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Abstract

Current multi-modal benchmarks primarily fo-001
cus on facts within individual images. How-002
ever, they overlook the associative relations003
among multiple images, which necessitate con-004
duct commonsense reasoning grounded in the005
associated knowledge at different granularities006
(i.e., “image” and “entity”) and the ability to007
perceive image order. Therefore, we propose008
the multi-image relation association task and a009
meticulously curated Multi-granularity Multi-010
image Relational Association (MMRA) bench-011
mark, comprising 1,024 samples. In order to012
systematically evaluate current LVLMs, we es-013
tablish an associational relation system among014
images that contain 11 subtasks (e.g, UsageS-015
imilarity, SubEvent, etc.) at two granularity016
levels (i.e., “image” and “entity”) according to017
the relations in ConceptNet. Our experiments018
reveal that entity-level multi-image perception019
tasks pose a greater challenge for LVLMs com-020
pared to image-level tasks. Moreover, LVLMs021
perform poorly on spatial-related tasks, indicat-022
ing that LVLMs have limited spatial awareness.023
Furthermore, we find that the LVLMs’ image024
order perception capability is relatively poor025
and design a method to significantly improve026
the ability of LVLMs, which demonstrates that027
the majority of current LVLMs do not ade-028
quately consider image order perception during029
the pre-training process.030

1 Introduction031

Due to the development of Large Visual Lan-032

guage Models (LVLMs) (Li et al., 2023; Liu et al.,033

2024b,a; Bai et al., 2023; AI et al., 2024), there034

is growing interest in systematically and compre-035

hensively defining benchmarks to assess the per-036

formance of LVLMs and guide future development037

in this field. However, current multi-modal bench-038

marks (Singh et al., 2019; Yuan Liu et al., 2023;039

Yue et al., 2024) focus on asking questions of a sin-040

gle image, and evaluation of LVLMs’ multi-image041

association ability (e.g., “those images all depict 042

outdoor scenes” as shown in Fig 1) is overlooked. 043

Current benchmarks overlook association rela- 044

tionships among multiple images. (1) The multi- 045

image benchmarks, such as MuirBench (Wang 046

et al., 2024) and MIRB (Zhao et al., 2024), merely 047

focus on factual questions about visual elements 048

in the images (e.g., How many gloves are there 049

in the two pictures?). However, they overlook the 050

commonsense reasoning that is needed to mine the 051

commonsense knowledge within two images (e.g., 052

The truck in Image 1 is used for transporting 053

goods + In Image 2, items are placed on the skate- 054

board and glided along –>They share the same 055

function: carry items. ). (2) Mining relations 056

among multiple images across different granulari- 057

ties (e.g., entity vs. image level) and properties 058

(e.g., spatial vs. temporal) poses varying chal- 059

lenges. Categorizing tasks by these dimensions 060

helps diagnose LVLM performance gaps and guide 061

targeted improvements. However, most tasks in ex- 062

isting benchmarks mainly focus on entity or text in 063

images. (3) Current multi-image benchmark over- 064

looks the model’s ability to perceive the order of 065

images. However, this capability is crucial for com- 066

plex multi-image tasks, such as Image temporal 067

order recognition. 068

To explore the multi-image association capabili- 069

ties of LVLMs, we propose a multi-image relation 070

association task, which requires LVLMs to discern 071

the potential relations between two images (for 072

instance, recognizing that the car and the knife, 073

each present in different images, are both made of 074

iron). We manually curated a high-quality Multi- 075

granularity Multi-image Relational Association 076

(MMRA) benchmark, consisting of 1.024 samples, 077

for evaluating the multi-image perception capabil- 078

ities of LVLMs. Based on the relations in Con- 079

ceptNet (Speer et al., 2017) and observations of 080

potential connections between images, we define 081

an associational relation system, which consists 082
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Examples of Multi-Image Relation AssociationAssociational Relations between Images

Environment
Layout

ObservationAngle

SimilarEvent

SubEvent
RelativePosition
NearSameEntity

MentalitySimilarity
AppearanceSimilarity
UsageSimilarity
SimilarMaterial

Those images all depict outdoor scenes 
The bench and the tree made of same material
They all show a same event “people sitting”…

Entity Level Image Level

Figure 1: Overview of the MMRA benchmark. Left: image Associational Relations extended from the ConceptNet;
Right: the examples of Multi-Image Relation Association task.

of 6 subtasks at the entity-level granularity (i.e.,083

RelativePosition, NearSameEntity, etc.) and 5 sub-084

tasks at the image-level granularity (i.e., Layout,085

Environments, etc.) across different perspectives086

of mining relations between images (see Fig 1).087

We employ an LVLM to generate detailed088

descriptions of the images and evaluate both089

LVLMs and LLMs using our MMRA bench-090

mark across four distinct input configurations: Im-091

age+Question (IQ), Description+Question (DQ),092

Image+Description+Question (IDQ), and Question093

Only (QO). Furthermore, we reverse the image094

orders of MMRA to investigate the LVLMs’ im-095

age order perception ability and annotate a training096

dataset, containing 1,500 samples, to improve the097

image order perception ability of LVLMs.098

We present our key insights as follows:099

1. Based on the results of the IQ and QO set-100

ting, we found that closed-source models like101

GPT-4o, GPT-4v, and Gemini-Flash outper-102

formed all open-source models. In particular,103

GPT-4o achieved SOTA overall performance.104

Additionally, different models exhibit signif-105

icant performance variations across different106

subtasks. Some open-source models even sur-107

passed GPT-4 in certain subtasks.108

2. Compared to entity-level tasks, models gener-109

ally perform better on image-level tasks, and110

their performance tends to be relatively poor111

in tasks related to spatial awareness. It in-112

dicates that current LVLMs have weak fine-113

grained multi-image association capabilities114

and are not proficient in handling spatial per-115

ception tasks.116

3. We examine the image order perception ca-117

pabilities of LVLMs by altering the order of118

input image pairs. With the exception of119

Idefics2, most open-source LVLMs scored120

relatively low. Moreover, to enhance the im-121

age order perception ability of LVLMs, we122

manually annotate a high-quality dataset for 123

fine-tuning. As a result, the order perception 124

ability of LVLMs is significantly improved 125

through supervised fine-tuning (SFT). This 126

suggests that current LVLMs are inadequate 127

in modeling images’ order during the pre- 128

training phase. 129

2 Related Work 130

Large Visual Language Models. With the 131

emergence of LLMs, researchers have applied 132

it to the multimodal perception field. More 133

and more LVLMs have achieved excellent suc- 134

cess on single-image tasks, such as BLIP2 (Li 135

et al., 2023), LLaVA (Liu et al., 2024b), LLaVA- 136

Next (Liu et al., 2024a), QwenVL (Bai et al., 137

2023), CogVLM (Wang et al., 2023), and Yi- 138

VL(AI et al., 2024). Those LVLMs all demonstrate 139

exceptional ability on single image tasks, such as 140

TextVQA (Singh et al., 2019), VQAV2 (Goyal 141

et al., 2017), MMBench(Yuan Liu et al., 2023), 142

GQA(Hudson and Manning, 2019). Although 143

Fuyu-8B1, Kosmos2 (Peng et al., 2023), and 144

Flamingo (Alayrac et al., 2022) support interleaved 145

input, they do not optimize in multi-image task. 146

Multi-Image Perception Model and Task. Cur- 147

rently, some researchers have realized the impor- 148

tance of the multi-image ability of LVLMs. Except- 149

ing Kosmos2, Fuyu and Flamingo, there are some 150

models which support multi images input, such 151

as Mantis, Idefic2, Phi3v and Mantis-Idefic2 (Sun 152

et al., 2023; Laurençon et al., 2024; Rasheed et al., 153

2024; Jiang et al., 2024). Besides, the Emu2(Sun 154

et al., 2023) is a generative multimodal model that 155

supports the interleaved text-image inputs. And the 156

video understanding models (Zhang et al., 2023; 157

Ren et al., 2023) also have the multi-image percep- 158

tion ability, but it is relatively worse than LVLMs. 159

1https://www.adept.ai/blog/fuyu-8b
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Meanwhile, there is also a lack of comprehensive160

and systematic evaluation of multi-image LVLMs.161

The earliest task is the description of the differ-162

ences in the multi images, and researchers have de-163

veloped many datasets, such as Spot-the-Diff and164

Birds-to-Words (Jhamtani and Berg-Kirkpatrick,165

2018), etc. However, they are all generative tasks.166

Recently, the MuirBench (Wang et al., 2024) and167

the multi-image understanding benchmark (Zhao168

et al., 2024) focus on evaluating the LVLMs’ abil-169

ity, but they do not systematically define relations170

among images in real-life scenario.171

Commonsense Reasoning. During the previous172

research in NLP, there are numerous works for173

commonsense reasoning (Du et al., 2022; Zhao174

et al., 2023; Gao et al., 2022; Jiang et al., 2021;175

Emelin et al., 2021) and would use many pre-176

defined commonsense knowledge (i.e., Knowledge177

Graph (Sap et al., 2019; Speer et al., 2017; Shen178

et al., 2023)). The Commonsense Knowledge179

Graph (CSKG), such as ConceptNet (Speer et al.,180

2017) and ATOMIC (Sap et al., 2019), is compre-181

hensively used in the commonsense reasoning tasks182

because they define numerous relations between183

event node and entity node. The current multi-184

image benchmarks (Wang et al., 2024; Zhao et al.,185

2024) do not define the relation system among im-186

ages. Although VCD (Shen et al., 2024) uses the187

knowledge system in ConceptNet to mine the po-188

tential knowledge in a single image, it cannot be189

directly applied to the multi-image setting. In this190

work, we will define a relation system among dif-191

ferent images and curate a benchmark.192

3 Dataset Curation193

3.1 Image Pair Selection194

Given that most tasks in the MMRA benchmark195

require a specific relation between paired images,196

we use the semantic similarity of image captions197

to identify and select image pairs with relatively198

higher relevance. This aims to reduce the com-199

plexity of annotation. To be specific, we ran-200

domly chose the images in the LLaVA-665k-multi201

dataset and crawl some images from the internet to202

form an image pair. We then utilize the Sentence-203

BERT (Reimers and Gurevych, 2019) to calculate204

the semantic similarity and filter the image pair205

with a score below 0.5. Finally, we obtained 3,403206

image pairs for annotation.207

3.2 Subtask Definition 208

As shown in the Fig 6 in Appendix E, based on the 209

perspective of humans observing images, we divide 210

our tasks into two granularity levels (i.e., entity and 211

the whole image). Because the ConceptNet com- 212

prehensively defines the relations among different 213

textual events and entities, most of our subtasks are 214

extended from it. Besides, we design some sub- 215

tasks from a visual perspective (i.e., Layout and 216

ObservationAngle). 217

Entity level. We primarily consider the mental 218

state, appearance, and location information of dif- 219

ferent objects in the images, as well as the psycho- 220

logical characteristics of individual creatures. 221

• RelativePosition (RP): The ‘AtLocation’ is 222

an important relation in ConceptNet to ex- 223

press A is the inherent location of B. As for 224

the entity in two images, we extend this rela- 225

tion into the subtask which judges the relative 226

position of entities in the image. For example, 227

we ask LVLMs to judge which two entities, re- 228

spectively in different images, have the same 229

relative position (e.g., all at the upper left of 230

images). 231

• NearSameEntity (NSE): The relation ‘Locat- 232

edNear’ in ConceptNet expresses “A and B 233

are typically found near each other”. Based 234

on it, we design a subtask, ‘NearSameEntity’, 235

which requires LVLMs to determine whether 236

there are entities, respectively in different im- 237

ages, near the same object. 238

• MentalitySimilarity (MS): ‘HasProperty’ in 239

ConceptNet is a relation that describes the 240

characteristics of an entity. We think the emo- 241

tional property expressed by the images could 242

directly affect humans. Thus, we extend this 243

relation to a subtask that requires LVLMs to 244

determine whether the creatures in two images 245

have similar emotions, attitudes, or feelings 246

(e.g., happy, excited, serious, surprised, etc.). 247

• AppearanceSimilarity (AS): The physical 248

characteristics of the entity is also an impor- 249

tant factor. So we design a subtask that is 250

also relevant to ‘HasProperty’ and that re- 251

quires LVLMs to determine whether two im- 252

ages have entities that are physically similar 253

in appearance (e.g., the shape and color of 254

objects, the body and hairstyle of humans). 255

• SimilarMaterial (SM): The relation 256

‘MadeOf’ in ConceptNet expresses ‘A is 257
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made of B’. Therefore, we design the subtask258

‘SimilarMaterial’ which requires LVLMs to259

judge whether there are entities, respectively260

in different images, with the same production261

materials.262

• UsageSimilarity (US): Apart from the afore-263

mentioned aspects, we have also devised264

a subtask that requires LVLMs to discern265

whether the entities, respectively in two im-266

ages, have the same usage according to the267

ConceptNet’s relation ‘UsedFor’ which ex-268

press “the purpose of A is B".269

Image level. We primarily consider the correla-270

tion between the events expressed by the whole271

image as well as the overall spatial structural simi-272

larities of different images.273

• Layout (LO): At the image granularity, we274

regard the layout of the image as a represen-275

tation of the relation “AtLocation”. We de-276

sign a subtask that requires the LVLMs to277

determine whether there are similarities in lay-278

out between images according to the relation279

‘NearBy’.280

• Environment (Env): From the visual perspec-281

tive, the environment of the image is also an282

important content that humans tend to notice283

(e.g., both images depict the streets of a Euro-284

pean country with a Gothic architectural style).285

So, we design a subtask that lets LVLMs judge286

if the environments in those images are similar287

according to the relation ‘AtLocation’.288

• SubEvent (SubE): The temporary relation is289

an important connection between two images.290

Therefore, we extend the relation ‘SubEvent’291

to a subtask that requires LVLMs to determine292

whether the two images describe events that293

occurred at the same scene in two consecutive294

moments.295

• SimilarEvent (SimE): Excepting the296

‘SubEvent’, the similar event is also a crucial297

factor when associating multi images. So we298

devise a subtask to evaluate the LVLMs’ ca-299

pability to find the same event that happened300

in the given two images.301

• ObservationAngle (OA): In addition to the302

‘Layout’, we create a subtask for the model303

to determine whether one of the images is304

a close-up, inside shot, or different parallel305

angle shot of another image for the sake of ex-306

ploring the view perception ability of LVLMs307

Image Pair
Given SubTask

Environment

A. Those images all depict outdoor park 
scenes (golden answer) 
B. Those images all depict a harbor scenes 
C. Those images all depict a event happened
in stadium
D. Those images all depict scenes of bedroom

Dropping the sample

Q: Are those pictures similar in environment?

Figure 2: The process of annotation.

according to the relation ‘LocatedNear’ in 308

ConceptNet. 309

3.3 Data Annotation 310

We hire four annotators specializing in multimodal 311

research to annotate data. Each annotator was as- 312

signed 2-3 tasks. 313

Annotation Process. As shown in Fig 2, each an- 314

notator is provided with two images and a certain 315

subtask (i.e., Environment). Their responsibility 316

is to determine whether they could design a ques- 317

tion based on the given task for the image pair. If 318

the image pair meets the task requirements, they 319

proceed to annotate a question and options (either 320

multiple-choice or true/false) for that pair. The 321

annotator terminates annotating a task once they 322

reach a predetermined number of labelled samples 323

(i.e., 90) or once all the image pairs for that task 324

have been annotated. 325

Quality Control. We conduct cross-validation 326

on the annotated data. Specifically, each annotator 327

reviews 2-3 tasks labeled by their peers. If any 328

annotated samples do not meet the task require- 329

ments or if the answers derived from the images 330

and options do not match the correct answer, those 331

samples are removed. Quality control is concluded 332

once all annotators agree that their verified portion 333

satisfies the specified requirements. 334

3.4 Elimination of Answer Leakage from 335

Questions and Options 336

When designing multiple-choice options at the en- 337

tity level, we need to identify potential entities that 338

could be regarded as the correct answer to the ques- 339

tion and provide justifications. For example, as 340

illustrated in Fig 1, ‘both tree and bench are made 341

of wood’ can be the answer to the SimilarMaterial 342

subtask. However, language models can sometimes 343
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Figure 3: Comparing results before and after textual
answer leakage elimination.

deduce the correct answer simply by analyzing the344

textual content in the options. Additionally, anno-345

tators often unconsciously label the correct answer346

with greater detail and specificity, and the language347

model tends to choose these more detailed options.348

To eliminate these biases, we optimize the ques-349

tions and options for subtasks where the language350

model scores higher than the expected accuracy351

by randomly answering the question. For instance,352

the expected accuracy for true/false questions is353

50%, and for multiple-choice questions with four354

options, it is 25%.355

We refine the options and questions for four sub-356

tasks (i.e., UsageSimilarity, Environment, MadeOf,357

and AppearanceSimilarity), because language mod-358

els exhibit relatively higher performance on them.359

As shown in Fig 3, we presented the accuracy360

changes of the Yi-1.5-9B model before and after361

answer leakage removal. We have significantly re-362

duced the leakage of answers in the question and363

option texts. After refining our benchmark, the364

performances on these subtasks are close to the365

expected random accuracy rates for their respective366

task types.367

For the UsageSimilarity subtask, the perfor-368

mance of language models remains significantly369

higher than random expectations. We hypothesize370

that this is because mining the similarity in usage371

between two entities, a type of general common-372

sense knowledge, relies heavily on the language373

model’s inference capabilities. Additionally, the374

commonsense reasoning capabilities of language375

models make them adept at identifying subtle dif-376

ferences among the options.377

Data Statistics As shown in Fig 4, we obtain a378

total of 1,024 annotated samples. To maintain the379

balance of samples of the subtasks, we endeavored380

ObservationAngle
126 (12.28%)

UsageSimilarity
100 (9.65%)

SimilarMaterial
106 (10.33%)

SubEvent
100 (9.74%)

Environment
90 (8.77%)

Layout    
90 (8.77% )

AppearanceSimilarity
90 (8.77% )

SimilarEvent
90 (8.77% )

MentalitySimilarity
89 (8.67% )

RelativePosition
81 (7.90% )

NearSameEntity
63 (6.34% )

Figure 4: The number and ratio of each subtask in
MMRA. The integers in the graph represent the number
of samples in each task, while the percentages in paren-
theses indicate the proportion of each task.

to maintain that the number of samples for all tasks 381

is around 90. The ObservationAngle task has the 382

highest proportion in the entire benchmark, with 383

a total of 126 samples (12.28%). Due to the diffi- 384

culty of labeling in the NearSameEntity task, we 385

removed some samples with inconsistent opinions 386

from different annotators during the quality control 387

process and this subtask only has 65 samples. 388

4 Experiment 389

4.1 Experiments Setting 390

To explore the impact of LVLM’s image-captioning 391

ability on its multi-image perception, we design 392

four input settings: (1) Image + Question (IQ). 393

In this setting, we just include the image pair and 394

question in the prompt. (2) Description + Ques- 395

tion (DQ). To investigate the impact of the image 396

caption capability of LVLMs on the perception of 397

multiple images, we include a detailed description 398

of the image pair and question in the prompt. (3) 399

Image + Description + Question (IDQ). Besides, 400

we also include the image pair, its description, and 401

question in the prompt to compensate for the con- 402

tent of the image that cannot be described in the 403

text. (4) Question Only (QO). For the sake of in- 404

specting whether the answer to the questions in our 405

benchmark is leaked in the textual information of 406

options and questions, we only input the question 407

to let LVLMs answer. 408

4.2 Baselines 409

As shown in Tab 6 in Appendix, we evaluated 410

our benchmark on both mainstream closed-source 411

and open-source large models. Regarding close- 412
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source LVLMs, we choose OpenAI’s GPT4o and413

GPT4v, as well as Google’s Gemini-Flash and414

Gemini-Pro. As for the open-source LVLMs,415

we mainly evaluate those supporting multi-image416

inputs (i.e., Idefics2, Qwen-VL-Chat, Phi3v,417

Mantis-Idefics2). Besides, we also assess the open-418

source LLMs (i.e., LLaMA, Qwen, and Yi) under419

the text-only input setting. In addition to the above420

LVLMs, we further evaluate some small visual en-421

coder models, such as CLIP (Radford et al., 2021)422

and MetaCLIP (Xu et al., 2023, 2024).423

4.3 Evaluation Protocol424

Prompt. As for each task, we all design a prompt425

to make LVLMs directly generate textual format426

answers to the question. Except for including the427

content of different input settings, we let LVLMs428

generate the ‘A’, ‘B’, ‘C’ or ‘D’ for the choice429

questions, and ‘Yes’ or ‘No’ for the T/F questions.430

Besides, we also add the options to the prompt. As431

for further details about our prompt design, please432

refer to the Tab 5 in Appendix A.433

Retrieval Method. For MetaCLIP and CLIP,434

we directly calculate the similarity between the435

query (image+question) and the answer options,436

and choose the option with the highest similarity437

as the model-predicted answer. The details of the438

retrieval method are provided in Sec. B.439

Answer Matching and Metric. Because the440

golden answer in our benchmark is in the format of441

option id (i.e., ‘A’, ‘B’, ‘C’ and ‘D’) or judgment442

(i.e., ‘Yes’ or ‘No’), we design a rule to match443

the response of LVLMs with the golden answer.444

Finally, we use accuracy of the matching results445

as the score of those models. Please refer to Ap-446

pendix E for details of our designed matching rule.447

5 Result Analysis448

5.1 Overall Analysis449

As shown in Table 1, when inputting question and450

image pairs (Image+Question setting), the close-451

source model (i.e., GPT-4v, GPT-4o, Gemini-Pro,452

and Gemini-Flash) achieves the best performance453

on our MMRA benchmark, with overall accuracy454

surpassing 60%. In contrast, the overall perfor-455

mance of other open-source multi-image LVLMs456

ranges from 50% to 60%, with the exception of457

Qwen-VL-Chat whose score is only 47.45%. The458

Visual Encoder models, such as CLIP and Meta-459

CLIP, exhibit performance comparable to Qwen- 460

VL-Chat and InternVL2-2B. 461

Although LVLMs demonstrate varying perfor- 462

mances across different subtasks, their average per- 463

formance at the entity level is generally lower than 464

at the image level. The LVLMs’ performance is no- 465

tably high for the Environment (Env) and SubEvent 466

(SubE) subtasks, with most of the LVLMs scoring 467

over 80%. This may be because these subtasks 468

primarily require abstract image-caption informa- 469

tion, which LVLMs have learned during the pre- 470

training phase. It is worth mentioning that spatial 471

perception subtasks, {i.e., RelativePosition (RP), 472

NearSameEntity (NSE), Layout (LO), and Observa- 473

tionAngle (OA)}, remain challenging for LVLMs, 474

as most models’ accuracy is below 50% for these 475

subtasks. 476

At the Question-Only (QO) setting, the perfor- 477

mance of LLMs on the UsageSimilarity (US) task 478

consistently exceeds 60%, which is comparable 479

to the performance of multi-image LVLMs under 480

IO setting. This suggests that the reasoning re- 481

quired by the UsageSimilarity (US) subtasks relies 482

on commonsense knowledge inherent in the lan- 483

guage model component of LVLMs. Under the 484

QO setting, all models achieve significantly lower 485

overall scores compared to the IQ setting, indicat- 486

ing that MMRA has been well-cleaned to prevent 487

answer leakage in the textual content. 488

5.2 Impact of Image Input 489

As shown in Table 1, when providing both image 490

pairs and questions (i.e., the Image + Question 491

setting), multi-image LVLMs demonstrate signifi- 492

cantly better performance compared to LLMs un- 493

der the QO setting (i.e., Question Only). To high- 494

light the performance improvement of LVLMs due 495

to image input across various tasks, we calculate 496

the average performance of all LLMs on each task 497

as a standard. By comparing LVLMs’ performance 498

with this standard, we can quantify the actual en- 499

hancement brought about by incorporating images. 500

As shown in Fig 5 in Appendix F, compared to 501

the entity level, the relative improvement at the im- 502

age level is better, which also indirectly confirms 503

that the entity-level multi-image relation associa- 504

tion task requires the model to be able to perceive 505

more image details (the relative improvement at 506

the entity level is around 0.1, while that of the im- 507

age level is around 0.3). At the entity level, while 508

the overall performance on the MentalitySimilarity 509

(MS) is comparable to other subtasks, the improve- 510
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Entity Level Image LevelSetting Model Overall RP US MS SM AS NSE Env LO SimE SubE OA

GPT4o 67.29 45.68 66.67 65.17 44.34 68.89 63.49 88.89 47.78 77.78 97.00 70.75
GPT4v 66.63 38.75 70.71 60.67 44.76 71.11 51.61 87.77 64.44 78.89 92.00 66.04
Gemini-Pro 65.01 48.15 67.68 69.66 47.17 67.78 56.92 82.22 54.44 60.00 82.00 73.02
Gemini-Flash 60.33 34.56 66.66 70.78 25.47 68.88 53.84 83.33 60.00 48.88 93.00 57.14
Idefics2 56.93 37.04 65.66 69.66 28.30 44.44 53.97 87.78 36.67 72.22 88.00 45.24
Mantis-Idefics2 57.59 35.80 62.63 68.54 41.51 52.22 41.27 82.22 20.00 74.44 91.00 56.35
Phi3v 51.75 48.15 64.65 62.92 47.17 61.11 46.03 86.67 34.44 56.67 51.00 20.63
Qwen-VL-Chat 47.45 37.04 58.59 68.54 34.91 48.89 41.27 73.33 33.33 61.11 50.00 23.02
InternVL2-26B 58.78 48.15 64.65 76.40 37.73 63.33 57.14 93.33 42.22 63.33 52.00 53.17
InternVL2-2B 47.97 11.90 61.11 67.42 44.44 58.73 46.67 50.00 31.11 59.05 46.67 40.57
InternVL2-1B 43.71 16.67 62.22 64.04 34.57 42.86 47.78 32.00 30.00 52.38 53.33 34.91
CLIP 45.05 50.00 50.00 44.94 43.21 30.16 57.78 51.00 45.56 32.32 50.00 40.57

IQ

MetaCLIP 48.37 51.59 68.89 65.17 33.33 31.75 42.22 61.00 28.89 64.65 47.78 36.79

LLaMA-3-8B-Instruct 31.76 34.57 62.63 24.72 34.91 32.22 42.86 28.89 31.11 31.11 6.00 25.40
LLaMA-3-70B-Instruct 23.66 38.27 60.61 12.36 26.42 6.67 34.92 35.56 31.11 6.67 0.00 14.29
Qwen1.5-32B-Chat 32.36 39.51 64.65 11.24 40.57 36.67 49.21 33.33 31.11 42.22 0.00 17.46
Qwen1.5-72B-Chat 37.11 33.33 63.64 51.69 33.96 41.11 34.92 28.89 31.11 50.00 50.00 0.00
Qwen2-7B-Chat 40.43 43.21 65.66 50.56 30.19 42.22 42.86 35.56 31.11 52.22 50.00 11.91
Qwen2-72B-Chat 38.97 35.80 64.65 46.07 45.28 46.67 39.68 27.78 31.11 48.89 44.00 7.14
Yi-1.5-9B-Chat 41.68 44.44 60.61 46.07 43.40 58.89 30.16 26.67 31.11 40.00 50.00 26.98
Yi-34B-Chat 41.57 34.57 51.52 47.19 37.74 55.56 26.98 25.56 45.56 48.89 49.00 32.54
Yi-1.5-34B-Chat 26.78 25.93 63.64 39.33 43.40 11.11 36.51 26.67 20.00 5.56 7.00 17.46
Mantis-Idefics2 32.68 27.16 18.18 50.56 20.75 54.44 23.81 21.11 33.33 48.89 50.00 21.43
Qwen-VL-chat 40.04 28.40 53.54 55.06 38.68 53.33 26.98 37.78 33.33 54.44 50.00 11.11
Phi3 42.17 41.98 65.66 44.94 41.51 46.67 38.10 30.00 31.11 48.89 50.00 25.40
Idefics2 37.44 22.22 61.62 51.69 29.25 42.22 28.57 34.44 31.11 51.11 50.00 13.49
InternVL2-8B 31.27 25.93 58.59 15.73 35.85 41.10 39.68 31.11 31.11 1.11 50.00 17.46

QO

InternVL2-26B 35.64 35.80 62.63 19.10 38.68 42.22 38.10 40.00 35.56 6.67 50.00 25.40

Table 1: The main results of current LVMLs and LLMs on our MMRA benchmark. The IQ and QO represent the
Image+Question input and Question Only input, respectively.

Entity Level Image LevelSetting Model Overall RP US MS SM AS NSE Env LO SimE SubE OA

LLaMA-3-8B-Instruct 53.43 46.91 60.61 57.30 29.25 57.78 57.14 77.78 46.67 62.22 51.00 47.62
LLaMA-3-70B-Instruct 60.31 40.74 67.68 62.92 37.74 61.11 41.27 88.89 58.89 70.00 73.00 57.14
Qwen1.5-32B-Chat 58.46 40.74 67.68 59.62 37.74 67.42 53.97 86.67 66.67 73.33 52.00 43.65
Qwen1.5-72B-Chat 60.06 45.68 69.70 75.28 41.51 48.89 60.32 84.44 51.11 74.44 56.00 56.35
Qwen2-7B-Chat 51.98 39.51 64.65 57.99 32.08 61.80 60.32 85.56 32.22 48.89 68.89 30.16

DQ

Qwen2-72B-Chat 61.53 49.38 66.67 69.66 47.17 50.00 63.49 92.22 64.44 72.22 51.00 55.56

Idefics2 56.35 39.51 63.64 75.28 24.53 46.67 57.14 88.89 33.33 68.89 82.00 45.24
Qwen-vl-chat 43.76 27.16 51.52 57.30 34.91 44.44 49.21 62.22 30.00 67.78 50.00 17.46
Phi3v 53.72 43.21 62.63 73.03 41.51 55.56 55.56 87.78 40.00 62.22 54.00 26.98IDQ

Mantis-Idefics2 55.93 35.80 62.63 71.91 29.25 48.89 42.86 85.56 21.11 75.56 82.00 55.56

Table 2: The results of DQ and IDQ setting on our MMRA benchmark.

ment attributed to the inclusion of images is the511

most significant. This suggests that current LVLMs512

have a robust capacity to perceive mental states dur-513

ing pre-training. As a result, multi-image LVLMs514

can effectively harness the information in images515

to analyze the relation between multiple images in516

the context of individuals’ mental states.517

5.3 Impact of Image Descriptions518

We use LLaVA-NeXT-100B to obtain the image519

caption and input it as extra information, and the re-520

sults are presented in Tab 2. Under the DQ setting,521

with the combination of descriptions of image pair,522

all LLMs’ performance is highly improved, and523

the overall result of Qwen2-72B-Chat surpasses524

Gemini-Flash and is second only to GPT-4v, GPT-525

4o, and Gemini-Pro. This demonstrates that multi-526

image understanding capability of LVLMs mainly 527

stems from content that they precept from images. 528

The key to improving LVLMs’ multi-image asso- 529

ciation ability lies in enhancing the model’s fine- 530

grained perception capabilities. As for IDQ set- 531

ting, after including image descriptions, the per- 532

formance of LVLMs does not change significantly, 533

proving image descriptions obtained by LLaVA- 534

NeXT-100B overlap with the content perceived by 535

LVLMs themselves. Although the LVLMs still sur- 536

pass LLMs at the Image Level, they underperform 537

LLMs at the Entity Level, indicating that LVMLs’ 538

fine-grained image perception ability is limited. 539

Different tasks have varying requirements for 540

the visual module of the LVLMs. As for the im- 541
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age level task, the LVLMs’ performance is not ob-542

viously improved at IDQ setting, while the LLMs’543

results are close to that of LVLMs with the input544

of images’ descriptions. It demonstrates that the545

multi-image perception at the image level relies546

on the visual module of LVLMs. With regard to547

the tasks at the entity level, in the IDQ setting,548

the performance of LVLMs varied the most on549

the MentalitySimilarity (MS) task, even surpassing550

GPT-4v and GPT-4o. This indicates that entity-551

level fine-grained tasks require LVLMs to perceive552

more detailed textual descriptions.553

6 Image Order Perception554

6.1 Evaluating Image Order Perception555

Understanding the sequential order of images is556

crucial for interpreting the relations between multi-557

ple images, which is essential for tackling complex558

multi-image tasks, such as sorting images. In cer-559

tain subtasks of the MMRA benchmark, the order560

of input images can change the answer to the asso-561

ciated questions.562

To examine the LVLMs’ ability of perceiving563

images’ order, we reverse the input images’ order564

for four specific subtasks: RelativePosition (RP),565

SimilarMaterial (SM), NearSimilarEntity (NSE),566

and ObservationAngle (OA), and each subtask has567

options that are directly related to the images’ or-568

der. Additionally, we introduce a new option, “All569

of the above options are incorrect” as the correct570

choice. Subsequently, we evaluate the performance571

of LVLMs on these subtasks under both normal and572

reverse settings, reporting the average performance573

across both configurations.574

Current LVLMs do not have a strong ability to575

perceive the order of images. As illustrated in576

Table 3, we present the accuracy of various LVLMs.577

Idefics2 demonstrates commendable image order578

perception, achieving an overall score close to 60%.579

In contrast, most current LVLMs exhibit inade-580

quate image order perception abilities, with overall581

scores below 35%. This discrepancy suggests that582

current open-source LVLMs have not adequately583

addressed image sequence tasks during their pre-584

training processes.585

6.2 Improving LVLMs’ Image Order586

Perception Ability587

Training data curation. To improve the capabil-588

ity of LVLMs’ order perception ability, we manu-589

ally curate 1.5 thousand training data for the asso-590

Model Overall RP SM NSE OA

Idefics2 54.12 65.55 53.30 68.26 29.37
Mantis 25.22 31.32 20.76 20.64 28.18
Phi3v 36.85 45.07 47.17 38.89 16.27
Qwen-VL 17.35 18.52 17.93 21.43 11.51

Table 3: The results of the Sequence Perception task.

Model Overall RP SM NSE OA

Idefics2 54.12 65.55 53.30 68.26 29.37
Qwen-VL 17.35 18.52 17.93 21.43 11.51
Ours 61.01 63.98 60.31 69.80 49.97

Table 4: Comparing the baseline and our model.

ciated subtasks (i.e., RP, SM, NE, and OA). Specif- 591

ically, we continually hire 5 postgraduate students 592

to annotate the samplings under the selected sub- 593

tasks following the criterion described in Sec. 6.1. 594

Training method. To enable the LVLMs learn- 595

ing the order of input images, we curate the reverse 596

sample of the collected data. As each sample with 597

two images in the correct order, we reverse the 598

order of the images. Then we change the golden 599

answer to “All of the above options are incorrect” 600

as described in Sec. 6.1. After that, we combine 601

the normal training data and the reverse training 602

data to fine-tune QwenVL. 603

Result analysis. As shown in Tab.4, our designed 604

training data brings a significant improvement to 605

the QwenVL, even surpassing the Idefics2. Specif- 606

ically, our model achieves an overall score of 607

61.01%, with an improvement of 43.66%, surpass- 608

ing Idefics2 by 6.89%. It demonstrates that the 609

multi-image input method of current LVLMs has 610

the capability to learn to perceive the images’ or- 611

der. However, the pre-training and SFT phase of 612

LVLMs do not consider the dimension of multi- 613

ple image orders. 614

7 Conclusion 615

The multi-image perception capabilities of LVLMs 616

are often overlooked. To systematically assess 617

these capabilities, we establish a relational sys- 618

tem among images and manually annotate a so- 619

phisticated multi-granularity, multi-image relation 620

association benchmark (MMRA). Our evaluation 621

of multi-image LVLMs reveals that they perform 622

poorly on fine-grained (entity-level) and spatial per- 623

ception subtasks. Compared results of IDQ setting 624

with those of IQ setting, we find that these models 625

lack robust image detail perception abilities. 626
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Limitations627

In this work, due to resource constraints, our ex-628

ploration of improving model performance in this629

work was conducted with a limited amount of train-630

ing data (only 1.5k samples), which does not fully631

exploit the potential of current VLMs.632

Ethics Statement633

The dataset used in our research is constructed us-634

ing publicly available data sources, ensuring that635

there are no privacy concerns or violations. We do636

not collect any personally identifiable information,637

and all data used in our research is obtained fol-638

lowing legal and ethical standards. In the stage of639

data annotation, we employed three graduate stu-640

dents experienced in Multimodal Reasoning filed.641

We paid the graduate students approximately $13642

per hour, well above the local average wage, and643

engaged in constructive discussions if they had con-644

cerns about the process.645
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Figure 5: The relative improvement of LVLMs on MMRA benchmark.

Question Type Prompt Template

T/F Question You will be giving one question and two
images. Please only answer the question
with Yes or No. Questions: {question}.
Please give me your answer.

Choice Question You will be giving one question, two
images, and four options, one of them
is correct. Please choose one of the four
options. The question is: {Question}.
The options are: [A: {A}, B: {B}, C:
{C}, D: {D}] Please tell me the answer
in the format if [A], [B], [C] or [D].

Table 5: The designed prompt template for the task in
our MMRA benchmark.

A Designed Template854

In this part, we present our designed prompt tem-855

plate for both Choice Question and T/F Question856

in the Tab 5.857

B The Details of Retrieval Method858

Our approach leverages the strong alignment be-859

tween text and image representations learned by860

multimodal retrieval models such as CLIP. Specifi-861

cally, we compute the embedding of the query and862

add it to the embeddings of image1 and image2.863

The resulting representation is then compared with864

the embeddings of the answer options using a dot865

product to measure similarity. The option with the866

highest similarity score is selected as the model’s867

final prediction. We will include a more detailed868

explanation in the final version of the paper, as one869

additional page is permitted.870

C The Information of Our Baselines. 871

We present the pre-training information and sup- 872

porting of our used baselines in Tab 6. 873

D Result Exact Matching Rule 874

Due to significant differences in the response styles 875

of various LLMs and chat templates, the content 876

format of model answers can vary greatly. To ad- 877

dress this discrepancy and accurately reflect the 878

responses of different models, we have developed 879

a specialized Exact Matching Rule. 880

For Multiple-Choice questions: First, we use reg- 881

ular expressions to attempt to directly extract the 882

matching content within parentheses, i.e., extract- 883

ing Answer: “A” from “(A)”. If this is unsuccessful, 884

we then attempt to match option labels (A-D) from 885

the entire response content and return the option 886

with the highest match count. If the response does 887

not contain any option label information, we try 888

to match the option content directly within the re- 889

sponse and return the corresponding option label. 890

For True/False questions: We use regular expres- 891

sions to match “yes” or “no” within the response 892

content. If there are multiple matches, we return 893

the result that appears the most frequently. 894

E Sampled examples from MMRA 895

benchmark 896

In order to comprehensively show our benchmark, 897

we select a sample for each task and present then 898

in the Figure 6. We design two kinds of tasks 899

(i.e., Choice Question and T/F Question). For each 900

12



Model Pre-training Data Supporting Input Parameters

GPT4o&GPT4v / Text, Multi Images, Audio /

Gemini-Flash / Text, Multi Images, Audio, Video /

Idefics2 Internet Crawled Data (Wikipedia
and OBELICS), Public Multimodal
Dataset, LAION-COCO, PDFA (en),
IDL, Rendered-text, WebSight

Text, Multi Images 8B

Qwen-VL-Chat LAION-en, LAION-zh, In-house Data,
LAION-COCO, DataComp, Coyo,
CC12M, CC3M, SBU, COCO Caption

Text, Multi Images 8B

Phi3v / Text, Multi Images 26B

InternVL2 / Text, Multi Images, Video 8B

Mantis-Idefics2 Mantis-Instruction dataset Text, Multi Images 8B

LLaMA-3 / Text Only 8B, 70B

Qwen1.5&Qwen2 Internet Crawled Data Text Only 7B, 32B, 72B

Yi-Chat&Yi-1.5-Chat Web Documents from Common Crawl Text Only 9B, 43B

Table 6: The pre-training information and supporting input of the baselines. "_" refers to non-public or not fully
public data.

example, we show the image pair, question and901

options.902

F Relative Improvement of LVLMs903

We present the relative improvement of LVLMs904

between the IQ and QO settings.905

G Error analysis906

To better analyze the shortcomings of LVLMs, we907

examined instances where GPT-4o made errors on908

relatively challenging subtasks such as RelativePo-909

sition, MadeOf, NearSameEntity, and Layout.910

As presented in Fig 7, LVLMs often select en-911

tities that do not appear in the image when an-912

swering fine-grained questions. For example, for913

subtasks like ’RelativePosition’ and ’NearSameEn-914

tity’, LVLMs sometimes choose options featuring915

entities that are not present in the image (e.g., beer916

and tray).917

We believe this issue arises because LVLMs pri-918

marily depend on the reasoning capabilities of the919

language model. The textual relations in the op-920

tions can significantly interfere with the LVLMs’921

judgments, leading them to overlook the visual in-922

put, particularly for fine-detailed questions.923

In scenarios where neither image contains the924

correct answer for the subtask, we introduced an925

alternative option to express there is no association926

between the two images, such as ’there are no enti-927

ties of the same material in fig1 and fig2’. When928

LVLMs cannot identify the correct answer, they929

tend to select this option, suggesting no connection 930

between the two images. 931

Regarding the ’Layout’ subtask, it appears that 932

current LVLMs have a limited ability to grasp the 933

key elements within images. They sometimes fail 934

to determine whether both images prominently fea- 935

ture a main entity. 936
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Question: Do both images express similar emotions?
Options:
Ture/False
Explanation: The two men in the picture are both 
laughing, both expressing a happy emotion

MentalitySImilarity

Question Type: Choice Question
Granularity: Entity

Question: Which two entities, respectively in Fig1 
and Fig2, all near a same entity?
Options:
A. The toy mouse in Fig1 and the person in Fig2
B. The toy mouse in Fig1 and the towel in Fig2
C. There are no answer of this question
D. The toy mouse in Fig1 and the toy bear in Fig2

Question Type: Choice Question
Granularity: Entity

Question: Are there any entities in Fig1 and Fig2 that 
have the same shape?
Options:
Ture/False
Explanation: The traffic signs in both pictures are 
rectangular

Question Type: Choice Question
Granularity: Entity

NearSameEntity AppearanceSimilarity

Question: Based on the Fig1 and Fig2, which entities 
have the same usage?
Options:
A. There is no entity have same usage
B. Skateboarding and snowboarding bring riders 
together, fostering a sense of community
C. Skateboarding and snowboarding are both 
recreational activities

UsageSimilarity

Question Type: Choice Question
Granularity: Entity

Question: Which two entities in Fig1 and Fig2 are in 
the same relative position in the images?
Options:
A. Curtain in Fig1 and towels in Fig2
B. Pillow in Fig1 and mirror in Fig2
C. Pillow in Fig1 and stairs in Fig2
curtain rod in Fig1 and sink in Fig2
D. curtain rod in Fig1 and sink in Fig2

Question Type: Choice Question
Granularity: Entity

Question: Which two entities, respectively in Figure 1 
and Figure 2, are made of the same material?
Options:
A. there are no entities of the same material in figure 
one and figure two
B. fence in figure 1 and grass in figure 2
C. bench in figure 1 and tree in figure 2
D. ocean in figure 1 and grass in figure 2

Question Type: Choice Question
Granularity: Entity

RelativePosiition SimilarMaterial

Entity Level

Question: Are those pictures similar in environment?
Options:
A. Both pictures depict the environment around a 
rural railway
B. Both pictures are close-ups of a room
C. Both pictures depict outdoor snow in winter
D. Both pictures depict a sunny winter day in a 
certain European country

Environment

Question Type: Choice Question
Granularity: Global

Question: What are the similarities between these 
two pictures in terms of structure and layout?
Options:
A. The distribution of entities in the pictures follows 
a similar pattern or arrangement
B. There is no obvious relationship between the two 
pictures in terms of layout
C. Each picture has a prominent entity

Question Type: Choice Question
Granularity: Global

Question: Please judge the spatial relation between 
Fig1 and Fig2.
Options:
A. Fig1 is a close-up of the surface of Fig2
B. Fig1 is a close-up of the interior of Fig2
C. Fig1 and Fig2 are shots of the same object from 
different parallel perspectives
D. Fig1 and Fig2 have no relation in spatial view

Question Type: Choice Question
Granularity: Global

Layout ObservationAngle

Question: In this two pictures depict a similar events 
Options:
A. Airplane taking off
B. Train stop
C. Climbing mountain
D. Riding Bike

SimilarEvent

Question Type: Choice Question
Granularity: Global

Question: Is there a chronological relation 
between Fig1 and Fig2?
Options:
Ture/False
Explanation: These two pictures depict the 
moments before and after two people fencing in 
the same scene

Question Type: T/F Question
Granularity: Global

SubEvent

Global Level

Figure 6: Sampled MMRA examples for each task. The bold and underlined options indicate they are the golden
answers.
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Options: 
A. shutter in figure one and window in figure two
B. hinge in figure one and baby bird in figure two
C. doorframe in figure one and the marks left by a impact in 

figure two
D. doorframe in figure one and string in figure two

doorframe bird’s mark

RelativePosition

Options: 
A. doorknob in fig1 and microwave door frame in fig2
B. the surf in fig1 and the bus in fig2
C. there are no entities of the same material in fig1 and fig2
D. the surf in fig1 and the road surface in fig2

bird’s mark

SimilarMaterial

Options: 
A. spoon in figure one and folk in figure two
B. wine in figure one and cup in figure two
C. beer cap in figure one and tray in figure two
D. beer in figure one and tray in figure two

NearSameEntity

Options: 
A. the distribution of entities in the pictures follows a similar 

pattern or arrangement
B. there is no obvious relation between the pictures in terms 

of layout.
C. each picture has a prominent entity

Layout

person person

tray
beer cap

Question: Which two entities in Fig1 and Fig2 are in the same 
relative position within the images?
QA_type: Choice QA

Golden answer: C            GPT4O’s answer: D

Question: Which two entities, respectively in Fig1 and Fig2, 
are made of the same material?
QA_type: Choice QA

Golden answer: C             GPT4O’s answer: D

Question: Which two entities, respectively in Fig1 and Fig2, 
near or adjacent to a same object?
QA_type: Choice QA

Golden answer: C  GPT4O’s answer: D

Question: What are the similarities between these two 
pictures in terms of structure and layout?
QA_type: Choice QA

Golden answer: C  GPT4O’s answer: A

Figure 7: The error analysis of GPT4o on our MMRA benchmark.
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