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Abstract

Current multi-modal benchmarks primarily fo-
cus on facts within individual images. How-
ever, they overlook the associative relations
among multiple images, which necessitate con-
duct commonsense reasoning grounded in the
associated knowledge at different granularities
(i.e., “image” and “entity”) and the ability to
perceive image order. Therefore, we propose
the multi-image relation association task and a
meticulously curated Multi-granularity Multi-
image Relational Association (MMRA) bench-
mark, comprising 1,024 samples. In order to
systematically evaluate current LVLMs, we es-
tablish an associational relation system among
images that contain 11 subtasks (e.g, UsageS-
imilarity, SubEvent, etc.) at two granularity
levels (i.e., “image” and “entity”’) according to
the relations in ConceptNet. Our experiments
reveal that entity-level multi-image perception
tasks pose a greater challenge for LVLMs com-
pared to image-level tasks. Moreover, LVLMs
perform poorly on spatial-related tasks, indicat-
ing that LVLMs have limited spatial awareness.
Furthermore, we find that the LVLMs’ image
order perception capability is relatively poor
and design a method to significantly improve
the ability of LVLMs, which demonstrates that
the majority of current LVLMs do not ade-
quately consider image order perception during
the pre-training process.

1 Introduction

Due to the development of Large Visual Lan-
guage Models (LVLMs) (Li et al., 2023; Liu et al.,
2024b,a; Bai et al., 2023; Al et al., 2024), there
is growing interest in systematically and compre-
hensively defining benchmarks to assess the per-
formance of LVLMs and guide future development
in this field. However, current multi-modal bench-
marks (Singh et al., 2019; Yuan Liu et al., 2023;
Yue et al., 2024) focus on asking questions of a sin-
gle image, and evaluation of LVLMs’ multi-image

association ability (e.g., “those images all depict
outdoor scenes” as shown in Fig 1) is overlooked.

Current benchmarks overlook association rela-
tionships among multiple images. (1) The multi-
image benchmarks, such as MuirBench (Wang
et al., 2024) and MIRB (Zhao et al., 2024), merely
focus on factual questions about visual elements
in the images (e.g., How many gloves are there
in the two pictures?). However, they overlook the
commonsense reasoning that is needed to mine the
commonsense knowledge within two images (e.g.,
The truck in Image 1 is used for transporting
goods + In Image 2, items are placed on the skate-
board and glided along —>They share the same
Junction: carry items. ). (2) Mining relations
among multiple images across different granulari-
ties (e.g., entity vs. image level) and properties
(e.g., spatial vs. temporal) poses varying chal-
lenges. Categorizing tasks by these dimensions
helps diagnose LVLM performance gaps and guide
targeted improvements. However, most tasks in ex-
isting benchmarks mainly focus on entity or text in
images. (3) Current multi-image benchmark over-
looks the model’s ability to perceive the order of
images. However, this capability is crucial for com-
plex multi-image tasks, such as Image temporal
order recognition.

To explore the multi-image association capabili-
ties of LVLMs, we propose a multi-image relation
association task, which requires LVLMs to discern
the potential relations between two images (for
instance, recognizing that the car and the knife,
each present in different images, are both made of
iron). We manually curated a high-quality Multi-
granularity Multi-image Relational Association
(MMRA) benchmark, consisting of 1.024 samples,
for evaluating the multi-image perception capabil-
ities of LVLMs. Based on the relations in Con-
ceptNet (Speer et al., 2017) and observations of
potential connections between images, we define
an associational relation system, which consists
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Figure 1: Overview of the MMRA benchmark. Left: image Associational Relations extended from the ConceptNet;
Right: the examples of Multi-Image Relation Association task.

of 6 subtasks at the entity-level granularity (i.e.,
RelativePosition, NearSameEntity, etc.) and 5 sub-
tasks at the image-level granularity (i.e., Layout,
Environments, etc.) across different perspectives
of mining relations between images (see Fig 1).

We employ an LVLM to generate detailed
descriptions of the images and evaluate both
LVLMs and LLMs using our MMRA bench-
mark across four distinct input configurations: Im-
age+Question (IQ), Description+Question (DQ),
Image+Description+Question (IDQ), and Question
Only (QO). Furthermore, we reverse the image
orders of MMRA to investigate the LVLMs’ im-
age order perception ability and annotate a training
dataset, containing 1,500 samples, to improve the
image order perception ability of LVLMs.

We present our key insights as follows:

1. Based on the results of the IQ and QO set-
ting, we found that closed-source models like
GPT-40, GPT-4v, and Gemini-Flash outper-
formed all open-source models. In particular,
GPT-40 achieved SOTA overall performance.
Additionally, different models exhibit signif-
icant performance variations across different
subtasks. Some open-source models even sur-
passed GPT-4 in certain subtasks.

2. Compared to entity-level tasks, models gener-
ally perform better on image-level tasks, and
their performance tends to be relatively poor
in tasks related to spatial awareness. It in-
dicates that current LVLMs have weak fine-
grained multi-image association capabilities
and are not proficient in handling spatial per-
ception tasks.

3. We examine the image order perception ca-
pabilities of LVLMs by altering the order of
input image pairs. With the exception of
Idefics2, most open-source LVLMs scored
relatively low. Moreover, to enhance the im-
age order perception ability of LVLMs, we

manually annotate a high-quality dataset for
fine-tuning. As a result, the order perception
ability of LVLMs is significantly improved
through supervised fine-tuning (SFT). This
suggests that current LVLMs are inadequate
in modeling images’ order during the pre-
training phase.

2 Related Work

Large Visual Language Models. With the
emergence of LLMs, researchers have applied
it to the multimodal perception field. More
and more LVLMs have achieved excellent suc-
cess on single-image tasks, such as BLIP2 (Li
et al., 2023), LLaVA (Liu et al., 2024b), LLaVA-
Next (Liu et al., 2024a), QwenVL (Bai et al.,
2023), CogVLM (Wang et al., 2023), and Yi-
VL(Al et al., 2024). Those LVLMs all demonstrate
exceptional ability on single image tasks, such as
TextVQA (Singh et al., 2019), VQAV2 (Goyal
et al., 2017), MMBench(Yuan Liu et al., 2023),
GQA(Hudson and Manning, 2019). Although
Fuyu—SBl, Kosmos2 (Peng et al., 2023), and
Flamingo (Alayrac et al., 2022) support interleaved
input, they do not optimize in multi-image task.

Multi-Image Perception Model and Task. Cur-
rently, some researchers have realized the impor-
tance of the multi-image ability of LVLMs. Except-
ing Kosmos2, Fuyu and Flamingo, there are some
models which support multi images input, such
as Mantis, Idefic2, Phi3v and Mantis-Idefic2 (Sun
et al., 2023; Laurencon et al., 2024; Rasheed et al.,
2024; Jiang et al., 2024). Besides, the Emu2(Sun
et al., 2023) is a generative multimodal model that
supports the interleaved text-image inputs. And the
video understanding models (Zhang et al., 2023;
Ren et al., 2023) also have the multi-image percep-
tion ability, but it is relatively worse than LVLMs.
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Meanwhile, there is also a lack of comprehensive
and systematic evaluation of multi-image LVLMs.
The earliest task is the description of the differ-
ences in the multi images, and researchers have de-
veloped many datasets, such as Spot-the-Diff and
Birds-to-Words (Jhamtani and Berg-Kirkpatrick,
2018), etc. However, they are all generative tasks.
Recently, the MuirBench (Wang et al., 2024) and
the multi-image understanding benchmark (Zhao
et al., 2024) focus on evaluating the LVLMs’ abil-
ity, but they do not systematically define relations
among images in real-life scenario.

Commonsense Reasoning. During the previous
research in NLP, there are numerous works for
commonsense reasoning (Du et al., 2022; Zhao
et al., 2023; Gao et al., 2022; Jiang et al., 2021;
Emelin et al., 2021) and would use many pre-
defined commonsense knowledge (i.e., Knowledge
Graph (Sap et al., 2019; Speer et al., 2017; Shen
et al., 2023)). The Commonsense Knowledge
Graph (CSKQG), such as ConceptNet (Speer et al.,
2017) and ATOMIC (Sap et al., 2019), is compre-
hensively used in the commonsense reasoning tasks
because they define numerous relations between
event node and entity node. The current multi-
image benchmarks (Wang et al., 2024; Zhao et al.,
2024) do not define the relation system among im-
ages. Although VCD (Shen et al., 2024) uses the
knowledge system in ConceptNet to mine the po-
tential knowledge in a single image, it cannot be
directly applied to the multi-image setting. In this
work, we will define a relation system among dif-
ferent images and curate a benchmark.

3 Dataset Curation

3.1 Image Pair Selection

Given that most tasks in the MMRA benchmark
require a specific relation between paired images,
we use the semantic similarity of image captions
to identify and select image pairs with relatively
higher relevance. This aims to reduce the com-
plexity of annotation. To be specific, we ran-
domly chose the images in the LLaVA-665k-multi
dataset and crawl some images from the internet to
form an image pair. We then utilize the Sentence-
BERT (Reimers and Gurevych, 2019) to calculate
the semantic similarity and filter the image pair
with a score below 0.5. Finally, we obtained 3,403
image pairs for annotation.

3.2 Subtask Definition

As shown in the Fig 6 in Appendix E, based on the
perspective of humans observing images, we divide
our tasks into two granularity levels (i.e., entity and
the whole image). Because the ConceptNet com-
prehensively defines the relations among different
textual events and entities, most of our subtasks are
extended from it. Besides, we design some sub-
tasks from a visual perspective (i.e., Layout and
ObservationAngle).

Entity level. We primarily consider the mental
state, appearance, and location information of dif-
ferent objects in the images, as well as the psycho-
logical characteristics of individual creatures.

* RelativePosition (RP): The ‘AtLocation’ is
an important relation in ConceptNet to ex-
press A is the inherent location of B. As for
the entity in two images, we extend this rela-
tion into the subtask which judges the relative
position of entities in the image. For example,
we ask LVLMs to judge which two entities, re-
spectively in different images, have the same
relative position (e.g., all at the upper left of
images).
NearSameEntity (NSE): The relation ‘Locat-
edNear’ in ConceptNet expresses “A and B
are typically found near each other”. Based
on it, we design a subtask, ‘NearSameEntity’,
which requires LVLMs to determine whether
there are entities, respectively in different im-
ages, near the same object.
MentalitySimilarity (MS): ‘HasProperty’ in
ConceptNet is a relation that describes the
characteristics of an entity. We think the emo-
tional property expressed by the images could
directly affect humans. Thus, we extend this
relation to a subtask that requires LVLMs to
determine whether the creatures in two images
have similar emotions, attitudes, or feelings
(e.g., happy, excited, serious, surprised, etc.).
AppearanceSimilarity (AS): The physical
characteristics of the entity is also an impor-
tant factor. So we design a subtask that is
also relevant to ‘HasProperty’ and that re-
quires LVLMs to determine whether two im-
ages have entities that are physically similar
in appearance (e.g., the shape and color of
objects, the body and hairstyle of humans).
e SimilarMaterial (SM): The relation
‘MadeOf” in ConceptNet expresses ‘A is



made of B’. Therefore, we design the subtask
‘SimilarMaterial’ which requires LVLMs to
judge whether there are entities, respectively
in different images, with the same production
materials.

UsageSimilarity (US): Apart from the afore-
mentioned aspects, we have also devised
a subtask that requires LVLMs to discern
whether the entities, respectively in two im-
ages, have the same usage according to the
ConceptNet’s relation ‘UsedFor’ which ex-
press “the purpose of A is B".

Image level. We primarily consider the correla-
tion between the events expressed by the whole
image as well as the overall spatial structural simi-
larities of different images.

* Layout (LO): At the image granularity, we
regard the layout of the image as a represen-
tation of the relation “AtLocation”. We de-
sign a subtask that requires the LVLMs to
determine whether there are similarities in lay-
out between images according to the relation
‘NearBy’.

* Environment (Env): From the visual perspec-
tive, the environment of the image is also an
important content that humans tend to notice
(e.g., both images depict the streets of a Euro-
pean country with a Gothic architectural style).
So, we design a subtask that lets LVLMs judge
if the environments in those images are similar
according to the relation ‘AtLocation’.

* SubEvent (SubE): The temporary relation is
an important connection between two images.
Therefore, we extend the relation ‘SubEvent’
to a subtask that requires LVLMs to determine
whether the two images describe events that
occurred at the same scene in two consecutive
moments.

e SimilarEvent (SimE): Excepting the
‘SubEvent’, the similar event is also a crucial
factor when associating multi images. So we
devise a subtask to evaluate the LVLMs’ ca-
pability to find the same event that happened
in the given two images.

¢ ObservationAngle (OA): In addition to the
‘Layout’, we create a subtask for the model
to determine whether one of the images is
a close-up, inside shot, or different parallel
angle shot of another image for the sake of ex-
ploring the view perception ability of LVLMs
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Figure 2: The process of annotation.

according to the relation ‘LocatedNear’ in
ConceptNet.

3.3 Data Annotation

We hire four annotators specializing in multimodal
research to annotate data. Each annotator was as-
signed 2-3 tasks.

Annotation Process. As shown in Fig 2, each an-
notator is provided with two images and a certain
subtask (i.e., Environment). Their responsibility
is to determine whether they could design a ques-
tion based on the given task for the image pair. If
the image pair meets the task requirements, they
proceed to annotate a question and options (either
multiple-choice or true/false) for that pair. The
annotator terminates annotating a task once they
reach a predetermined number of labelled samples
(i.e., 90) or once all the image pairs for that task
have been annotated.

Quality Control. We conduct cross-validation
on the annotated data. Specifically, each annotator
reviews 2-3 tasks labeled by their peers. If any
annotated samples do not meet the task require-
ments or if the answers derived from the images
and options do not match the correct answer, those
samples are removed. Quality control is concluded
once all annotators agree that their verified portion
satisfies the specified requirements.

3.4 Elimination of Answer Leakage from
Questions and Options

When designing multiple-choice options at the en-
tity level, we need to identify potential entities that
could be regarded as the correct answer to the ques-
tion and provide justifications. For example, as
illustrated in Fig 1, ‘both tree and bench are made
of wood’ can be the answer to the SimilarMaterial
subtask. However, language models can sometimes
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Figure 3: Comparing results before and after textual
answer leakage elimination.

deduce the correct answer simply by analyzing the
textual content in the options. Additionally, anno-
tators often unconsciously label the correct answer
with greater detail and specificity, and the language
model tends to choose these more detailed options.
To eliminate these biases, we optimize the ques-
tions and options for subtasks where the language
model scores higher than the expected accuracy
by randomly answering the question. For instance,
the expected accuracy for true/false questions is
50%, and for multiple-choice questions with four
options, it is 25%.

We refine the options and questions for four sub-
tasks (i.e., UsageSimilarity, Environment, MadeOf,
and AppearanceSimilarity), because language mod-
els exhibit relatively higher performance on them.
As shown in Fig 3, we presented the accuracy
changes of the Yi-1.5-9B model before and after
answer leakage removal. We have significantly re-
duced the leakage of answers in the question and
option texts. After refining our benchmark, the
performances on these subtasks are close to the
expected random accuracy rates for their respective
task types.

For the UsageSimilarity subtask, the perfor-
mance of language models remains significantly
higher than random expectations. We hypothesize
that this is because mining the similarity in usage
between two entities, a type of general common-
sense knowledge, relies heavily on the language
model’s inference capabilities. Additionally, the
commonsense reasoning capabilities of language
models make them adept at identifying subtle dif-
ferences among the options.

Data Statistics As shown in Fig 4, we obtain a
total of 1,024 annotated samples. To maintain the
balance of samples of the subtasks, we endeavored
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106 (10.33%) MentalitySimilarity
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AppearanceSimilarity
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Figure 4: The number and ratio of each subtask in
MMRA. The integers in the graph represent the number
of samples in each task, while the percentages in paren-
theses indicate the proportion of each task.

to maintain that the number of samples for all tasks
is around 90. The ObservationAngle task has the
highest proportion in the entire benchmark, with
a total of 126 samples (12.28%). Due to the diffi-
culty of labeling in the NearSameEntity task, we
removed some samples with inconsistent opinions
from different annotators during the quality control
process and this subtask only has 65 samples.

4 Experiment

4.1 Experiments Setting

To explore the impact of LVLM’s image-captioning
ability on its multi-image perception, we design
four input settings: (1) Image + Question (I1Q).
In this setting, we just include the image pair and
question in the prompt. (2) Description + Ques-
tion (DQ). To investigate the impact of the image
caption capability of LVLMs on the perception of
multiple images, we include a detailed description
of the image pair and question in the prompt. (3)
Image + Description + Question (IDQ). Besides,
we also include the image pair, its description, and
question in the prompt to compensate for the con-
tent of the image that cannot be described in the
text. (4) Question Only (QO). For the sake of in-
specting whether the answer to the questions in our
benchmark is leaked in the textual information of
options and questions, we only input the question
to let LVLMs answer.

4.2 Baselines

As shown in Tab 6 in Appendix, we evaluated
our benchmark on both mainstream closed-source
and open-source large models. Regarding close-



source LVLMs, we choose OpenAl’s GPT40 and
GPT4v, as well as Google’s Gemini-Flash and
Gemini-Pro. As for the open-source LVLMs,
we mainly evaluate those supporting multi-image
inputs (i.e., Idefics2, Qwen-VL-Chat, Phi3v,
Mantis-Idefics2). Besides, we also assess the open-
source LLMs (i.e., LLaMA, Qwen, and Yi) under
the text-only input setting. In addition to the above
LVLMs, we further evaluate some small visual en-
coder models, such as CLIP (Radford et al., 2021)
and MetaCLIP (Xu et al., 2023, 2024).

4.3 Evaluation Protocol

Prompt. As for each task, we all design a prompt
to make LVLMs directly generate textual format
answers to the question. Except for including the
content of different input settings, we let LVLMs
generate the ‘A’, ‘B’, ‘C’ or ‘D’ for the choice
questions, and ‘Yes’ or ‘No’ for the T/F questions.
Besides, we also add the options to the prompt. As
for further details about our prompt design, please
refer to the Tab 5 in Appendix A.

Retrieval Method. For MetaCLIP and CLIP,
we directly calculate the similarity between the
query (image+question) and the answer options,
and choose the option with the highest similarity
as the model-predicted answer. The details of the
retrieval method are provided in Sec. B.

Answer Matching and Metric. Because the
golden answer in our benchmark is in the format of
option id (i.e., ‘A’, ‘B’, ‘C” and ‘D’) or judgment
(i.e., ‘Yes’ or ‘No’), we design a rule to match
the response of LVLMs with the golden answer.
Finally, we use accuracy of the matching results
as the score of those models. Please refer to Ap-
pendix E for details of our designed matching rule.

5 Result Analysis

5.1 Overall Analysis

As shown in Table 1, when inputting question and
image pairs (Image+Question setting), the close-
source model (i.e., GPT-4v, GPT-40, Gemini-Pro,
and Gemini-Flash) achieves the best performance
on our MMRA benchmark, with overall accuracy
surpassing 60%. In contrast, the overall perfor-
mance of other open-source multi-image LVLMs
ranges from 50% to 60%, with the exception of
Qwen-VL-Chat whose score is only 47.45%. The
Visual Encoder models, such as CLIP and Meta-

CLIP, exhibit performance comparable to Qwen-
VL-Chat and InternVL2-2B.

Although LVLMs demonstrate varying perfor-
mances across different subtasks, their average per-
formance at the entity level is generally lower than
at the image level. The LVLMs’ performance is no-
tably high for the Environment (Env) and SubEvent
(SubE) subtasks, with most of the LVLMs scoring
over 80%. This may be because these subtasks
primarily require abstract image-caption informa-
tion, which LVLMs have learned during the pre-
training phase. It is worth mentioning that spatial
perception subtasks, {i.e., RelativePosition (RP),
NearSameEntity (NSE), Layout (LO), and Observa-
tionAngle (OA)}, remain challenging for LVLMs,
as most models’ accuracy is below 50% for these
subtasks.

At the Question-Only (QO) setting, the perfor-
mance of LLMs on the UsageSimilarity (US) task
consistently exceeds 60%, which is comparable
to the performance of multi-image LVLMs under
10 setting. This suggests that the reasoning re-
quired by the UsageSimilarity (US) subtasks relies
on commonsense knowledge inherent in the lan-
guage model component of LVLMs. Under the
QO setting, all models achieve significantly lower
overall scores compared to the IQ setting, indicat-
ing that MMRA has been well-cleaned to prevent
answer leakage in the textual content.

5.2 Impact of Image Input

As shown in Table 1, when providing both image
pairs and questions (i.e., the Image + Question
setting), multi-image LVLMs demonstrate signifi-
cantly better performance compared to LLMs un-
der the QO setting (i.e., Question Only). To high-
light the performance improvement of LVLMs due
to image input across various tasks, we calculate
the average performance of all LLMs on each task
as a standard. By comparing LVLMSs’ performance
with this standard, we can quantify the actual en-
hancement brought about by incorporating images.

As shown in Fig 5 in Appendix F, compared to
the entity level, the relative improvement at the im-
age level is better, which also indirectly confirms
that the entity-level multi-image relation associa-
tion task requires the model to be able to perceive
more image details (the relative improvement at
the entity level is around 0.1, while that of the im-
age level is around 0.3). At the entity level, while
the overall performance on the MentalitySimilarity
(MS) is comparable to other subtasks, the improve-



Setting

Model

Overall ‘

Entity Level

Image Level

RP UsS MS SM AS NSE Env LO SimE  SubE  OA
GPT4o0 67.29 45.68 66.67 65.17 4434 68.89 63.49 | 8889 4778 77.78 97.00 70.75
GPT4v 66.63 3875 7071 60.67 4476 7111 51.61 | 87.77 64.44 7889 92.00 66.04
Gemini-Pro 65.01 48.15 67.68 69.66 47.17 67.78 5692 | 8222 5444 60.00 82.00 73.02
Gemini-Flash 60.33 3456 66.66 70.78 2547 68.88 5384 | 83.33 60.00 4888 93.00 57.14
Idefics2 56.93 37.04 65.66 69.66 2830 4444 5397 | 87.78 36.67 7222 83.00 45.24
0 Mantis-Idefics2 57.59 3580 62.63 6854 4151 5222 4127 | 8222 20.00 7444 91.00 56.35
Phi3v 51.75 48.15 64.65 6292 47.17 61.11 46.03 | 86.67 3444 56.67 51.00 20.63
Qwen-VL-Chat 47.45 37.04 5859 6854 3491 48.89 4127 | 7333 3333 61.11 50.00 23.02
InternVL2-26B 58.78 48.15 64.65 76.40 3773 6333 57.14 | 93.33 4222 6333 52.00 53.17
InternVL2-2B 47.97 11.90 61.11 6742 4444 5873 46.67 | 50.00 31.11 59.05 46.67 40.57
InternVL2-1B 43.71 16.67 6222 64.04 3457 4286 47.78 | 32.00 30.00 5238 5333 34091
CLIP 45.05 50.00 50.00 44.94 4321 30.16 57.78 | 51.00 4556 3232 50.00 40.57
MetaCLIP 48.37 51.59 6889 65.17 3333 31.75 4222 | 61.00 2889 64.65 47.78 36.79
LLaMA-3-8B-Instruct 31.76 3457 62.63 2472 3491 3222 4286 | 28.89 31.11 31.11 6.00 2540
LLaMA-3-70B-Instruct | 23.66 3827 60.61 1236 2642 6.67 3492 | 3556 31.11 6.67 0.00 14.29
Qwenl.5-32B-Chat 32.36 3951  64.65 11.24 4057 36.67 49.21 | 3333 31.11 4222 000 17.46
Qwen1.5-72B-Chat 37.11 3333 63.64 51.69 3396 41.11 3492 | 2889 31.11 50.00 50.00 0.00
Qwen2-7B-Chat 40.43 4321 65.66 50.56 30.19 4222 4286 | 3556 31.11 5222 50.00 11.91
Qwen2-72B-Chat 38.97 3580 64.65 46.07 4528 46.67 39.68 | 27.78 31.11 48.89 44.00 7.14
Yi-1.5-9B-Chat 41.68 4444  60.61 46.07 4340 58.89 30.16 | 26.67 31.11 40.00 50.00 26.98
QO Yi-34B-Chat 41.57 3457 5152 47.19 3774 5556 2698 | 2556 4556 48.89 49.00 32.54
Yi-1.5-34B-Chat 26.78 2593 63.64 3933 4340 11.11 36.51 | 26.67 20.00 5.56 7.00 17.46
Mantis-Idefics2 32.68 27.16  18.18 50.56 20.75 54.44 2381 | 21.11 3333 4889 50.00 2143
Qwen-VL-chat 40.04 2840 5354 55.06 38.68 5333 2698 | 37.78 3333 5444 50.00 11.11
Phi3 42.17 4198 6566 4494 4151 46.67 38.10 | 30.00 31.11 48.89 50.00 25.40
Idefics2 37.44 2222 61.62 51.69 29.25 4222 2857 | 3444 31.11 51.11 50.00 13.49
InternVL2-8B 31.27 2593 5859 1573 3585 41.10 39.68 | 31.11 31.11 1.11  50.00 17.46
InternVL2-26B 35.64 3580 62.63 19.10 38.68 4222 38.10 | 40.00 3556 6.67 50.00 25.40

Table 1: The main results of current LVMLs and LLMs on our MMRA benchmark. The I1Q and QO represent the

Image+Question input and Question Only input, respectively.

. Entity Level Image Level
Setting | Model ‘ Overall ‘ RP US MS SM AS NSE | Enw LO SmE SubE OA
LLaMA-3-8B-Instruct | 5343 | 4691 6061 5730 2925 5778 57.14 | 7778 4667 6222 5100 47.62
LLaMA-3-70B-Instruct | 60.31 | 40.74 67.68 6292 3774 6L.11 4127 | 8889 5889 70.00 73.00 57.14
po | QuenlS32B-Char | 5846 | 4074 6768 5962 3774 6742 5397 | 8667 6667 7333 5200 4365
Qwenl5-72B-Chat 60.06 | 4568 6970 7528 4151 4889 6032 | 8444 SLII 7444 5600 5635
Qwen2-7B-Chat 5198 | 3051 6465 5799 3208 6180 6032 | 8556 3222 4889 68.89 30.16
Qwen2-72B-Chat 6153 | 4938 6667 69.66 4717 5000 6349 | 9222 6444 7222 5100 55.56
Idefics2 5635 | 39.51 6364 7528 2453 4667 5714 | 8889 3333 6889 8200 4524
g | Quen-vi-chat 4376 | 27.16 5152 5730 3491 4444 4921 | 6222 3000 6778 5000 17.46
Phi3v 5372 | 4321 6263 7303 4151 5556 5556 | 8778 4000 6222 5400 2698
Mantis-Idefics2 5593 | 3580 6263 7191 2925 4889 4286 | 8556 2111 7556 8200 5556

Table 2: The results of DQ and IDQ setting on our MMRA benchmark.

ment attributed to the inclusion of images is the
most significant. This suggests that current LVLMs
have a robust capacity to perceive mental states dur-
ing pre-training. As a result, multi-image LVLMs
can effectively harness the information in images
to analyze the relation between multiple images in
the context of individuals’ mental states.

5.3 Impact of Image Descriptions

We use LLaVA-NeXT-100B to obtain the image
caption and input it as extra information, and the re-
sults are presented in Tab 2. Under the DQ setting,
with the combination of descriptions of image pair,
all LLMs’ performance is highly improved, and
the overall result of Qwen2-72B-Chat surpasses
Gemini-Flash and is second only to GPT-4v, GPT-
40, and Gemini-Pro. This demonstrates that multi-

image understanding capability of LVLMs mainly
stems from content that they precept from images.

The key to improving LVLMs’ multi-image asso-
ciation ability lies in enhancing the model’s fine-
grained perception capabilities. As for IDQ set-
ting, after including image descriptions, the per-
formance of LVLMs does not change significantly,
proving image descriptions obtained by LLaVA-
NeXT-100B overlap with the content perceived by
LVLMs themselves. Although the LVLMs still sur-
pass LLMs at the Image Level, they underperform
LLMs at the Entity Level, indicating that LVMLs’
fine-grained image perception ability is limited.

Different tasks have varying requirements for
the visual module of the LVLMs. As for the im-



age level task, the LVLMs’ performance is not ob-
viously improved at IDQ setting, while the LLMs’
results are close to that of LVLMs with the input
of images’ descriptions. It demonstrates that the
multi-image perception at the image level relies
on the visual module of LVLMs. With regard to
the tasks at the entity level, in the IDQ setting,
the performance of LVLMs varied the most on
the MentalitySimilarity (MS) task, even surpassing
GPT-4v and GPT-40. This indicates that entity-
level fine-grained tasks require LVLMs to perceive
more detailed textual descriptions.

6 Image Order Perception

6.1 Evaluating Image Order Perception

Understanding the sequential order of images is
crucial for interpreting the relations between multi-
ple images, which is essential for tackling complex
multi-image tasks, such as sorting images. In cer-
tain subtasks of the MMRA benchmark, the order
of input images can change the answer to the asso-
ciated questions.

To examine the LVLMs’ ability of perceiving
images’ order, we reverse the input images’ order
for four specific subtasks: RelativePosition (RP),
SimilarMaterial (SM), NearSimilarEntity (NSE),
and ObservationAngle (OA), and each subtask has
options that are directly related to the images’ or-
der. Additionally, we introduce a new option, “All
of the above options are incorrect” as the correct
choice. Subsequently, we evaluate the performance
of LVLMs on these subtasks under both normal and
reverse settings, reporting the average performance
across both configurations.

Current LVLMs do not have a strong ability to
perceive the order of images. As illustrated in
Table 3, we present the accuracy of various LVLMs.
Idefics2 demonstrates commendable image order
perception, achieving an overall score close to 60%.
In contrast, most current LVLMs exhibit inade-
quate image order perception abilities, with overall
scores below 35%. This discrepancy suggests that
current open-source LVLMs have not adequately
addressed image sequence tasks during their pre-
training processes.

6.2 Improving LVLMs’ Image Order
Perception Ability

Training data curation. To improve the capabil-
ity of LVLMs’ order perception ability, we manu-
ally curate 1.5 thousand training data for the asso-

Model | Overall | RP SM NSE OA

Idefics2 54.12 65.55 5330 68.26 29.37
Mantis 25.22 3132 20.76 20.64 28.18
Phi3v 36.85 45.07 47.17 38.89 16.27
Qwen-VL | 17.35 1852 1793 2143 11.51

Table 3: The results of the Sequence Perception task.

Model | Overall | RP SM  NSE OA
Idefics2 54.12 65.55 5330 6826 29.37
Qwen-VL | 17.35 1852 1793 2143 11.51
Ours 61.01 63.98 6031 69.80 49.97

Table 4: Comparing the baseline and our model.

ciated subtasks (i.e., RP, SM, NE, and OA). Specif-
ically, we continually hire 5 postgraduate students
to annotate the samplings under the selected sub-
tasks following the criterion described in Sec. 6.1.

Training method. To enable the LVLMs learn-
ing the order of input images, we curate the reverse
sample of the collected data. As each sample with
two images in the correct order, we reverse the
order of the images. Then we change the golden
answer to “All of the above options are incorrect”
as described in Sec. 6.1. After that, we combine
the normal training data and the reverse training
data to fine-tune QwenVL.

Result analysis. As shown in Tab.4, our designed
training data brings a significant improvement to
the QwenVL, even surpassing the Idefics2. Specif-
ically, our model achieves an overall score of
61.01%, with an improvement of 43.66%, surpass-
ing Idefics2 by 6.89%. It demonstrates that the
multi-image input method of current LVLMs has
the capability to learn to perceive the images’ or-
der. However, the pre-training and SFT phase of
LVLM:s do not consider the dimension of multi-
ple image orders.

7 Conclusion

The multi-image perception capabilities of LVLMs
are often overlooked. To systematically assess
these capabilities, we establish a relational sys-
tem among images and manually annotate a so-
phisticated multi-granularity, multi-image relation
association benchmark (MMRA). Our evaluation
of multi-image LVLMs reveals that they perform
poorly on fine-grained (entity-level) and spatial per-
ception subtasks. Compared results of IDQ setting
with those of IQ setting, we find that these models
lack robust image detail perception abilities.



Limitations

In this work, due to resource constraints, our ex-
ploration of improving model performance in this
work was conducted with a limited amount of train-
ing data (only 1.5k samples), which does not fully
exploit the potential of current VLMs.

Ethics Statement

The dataset used in our research is constructed us-
ing publicly available data sources, ensuring that
there are no privacy concerns or violations. We do
not collect any personally identifiable information,
and all data used in our research is obtained fol-
lowing legal and ethical standards. In the stage of
data annotation, we employed three graduate stu-
dents experienced in Multimodal Reasoning filed.
We paid the graduate students approximately $13
per hour, well above the local average wage, and
engaged in constructive discussions if they had con-
cerns about the process.
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—— GPT-40 —— ldefics2
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—— Qwen-VL-Chat

SubE

—— Phi3v —— Mantis-Idefics2

Figure 5: The relative improvement of LVLMs on MMRA benchmark.

Question Type | Prompt Template

T/F Question

You will be giving one question and two
images. Please only answer the question
with Yes or No. Questions: {question}.
Please give me your answer.

Choice Question You will be giving one question, two
images, and four options, one of them
is correct. Please choose one of the four
options. The question is: {Question}.
The options are: [A: {A}, B: {B}, C:
{C}, D: {D}] Please tell me the answer
in the format if [A], [B], [C] or [D].

Table 5: The designed prompt template for the task in
our MMRA benchmark.

A Designed Template

In this part, we present our designed prompt tem-
plate for both Choice Question and T/F Question
in the Tab 5.

B The Details of Retrieval Method

Our approach leverages the strong alignment be-
tween text and image representations learned by
multimodal retrieval models such as CLIP. Specifi-
cally, we compute the embedding of the query and
add it to the embeddings of imagel and image?2.
The resulting representation is then compared with
the embeddings of the answer options using a dot
product to measure similarity. The option with the
highest similarity score is selected as the model’s
final prediction. We will include a more detailed
explanation in the final version of the paper, as one
additional page is permitted.
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C The Information of Our Baselines.

We present the pre-training information and sup-
porting of our used baselines in Tab 6.

D Result Exact Matching Rule

Due to significant differences in the response styles
of various LLMs and chat templates, the content
format of model answers can vary greatly. To ad-
dress this discrepancy and accurately reflect the
responses of different models, we have developed
a specialized Exact Matching Rule.

For Multiple-Choice questions: First, we use reg-
ular expressions to attempt to directly extract the
matching content within parentheses, i.e., extract-
ing Answer: “A” from “(A)”. If this is unsuccessful,
we then attempt to match option labels (A-D) from
the entire response content and return the option
with the highest match count. If the response does
not contain any option label information, we try
to match the option content directly within the re-
sponse and return the corresponding option label.
For True/False questions: We use regular expres-
sions to match “yes” or “no” within the response
content. If there are multiple matches, we return
the result that appears the most frequently.

E Sampled examples from MMRA
benchmark

In order to comprehensively show our benchmark,
we select a sample for each task and present then
in the Figure 6. We design two kinds of tasks
(i.e., Choice Question and T/F Question). For each



Model Pre-training Data Supporting Input Parameters
GPT40&GPT4v | / | Text, Multi Images, Audio | /
Gemini-Flash | / | Text, Multi Images, Audio, Video | /
Idefics2 Internet Crawled Data (Wikipedia Text, Multi Images 8B

and OBELICS), Public Multimodal

Dataset, LAION-COCO, PDFA (en),

IDL, Rendered-text, WebSight
Qwen-VL-Chat LAION-en, LAION-zh, In-house Data, Text, Multi Images 8B

LAION-COCO, DataComp, Coyo,

CC12M, CC3M, SBU, COCO Caption
Phi3v | / | Text, Multi Images | 26B
InternVL2 | / | Text, Multi Images, Video | 8B
Mantis-Idefics2 | Mantis-Instruction dataset | Text, Multi Images | 8B
LLaMA-3 |/ \ TextOnly | 8B, 70B
Qwenl.5&Qwen2 | Internet Crawled Data | TextOnly | 7B,32B,72B
Yi-Chat&Yi-1.5-Chat | Web Documents from Common Crawl | Text Only | 9B, 43B

Table 6: The pre-training information and supporting input of the baselines.

public data.

example, we show the image pair, question and
options.

F Relative Improvement of LVLMs

We present the relative improvement of LVLMs
between the IQ and QO settings.

G Error analysis

To better analyze the shortcomings of LVLMs, we
examined instances where GPT-40 made errors on
relatively challenging subtasks such as RelativePo-
sition, MadeOf, NearSameEntity, and Layout.

As presented in Fig 7, LVLMs often select en-
tities that do not appear in the image when an-
swering fine-grained questions. For example, for
subtasks like ’RelativePosition’ and *’NearSameEn-
tity’, LVLMs sometimes choose options featuring
entities that are not present in the image (e.g., beer
and tray).

We believe this issue arises because LVLMs pri-
marily depend on the reasoning capabilities of the
language model. The textual relations in the op-
tions can significantly interfere with the LVLMs’
judgments, leading them to overlook the visual in-
put, particularly for fine-detailed questions.

In scenarios where neither image contains the
correct answer for the subtask, we introduced an
alternative option to express there is no association
between the two images, such as ’there are no enti-
ties of the same material in figl and fig2’. When
LVLMs cannot identify the correct answer, they
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non

refers to non-public or not fully

tend to select this option, suggesting no connection
between the two images.

Regarding the ’Layout’ subtask, it appears that
current LVLMs have a limited ability to grasp the
key elements within images. They sometimes fail
to determine whether both images prominently fea-
ture a main entity.



MentalitySimilarity

Question: Do both images express similar emotions?
Options:

Ture/False

Explanation: The two men in the picture are both
laughing, both expressing a happy emotion

Qi ion Type: Choice Qi

Granularity: Entity
UsageSimilarity

Question: Based on the Figl and Fig2, which entities
have the same usage?

Options:

A. There is no entity have same usage

B. Skateboarding and snowboarding bring riders
together, fostering a sense of community

C. Skateboarding and snowboarding are both
recreational activities

Q ion Type: Choice Qi
Granularity: Entity

Environment

pre—

Question: Are those pictures similar in environment?
Options:

A. Both pictures depict the environment around a
rural railway

B. Both pictures are close-ups of a room

C. Both pictures depict outdoor snow in winter

D. Both pictures depict a sunny winter day in a
certain European country

Qi ion Type: Choice Q
Granularity: Global

SimilarEvent

Question: In this two pictures depict a similar events

Options:

A. Airplane taking off
B. Train stop

C. Climbing mountain
D. Riding Bike

Entity Level

NearSameEntity

and Fig2, all near a same entity?

Options:

A. The toy mouse in Figl and the person in Fig2

B. The toy mouse in Figl and the towel in Fig2

C. There are no answer of this question

D. The toy mouse in Figl and the toy bear in Fig2

Question Type: Choice Question
Granularity: Entity

RelativePosiition

D —
Question: Which two entities in Figl and Fig2 are in
the same relative position in the images?

Options:

A. Curtain in Figl and towels in Fig2

B. Pillow in Fig1 and mirror in Fig2

C. Pillow in Figl and stairs in Fig2

curtain rod in Figl and sink in Fig2

D. curtain rod in Figl and sink in Fig2

Question Type: Choice Question
Granularity: Entity

Global Level

Layout

Question: What are the similarities between these
two pictures in terms of structure and layout?
Options:

A. The distribution of entities in the pictures follows
a similar pattern or arrangement

B. There is no obvious relationship between the two
pictures in terms of layout

C. Each picture hasa p entity

Question Type: Choice Question
Granularity: Global

Question Type: Choice Question

Granularity: Global

AppearanceSimilarity

14 |
Question: Are there any entities in Figl and Fig2 that
have the same shape?
Options:
Ture/False
Explanation: The traffic signs in both pictures are
rectangular

Question Type: Choice Question
Granularity: Entity

SimilarMaterial

»
Question: Which two entities, respectively in Figure 1
and Figure 2, are made of the same material?
Options:
A. there are no entities of the same material in figure
one and figure two
B. fence in figure 1 and grass in figure 2
C. bench in figure 1 and tree in figure 2
D. ocean in figure 1 and grass in figure 2

Question Type: Choice Question
Granularity: Entity

ObservationAngle

Question: Please judge the spatial relation between
Figl and Fig2.

Options:

A. Figl is a close-up of the surface of Fig2

B. Figl is a close-up of the interior of Fig2

C. Figl and Fig2 are shots of the same object from
different parallel perspectives

D. Figl and Fig2 have no relation in spatial view

Question Type: Choice Question
Granularity: Global

SubEvent

Question: Is there a chronological relation
between Figl and Fig2?

Options:
Ture/False
Explanation: These two pictures depict the
moments before and after two people fencing in
the same scene

Question Type: T/F Question
Granularity: Global

Figure 6: Sampled MMRA examples for each task. The bold and underlined options indicate they are the golden

answers.
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RelativePosition SimilarMaterial

bird’s mark

Question: Which two entities in Figl and Fig2 are in the same ~ Question: Which two entities, respectively in Figl and Fig2,

relative position within the images? are made of the same material?
QA_type: Choice QA QA_type: Choice QA

Options: o . L Options:

A. shutter in figure one and window in figure two

A. doorknob in figl and microwave door frame in fig2
B. hinge in figure one and baby bird in figure two

o ) ) B. the surfin figl and the bus in fig2
C. doorframe in figure one and the marks left by aimpactin = ¢ there are no entities of the same material in figl and fig2
figure two D. the surfin figl and the road surface in fig2
D. doorframe in figure one and string in figure two
Golden answer: C GPT40’s answer: D Golden answer: C GPT40’s answer: D
NearSameEntity Layout

Question: Which two entities, respectively in Figl and Fig2,
near or adjacent to a same object?
QA_type: Choice QA

Question: What are the similarities between these two
pictures in terms of structure and layout?
QA_type: Choice QA

Options: Options:

A. spoon in figure one and folk in figure two A. the distribution of entities in the pictures follows a similar
B. wine in figure one and cup in figure two pattern or arrangement

C. beer cap in figure one and tray in figure two B. there is no obvious relation between the pictures in terms
D. beer in figure one and tray in figure two of layout.

C. each picture has a prominent entity

Golden answer: C GPT40’s answer: D Golden answer: C GPT40’s answer: A

Figure 7: The error analysis of GPT40 on our MMRA benchmark.
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