visual, or physical reasoning. ScienceQA
features scientific questions (of elementary through
high school difficulty) that require both background
knowledge and multiple steps of reasoning to solve.
We elaborate further in Appendix D.

3.2 Metrics: Direct Answer
We evaluate the direct answer setting for VQAv2,
GQA, OK-VQA, and A-OKVQA. In this setting,
a method will predict a textual answer given an
image and question. We report scores using (1)
the existing metric for each dataset and (2) the
new InstructGPT-eval metric from (Kamalloo et al.,
2023).

We observe that while the general trends (de-
termining which models perform better or worse)
remain the same between metrics (1) and (2), the
actual gap may differ significantly. See Appendix A
for further discussion of why (2) is a more robust
measure of model performance for our experiments.
We include (1) for posterity in Tables 1 and 2, but
make comparisons in our text using (2), unless
specified otherwise.

(1) Existing metrics. GQA uses exact-match
accuracy with a single ground truth annota-
tion. VQAv2, OK-VQA, and A-OKVQA use the
VQAv2 evaluation metric: a prediction is matched
with 10 ground truth annotations (i.e. acc =

max(1.0, num_matches / 3)). Note: VQAv2 and
OK-VQA pre-process answers before matching.

(2) InstructGPT-eval. Kamalloo et al. (2023)
find that lexical matching metrics for open-domain
question answering tasks in NLP perform poorly
for predictions generated by large language models.
We make similar observations for the existing direct
answer metrics in the VQA datasets we benchmark:
such scores correlate quite poorly with our intu-
itions for open-ended text generated by language
models. For example, the prediction “riding a horse”
would be marked incorrect when ground truth an-
swers are variants of “horseback riding”. Instead,
Kamalloo et al. (2023) suggest an evaluation met-
ric (InstructGPT-eval) that prompts InstructGPT
(text-davinci-003) (Ouyang et al., 2022) with3:

Question: What is he doing?
Answer: horseback riding
Candidate: riding a horse
Is the candidate correct? [yes/no]

Kamalloo et al. (2023) demonstrates a substan-
tial increase of +0.52 in Kendall’s τ correlation
with human judgements using their introduced met-
ric instead of exact match on the NQ-Open bench-
mark (Lee et al., 2019).

3.3 Metrics: Multiple Choice

We evaluate the multiple choice setting for A-
OKVQA and ScienceQA. In this setting, a method
will similarly be given an image and question, but
also a list of textual choices. The method is required
to select one of those choices as its predicted an-
swer. We evaluate this setting using the standard
accuracy metric.

4 Selecting Modules in ViperGPT

In Surís et al. (2023), the choice of modules is
different for each task. This contrasts with end-to-
end models like BLIP-2 which are purported to
be task-agnostic. To draw a more direct compari-
son, we evaluate ViperGPT’s performance when
given the full API (Surís et al., 2023, Appendix
B) and set of all corresponding modules. We refer
to this as the “task-agnostic” setting (Table 1). We
find that, in this case, the gain of ViperGPT over

3A list of or-separated answers is provided when several
ground truth annotations are available. Although (Kamalloo
et al., 2023) tests if the generated response starts with “yes”
or “no”, we instead compare the log likelihood of generating
“yes” or “no” for additional robustness.

BLIP-2 is reduced from +6.2% to +2.1% on GQA
and +11.1% to -3.6% on OK-VQA (using the ex-
isting metrics).4 We continue to observe that our
task-agnostic ViperGPT variant usually does not
perform better than BLIP-2 across benchmarks and
metrics, with the exception of the multiple choice
setting of A-OKVQA, on which ViperGPT does
outperform BLIP-2 significantly.

Since ViperGPT relies on BLIP-2 as one of its
modules (i.e. in simple_query for simple visual
queries), we wonder how much influence BLIP-2
has in the ViperGPT framework. Moreover, how
much does ViperGPT gain from having modules
and functions in addition to BLIP-2?

Accordingly, we run two ablations: we evaluate
the performance of ViperGPT without BLIP-2 and
with only BLIP-2 (i.e. with no other modules). We
also report these evaluations in Table 1.

To do so, we modify the full API prompt pro-
vided to ViperGPT. For “only BLIP-2”, we delete
all modules and functions in the prompt besides
ImagePatch.simple_query. As the prompt for
this module included in-context demonstrations re-
lying on other (now removed) modules, we had to
re-write these demonstrations. We either rewrite the
existing problem (“zero-shot”) or rewrite three ran-
dom training set examples for each dataset (“few-
shot”). For “without BLIP-2”, we simply delete
ImagePatch.simple_query and all references to
it from the prompt. We show examples for both
procedures in Appendix C.

Because ViperGPT has no other image-to-text
modules, we expect that excluding BLIP-2 (i.e.
“without BLIP-2”) should have a highly detrimen-
tal effect on the VQA performance of ViperGPT.
However, we instead observe that the variant retains
84% and 87% of the average performance, respec-
tively, for the direct answer and multiple choice
benchmarks. This indicates that including many
modules improves the robustness of the ViperGPT
model, in that ViperGPT is able to compensate by
using other modules to replace BLIP-2.

We find that using Viper with BLIP-2 as the only
module (i.e. “only BLIP-2”) also retains significant
performance in the direct answer setting: i.e. by
95% on average. Moreover, this variant actually
gains performance (+6% on A-OKVQA and +12%
on ScienceQA) in the multiple choice setting. This

4In this comparison, we use our own replicated result for
the performance of BLIP-2 on GQA and OK-VQA for consis-
tency, although they may deviate from prior reports (Li et al.,
2023) by 2–5%.

Direct Answer Multiple Choice
Method VQAv2 GQA OK-VQA A-OKVQA A-OKVQA ScienceQA

BLIP-2 60.8 64.8 41.9 51.1 40.8 59.5 31.8 63.5 26.2 37.0

ViperGPT (task-agnostic) 62.1 63.9 44.0 52.6 37.2 57.1 39.5 61.7 52.9 36.0
- without BLIP-2 45.0 55.0 31.8 46.9 7.7 49.6 4.9 44.9 43.1 33.2
- only BLIP-2 (zero-shot) 59.3 61.0 34.7 45.5 36.0 53.0 39.3 57.8 58.9 47.7
- only BLIP-2 (few-shot) 62.9 64.4 39.0 47.8 36.4 53.8 29.9 47.2 56.6 46.6

BLIP-2 (Li et al., 2023) — — 44.7 — 45.9 — — — — —
ViperGPT (Surís et al., 2023) — — 48.1 — 51.9 — — — — —

Table 1: Our evaluation of BLIP-2 and our ViperGPT variants across VQA benchmarks. For each direct answer
entry, we list both existing metrics (left) and the InstructGPT-eval metric (right) described in Sec. 3.2. As explained
in Appendix A, we only include existing metrics for posterity and make comparisons in our text using the
InstructGPT-eval metric. We run BLIP-2 using the same inference settings as Surís et al. (2023), which differ slightly
from Li et al. (2023).

result seems to indicate that the BLIP-2 module is
doing most of the heavy-lifting within ViperGPT
for the VQA benchmarks.

5 Decomposing Problems with Programs
or Prompting?

One of ViperGPT’s major contributions is that it
decomposes problems into Python programs: it in-
herently gains the compositionality and logical rea-
soning that is built into programming languages.
However, recent work in NLP suggests that ques-
tions can also be iteratively decomposed and solved
more effectively than end-to-end approaches us-
ing step-by-step natural langauge prompting (Press
et al., 2022). Here, we measure the gains related to
ViperGPT’s choice of building logical, executable
programs in Python, rather than by using the inter-
face of natural language and reasoning implicitly
within LLMs.

We want to enable as direct a comparison
as possible between natural language prompt-
ing with our method and program generation
with Viper. Thus, we choose the same VLM
(BLIP-2) as ViperGPT and an analogous LLM to
Codex (code-davinci-002)—specifically, we use
InstructGPT (text-davinci-002). We present the
results of our method (“Successive Prompting”) in
Table 2 and Fig. 2 and directly compare against the
“only BLIP-2” variants of ViperGPT. We have also
used the same in-context examples for each dataset
for both ViperGPT (“only BLIP-2, few-shot”) and
Successive Prompting, which helps keep the com-
parison more fair.

Our prompting method performs comparably
(i.e. retaining 92% of the performance on average)

to ViperGPT on GQA, OK-VQA, and A-OKVQA
in the direct answer setting, and is noticably better
(i.e. +4% and +17%) on the multiple choice setting
for A-OKVQA and ScienceQA. To the best of our
knowledge, our method actually presents the high-
est A-OKVQA multiple-choice score compared to
any other training-free method.

Our method presents intermediate results that
are in the form of natural language expressions
and strictly subject to downstream operations by
neural networks. On the other hand, ViperGPT can
present Pythonic data types, like lists and numbers,
as well as image regions. Unlike our prompting
method, ViperGPT does result in a more diverse
set of intermediate representations, some of which
can be symbolically manipulated, and is designed
to leverage a diverse set of neural networks.

But from this experiment, we determine that it
is not strictly necessary to decompose problems us-
ing programs in order to realize performance gains.
Instead, natural language prompting can offer a
simpler alternative. While ViperGPT leverages the
intrinsic compositonality and logical execution of
programming languages, our method uses condi-
tional generation on intermediate results and a flex-
ible natural language interface for reasoning, while
remaining similarly effective.

In Appendix G, we tried to identify patterns in
questions to determine whether they were more
suitable for formal or natural language-based de-
composition. We could not find any clear patterns,
following simple question type breakdowns of the
original datasets, but are hopeful that future work
will explore this further and reveal better insights.

Direct Answer Multiple Choice
Method VQAv2 GQA OK-VQA A-OKVQA A-OKVQA ScienceQA

ViperGPT (only BLIP-2) 62.9 64.4 39.0 47.8 36.4 53.8 39.3 57.8 58.9 47.7
Successive Prompting 53.9 57.8 37.1 47.7 28.5 45.1 36.3 55.2 63.0 64.6

Table 2: We evaluate our prompting-based decomposition strategy (“Successive Prompting”) from Sec. 5 and
compare against the analogous ViperGPT variant (“only BLIP-2”) from Sec. 4 and Table 1: both use InstructGPT
for decomposition and keep BLIP-2 as the only module. We list the higher score between the zero-shot and few-shot
“only BLIP-2” variants here. For each direct answer entry, we list both existing metrics (left) and the InstructGPT-eval
metric (right) described in Sec. 3.2.

Direct Answer Multiple Choice
VQA GQA OK-VQA A-OKVQA A-OKVQA ScienceQA

No Exception 99% 98% 99% 96% 86% 79%
Parsing 0% 0% 0% 0% 1% 3%
Runtime 1% 2% 1% 4% 12% 18%

Table 3: A breakdown of failure rates across exception modes for ViperGPT (task-agnostic) across our benchmarks.
“No Exception” only indicates completion, not correctness, of executions. Parsing errors occur as SyntaxError in
Python. We further breakdown runtime errors in Appendix F.

6 How well does ViperGPT generalize to
out-of-distribution tasks?

As we have observed in Sec. 4, ViperGPT has been
designed around a specific set of tasks (including
GQA and OK-VQA), especially in its selection of
modules and prompt. On the other hand, a core
motivation for modular and neuro-symbolic ap-
proaches is that these should have better gener-
alization capabilities to unseen tasks. So, we fur-
ther wonder how robust ViperGPT is to out-of-
distribution tasks. In particular, we consider A-
OKVQA and (especially) ScienceQA as out-of-
distribution (compared to GQA and OK-VQA).

First, we investigate changes to the prompt of
ViperGPT. Will adding task-specific in-context ex-
amples improve the model’s robustness to new
tasks? In Table 1, we compare zero-shot and few-
shot variants of “ViperGPT (only BLIP-2)”. We
can see that including few-shot examples consis-
tently improves performance on the “in-domain”
tasks (VQAv2, GQA, and OK-VQA) by +2% on
average. But, this consistently hurts performance
on the “out-of-distribution” tasks (A-OKVQA and
ScienceQA) by 11% on A-OKVQA’s direct answer
setting and 2% on average for their multiple choice
settings.

We also look at the correctness of the programs
generated by ViperGPT in Table 3. We find that
the generated code is (on average) 3x as likely to
encounter runtime errors for A-OKVQA compared

to the other benchmarks in the direct answer setting.
We find that this rate increases by another 3x (i.e.
12%) for A-OKVQA in the multiple choice setting.
And, ScienceQA holds the highest rate of runtime
failures overall at 18%. In the multiple choice set-
ting, A-OKVQA and ScienceQA produce code that
cannot be parsed (i.e. with syntax errors) 1% and
3% of the time. On the other hand, the rate of pars-
ing exceptions is consistently 0% for benchmarks
(including A-OKVQA) in the direct answer set-
ting.

7 Related Work

Visual Question Answering. Visual Question
Answering is a common vision–language task with
many variants: in our paper, we benchmark sev-
eral mainstream VQA datasets (Goyal et al., 2017;
Hudson and Manning, 2019; Marino et al., 2019;
Schwenk et al., 2022; Lu et al., 2022), requiring
a broad range of skills: related to computer vision
and perception, compositional understanding, out-
side and world knowledge, scientific and common-
sense reasoning, and more.

End-to-end models. End-to-end models are the
predominant approach in deep learning. In particu-
lar, we consider vision–language models here. We
observe that recent, state-of-art vision–language
models may rely on large-scale pretraining (Rad-
ford et al., 2021; Singh et al., 2022; Yu et al., 2022;
Wang et al., 2023; Li et al., 2023), be trained on

VQAv2 GQA OK-VQA A-OKVQA

Q: Has the food this woman is
preparing been fried?

Q: What's around the window?
Q: Which part of this animal would
be in use if it was playing the
game that would be played with
the items the man is holding?

Q: The company that
produced the device in her
hand is from what country?

ViperGPT (only BLIP-2, few-shot)

return simple_query (
"Has the food this woman is
preparing been fried?"

)

location = simple_query (
"Where is the window?"

)

return simple_query (
"What is around the window that is
{location}?"

)

Generated Code Generated Code

animal = simple_query (
"What animal is this?"

)

return simple_query (
"Which part of this {animal} would
be in use if it was playing the
game that would be played with
the items the man is holding?"

)

Generated Code
device_type = simple_query (

"What type of device is the woman
holding?"

)

company_name = simple_query (
"What company makes {device_type}s?"

)

return simple_query (
"What country is {company_name}
from?"

)

Generated Code

Artifacts:
location = "above the bed" Artifacts:

animal = "dog" Artifacts:
device_type = "remote control"
company_name = "Nintendo"

Successive Prompting
Prediction: "curtains"Prediction: "no"

Artifacts: None

Prediction: "tail" Prediction: "Japan"

Q: What's in the image?
A: a person is preparing a
salad on a counter
Q: Has the lettuce been
fried?
A: no

Prediction: "no"

Q: What's in the image?
A: a small bedroom
Q: What is around the
window in the small
bedroom?
A: curtains

Prediction: "curtains"

Q: What's in the image?
A: a man carrying a dog
Q: What is the man doing
with the dog?
A: playing frisbee

Pred: "the dog's mouth"

Q: What's in the image?
A: a woman sitting on a
couch playing a video game
Q: What company produces
the device in her hand?
A: Nintendo

Prediction: "Japan"

Figure 2: Examples of decompositions for our “ViperGPT (only BLIP, few-shot)” and “Successive Prompting”
models on our direct answer benchmarks. These examples have been condensed for readability. In Successive
Prompting, follow-up questions (Q) are proposed by the LLM (InstructGPT) and answered (A) by BLIP-2. After a
variable number of follow-ups, the LLM will provide a prediction to the original question and terminate.

many tasks with a unified architecture (Chen et al.,
2021b; Wang et al., 2022b; Lu et al., 2023), or both
(Wang et al., 2022a; Alayrac et al., 2022; Chen
et al., 2022). In this paper, we focus on the first cat-
egory and find BLIP-2 (Li et al., 2023), which uti-
lizes a frozen image encoder and language model,
as a suitable and effective representative.

Neuro-symbolic methods. Several prior meth-
ods have attempted neuro-symbolic approaches for
visual reasoning tasks (Andreas et al., 2015; John-
son et al., 2017; Hu et al., 2017; Yi et al., 2018).
However, until now, these methods were learned
by training and found middling success in doing
so. More recently, a few training-free approaches
have been suggested that leverage the powerful
in-context and program generation abilities of mod-
ern large language models (Gupta and Kembhavi,

2023; Surís et al., 2023; Subramanian et al., 2023).
Simultaneously, these approaches adopt SOTA neu-
ral networks in their set of modules. All together,
these methods present the first competitive neuro-
symbolic solutions for visual reasoning tasks.

Natural language reasoning and tool-use. Re-
cently, it has been found in NLP that large language
models can more effectively perform reasoning
tasks by reasoning step-by-step (Wei et al., 2022;
Kojima et al., 2022). A few works have extended
a similar capability in LLMs for complex prob-
lem and question decomposition (Press et al., 2022;
Zhou et al., 2023; Dua et al., 2022; Khot et al.,
2023). Finally, recent works have learned ways to
prompt language models to call tools (Parisi et al.,
2022; Schick et al., 2023). All of these emergent
research directions jointly enable the prompting

approach we present in Sec. 5.

8 Conclusion

In this paper, we have analyzed ViperGPT (Surís
et al., 2023), a recent and intricate modular
approach for vision–language tasks. We unbox
ViperGPT, asking the research question: where
does its performance come from? Observing that
one of ViperGPT’s five modules (i.e. BLIP-2 (Li
et al., 2023)) often outperforms or constitutes a ma-
jority of its own performance, we investigate this
module’s role further. Through our experiments,
we find that while ViperGPT’s marginal gains over
BLIP-2 are a direct result of its task-specific mod-
ule selection, its modularity improves its overall
robustness and it can perform well even without the
(seemingly critical) BLIP-2 module. Additionally,
we investigate ViperGPT’s choice of generating
Python programs. We ask if this is necessary and,
alternatively, propose a method relying on prompt-
ing large language models and vision–language
models to instead decompose visual questions with
natural language. Our method performs compara-
bly to the relevant ViperGPT variants and, to the
best of our knowledge, even reports the highest
multiple choice accuracy on A-OKVQA (Schwenk
et al., 2022) by any training-free method to date.

Limitations

Although the experiments in our paper are self-
contained and designed to be directly comparable
with each other, the absolute scores we report differ
from other reports. For example, our results for
BLIP-2 on GQA and OK-VQA are within 2–5% of
the original reports. We attribute such differences
to possible differences in model inference settings
between (Surís et al., 2023)—which we follow and
e.g. runs the model with 8-bit inference—and (Li
et al., 2023).

In our “ViperGPT (only BLIP-2)” experiments,
we find that the method often calls BLIP-2 directly
in a single step and might not offer any mechanisms
beyond BLIP-2 in that case.

Acknowledgments

We would like to thank Michael A. Lepori for his
generous feedback on this work. This work is par-
tially supported by the Samsung Advanced Institute
of Technology and a Brown University Presidential
Fellowship for Apoorv Khandelwal. Our research
was conducted using computational resources and

services at the Center for Computation and Visual-
ization, Brown University.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716–23736.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2015. Neural module networks. 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 39–48.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harrison Edwards,
Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and
Geoffrey Hinton. 2021b. Pix2seq: A language mod-
eling framework for object detection. arXiv preprint
arXiv:2109.10852.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier-
giovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas
Beyer, et al. 2022. Pali: A jointly-scaled mul-
tilingual language-image model. arXiv preprint
arXiv:2209.06794.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M.
Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,
Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. 2022. Scal-
ing instruction-finetuned language models. ArXiv,
abs/2210.11416.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multipli-
cation for transformers at scale. In The 36th Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 30318–30332.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt
Gardner. 2022. Successive prompting for decom-
posing complex questions. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1251–1265, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell
Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang,
and Yue Cao. 2023. Eva: Exploring the limits of
masked visual representation learning at scale. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
19358–19369.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6904–6913.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 14953–14962.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Kate Saenko. 2017. Learning
to reason: End-to-end module networks for visual
question answering. In Proceedings of the IEEE
international conference on computer vision, pages
804–813.

Drew A. Hudson and Christopher D. Manning. 2019.
Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 6693–
6702.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross B. Girshick. 2017. Inferring and exe-
cuting programs for visual reasoning. 2017 IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 3008–3017.

Ehsan Kamalloo, Nouha Dziri, Charles L. A. Clarke,
and Davood Rafiei. 2023. Evaluating open-domain
question answering in the era of large language mod-
els. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (ACL).

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular

approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions (ICLR).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In The 36th
Conference on Neural Information Processing Sys-
tems (NeurIPS), pages 22199–22213.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086–6096, Florence, Italy.
Association for Computational Linguistics.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning (ICML).

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022. Grounded language-image pre-training. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
10965–10975.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh
Mottaghi, and Aniruddha Kembhavi. 2023. Unified-
io: A unified model for vision, language, and multi-
modal tasks. In The Eleventh International Confer-
ence on Learning Representations (ICLR).

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurIPS), pages
2507–2521.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 3190–3199.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In The 36th Confer-
ence on Neural Information Processing Systems
(NeurIPS), pages 27730–27744.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

https://aclanthology.org/2022.emnlp-main.81
https://aclanthology.org/2022.emnlp-main.81
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. ArXiv, abs/2210.03350.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International Con-
ference on Machine Learning (ICML), pages 8748–
8763. PMLR.

René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. 2020. Towards ro-
bust monocular depth estimation: Mixing datasets
for zero-shot cross-dataset transfer. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(TPAMI), 44(3):1623–1637.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-okvqa: A benchmark for visual question answer-
ing using world knowledge. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 146–162.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. Flava: A foun-
dational language and vision alignment model. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
15638–15650.

Sanjay Subramanian, Medhini G. Narasimhan, Kushal
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein.
2023. Modular visual question answering via code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. ArXiv, abs/2303.08128.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie
Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Li-
juan Wang. 2022a. GIT: A generative image-to-text
transformer for vision and language. Transactions
on Machine Learning Research (TMLR).

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022b. Ofa: Unifying ar-
chitectures, tasks, and modalities through a simple
sequence-to-sequence learning framework. In Inter-
national Conference on Machine Learning (ICML),
pages 23318–23340. PMLR.

Wenhui Wang, Hangbo Bao, Li Dong, Johan
Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit
Som, et al. 2023. Image as a foreign language: Beit
pretraining for vision and vision-language tasks. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
19175–19186.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. In The 36th
Conference on Neural Information Processing Sys-
tems (NeurIPS), pages 24824–24837.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba,
Pushmeet Kohli, and Josh Tenenbaum. 2018. Neural-
symbolic vqa: Disentangling reasoning from vision
and language understanding. Advances in neural
information processing systems, 31.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text foun-
dation models. Transactions on Machine Learning
Research (TMLR).

Yan Zeng, Xinsong Zhang, and Hang Li. 2022. Multi-
grained vision language pre-training: Aligning texts
with visual concepts. In Proceedings of the 39th
International Conference on Machine Learning
(ICML), pages 25994–26009.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2023. Least-
to-most prompting enables complex reasoning in
large language models. In The Eleventh International
Conference on Learning Representations (ICLR).

A Existing Metrics vs. InstructGPT-eval

We observe that existing VQA metrics correlate
poorly with (our) human judgments for evaluat-
ing model predictions. We analyze predictions for
our model types (i.e. “BLIP-2”, “ViperGPT (task-
agnostic)”, and “Successive” in Tables 1 and 2) on
random training split subsets (N = 50) of VQAv2,
GQA, and A-OKVQA. We specifically find that,
when the existing and new (InstructGPT-eval) eval-
uation metrics disagree, InstructGPT-eval is correct
93% of the time. In Fig. 3, we show two exam-
ples of such disagreements between existing VQA
metrics and the open-ended metric. Therefore, we
include the results of existing metrics in our paper
for posterity, but do not find these reliable (espe-
cially for open-ended text generated by models like
InstructGPT). We instead make comparisons in our
paper using the InstructGPT-eval metric. We ob-
serve that trends (i.e. which model performs better)
are usually the same for both metrics, but the actual
gaps may differ significantly.

B ViperGPT Design Choices

We make a few modifications (listed in Sec. 2.2)
to the ViperGPT method (from the original de-
sign (Surís et al., 2023)) to improve conformity
for the VQA task and ensure fairness when com-
paring to our prompting-based approach in Sec. 2.3.
We elaborate further here.

As we always expect the executable program to
return a string for VQA, we explicitly add “-> str”
to the function signature in the prompt. By design,
our prompting-based approach can similarly only
result in a string.

For the multiple choice setting, we provide an ex-
plicit list of choices in the code-generation prompt
(e.g. “# possible answers : [’dog’, ’cat’, ’foo’,
’bar’]” after the question prompt). We do this, so the
code generation model benefits from awareness of
these choices when generating the program. Simi-
larly, our prompting-based method is provided with
a list of choices in conjunction with the question,
prior to proposing follow-up questions.

Unlike the Successive Prompting method, the
ViperGPT program is not guaranteed to produce a
result that matches one of the multiple choices. So
we map this result to the most similar choice using
InstructGPT (text-davinci-003). We make this
choice because text-davinci-003 is already used
by a module in ViperGPT and for the open-ended
evaluation metric.

C ViperGPT Variants

>>> # Which kind of animal is not eating?
>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> animal_patches = image_p.find("animal")
>>> for animal_patch in animal_patches:
>>> if not animal_patch.verify_property(

"animal", "eating"
):

>>> return animal_patch.simple_query(
"What kind of animal is eating?"

) # crop would include eating so
keep it in the query

>>> # If no animal is not eating,
query the image directly

>>> return image_patch.simple_query(
"Which kind of animal is not eating?"

)

>>> # Which kind of animal is not eating?
>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> animals = image_patch.simple_query("

Which animals are in the image?
")

>>> return image_patch.simple_query(f"
Which of the {animals} is not eating?

")

Figure 4: Partial prompt for ViperGPT (only BLIP-2,
zero-shot), showing how the existing demonstration is
re-written with only the simple_query module.

>>> # Are there both windows and doors in this
photograph?

>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> windows_present = image_p.simple_query(

"Are there windows in this image?"
)

>>> doors_present = image_p.simple_query(
"Are there doors in this image?"

)
>>> if windows_present == "yes"

and doors_present == "yes":
>>> return "yes"
>>> else:
>>> return "no"

Figure 5: Partial prompt for ViperGPT (only BLIP-2,
few-shot), showing one in-context demonstration writ-
ten for GQA.

D Datasets

1. VQAv2: This is a classic VQA benchmark.
Many of the questions involve tasks (like clas-
sification, attribute detection, and counting)
and require primitive computer vision skills.

Question (VQAv2): What does this sign mean?
Answers: twisty narrow road, narrow road (x4), curves/narrow

road ahead, ...

Prediction (BLIP-2): warning of a curve ahead
Actual: Correct
Existing metric: "Incorrect"
InstructGPT-eval metric: "Correct"

Question (A-OKVQA): Why is he bent over?
Answers: pitching stance, follow through (x2),

pitching (x4), throwing ball, ...

Prediction (BLIP-2): to throw the ball
Actual: Correct
Existing: "Incorrect"
InstructGPT-eval: "Correct"

Figure 3: Two examples of disagreements between existing VQA metrics and InstructGPT-eval from Kamalloo et al.
(2023). In all, InstructGPT-eval correctly evaluates the predictions. As we mention in Sec. 3.2, we find evaluations
from InstructGPT-eval more accurate in an overwhelming majority of cases.

Direct Answer Multiple Choice
VQA GQA OK-VQA A-OKVQA A-OKVQA ScienceQA

NameError 100% 14% 25% 13% 61% 34%
AttributeError 0% 42% 25% 63% 22% 36%
IndexError 0% 13% 13% 6% 6% 21%
TypeError 0% 15% 19% 19% 7% 4%
IndentationError 0% 0% 0% 0% 0% 2%
ValueError 0% 3% 6% 0% 3% 1%
KeyError 0% 0% 0% 0% 0% 1%
ZeroDivisionError 0% 0% 0% 0% 0% 0%
Other 0% 14% 13% 0% 0% 0%

Table 4: Breakdown of failure rates across runtime exceptions for ViperGPT (task-agnostic) across our benchmarks.

For example, “What color are the pants?”
might entail (1) detecting the pants in the im-
age and (2) determining their color.

2. GQA: This is a benchmark that focuses on
compositional questions. Requires an “array
of reasoning skills such as object and attribute
recognition, transitive relation tracking, spa-
tial reasoning, logical inference and compar-
isons” (Hudson and Manning, 2019). For ex-
ample, “What color are the cups to the left of
the tray on top of the table?” is a multi-step
composition (focusing on spatial relationships
and attribute recognition).

3. OK-VQA: Requires “outside knowledge”

about many categories of objects. Usually
requires detecting an object and asking for
knowledge about that object. Example (Surís
et al., 2023, Figure 5): “The real live version
of this toy does what in the winter?”. Involves
locating and identifying the toy, then asking
about the rest.

4. A-OKVQA: A follow-up benchmark to OK-
VQA. Instead of asking for closed-domain
knowledge about objects, this features “open-
domain” questions that might also require
some kind of commonsense, visual, or physi-
cal reasoning. For example, “Which position
will the red jacket most likely finish in?” in-

volves (1) identifying the context (a ski race),
(2) locating all the racers, (3) identifying the
racer who is wearing the red jacket, (4) deter-
mining the orientation of the race (e.g. left-to-
right), and (5) determining the “index” of the
red jacket racer among all racers along this ori-
entation. The question’s textual prior appears
contextually insufficient and proposing a pro-
gram based on this alone (as in ViperGPT)
could be fragile and quite difficult.

5. ScienceQA: This benchmark features scien-
tific questions (of elementary through high
school difficulty) that require both back-
ground knowledge and multiple steps of rea-
soning to solve. Their example question is
“Which type of force from the baby’s hand
opens the cabinet door?” (choices: push, pull).
The given reasoning is that (paraphrased)
“The direction of push is away from and pull
is towards the acting object. The baby’s hand
applies a force to the cabinet door that causes
the door to open. The direction of the door
opening is towards the baby, so the force is
pull.” Without seeing the image, it is not appar-
ent, but what determines whether the baby is
opening or closing the door is the fine-grained
detail that the baby’s hand is curled over the
top of the cabinet door, not grasping the han-
dle or pushing the door’s surface. The current
stage of visual programming models are not
capable of such difficult multi-step reasoning
chains and planning around such fine details.
Instead, we find that ViperGPT tends to de-
fault to its end-to-end VQA module instead.

E Log likelihood of generating
continuations

We use a weighted byte-length normalization for
generating the log likelihood of a continuation, i.e.

m+(n−1)∑
j=m

logP (xj |x0:j)
Lxk∑m+(n−1)

k=m Lxk

(1)

where x is a list of tokens (with m tokens in the
prompt and n tokens in the continuation) and the
byte-length of the token xi is Lxi .

F Runtime Failure Rate of ViperGPT

As an extension to Table 3, we further breakdown
ViperGPT failures for runtime errors in Table 4.

G Failure Rates By Question Type

BLIP-2 ViperGPT Successive

GQA (15)
chooseAttr 62% 67% 49%
chooseRel 65% 72% 60%
verifyObj 72% 80% 70%
queryAttr 43% 50% 40%
verifyAttr 58% 67% 59%
logicalObj 62% 68% 61%
logicalAttr 59% 64% 57%
queryGlobal 29% 34% 29%
verifyRel 58% 61% 56%
queryCat 50% 46% 42%
queryRel 42% 39% 39%
compareAttr 56% 56% 59%
chooseCat 84% 53% 66%

OK-VQA (11)
10 (Weather) 65% 62% 45%
6 (Social Sci.) 49% 55% 39%
5 (Food) 63% 58% 43%
Other 63% 58% 45%
7 (People) 63% 60% 46%
8 (Plants) 57% 57% 44%
2 (Brands) 53% 57% 44%
4 (Sports) 63% 62% 52%
9 (Science) 54% 52% 43%
3 (Objects) 60% 56% 47%
1 (Vehicles) 54% 51% 43%

ScienceQA (15)
us-history 33% 47% 43%
earth-science 51% 56% 62%
biology 40% 56% 76%
chemistry 42% 25% 47%
economics 53% 3% 27%
physics 43% 34% 58%
science-practices 46% 21% 51%
geography 23% 27% 75%

Table 5: We breakdown failure rates for our three model
families by question types (as specified in the original
GQA, OK-VQA, and ScienceQA datasets). We remove
outliers (i.e. categories with < 50 samples) and sort by
|ViperGPT − Successive|.

H Successive Prompting Example

Question: Has the food this woman is
preparing been fried?

Follow-up: What's in the image?
Follow-up answer: a person is preparing

a salad on the counter
Follow-up: Has the lettuce been fried?
Follow-up answer: no
Answer to the original question: no

