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ABSTRACT

Structured data, which constitutes a significant portion of existing data types, has
been a long-standing research topic in the field of machine learning. Various rep-
resentation learning methods for tabular data have been proposed, ranging from
encoder-decoder structures to Transformers. Among these, Transformer-based
methods have achieved state-of-the-art performance not only in tabular data but
also in various other fields, including computer vision and natural language pro-
cessing. However, recent studies have revealed that self-attention, a key compo-
nent of Transformers, can lead to an oversmoothing issue. We show that Trans-
formers for tabular data also face this problem, and to address the problem, we
propose a novel matrix polynomial-based self-attention layer as a substitute for
the original self-attention layer, which enhances model scalability. In our experi-
ments with three representative table learning models equipped with our proposed
layer, we illustrate that the layer effectively mitigates the oversmoothing problem
and enhances the representation performance of the existing methods, outperform-
ing the state-of-the-art table representation methods.

1 INTRODUCTION
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Figure 1: Spectral response of an atten-
tion map from TabTransformer (Huang
et al., 2020)

Out of the top 10 database management systems, 7 are
relational databases, including Oracle, MySQL, and Mi-
crosoft SQL Server 1. Likewise, structured data is one
of the most common data types in the fields of data
mining and machine learning. With the increasing fo-
cus on tabular data, several recent methods have demon-
strated remarkable success in table representation, such
as (Huang et al., 2020; Ucar et al., 2021; Somepalli et al.,
2021; Majmundar et al., 2022), with many of them being
Transformer-based methods.

Transformers have made significant advancements in
deep learning, becoming state-of-the-art models in vari-
ous domains, including computer vision and natural lan-
guage processing (Vaswani et al., 2017; Radford et al.,
2018; Devlin et al., 2019; Gulati et al., 2020; Ying et al., 2021; Dosovitskiy et al., 2021; Touvron
et al., 2021; Liu et al., 2021; Rampášek et al., 2022). However, recent studies have raised concerns
about the potential limitations of self-attention, a fundamental component of Transformers, specifi-
cally an issue of oversmoothing (Dong et al., 2021; Wang et al., 2022; Guo et al., 2023; Xue et al.,
2023). Gong et al. (2021); Zhou et al. (2021) has highlighted that at deeper layers of the Transformer
architecture, all token representations tend to become nearly identical (Brunner et al., 2019). The
problem poses challenges when it comes to expanding the scale of training Transformers, especially
in terms of depth, since Transformers rely on a simple weighted average aggregation method for
value vectors.

In our preliminary experiments, we observe that Transformers designed for tabular data also ex-
hibit the oversmoothing issue, as illustrated in Fig.1. As we go deeper into the layers, TabTrans-
former (Huang et al., 2020), a model designed for tabular data, tends to focus more on low-frequency

1https://db-engines.com/en/ranking
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components in its attention mechanism, even though table column relationships could be represented
using a wider range of components. (For a more detailed discussion, please refer to Sec.2.3.) To
address this challenge, we propose a redesigned self-attention for table representation in this paper.

Our design is inspired by graph signal processing (GSP). In a general sense, a graph filter on a
graph G is typically expressed as a polynomial based on its adjacency or Laplacian matrix. In
the context of our work, the conventional self-attention mechanism can be considered the most
basic graph filter, utilizing only A, where A 2 [0, 1]n⇥n represents a learned attention matrix that
encodes relationships between columns of tabular data, and n is the number of input tokens. In
other words, the proposed mechanism generalizes the original self-attention by allowing for more
flexibility and customization. Building upon this notion, we replace the self-attention layer with
our proposed polynomial-based layer, designed to approximate the optimal graph filter. In this
context, we introduce our novel self-attention layer for table representation learning as Chebyshev
polynomial-based self-Attention (CheAtt).

Our proposed self-attention is composed of coefficients ↵k for each polynomial term and A
k, where

k is the order of polynomial. It is worth noting that computing A
k can be computationally expensive

when dealing with a large number of tokens. However, in the case of tabular data, the number of
tokens is typically small because each embedded vector of a table column is considered as a token.
Therefore, we can design a more scalable graph filter that utilizes the nature of tabular data.

High order polynomials require multiple squares. Here, we make use of the property of PageRank.
PageRank converges after a few iterations when a transition matrix satisfies three conditions: i)
stochasticity, i) irreducibility, and iii) aperiodicity. Surprisingly, attention matrices satisfy all three
conditions, as discussed in Sec. 4.1. This means high order polynomial terms also converge, and
thus we do not need to compute higher order polynomial terms.

Furthermore, our proposed graph filter is able to capture a wider range of frequency information as
discussed in Sec. 5.2. To summarize, graph filter approximated by CheAtt encompasses both low
and high-frequency components, while others often lack high-frequency signals. In summary, our
contributions are as follows:

1. To the best of our knowledge, we present the first study on self-attention in the field of
tabular data.

2. We propose table representation learning based on Transformer with self-attention tailored
to tabular data improves representation quality compared to existing deep learning methods.

3. We have developed a Chebyshev polynomial-based self-attention mechanism that effi-
ciently leverages properties of PageRank and self-attention matrix, without a substantial
increase in computational cost.

2 RELATED WORK

2.1 REPRESENTATION LEARNING FOR TABULAR DATA

Representation learning focuses on learning meaningful features from raw data. Recently, there has
been a growing focus on representation learning for tabular data. The challenges in table represen-
tation learning stem from the absence of common correlation structure in tabular data unlike the
case of image and text data (Yoon et al., 2020). VIME (Yoon et al., 2020) is an approach to self-
and semi-supervised learning tailored for tabular data. It incorporates a unique pretext task focused
on estimating mask vectors from corrupted tabular data, along with the reconstruction pretext task.
SubTab (Ucar et al., 2021) is a self-supervised learning framework designed for tabular data, which
partitions the input features into multiple subsets, enhancing its ability to capture more efficient
latent representations.

Transformer-based models have emerged as dominant approaches for learning useful features for
tabular data (Majmundar et al., 2022; Somepalli et al., 2021; Huang et al., 2020). Tabtrans-
former (Huang et al., 2020) employs a Transformer encoder to acquire contextual embeddings for
only categorical features. SAINT (Somepalli et al., 2021) maps both continuous and categorical
features into an embedding space and then processes them through the Transformer blocks. SAINT
utilizes contrastive learning and performs attention over both rows and columns to get enhanced em-
beddings. MET (Majmundar et al., 2022) is a table representation model based on masked autoen-
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coders. It employs encoders with random masking to acquire positional embeddings for individual
feature coordinates, enabling the capture of latent structures among these coordinates. These days,
representations of tables are used to improve the performance of downstream tasks for tabular data,
such as classification and regression, where deep learning models are struggling to beat traditional
machine learning approaches.

2.2 SELF-ATTENTION MECHANISM IN TRANSFORMERS

Self-Attention mechanism is the key components of Transformer architecture. Each input em-
bedding is projected onto three parametric matrices: key, query, and value matrices, denoted as
K 2 Rn⇥d, Q 2 Rn⇥d and V 2 Rn⇥d, respectively. The self-attention mechanism SA can be
expressed as follows:

SA(Q,K,V) = softmax(
QK

T

p
d

)V = AV, (1)

where d is the scale factor and n is the number of input tokens. The basic idea of self-attention is to
establish correlations between tokens (features) by assessing similarity between their key and query
representations. With the calculated attention matrix A, which is equal to softmax(QK

T /
p
d), a

value matrix V is re-weighted through dot-product.

Self-Attention is known to have similar characteristics to a graph convolution network (GCN). GCNs
are designed to process data that can be represented as graphs denoted as G = (N , E), where N

is a node set and E is a set of edges connecting node pairs. Using graph convolutional layers,
they learn representations of nodes within a graph, taking into account information from their local
neighborhoods. Self-attention matrix used in Transformers can be seen as a normalized adjacency
matrix of tokens (Guo et al., 2023).

2.3 OVERSMOOTHING IN GCNS AND TRANSFORMERS

Oversmoothing is a phenomenon that can be observed in deep learning models, particularly in
GCNs. It describes a problem where a network excessively smooths node features during the
aggregation process, potentially resulting in reduced discriminative capability in node representa-
tions (Oono & Suzuki, 2020; Zhou et al., 2020; Rusch et al., 2023). In Transformer, which is similar
to GCN, oversmoothing phenomenon is also observed (Wang et al., 2022; Shi et al., 2022). Unlike
convolutional neural networks (CNNs), Transformers do not show performance improvements by
adding more layers beyond a specific threshold. This issue arises from attention matrices that are
similar to GCNs. In other words, it is a fundamental problem in Transformers, and these problems
occur in Transformer-based models across different domains. Dong et al. identifies the issue of ”to-
ken uniformity,” which diminishes the effectiveness of Transformer-based architectures by causing
all token representations to be the same (Dong et al., 2021). Shi et al. explores hierarchical fusion
strategies, which adaptively combine representations from various layers to introduce diversity into
the output, thereby mitigating the oversmoothing issue (Shi et al., 2022). Through experiments,
we observed the same issue occurring in Transformer-based table representation models. There-
fore, we aim to propose an attention matrix from the perspective of graph filters that can enhance
Transformer-based table representation models.

3 PRELIMINARIES

3.1 GRAPH SIGNAL PROCESSING

Leveraging insights from graph signal processing (GSP), we designed our new attention method,
CheAtt. GSP has a close connection to discrete signal processing (DSP). In DSP, a discrete signal
with a length of n can be represented by a vector x 2 Rn. Let g 2 Rn be a filter applying to x. The
convolution x ⇤ g can be computed as follows:

yi =
nX

j=1

xjgi�j , (2)
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where the index refers to the i-th element in each vector.

GSP can be viewed as a generalized case of DSP — in other words, DSP is a special case of GSP
where a line graph with n nodes is used and therefore, the graph Fourier transform of the line graph
is identical to the discrete Fourier transform. In addition, the graph convolution filter with n nodes
can be written with a shift operator S as follows:

y =
KX

k=0

wkS
k
x =

KX

k=0

V
|wk⇤

k
Vx = V

|�
KX

k=0

wk⇤
k
�
Vx = V

|g(⇤)Vx, (3)

where x 2 Rn is a 1-dimensional graph signal, K is the order of polynomial, and wk 2 [�1,1]
is a coefficient. S is an n⇥ n diagonalizable2 matrix where (i, j)-th element is non-zero if and only
if there is an edge from node i to j — its diagonal elements can also be non-zeros and therefore,
two representative samples of S are adjacency and Laplacian matrices. We note that equation 3 is a
generalization of equation 2 under the context of GSP. Equation 3 can be simplified as follows:

y = Hx, (4)

where the graph filter H is the same as
PK

k=0 wkS
k in equation 3 which is called matrix polynomial.

We note that this graph filtering operation can be extended to d-dimensional cases. Therefore, the
core part of the self-attention, i.e., AV, can be considered as a d-dimensional graph filter with A

only, where H = A. Our goal in this paper is design an effective form of H considering the
characteristics of tabular data.

3.2 PAGERANK

PageRank is an algorithm used to assess the significance of web pages by considering both the
quality and quantity of links leading to them, which, in turn, influences their rankings in search
engine results. We refer to the collection of web pages (or nodes) as W and the network of links
(or directed edges) as E. If a page u has a link pointing to page v, then we say (u, v) 2 E. We
denote the number of links leading out of a page v as dv , and the PageRank score of page v as ⇡v .
To explain PageRank, we assume a random surfer who navigates web pages based on a transition
probability matrix M 2 R

N⇥N and a visiting probability vector ⇡(t)
2 R

N , where N is the total
number of pages and t is the current iteration. In the matrix M , Mwv is equal to 1/dv if page v
links to page w and 0 otherwise. The PageRank equation can be expressed as follows:

⇡(t)
v = (1� ✏)

⇣ X

(w,v)2E

⇡(t�1)
w

dw

⌘
+

✏

N
, (5)

where ⇡(t)
v is the iterative PageRank score of page v after t iterations and ✏ is reset probability,

representing the probability that the random surfer randomly jumps to another page. PageRank
score can be computed iteratively as shown in equation 5, and the iterative method can be viewed as
the power iteration. PageRank score converges quickly when its transition matrix M satisfies three
conditions: i) stochasticity, ii) irreducibility, and iii) aperiodicity.

4 CHEBYSHEV POLYNOMIAL-BASED SELF-ATTENTION (CHEATT)

In this section, we present the details of our design in a sequential manner. We start by introduc-
ing the inspiring concept behind our design, PageRank. Following that, we delve into the matrix-
polynomial for our self-attention layer. Finally, we introduce another key component of our design,
Chebyshev polynomial, and discuss our design from various angles.

4.1 PAGERANK

PageRank scores that contain the importance of pages, converge quickly when its transition matrix
satisfies three conditions, as in Theorem 1. The three conditions are as follows: i) the transition
matrix must be a stochastic, ii) irreducible, and iii) aperiodic matrix. Interestingly, attention matrix
A in Transformers meet all the 3 conditions:

2For a diagonalizable square matrix S = V|⇤V, Sk = V|⇤kV.
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Figure 2: Convergence of Ak
V, where A is an attention matrix and V is a value matrix for Phishing

1. Stochasticity: The softmax function in Transformers ensures that attention scores are nor-
malized, making the attention matrix stochastic because values in each column sum to 1.

2. Irreducibility: In Transformers, attention matrices assign a non-zero probability to focus
on any part of the input sequence from any position in the output sequence — note that
this is guaranteed by the softmax function (cf. equation 1). This ensures the existence of
a pathway, though not always direct, connecting any position to any other, satisfying the
condition of irreducibility.

3. Aperiodicity: The aperiodicity in Markov chains condition denotes the lack of repeating
patterns. In short, the irreducible chain is aperiodic if all states have a period of 1, which
means that each state has at least one self-loop. This is the case in the self-attention since
the attention matrix has non-zero elements, i.e., completely connected, although some are
close to zeros after the softmax function — note that a negative infinite logit is required for
the softmax function to produce a zero, which is not likely in neural networks.

Theorem 1 (Convergence of PageRank). Define the error term as the difference between the exact
PageRank score ⇡⇤

v and the t-th PageRank score ⇡(t)
v : Err(t) =

P
v|⇡

(t)
v � ⇡⇤

v |, where ⇡(t)
v =

(1�✏)
⇣P

(w,v)2E
⇡(t�1)
w
dw

⌘
+ ✏

N . Then, the total error converges within a small number of iterations.
The proof is in Appendix A.

According to Theorem 1, in other words, since the attention matrix A satisfies the conditions, Ak
V,

where k 2 R, converges with a small k in matrix polynomial. More discussions are in the following
section. Moreover, Fig. 2 shows the convergence of Ak

V. The change of the result of Ak
V �

A
k�1

V quickly decreases to 0 as k increases. In Appendix B, we discuss the convergence of the
attention matrix in detail.

4.2 MATRIX POLYNOMIAL-BASED TRANSFORMER

Let A 2 [0, 1]n⇥n, where n is the number of tokens, i.e., columns, be a self-attention matrix, and
V

n⇥d, where d is dimension of each token and V is a value matrix. Self-attention, which can also
be viewed as a simplified version of graph filters, can be extended using matrix polynomial. By
extending self-attention with matrix polynomial, the extended HV can be expressed as follows:

HV =
n�1X

k=0

wkA
k
V, (6)

where w are polynomial coefficients. The extended equation requires large computation of high-
order power of A. However, due to the nature of tables, which typically have only tens of columns
(tokens), the computational cost becomes manageable. The expression of matrix polynomial-based
self-attention is as follows:

HV ⇡ w0V + w1AV + w2A
2
V + · · ·+ wjA

j
V, (7)

where j is a point where the convergence error is tolerable with respect to an enough low bound
b, i.e., kAi

V � A
j
VkF  b, 8i � j. Therefore, all terms higher than j are absorbed to wjA

j
V

(cf. Theorem 1 and Fig. 2). As known in the existing works, we can understand that self-attention
inevitably dampens, as shown in Fig. 1, the high-frequency elements (Dong et al., 2021; Wang et al.,
2022; Guo et al., 2023; Xue et al., 2023). Consequently, the original self-attention is not suitable for
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tasks involving representation learning, which require capturing all forms of information from the
data. Conversely, when we allow w to be learned and potentially take on negative values through
the model learning, the graph filter will become capable of conveying high-frequency information,
as we prove with our experiments in Sec. 5.

4.3 CHEBYSHEV POLYNOMIAL

Attention Matrix 

 Learnable
parameters

Polynomials  

Softmax

MatMul

MatMul

Figure 3: Architecture of the proposed CheAtt

However, optimizing wk, 0  k  j, with equa-
tion 7 can be unstable since the set of bases, i.e.,
{A

k
|0  k  j}, are not orthogonal. Cheby-

shev polynomial can be recursively defined as
Tk(A) = 2ATk�1(A)�Tk�2(A) with T0(A) =
I and T1(A) = A. These polynomials form an
orthogonal basis for L2([�1, 1], dy

.p
1� y2 ),

the Hilbert space of square integrable func-
tions with respect to the measure dy

.p
1� y2 .

Therefore, we use Chebyshev polynomial to sta-
bilize the training of the coefficients. The self-
attention with our expended graph filter is as fol-
lows:

HV ⇡ ↵0T0(A)V + ↵1T1(A)V + · · ·+ ↵jTj(A)V, (8)

where ↵ are the Chebysheb polynomial coefficients. Equation 8 can be rewritten to a polynomial
of A, since Tk, 8k, is a function of A. Thus, we utilize Chebyshev polynomial of order j since the
self-attention A

j
V converges rapidly with a small j (cf. Theorem 1).

Theorem 2 (Convergence of the Chebyshev coefficients Zhang & Boyd (2023); He et al. (2022b)). If
f(x) =

P1
k=0 �kTk(x), where �k is the Chebyshev coefficients, is weakly singular at the boundaries

and analytic in the interval (-1, 1), then the Chebyshev coefficients �k will asymtotically (as k ! 1)
decreases proportionally to 1/kq for some positive constant q.

Moreover, the property of Chebyshev polynomial that Chebyshev coefficients exhibit a proportion-
ally decreasing trend as in Theorem 2 also support a claim that we do not need to compute all n
terms. Theorem 2 shows Chebyshev polynomial of attention matrix does not requires computation
after convergence of Aj

V. In a nutshell, the proposed Chebyshev polynomial-based self-attention
better approximates the graph filter without a significant increase in computation. The choice of j is
determined based on our preliminary experiments.

4.4 DISCUSSIONS

Graph filtering aspects of CheAtt. CheAtt enables better graph filter approximation through its
Chebyshev polynomial approximation. CheAtt involves iterative matrix powers as shown in equa-
tion 8. Extensive computational resources are necessary when dealing with attention matrices in
tasks that involve large datasets, such as images and graphs, which can consist of tens of thousands
of tokens. For this reason, studies aiming to alleviate oversmoothing with matrix polynomial-based
graph filters often limit the use of Laplacian matrix powers or optimize substitute parameter(s) to
approximate the graph filter Chien et al. (2020); Gasteiger et al. (2018); He et al. (2021). In con-
trast, attention matrices for tables, typically containing fewer than 100 columns, involve a relatively
small number of tokens, making computation more manageable. In this context, our design is more
suitable for tabular data than datasets with large attention matrices.

Apply on Transformers. Our self-attention layer is designed by drawing inspiration from the core
concepts of graph signal processing, where self-attention can be seen as a specialized form of matrix
polynomial operations. It is noteworthy to emphasize that the seamless adoption of CheAtt frame-
work into the Transformer architecture entails a simple step: the substitution of the conventional
self-attention layer with our self-attention layer. This architectural substitution not only demon-
strates the flexibility and compatibility of our approach but also underscores its potential to enhance
the performance of existing Transformer-based models.
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(a) Spectral response
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(b) Cosine similarity
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(c) Singular value

Figure 4: Visualization of spectral response, cosine similarity, and singular values of feature maps
in Phishing. TabTransformer+CheAtt represents TabTransformer trained with CheAtt.

Representation performance on the existing methods. To validate the effectiveness of CheAtt,
we apply it to the existing Transformer-based table representation models, specifically TabTrans-
former Huang et al. (2020), SAINT Somepalli et al. (2021), and MET Majmundar et al. (2022),
with minor modifications. Details are in Appendix C. The results are in the following section.

5 EXPERIMENTS

5.1 EXPERIMENTAL ENVIRONMENTS

Experimental settings Our software and hardware environments are as follows: UBUNTU 20.04
LTS, PYTHON 3.8.2, PYTORCH 1.8.1, CUDA 11.4, and NVIDIA Driver 470.42.01, i9 CPU, and
NVIDIA RTX A5000.

Evaluation methods. We use 10 datasets and 10 baselines for our experiment. Details of the
datasets and baselines can be found in Appendices D.1 and D.2, respectively. To demonstrate the
efficacy of CheAtt, we first compare three selected base models for table learning with base models
trained using CheAtt. After training the representation models as proposed in the original paper, we
subsequently train auxiliary small MLP layers for classification/regression. For classification, we
report AUROC, and for regression, the reported scores are R2 scores. We repeat all experiments five
times and report the means and standard deviations.

5.2 EXPERIMENTAL RESULTS

Table 1: Comparison between base table learning models and base models trained with CheAtt.
TabTransf. means TabTransformer. We report the averaged score in % across all the datasets.

TabTransf. SAINT MET
Base model 77.5 84.5 79.4
Base model + CheAtt 84.2 85.1 83.1

Improvement 8.65% 0.64% 4.66%

Firstly, we discuss the efficacy of CheAtt. We summarize the experimental results in Table 1. As
shown, CheAtt significantly improves the base models. Particularly for TabTransformer, CheAtt is
highly effective, with performance increasing by an average of 8.65%. This improvement can be
attributed to CheAtt’s ability to capture diverse signal frequencies. In Fig. 4, (a), TabTransformer
trained with CheAtt significantly retains high-frequency data compared to TabTransformer. In Fig. 4
(b), we present token-wise cosine similarity with respect to the layers. Greater cosine similarity in-
dicates that the tokens in a layer become more similar, which is a symptom of oversmoothing. Com-
pared to TabTransformer+CheAtt, TabTransformer exhibits higher cosine similarity in general, and
as the layers get deeper, cosine similarity increases, which is also indicative of oversmoothing. In
Fig. 4 (c), we present the normalized singular values of feature maps. The rapid decrease in singular
values of TabTransformer indicates that the feature maps are approximately in an extremely low-
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rank. On the other hand, the slow decrease in singular values of TabTransformer+CheAtt indicates
that the feature maps are more representative.

5.3 SENSITIVITY ON THE ORDER OF POLYNOMIAL

Table 2: Sensitivity experiment with respect to k.
The reported scores are AUROC (") for classifica-
tion, and R2 (") for regression.

Datasets k Tabtransf. SAINT MET
+ CheAtt + CheAtt + CheAtt

Alphabank
2 61.3±1.35 61.4±0.31 62.2±0.52

3 61.5±1.12 61.3±0.49 60.9±1.77
5 61.6±1.01 62.0±0.16 61.4±0.46

10 61.5±1.17 61.6±0.78 61.3±1.01

Contraceptive
2 75.9±0.75 75.2±0.67 76.7±0.59
3 75.7±1.55 75.1±0.72 76.3±0.97
5 76.5±1.36 77.1±0.38 70.9±13.90

10 75.0±1.36 75.6±4.41 77.1±1.93

Medicalcost
2 86.2±0.32 86.5±0.18 86.9±0.18

3 86.2±0.58 86.5±0.10 83.6±5.11
5 86.8±0.41 86.9±0.05 86.1±0.56

10 86.0±0.43 86.5±0.20 85.9±0.37

We perform a sensitivity experiment with
respect to the order of Chebyshev polyno-
mial, and the results are summarized in Ta-
ble 2. We set the order of polynomial k
to 2, 3, 5, and 10. In general, for all
datasets and models, we get the best scores
within 5 order of polynomials. Surprisingly,
MET+CheAtt performs the best at k = 2,
unlike others shows the best score at k = 5.
This implies that the convergence of Aj

V of
MET+CheAtt at a low order is enough to rep-
resent the dataset well.

After a certain threshold of k, model perfor-
mance tends to saturate for all models. This
means that we do not need to use high-order
polynomials to approximate the graph filter,
as discussed above (cf. Section 4).

While TabTransformer+CheAtt and MET+CheAtt show robust performance on k, SAINT+CheAtt
shows a significant decrease in performance with small k. In SAINT+CheAtt, when the order of the
polynomial is not sufficient, the model’s scalability decreases due to inappropriate approximation of
the graph filter.

5.4 EXPLORING DIFFERENT POLYNOMIAL BASES

Table 3: Experimental result w.r.t. matrix polyno-
mial forms. The reported scores are AUROC (") for
classification, and R2 (") for regression.

Datasets Polynomials Tabtransf. SAINT MET
+ CheAtt + CheAtt + CheAtt

Default
Power 78.8±0.29 78.1±0.36 73.1±5.63
Chebyshev 78.9±0.09 78.4±0.31 77.8±0.14

Legendre 78.8±0.19 78.1±0.23 58.1±24.32
Jacobi 78.5±0.50 78.0±0.26 76.2±3.29

Buddy
Power 90.5±1.59 94.3±1.35 77.7±5.39
Chebyshev 91.8±1.05 94.9±0.54 85.5±1.66

Legendre 89.6±1.58 94.2±0.56 71.9±7.25
Jacobi 90.0±2.68 94.3±0.63 79.4±7.54

Super.
Power 86.4±1.37 88.9±0.17 84.9±1.20
Chebyshev 87.6±0.53 87.5±1.02 88.2±0.44

Legendre 85.5±0.90 89.1±0.33 85.3±1.50
Jacobi 68.3±0.60 88.8±0.33 85.3±0.50

We compare Chebyshev polynomial basis
with others: Power, Legendre, and Ja-
cobi polynomial, where the last three are
orthogonal ones. We summarize the re-
sult in Table 3. The representation per-
formance is robust for the type of polyno-
mial, but Chebyshev polynomial is better
than other ones in many cases. Interestingly,
in the case of SAINT+CheAtt, we find that
Legendre polynomial also performs well in
some cases, Legendre polynomial marks the
best in SAINT+CheAtt for Superconductiv-
ity. MET+CheAtt is highly dependent on
polynomial, where the gap between Cheby-
shev and other polynomials is significant
than others.

5.5 COMPARISON TO OTHER METHODS

Table 4 presents the performances of various methods including machine learning models and deep
learning models. In 6 out of 10 datasets, Transformer-based model with our attention CheAtt out-
performs all baseline models. In the remaining 4 datasets, Transformer-based model with CheAtt is
very close to the best model except for Activity. In Activity, ensemble models, XGBoost, and Ran-
dom Forest perform better than other methods. However, among the remaining methods, excluding
ensemble methods, our model consistently demonstrates the highest performance. In case of Default
and Medicalcost, the Transformer-base models alone do not outperform the other methods. How-
ever, when CheAtt is incorporated into the base models, they outperform all other methods, which
clearly demonstrates the effectiveness of CheAtt. In Phishing, Alphabank, Clave, and Buddy, the
Transformer-base model exhibit high performance surpassing that of ensemble models, and the ad-
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Table 4: Comparison with base models equipped with our proposed self-attention layer and other
classification/regression models. Contra., Medical., and Super. represent Contraceptive, Medical-
cost, and Superconductivity, respectively. We report AUROC (") for classification and R2 (") for
regression. The best results are in boldface, and the second-best results are underlined.

Methods
Binary Classification Multi-class Classification Regression

Income Default Phishing Alphabank Clave Contra. Activity Buddy Medical. Super.
MLP 89.8±0.14 78.2±0.28 84.9±0.15 62.1±0.38 92.0±0.80 68.5±4.30 86.1±1.01 85.7±2.62 73.9±0.39 86.3±1.23
Decision Tree 89.5±0.07 76.2±0.00 83.1±0.00 60.4±0.06 84.8±0.17 75.8±0.00 88.5±0.23 82.1±0.04 86.8±0.00 83.6±0.10
Regression 57.3±0.00 65.1±0.00 85.2±0.00 61.5±0.00 91.0±0.00 73.6±0.00 68.8±0.00 50.0±0.00 74.7±0.00 72.3±0.00
XGBoost 92.1±0.07 77.5±0.21 82.3±0.43 60.5±0.54 95.9±0.09 75.0±0.56 98.1±0.06 93.5±0.30 80.9±1.26 89.9±0.10
Random Forest 91.2±0.02 78.6±0.15 85.0±0.15 59.8±0.15 93.3±0.17 77.3±0.08 98.0±0.04 88.5±1.34 86.6±0.09 91.3±0.06

TabNet 89.8±0.10 77.1±0.67 81.9±0.70 61.8±0.62 87.0±1.58 52.4±8.17 66.6±1.87 79.8±5.44 -118.3±1.53 87.6±0.35
VIME 84.3±1.84 78.0±0.26 83.3±0.56 60.8±0.88 95.8±0.21 69.1±1.82 76.5±1.41 80.6±2.43 79.7±5.60 87.1±0.74

TabTransformer 88.9±0.87 78.2±0.07 84.2±0.35 59.5±1.16 92.9±0.85 64.1±1.58 78.0±2.54 85.9±2.11 60.1±0.09 83.2±0.90
SAINT 91.0±0.07 78.4±0.23 85.3±0.11 60.9±1.60 96.5±0.19 75.4±0.91 89.2±1.32 94.7±0.57 86.3±0.53 87.5±0.43
MET 87.8±2.63 76.9±0.67 84.5±0.44 61.8±0.18 92.9±0.25 76.5±1.55 59.0±4.66 84.6±1.71 84.8±0.57 85.7±0.57

TabTrans.+CheAtt 91.1±0.10 78.9±0.09 85.7±0.31 61.6±1.01 92.9±2.88 76.5±1.36 89.0±0.70 91.8±1.05 86.8±0.41 87.6±0.53
SAINT+CheAtt 91.3±0.05 78.4±0.31 85.6±0.46 62.0±0.16 96.5±0.11 77.1±0.38 90.5±0.40 94.9±0.54 86.9±0.05 87.5±1.02
MET+CheAtt 89.7±0.26 77.8±0.14 85.4±0.13 62.2±0.52 92.9±0.07 77.1±1.93 85.7±1.82 85.5±1.66 86.9±0.18 88.2±0.44

dition of CheAtt to the base model further improve its performance. This indicates that enhancing
the performance of the base model can lead to the creation of even better-performing models.

5.6 TIME COMPLEXITY AND EMPIRICAL RUNTIME ANALYSIS

Table 5: Wall clock training time per epoch in seconds (#) and wall clock time for generating output
representation in milliseconds (#)

Training time (per epoch) Inference time (for 1,000 samples)

TabTransformer 3.07s 8.04ms
TabTrans.+CheAtt 3.57s (" 20.32%) 9.74ms (" 21.55%)

SAINT 4.34s 2.64ms
SAINT+CheAtt 5.27s (" 18.91%) 3.29ms (" 25.62%)

MET 2.68s 2.70ms
MET+CheAtt 3.34s (" 23.56%) 3.40ms (" 27.23%)

Time Complexity. The original attention mechanism has a time complexity of O(n2d), where n
is the number of tokens and d is a dimension of each token. CheAtt adds complexity to compute Ak

with k�1 matrix multiplications, resulting in a time complexity of O(n2d+(k�1)n2.371552), where
we assume that we use algorithm in (Williams et al., 2024). Practically, if d > (k� 1)n2.371552, the
time complexity of CheAtt becomes O(n2d), a condition met in almost all cases in our experiments.

Empirical Runtime Analysis. In Table 5, we provide a summary of the wall clock time for train-
ing and for generating output representations from dataset. For both, we report the average over all
datasets. Full results are in Appendix E. For a fair comparison, we measure the time while keep-
ing the architecture of the base models and +CheAtt models constant, and k is set to 5 for CheAtt.
The averaged increase across datasets in training time shows up to 24% after adapting CheAtt. For
inference time, CheAtt only results in a slight increase, on the order of a few milliseconds.

6 CONCLUSION

Modern Transformers have revealed limitations related to oversmoothing, a phenomenon where as
the depth of the Transformer model increases, hidden representations become similar for all tokens.
For tabular data, we show that this problem also occurs. In order to address this phenomenon,
we propose the use of Chebyshev polynomial-based self-attention, drawing inspiration from graph
signal processing techniques. In our experiments, which encompassed 10 datasets and 10 baseline
models, Transformer-based table representation learning models, when trained with our proposed
self-attention mechanism, demonstrated significant performance improvements in downstream tasks
such as classification and regression. These improvements are substantial. We anticipate that our
proposed method, CheAtt, can enhance existing Transformers for table representation, paving the
way for further research to delve deeper into Transformers for tabular data.

9



Under review as a conference paper at ICLR 2024

Reproducibility Statement To reproduce the experimental results, we have made the following
efforts: 1) Source codes used in the experiments are available in the supplementary material. By
following the README guidance, the main results are easily reproducible. 2) All the experiments
are repeated five times, and their mean and standard deviation values are reported. 3) We provide
dataset and baseline details in Appendix D.
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