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Abstract

Acquiring labeled data is challenging in many machine learning applications with1

limited budgets. Active learning gives a procedure to select the most informative2

data points and improve data efficiency by reducing the cost of labeling. The info-3

max learning principle maximizing mutual information such as BALD has been4

successful and widely adapted in various active learning applications. However,5

this pool-based specific objective inherently introduces a redundant selection. In6

this paper, we design and propose a new uncertainty measure, Balanced Entropy7

Acquisition (BalEntAcq), which captures the information balance between the8

uncertainty of underlying softmax probability and the label variable. To do this,9

we approximate each marginal distribution by Beta distribution. Beta approxi-10

mation enables us to formulate BalEntAcq as a ratio between a shifted entropy11

and the marginalized joint entropy. The closed-form expression of BalEntAcq12

facilitates parallelization by estimating two parameters in each marginal Beta13

distribution. BalEntAcq is a purely standalone measure without requiring any14

relational computations with other data points. Nevertheless, BalEntAcq captures15

a well-diversified selection near the decision boundary with a margin, unlike other16

existing uncertainty measures such as BALD, Entropy, or Mean Standard De-17

viation (MeanSD). Finally, we demonstrate that our balanced entropy learning18

principle with BalEntAcq consistently outperforms well-known linearly scalable19

active learning methods, including a recently proposed PowerBALD, a simple20

but diversified version of BALD, by showing experimental results obtained from21

MNIST, CIFAR-100, SVHN, and TinyImageNet datasets.22

1 Introduction23

Acquiring labeled data is challenging in many machine learning applications with limited budgets.24

As the dataset size gets bigger and bigger for training a complex model, labeling data by humans25

becomes more expensive. Active learning gives a procedure to select the most informative data points26

and improve data efficiency by reducing the cost of labeling.27

The active learning problem is well-aligned with a subset selection problem that can find the most28

efficient but minimal subset from the data pool [70, 34, 18, 66, 86, 87, 85]. The difference is that29

active learning is typically an iterative process where a model is trained and a collection of data30

points is selected to be labeled from an unlabelled data pool. Therefore, it is still a theoretically very31

challenging but important problem.32

It is now commonly accepted that standard deep learning models do not capture model uncertainty33

correctly. The simple predictive probabilities are usually erroneously described as model confidence34

[31]. So there is a risk that a model can be misdirecting its outputs with high confidence. However, the35

predictive distribution generated from Bayesian deep learning models better captures the uncertainty36
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from the data [26, 51, 67, 17]. Therefore, we focus on developing an active learning framework in37

the Bayesian deep neural network model by leveraging the Monte-Carlo (MC) dropout method as a38

proxy of the Gaussian process [26] which may facilitate further analysis.39

1.1 Our contributions40

Our proposed active learning method is well-aligned with Bayesian experimental design [89, 14, 80,41

62, 24] with an assumption that the forward active learning iterative process follows the Bayesian42

prior-posterior framework. Furthermore, our approach is also aligned with Bayesian uncertainty43

quantification methods [40, 1, 35, 41, 26, 27, 48, 67, 47] with an assumption that the working neural44

network model is a Bayesian network [49].45

In this paper, we extend and improve recent advances in both aspects of Bayesian experimental46

design and Bayesian uncertainty quantification. We investigate the generalized notion of the joint47

entropy between model parameters and the predictive outputs by leveraging a point process entropy48

[64, 25, 73, 16, 5]. By approximating the marginals using Beta distributions, we then derive an49

explicit formula of the marginalized joint entropy by estimating Beta parameters from Bayesian50

deep learning models. As a Bayesian experiment, we revisit the well-known entropy and mutual51

information measures given expected cross-entropy loss. We show that well-known acquisition52

measures are functions of marginal distributions through analytical formulas. We propose our new53

uncertainty measure, Balanced Entropy Acquisition (BalEntAcq), which captures the information54

balance between the uncertainty of underlying softmax probability and the label variable. Finally, we55

demonstrate that our balanced entropy learning principle with BalEntAcq consistently outperforms56

well-known linearly scalable active learning methods, including a recently proposed PowerBALD57

[47] for mitigating the redundant selection in BALD [27], by showing experimental results obtained58

from MNIST, CIFAR-100, SVHN, and TinyImageNet datasets.59

2 Background60

2.1 Problem formulation61

We write an unlabeled dataset Dpool and the labeled training set Dtraining ⊆ Dpool in each active62

learning iteration. We denote by D(n)
training if it’s necessary to indicate the specific n-th iteration step.63

Given Dtraining, we train a Bayesian deep neural network model Φ with model parameters ω ∼ p (ω).64

Then for a data point x given Dtraining, the Bayesian deep neural network Φ produces the prediction65

probability: Φ (x, ω) := (P1(x, ω), · · · , PC(x, ω)) ∈ ∆C where ∆C = {(p1, · · · , pC) : p1 + · · ·+66

pC = 1, pi ≥ 0 for each i} and C is the number of classes. For the final class output Y , it is assumed67

to be a multinoulli distribution (or categorical distribution):68

Y (x, ω) :=


1 with probability P1(x, ω)
...

...
C with probability PC(x, ω).

(1)

For the sake of brevity, we sometimes omit x or ω by writing Φ (ω), Pi(ω), Y (ω) or Φ, Pi, Y unless69

we need further clarifications on each data point x. Under this formulation, the oracle (active learning70

algorithm) selects a subset of data points to add to the next training set, i.e. at (n+ 1)-th iteration,71

the training set is determined by D(n+1)
training = D(n)

training ∪ {Next training batch from Oracle}. Once the72

next training batch is selected, the selected batch will be labeled. This means that the ground truth73

label information of the selected data is added in training set D(n+1)
training in the next round. Then the74

goal in active learning is to minimize the number of selected data points to reach a certain level of75

prediction accuracy.76

2.2 Examples of uncertainty based active learning methods77

In this section, we list up well-known uncertainty measures suitable for Bayesian active learning.78

1. Random: Rand[x] := U(ω′) where U(·) is a uniform distribution which is independent to ω.79

Random acquisition function assigns a random uniform value on [0, 1] to each data point.80
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2. BALD (Bayesian active learning by disagreement) [58, 35, 27]: BALD[x] := I (ω, Y (x, ω)),81

where I(·, ·) represents a mutual information between random measures. BALD captures the82

mutual information between the model parameters and the predictive output of the data point. In83

practice, we calculate the mutual information between the predictive output and the predictive84

probabilities.85

3. Entropy [82]: Ent[x] := −
∑

i (EPi) log (EPi). Entropy is the Shannon entropy with respect to86

the expected predictive probability. Entropy can be the uncertainty of the prediction probability.87

Moreover, under the cross-entropy loss, we may also interpret the entropy measure as an expected88

loss gain since − log (EPi) is the cross-entropy loss given the ground truth label is the class i.89

4. Mean standard deviation (MeanSD) [14, 40, 1]: MeanSD[x] := 1
C

∑
i

√
EP 2

i − (EPi)
2. Mean90

standard deviation captures the average of the standard deviations for each marginal distribution.91

5. PowerBALD [21, 47]: PowerBALD[x] := logBALD[x] + Z, where Z is an independently92

generated random value from Pareto distribution with the exponent α > 0. We use α = 1 as a93

default choice suggested by [47]. The motivation of this randomized acquisition is to mitigate the94

redundant selection by diversifying selected multi-batch points. In general, we do not know which95

exponent will be the optimal choice.96

In a multiple acquisition scenario, we simply add the above uncertainty values for each data point xi:97

AcqFunc[x1, · · · ,xn] :=

n∑
i=1

AcqFunc[xi], (2)

where AcqFunc ∈ {Rand,BALD,Ent,MeanSD,PowerBALD}.98

2.3 Summary of other active learning approaches99

Cohn et al. [14] provided one of the first statistical analyses in active learning, establishing how100

to synthesize queries that reduce the model’s forward-looking error by minimizing its variance101

leveraging MacKay’s closed-form variance approximation [60]. In this fashion, there exists a line of102

works in Bayesian experimental design [11, 58, 89, 14, 80, 90, 24, 23, 38] with an assumption that103

the forward active learning iterative process follows Bayesian prior-posterior framework.104

On the other hand, in active learning, accommodating both the information uncertainty and the105

diversification of the acquired samples is essential to improve the performance under multi-batch106

acquisition scenarios. In a theoretical perspective, the most natural way to combine the uncertainty107

and the diversification seems to leverage reasonable sub-modular functions, e.g. Nearest neighbor108

set function [92], BatchBALD [48], Determinantal Point Process [6] and SIMILAR [50] with sub-109

modular information measures, and then/or apply a fast linear-time algorithm to find a diversified110

multi-batch with a provable performance guarantee [69, 70, 20, 95, 79, 36, 37, 57]. Although a fast111

linear-time solver is available for general sub-modular functions, there still exists a gap with practical112

implementation, such as high memory requirements, which makes the computation unscalable for113

identifying multi-batch acquisition points, e.g., BatchBALD [48]. Similar to the sub-modular function114

optimization, there exist many customized optimization approaches, e.g. CoreSet [81] and more115

approaches [29, 39, 19, 94, 91].116

Another recent approach is to look at parameters of the neural network and to diversify points such117

as BADGE [4] with gradients and BAIT [3] with Fisher information. There also exist network118

architectural design focused approaches such as Learning loss by designing loss prediction layers119

[96], UncertainGCN and CoreGCN [8] with graph neural networks , VAAL [84] and TA-VAAL [42]120

by applying adversarial learning methods.121

3 Bayesian neural network model122

We adopt the Bayesian neural network framework introduced in Gal et al. [26]. The core idea in123

the Bayesian neural network is leveraging the MC dropout feature to generate a distribution of the124

predictive probability as an output at inference time. Under mild assumptions, it turns out that it is125

equivalent to an approximation to a Gaussian Process [77, 68, 93, 26, 56].126
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3.1 Each softmax probability marginal approximately follows Beta distribution127

We may consider a Bayesian neural network model Φ as a random measure, i.e., stochastic process128

parametrized by Dtraining over the data set Dpool. Given a data point x ∈ Dpool, Φ (x, ω) produces129

a random probability distribution in a simplex ∆C . This analogy has a close connection with the130

construction of random discrete distribution, originally introduced by Kingman [45]. Since then,131

random measure construction has been extensively developed in Bayesian nonparametrics, and it is132

well-known that Dirichlet probability having Beta marginals plays the central role in the construction133

of the random discrete distribution [46, 22, 75, 74, 7, 72, 78]. It is the main motivation of the Beta134

distribution approximation. Many kinds of literature similarly assume the Dirichlet distribution after135

the softmax in the Bayesian neural network.136

As illustrated by Milios et al. [65], we may follow the construction of Dirichlet distribution. Follow-137

ing the approach by Ferguson [22], a Dirichlet probability can be constructed through a collection of138

independent Gamma distributions. On the other hand, each marginal in Gaussian Process (approx-139

imated by Bayesian neural network) in the softmax output having dependent components follows140

a log-normal distribution (before the normalization, but after the exponentiation in softmax). Then141

by applying the shape similarity between a log-normal distribution and Gamma distribution, the142

construction of random probability from log-normal distributions would produce an approximated143

Dirichlet distribution. Therefore we may assume that the marginal distribution would approximately144

follow the Beta distribution.145

Alternatively, as an analytical approach, we may see that Beta approximation can be justified through146

Laplace approximation [61, 32, 33, 17]. There exists a mapping between multivariate Gaussian147

distribution and Dirichlet distribution under a softmax basis. Then Beta distribution follows as a148

marginal distribution of Dirichlet distribution. Therefore we may assume that Beta approximation149

exists through Laplace approximation under the assumption that the Bayesian neural network produces150

the multivariate Gaussian distribution (as a marginalized Gaussian process over finite rank covariate151

function) before the softmax layer [68, 93, 26, 56].152

In practice, once we estimate the sample mean and sample variance for each marginal of Φ (x, ω),153

we can estimate two parameters of the Beta distribution as follows. Assume that Pi ∼ Beta (αi, βi).154

If EPi = mi and VarPi = σ2
i , then155

α =
m2(1−m)

σ2
−m, β =

(
1

m
− 1

)
α. (3)

When Pi ∼ Beta (αi, βi), EPi =
αi

αi+βi
= m and VarPi =

αiβi

(αi+βi)2(αi+βi+1) = σ2
i . Solving the156

equation with respect to αi and βi, then the (3) follows.157

3.2 Marginalized joint entropy in Bayesian neural network158

In this section, we derive a marginalized joint entropy in the Bayesian neural network, which shall be159

further discussed in constructing our main results. We may formulate the Bayesian neural network Φ160

as a well-known encoder-decoder framework. The sender sends a message (x, ω) with a random key161

ω through the Bayesian neural network, then the receiver receives a message Y (x, ω).162

Under this framework, controlling ω is difficult, but we can control the family of the encoded163

messages Φ (x, ω) in a tractable manner [27, 43, 88]. We can easily prove that the mutual information164

between ω and Y is the same as the mutual information between the encoded Φ (x, ω) and the165

predictive output Y since Y depends only on Φ (x, ω):166

BALD[x] :=I (ω, Y (x, ω)) = H(Y (x, ω))− Eω [H (Y (x, ω) |ω)] (4)
=H(Y (x, ω))− EΦ [H (Y (x, ω) |Φ (x, ω))] = I (Φ (x, ω) , Y (x, ω)) , (5)

where H(Y (x, ω)) represents the Shannon entropy by marginalizing out the randomness of ω in167

Y (x, ω) and I(·, ·) represents a mutual information between two quantities.168

The formulations of the mutual information (4) - (5) look natural, but we need to note that ω169

or Φ (x, ω) is on a continuous domain, and Y (x, ω) is on a discrete domain. This combined170

domain implies that we cannot directly apply Shannon entropy and differential entropy notions [15].171

One immediate question is what the joint entropy between Φ (x, ω) and Y (x, ω) is. For this, we172

can leverage point process entropy [64, 25, 73, 16, 5] by generalizing the notion of the entropy173
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in this combined domain. We consider the joint entropy of Φ (x, ω) and Y (x, ω), denoting by174

H (Φ (x, ω) , Y (x, ω)) through the point process entropy. We write a Janossy density function [16]175

j (p, y = i) of (Φ (x, ω) , Y (x, ω)) on ∆C × [C] as follows:176

j (p, y = i) = pif (p) , (6)
where p := (p1, · · · , pC) and f(·) is a density function of Φ (x, ω). Then the joint entropy of177

Φ (x, ω) and Y (x, ω) can be defined as178

H (Φ (x, ω) , Y (x, ω)) = −
C∑
i=1

∫
∆c

j (p, y = i) log j (p, y = i) dp. (7)

By plugging (6) into (7), we have the following identity.179

H (Φ (x, ω) , Y (x, ω)) =H(Y (x, ω)) + EY [h (Φ (x, ω) |Y (x, ω))] , (8)
where H(·) represents the usual Shannon entropy, and h(·) represents the usual differential entropy.180

By applying Jensen’s inequality, we may derive a marginalized joint entropy as an upper bound of181

the joint entropy:182

H (Φ (x, ω) , Y (x, ω)) ≤ −
∑
i

EPi
[Pi log (Pif(Pi))] , (9)

where we ambiguously write f(·) to be a density function for each Pi. Assume that each Pi ∼183

Beta(αi, βi) by applying Beta approximation. We then define a quantity of the marginalized joint184

entropy from (9) and we find an equivalent formulation as follows:185

MJEnt[x] := −
∑
i

EPi
[Pi log (Pif(Pi))] =

∑
i

(EPi)h(P
+
i )︸ ︷︷ ︸

posterior uncertainty

+H(Y )︸ ︷︷ ︸
entropy

, (10)

where P+
i is the conjugate Beta posterior entropy of Pi which follows P+

i ∼ Beta(αi + 1, βi). We186

remark that h(P+
i ) can be easily calculated by the closed form entropy formula of Beta distribution.187

i.e.188

h(P+
i ) = logB(αi + 1, βi)− αiΨ(αi + 1)− (βi − 1)Ψ(βi)− (αi + βi − 1)Ψ(αi + βi + 1),

where B(·, ·) is the Beta function, and Ψ(·) is the Digamma function. We call the first term in (10)189

to be the posterior uncertainty. We may interpret the posterior uncertainty as an expected posterior190

entropy assuming that we observed a positive sample of the class toward Pi for each i without191

knowing the true class label. The first term is always non-positive, and is maximized (equals to 0)192

when each P+
i is Beta(1, 1), i.e., Uniform on [0, 1]. So −∞ < MJEnt[x] ≤ H(Y ). The second193

entropy term can be decomposed into two uncertainty terms:194

H(Y ) = I (ω, Y )︸ ︷︷ ︸
epistemic uncertainty

+ Eω [H (Y |ω)]︸ ︷︷ ︸
aleatoric uncertainty

. (11)

The epistemic uncertainty captures the model uncertainty (as BALD), and the aleatoric uncertainty195

captures the data uncertainty [63]. Therefore the marginalized joint entropy, MJEnt[x] is a decompo-196

sition of three types of uncertainty values.197

3.3 Entropy is for maximizing an expected cross-entropy loss198

Given a ground-truth label {Y = i}, the cross-entropy loss of the neural network can be given as199

loss (Φ (x, ω) , Y = i) = − logEPi. Therefore we can calculate the expected cross-entropy loss200

without knowing the truth label:201

ExpectedLoss[x] :=
C∑
i=1

P [Y = i] loss (Φ (x, ω) , Y = i) = −
∑
i

(EPi) log (EPi) = Ent[x].

Based on the re-formulation, we may interpret that entropy acquisition is for maximizing an expected202

cross-entropy loss in a selection of acquisition points, aligning the idea with the learning loss [96].203

The natural question is, "Once we acquire a data point that maximizes entropy acquisition, can we204

remove/or learn this expected cross-entropy amount of loss at the future stage of the active learning?".205

The answer could be "No." The exhaustive loss acquisition could only happen if the neural network206

perfectly over-fits the training data. Therefore, there exists a gap between a realistic neural network207

training scenario and the objective of the entropy acquisition. Our equivalent loss interpretation208

gives us an insight into why the entropy acquisition might not be successful in practice, even in the209

single-point acquisition scenario.210
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3.4 BALD is a function of marginals and is strongly aligned with maximizing an expected211

cross-entropy loss difference upto the next iteration212

We have the mutual information between ω and Y and it is the same as the mutual information213

between the encoded message and the channel output since Y depends only on Φ (x, ω) [27]:214

BALD[x] := I (ω, Y ) = I (Φ (x, ω) , Y (x, ω)) , (12)
where I(·, ·) represents mutual information between two quantities. By assuming that Φ (x, ω)215

follows a Dirichlet distribution, we can calculate the mutual information analytically [2]. Then216

by investigating further into the analytical mutual information formula, we see that the marginal217

distributions Pi’s in Φ (x, ω) are sufficient to estimate BALD. Therefore we can state BALD through218

Beta marginal distributions as follows. See Appendix for more details.219

Theorem 3.1. Under Beta marginal distribution approximation, let Pi ∼ Beta(αi, βi) in Φ (x, ω).220

Then the mutual information BALD[x] can be estimated as follows:221

BetaMarginalBALD[x] :=
C∑
i=1

(αi − 1)Ψ (αi + βi)−
C∑
i=1

(
αi

αi + βi

)
log

(
αi

αi + βi

)
−

C∑
i=1

αi (αi − 1)

αi + βi
Ψ(αi)

−
C∑
i=1

βi (αi − 1)

αi + βi
Ψ(αi + βi + 1) +

C∑
i=1

(
α2
i

αi + βi

)
[Ψ (αi + 1)−Ψ(αi + βi + 1)] .

222

As a Bayesian experimental design process, we may assume that each Beta marginal distribution223

Pi with the ground-truth label {Y = i} of the next trained model would follow the Beta posterior224

distribution P+
i . Without this assumption, existing choices of acquisition functions such as BALD or225

MeanSD might not be well-justified. For example, what is the implication of maximizing mutual226

information through the active learning process with a Bayesian neural network? How is it different227

from the maximization of the entropy acquisition? To answer these questions, leveraging our Beta228

marginalization and considering the similar idea of expected information gain [24], we may consider229

the expected cross-entropy loss difference between the current stage model and the next stage model.230

ExpectedEffectiveLoss[x] :=
C∑
i=1

EPi

[
− logEPi −

(
− logEP+

i

)]
=

C∑
i=1

(
αi

αi + βi

)[
log

(
αi + 1

αi + βi + 1

)
− log

(
αi

αi + βi

)]
.

ExpectedEffectiveLoss captures the effective amount of cross-entropy loss for the model to learn231

after the acquisition. By definition, we see that ExpectedEffectiveLoss aims to exclude the undesirable232

over-fitting scenario assumption unlike Entropy acquisition.233

Since Digamma function Ψ(x) ∼ log x− 1
2x where f(x) ∼ g(x) implies limx→∞ f(x)/g(x) = 1,234

we may expect that BetaMarginalBALD[x] and ExpectedEffectiveLoss[x] would behave similarly.235

Figure 1 shows the Spearman’s rank correlations among different acquisition measures upto a236

class dimension C = 10, 000. We observe that BetaMarginalBALD behaves equally like the237

original BALD and we confirm that BALD and MeanSD are strongly aligned with maximizing238

ExpectedEffectiveLoss. Therefore, acquiring points through BALD or MeanSD could be a better239

strategy than Entropy because BALD or MeanSD takes into account the effective loss acquisition240

instead of the unrealistic full amount of the loss acquisition.241

4 Balanced entropy learning principle242

The previous section shows that well-known acquisition measures have an objective toward the243

cross-entropy loss, and they are closely related to marginal distributions. According to Farquhar244

et al. [21], to be successful in active learning, they hypothesize that it is crucial to find a good245

balance between active learning bias and over-fitting bias under over-parametrized neural networks.246

In parallel to their hypothesis, we define the balanced entropy (BalEnt) to be a ratio between the247

marginalized joint entropy (9) and the shifted entropy:248

BalEnt[x] :=
MJEnt[x]

Ent[x] + log 2
=

∑
i (EPi)h(P

+
i ) +H(Y )

H(Y ) + log 2
. (13)
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Figure 1: Scatter plot at C = 10, 000 between BALD and ExpectedEffectiveLoss (left), Spearman’s
rank correlations over various class dimensions (middle), and Spearman’s rank correlation matrix
at C = 10, 000 (right). The relationship between BetaMarginalBALD and ExpectedEffectiveLoss
consistently captures a high rank-correlation with > 99.6% regardless of the class dimensions. BALD
and ExpectedEffectiveLoss show > 97.5% rank-correlation. We randomly generate 100 softmax
applied C-dimensional Gaussian samples and repeated the process 10 times. Shaded band shows the
standard deviation.

Recall that we call the first term in MJEnt[x] to be posterior uncertainty, and it is an expected posterior249

entropy of underlying marginals. BalEnt captures the information balance between the posterior250

uncertainty from the model Φ and entropy of the label variable Y .251

4.1 Implications of balanced entropy252

To understand the implication of BalEnt[x], we can prove the following Theorem 4.1.253

Theorem 4.1. Let ∆−1 := ⌊2eH(Y )⌋ and Υ := {In}, a collection of evenly divided intervals in254

[0, 1] where In :=
[
(n− 1)∆, n∆

)
for n = 1, · · · , (∆−1 − 1) and I∆−1 := [1−∆, 1]. Let P̄i be a255

discretized random variable over Υ of Pi from Φ (x, ω). For any estimator P̂i of P̄i given the label256

{Y = i} we have257

E
[
P
[
P̂i ̸= P̄i

∣∣∣∣Y = i

]]
≥

∑
i (EPi)h(P

+
i ) +H(Y )

H(Y ) + log 2
(1 + ϵ1)− ϵ2 = BalEnt[x](1 + ϵ1)− ϵ2,

where ϵ1, ϵ2 ≥ 0 are adjustment terms depending on ∆ such that ϵ1 → 0 and ϵ2 → 0 as ∆ → 0.258

Theorem 4.1 tries to answer the following inverse problem. For the unlabeled data point, x, if we know259

the information of the label {Y = i}, how much can we reliably estimate the underlying probability260

Pi from the model Φ? As we know that − logPi is the cross-entropy loss of the trained model with261

Y , it equivalently answers the estimation error probability of the loss prediction under a unit precision262

up to − log∆ level. For the precision level, we are assuming to carry − log∆ ≈ H(Y ) + log 2 nats -263

natural unit of information, re-scaled amount of bits, matching the enumerator with MJEnt[x] term. It264

is not clear how to determine a better choice of the precision level − log∆. But we may understand the265

denominator H(Y ) + log 2 is for normalizing the term BalEnt[x] ≤ 1 as a probability. Then the sign266

of BalEnt[x] becomes very important. BalEnt[x] ≥ 0 implies that it could be impossible to perfectly267

predict the loss − logPi given currently available information. i.e., there could exist information268

imbalance between the model and the label approximately starting from BalEnt[x] = 0. Therefore,269

insight from Theorem 4.1 suggests us a new direction for our main active learning principle. We270

define our primary acquisition function, namely, balanced entropy learning acquisition (BalEntAcq),271

as follows:272

BalEntAcq[x] :=
{

BalEnt[x]−1 if BalEnt[x] ≥ 0,

BalEnt[x] if BalEnt[x] < 0,

Since the information imbalance exists at least from BalEnt[x] = 0, we prioritize to fill the in-273

formation gap from BalEnt[x] = 0 toward positively increasing direction. If we try to fill the274

information imbalance gap from the highest BalEnt[x], the information imbalance would still exist275

around BalEnt[x] = 0 area. Therefore, it might not improve the active learning performance much.276

See Appendix A12.2 and A12.3 for different prioritization and precision level results. That’s the277

motivation why we take the reciprocal of BalEnt[x] when BalEnt[x] ≥ 0.278
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(a) BalEntAcq (ours) (b) BALD (c) Entropy (d) MeanSD (e) PowerBALD

Figure 2: Top-K selected points are marked by red color. The first row shows the top K = 25 points.
The second row shows the top K = 500 point selections among around 0.6 million grid points.

4.2 Toy example illustration279

To illustrate the behavior of BalEntAcq and its relationship with other uncertainty measures, we280

train a simple Bayesian neural network with a 3-class moon dataset in R2. Then we calculate each281

acquisition measure for all fixed lattice points in the square domain by assuming that the unlabeled282

pool is highly regularized (or uniform). i.e., by evenly discretizing the domain, we obtain each283

uncertainty value for each lattice point. The total number of lattice points is around 0.6 million.284

Then we choose top-K high uncertainty values for each method to observe the prioritized region for285

each method. We use K = 25 and K = 500. Figure 2 illustrates the top-K points selected by each286

method. The most significant phenomenon is that BalEntAcq’s selection is highly diversified near287

the decision boundary showing a bifurcated margin because we are prioritizing the surface area of288

{BalEnt[x] ≥ 0}. This is well-aligned with the strategy avoiding high aleatoric points. (See Appendix289

A.13) Then we can imagine to conduct a uniform sampling on each contour surface {BalEnt[x] = λ}290

for each λ ≥ 0, as we move to the surface for each λ < 0. That’s why we observe bifurcated but291

diversified and balanced selection near the decision boundary with BalEngAcq in Figure 2-(a) when292

K = 25. On the other hand, there is a preferred area for each method from other measures except293

PowerBALD. PowerBALD shows a good diversification, but it could select non-informative points.294

5 Experimental Results295

In this section, we demonstrate the performance of BalEntAcq from MNIST [55], CIFAR-100 [52],296

SVHN [71], and TinyImageNet [54] datasets under various scenarios. We used a single NVIDIA297

A100 GPU for each experiment, and details about the experiments are explained in Appendix A.12.298

We test Random, BALD, Entropy, MeanSD, PowerBALD, and BalEntAcq measures. We add BADGE299

for additional baseline. Note that all acquisition measures except BADGE in our experiments are300

standalone quantities, so all can be easily parallelized.301

Single acquisition active learning with MNIST. MNIST [55] is the most popular and elementary302

dataset to validate the performance of image-based deep learning models initially. We use a simple303

convolutional neural network (CNN) model applying dropouts to all layers with a single acquisition304

size. The primary purpose of this single acquisition experiment is to validate our proposed balanced305

entropy approach by removing the contribution of diversification unlike multi-batch acquisition306

scenario.307

Fixed features with CIFAR-100 and 3×CIFAR-100. In recent years, significant efforts have been308

made on building an efficient framework of unsupervised or self-supervised feature learning such as309

SimCLR [12, 13], MoCo [30], BYOL [28], SwAV [9], DINO [10], etc. As an application in active310

learning, we may leverage the feature space from the unsupervised feature learning without explicitly311

knowing true labels but construct a good representation space. In our experiments, we adopt SimCLR312

[12] for simplicity with ResNet-50 to build a feature space for CIFAR-100.313

With 3×CIFAR-100 dataset, we observe the effect of the redundant information treatment for each314

method by adding three identical points. We use the same fixed feature obtained from SimCLR with315

CIFAR-100. We may observe how each method effectively diversifies the selection under a redundant316

data pool scenario by fixing the feature space.317
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Pre-trained backbone with SVHN and strong data augmentation with TinyImageNet. In this318

experiment, we follow a typical image classification scenario in practice. We use the ResNet-18319

backbone for SVHN and the ResNet-50 backbone for TinyImageNet with ImageNet pre-trained model320

for model architecture, and the last linear classification layer is replaced with a simple Bayesian neural321

network with dropouts. We apply strong data augmentations for TinyImageNet, including random322

crop, random flip, random color jitter, and random grayscale. Under this scenario, the feature space323

from the backbone is continuously evolving and keeps confused as the training and active learning324

process proceeds. Because of the strong data augmentation and batch normalization in ResNet-18 or325

ResNet-50, the decision boundary keeps confused, implying that the Bayesian experimental design326

assumption might not hold. However, we still want to observe the general behavior of each measure327

and how to improve the accuracy under a more dynamic feature space.328

(a) MNIST (b) CIFAR-100 (c) 3×CIFAR-100 (d) SVHN (e) TinyImageNet

Figure 3: Active learning accuracy curves obtained from various scenarios. Our proposed BalEntAcq
outperforms well-known acquisition measures, and we repeated the experiment 3 times.

Scenario Full dropouts + CNN Fixed feature Redundant images + Fixed feature Backbone Backbone + Augmentation
Dataset/Acq. Size/Test size MNIST/1/10,000 CIFAR-100/500/10,000 3×CIFAR-100/500/10,000 SVHN/2,500/26,032 TinyImageNet/1,500/10,000

Train Size/Pool Size 50/60,000 100/60,000 300/60,000 5,000/50,000 10,000/50,000 15,000/150,000 30,000/150,000 15,000/73,257 30,000/73,257 15,000/100,000 30,000/100,000
Random 78.6± 4.9% 86.4± 2.7% 93.6± 0.7% 55.5± 0.4% 59.4± 0.5% 61.9± 0.2% 64.9± 0.3% 91.8± 0.6% 93.2± 0.2% 37.1± 0.3% 43.8± 0.1%
BALD 82.6± 1.3% 90.5± 0.8% 95.3± 0.4% 56.2± 0.5% 60.8± 0.3% 58.8± 0.2% 64.6± 0.6% 92.5± 0.8% 94.8± 0.2% 35.2± 0.7% 41.8± 0.4%

Entropy 77.4± 2.6% 87.7± 2.0% 94.8± 0.3% 54.9± 0.4% 60.0± 0.3% 56.7± 0.8% 62.3± 0.4% 92.6± 0.4% 94.8± 0.2% 35.1± 0.4% 41.8± 0.4%
MeanSD 83.4± 2.2% 90.6± 1.1% 96.0± 0.2% 56.0± 0.1% 60.9± 0.4% 59.4± 0.5% 64.3± 0.3% 92.5± 0.6% 94.3± 0.2% 34.7± 0.4% 40.9± 0.6%

PowerBALD - - - 56.5± 0.1% 60.3± 0.2% 62.2± 0.2% 65.0± 0.7% 92.2± 0.6% 93.5± 0.2% 37.4± 0.7% 43.4± 0.3%
BADGE (not-scalable) 77.0± 6.1% 86.5± 4.2% 94.8± 0.4% 57.4± 0.1% 61.8± 0.1% 64.0± 0.2% 67.4± 0.1% 92.9± 0.4% 95.0± 0.3% 37.2± 0.6% 43.9± 0.3%

BalEntAcq (ours) 85.4± 1.0% 91.4± 1.3% 96.5± 0.1% 57.2± 0.2% 61.5± 0.2% 63.5± 0.5% 67.4± 0.1% 92.5± 0.8% 95.2± 0.1% 38.5± 0.2% 45.3± 0.4%

Table 1: Selected accuracy table. Mean and standard deviation are from 3 repeated experiments.

Discussion. BalEntAcq consistently outperforms other linearly scalable baselines in all datasets, as329

shown in Table 1. BADGE performs similarly with Entropy under a single acquisition scenario in330

MNIST because BADGE focuses on maximizing the loss gradient similar to Entropy, as we explained331

in Section 3.3. BADGE shows better performances at first when we fix the feature space, but our332

BalEntAcq eventually merges with the performance of BADGE. We also note that BADGE is not a333

linearly scalable method. Under dynamic feature scenarios in SVHN or TinyImageNet, we observe334

that our BalEntAcq performs better. Considering the acquisition calculation time (see Appendix A.14),335

our BalEntAcq should be a better choice. Figure 3 shows the full active learning curves. For CIFAR-336

100 and 3×CIFAR-100 cases, by fixing features, we control/remove all other effects possibly affecting337

the model’s performance, such as data augmentation or the role of backbone in the classification.338

As demonstrated in Figure 2, BalEntAcq is very efficient in selecting diversified points along the339

decision boundary. Instead, PowerBALD suffers from improving accuracy because it focuses more340

on diversification/randomization by missing the information near the decision boundary. For SVHN341

or TinyImageNet, BalEntAcq shows better performance again. We suppose that diversification near342

the decision boundary in BalEntAcq also plays the data exploration because the representation space343

keeps evolving with the backbone training.344

6 Conclusion345

In this paper, we designed and proposed a new uncertainty measure, Balanced Entropy Acquisition346

(BalEntAcq), which captures the information balance between the underlying probability and the347

label variable through Beta approximation with a Bayesian neural network. BalEntAcq offers a348

diversified selection and is unique compared to other uncertainty measures. Moreover, we expect that349

our proposed balanced entropy measure does not have to be confined to active learning problems in350

general. BalEntAcq can be applied to improve the diversified selection process or accuracy estimation351

in a different type of Bayesian neural network frameworks. Therefore, we look forward to having352

further follow-up studies with broad applications beyond the active learning problems.353

9



354

Limitations355

As we specified in the introduction, our focus is MC-dropout-based Bayesian neural networks;356

our experiments have been limited to dropout-based Bayesian neural networks. However, our357

theoretical development does not require special architectural assumptions if we can apply Beta358

approximation. So one can apply our proposed method to any Bayesian classification network with359

Beta approximation. Moreover, considering the similarity with recent theoretically guaranteed active360

learning algorithm with abstention [59, 83, 76, 97] (see Appendix A.13), we expect to replicate361

the similar out-performance in other types of the Bayesian networks, e.g., Gaussian process [77],362

ensemble network [53], variational-dropout network [44], Laplace Redux [17], and so on.363
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